1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a register stacking pass. 11 /// 12 /// This pass reorders instructions to put register uses and defs in an order 13 /// such that they form single-use expression trees. Registers fitting this form 14 /// are then marked as "stackified", meaning references to them are replaced by 15 /// "push" and "pop" from the value stack. 16 /// 17 /// This is primarily a code size optimization, since temporary values on the 18 /// value stack don't need to be named. 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 23 #include "WebAssembly.h" 24 #include "WebAssemblyDebugValueManager.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-reg-stackify" 42 43 namespace { 44 class WebAssemblyRegStackify final : public MachineFunctionPass { 45 StringRef getPassName() const override { 46 return "WebAssembly Register Stackify"; 47 } 48 49 void getAnalysisUsage(AnalysisUsage &AU) const override { 50 AU.setPreservesCFG(); 51 AU.addRequired<AAResultsWrapperPass>(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void imposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void convertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF, 102 LiveIntervals &LIS) { 103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 104 105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 106 if (RegClass == &WebAssembly::I32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 108 MI->addOperand(MachineOperand::CreateImm(0)); 109 } else if (RegClass == &WebAssembly::I64RegClass) { 110 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 111 MI->addOperand(MachineOperand::CreateImm(0)); 112 } else if (RegClass == &WebAssembly::F32RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 114 auto *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getFloatTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else if (RegClass == &WebAssembly::F64RegClass) { 118 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 119 auto *Val = cast<ConstantFP>(Constant::getNullValue( 120 Type::getDoubleTy(MF.getFunction().getContext()))); 121 MI->addOperand(MachineOperand::CreateFPImm(Val)); 122 } else if (RegClass == &WebAssembly::V128RegClass) { 123 Register TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 124 MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32)); 125 MI->addOperand(MachineOperand::CreateReg(TempReg, false)); 126 MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 127 TII->get(WebAssembly::CONST_I32), TempReg) 128 .addImm(0); 129 LIS.InsertMachineInstrInMaps(*Const); 130 } else { 131 llvm_unreachable("Unexpected reg class"); 132 } 133 } 134 135 // Determine whether a call to the callee referenced by 136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 137 // effects. 138 static void queryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 139 bool &Write, bool &Effects, bool &StackPointer) { 140 // All calls can use the stack pointer. 141 StackPointer = true; 142 143 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 144 if (MO.isGlobal()) { 145 const Constant *GV = MO.getGlobal(); 146 if (const auto *GA = dyn_cast<GlobalAlias>(GV)) 147 if (!GA->isInterposable()) 148 GV = GA->getAliasee(); 149 150 if (const auto *F = dyn_cast<Function>(GV)) { 151 if (!F->doesNotThrow()) 152 Effects = true; 153 if (F->doesNotAccessMemory()) 154 return; 155 if (F->onlyReadsMemory()) { 156 Read = true; 157 return; 158 } 159 } 160 } 161 162 // Assume the worst. 163 Write = true; 164 Read = true; 165 Effects = true; 166 } 167 168 // Determine whether MI reads memory, writes memory, has side effects, 169 // and/or uses the stack pointer value. 170 static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 171 bool &Write, bool &Effects, bool &StackPointer) { 172 assert(!MI.isTerminator()); 173 174 if (MI.isDebugInstr() || MI.isPosition()) 175 return; 176 177 // Check for loads. 178 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 179 Read = true; 180 181 // Check for stores. 182 if (MI.mayStore()) { 183 Write = true; 184 } else if (MI.hasOrderedMemoryRef()) { 185 switch (MI.getOpcode()) { 186 case WebAssembly::DIV_S_I32: 187 case WebAssembly::DIV_S_I64: 188 case WebAssembly::REM_S_I32: 189 case WebAssembly::REM_S_I64: 190 case WebAssembly::DIV_U_I32: 191 case WebAssembly::DIV_U_I64: 192 case WebAssembly::REM_U_I32: 193 case WebAssembly::REM_U_I64: 194 case WebAssembly::I32_TRUNC_S_F32: 195 case WebAssembly::I64_TRUNC_S_F32: 196 case WebAssembly::I32_TRUNC_S_F64: 197 case WebAssembly::I64_TRUNC_S_F64: 198 case WebAssembly::I32_TRUNC_U_F32: 199 case WebAssembly::I64_TRUNC_U_F32: 200 case WebAssembly::I32_TRUNC_U_F64: 201 case WebAssembly::I64_TRUNC_U_F64: 202 // These instruction have hasUnmodeledSideEffects() returning true 203 // because they trap on overflow and invalid so they can't be arbitrarily 204 // moved, however hasOrderedMemoryRef() interprets this plus their lack 205 // of memoperands as having a potential unknown memory reference. 206 break; 207 default: 208 // Record volatile accesses, unless it's a call, as calls are handled 209 // specially below. 210 if (!MI.isCall()) { 211 Write = true; 212 Effects = true; 213 } 214 break; 215 } 216 } 217 218 // Check for side effects. 219 if (MI.hasUnmodeledSideEffects()) { 220 switch (MI.getOpcode()) { 221 case WebAssembly::DIV_S_I32: 222 case WebAssembly::DIV_S_I64: 223 case WebAssembly::REM_S_I32: 224 case WebAssembly::REM_S_I64: 225 case WebAssembly::DIV_U_I32: 226 case WebAssembly::DIV_U_I64: 227 case WebAssembly::REM_U_I32: 228 case WebAssembly::REM_U_I64: 229 case WebAssembly::I32_TRUNC_S_F32: 230 case WebAssembly::I64_TRUNC_S_F32: 231 case WebAssembly::I32_TRUNC_S_F64: 232 case WebAssembly::I64_TRUNC_S_F64: 233 case WebAssembly::I32_TRUNC_U_F32: 234 case WebAssembly::I64_TRUNC_U_F32: 235 case WebAssembly::I32_TRUNC_U_F64: 236 case WebAssembly::I64_TRUNC_U_F64: 237 // These instructions have hasUnmodeledSideEffects() returning true 238 // because they trap on overflow and invalid so they can't be arbitrarily 239 // moved, however in the specific case of register stackifying, it is safe 240 // to move them because overflow and invalid are Undefined Behavior. 241 break; 242 default: 243 Effects = true; 244 break; 245 } 246 } 247 248 // Check for writes to __stack_pointer global. 249 if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 && 250 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) 251 StackPointer = true; 252 253 // Analyze calls. 254 if (MI.isCall()) { 255 unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI.getOpcode()); 256 queryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer); 257 } 258 } 259 260 // Test whether Def is safe and profitable to rematerialize. 261 static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 262 const WebAssemblyInstrInfo *TII) { 263 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 264 } 265 266 // Identify the definition for this register at this point. This is a 267 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 268 // LiveIntervals to handle complex cases. 269 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, 270 const MachineRegisterInfo &MRI, 271 const LiveIntervals &LIS) { 272 // Most registers are in SSA form here so we try a quick MRI query first. 273 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 274 return Def; 275 276 // MRI doesn't know what the Def is. Try asking LIS. 277 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 278 LIS.getInstructionIndex(*Insert))) 279 return LIS.getInstructionFromIndex(ValNo->def); 280 281 return nullptr; 282 } 283 284 // Test whether Reg, as defined at Def, has exactly one use. This is a 285 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 286 // to handle complex cases. 287 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 288 MachineDominatorTree &MDT, LiveIntervals &LIS) { 289 // Most registers are in SSA form here so we try a quick MRI query first. 290 if (MRI.hasOneUse(Reg)) 291 return true; 292 293 bool HasOne = false; 294 const LiveInterval &LI = LIS.getInterval(Reg); 295 const VNInfo *DefVNI = 296 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 297 assert(DefVNI); 298 for (auto &I : MRI.use_nodbg_operands(Reg)) { 299 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 300 if (Result.valueIn() == DefVNI) { 301 if (!Result.isKill()) 302 return false; 303 if (HasOne) 304 return false; 305 HasOne = true; 306 } 307 } 308 return HasOne; 309 } 310 311 // Test whether it's safe to move Def to just before Insert. 312 // TODO: Compute memory dependencies in a way that doesn't require always 313 // walking the block. 314 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 315 // more precise. 316 static bool isSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 317 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 318 assert(Def->getParent() == Insert->getParent()); 319 320 // 'catch' and 'extract_exception' should be the first instruction of a BB and 321 // cannot move. 322 if (Def->getOpcode() == WebAssembly::CATCH || 323 Def->getOpcode() == WebAssembly::EXTRACT_EXCEPTION_I32) { 324 const MachineBasicBlock *MBB = Def->getParent(); 325 auto NextI = std::next(MachineBasicBlock::const_iterator(Def)); 326 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) 327 ; 328 if (NextI != Insert) 329 return false; 330 } 331 332 // Check for register dependencies. 333 SmallVector<unsigned, 4> MutableRegisters; 334 for (const MachineOperand &MO : Def->operands()) { 335 if (!MO.isReg() || MO.isUndef()) 336 continue; 337 Register Reg = MO.getReg(); 338 339 // If the register is dead here and at Insert, ignore it. 340 if (MO.isDead() && Insert->definesRegister(Reg) && 341 !Insert->readsRegister(Reg)) 342 continue; 343 344 if (Register::isPhysicalRegister(Reg)) { 345 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 346 // from moving down, and we've already checked for that. 347 if (Reg == WebAssembly::ARGUMENTS) 348 continue; 349 // If the physical register is never modified, ignore it. 350 if (!MRI.isPhysRegModified(Reg)) 351 continue; 352 // Otherwise, it's a physical register with unknown liveness. 353 return false; 354 } 355 356 // If one of the operands isn't in SSA form, it has different values at 357 // different times, and we need to make sure we don't move our use across 358 // a different def. 359 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 360 MutableRegisters.push_back(Reg); 361 } 362 363 bool Read = false, Write = false, Effects = false, StackPointer = false; 364 query(*Def, AA, Read, Write, Effects, StackPointer); 365 366 // If the instruction does not access memory and has no side effects, it has 367 // no additional dependencies. 368 bool HasMutableRegisters = !MutableRegisters.empty(); 369 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 370 return true; 371 372 // Scan through the intervening instructions between Def and Insert. 373 MachineBasicBlock::const_iterator D(Def), I(Insert); 374 for (--I; I != D; --I) { 375 bool InterveningRead = false; 376 bool InterveningWrite = false; 377 bool InterveningEffects = false; 378 bool InterveningStackPointer = false; 379 query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 380 InterveningStackPointer); 381 if (Effects && InterveningEffects) 382 return false; 383 if (Read && InterveningWrite) 384 return false; 385 if (Write && (InterveningRead || InterveningWrite)) 386 return false; 387 if (StackPointer && InterveningStackPointer) 388 return false; 389 390 for (unsigned Reg : MutableRegisters) 391 for (const MachineOperand &MO : I->operands()) 392 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 393 return false; 394 } 395 396 return true; 397 } 398 399 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 400 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 401 const MachineBasicBlock &MBB, 402 const MachineRegisterInfo &MRI, 403 const MachineDominatorTree &MDT, 404 LiveIntervals &LIS, 405 WebAssemblyFunctionInfo &MFI) { 406 const LiveInterval &LI = LIS.getInterval(Reg); 407 408 const MachineInstr *OneUseInst = OneUse.getParent(); 409 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 410 411 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 412 if (&Use == &OneUse) 413 continue; 414 415 const MachineInstr *UseInst = Use.getParent(); 416 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 417 418 if (UseVNI != OneUseVNI) 419 continue; 420 421 if (UseInst == OneUseInst) { 422 // Another use in the same instruction. We need to ensure that the one 423 // selected use happens "before" it. 424 if (&OneUse > &Use) 425 return false; 426 } else { 427 // Test that the use is dominated by the one selected use. 428 while (!MDT.dominates(OneUseInst, UseInst)) { 429 // Actually, dominating is over-conservative. Test that the use would 430 // happen after the one selected use in the stack evaluation order. 431 // 432 // This is needed as a consequence of using implicit local.gets for 433 // uses and implicit local.sets for defs. 434 if (UseInst->getDesc().getNumDefs() == 0) 435 return false; 436 const MachineOperand &MO = UseInst->getOperand(0); 437 if (!MO.isReg()) 438 return false; 439 Register DefReg = MO.getReg(); 440 if (!Register::isVirtualRegister(DefReg) || 441 !MFI.isVRegStackified(DefReg)) 442 return false; 443 assert(MRI.hasOneNonDBGUse(DefReg)); 444 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 445 const MachineInstr *NewUseInst = NewUse.getParent(); 446 if (NewUseInst == OneUseInst) { 447 if (&OneUse > &NewUse) 448 return false; 449 break; 450 } 451 UseInst = NewUseInst; 452 } 453 } 454 } 455 return true; 456 } 457 458 /// Get the appropriate tee opcode for the given register class. 459 static unsigned getTeeOpcode(const TargetRegisterClass *RC) { 460 if (RC == &WebAssembly::I32RegClass) 461 return WebAssembly::TEE_I32; 462 if (RC == &WebAssembly::I64RegClass) 463 return WebAssembly::TEE_I64; 464 if (RC == &WebAssembly::F32RegClass) 465 return WebAssembly::TEE_F32; 466 if (RC == &WebAssembly::F64RegClass) 467 return WebAssembly::TEE_F64; 468 if (RC == &WebAssembly::V128RegClass) 469 return WebAssembly::TEE_V128; 470 llvm_unreachable("Unexpected register class"); 471 } 472 473 // Shrink LI to its uses, cleaning up LI. 474 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 475 if (LIS.shrinkToUses(&LI)) { 476 SmallVector<LiveInterval *, 4> SplitLIs; 477 LIS.splitSeparateComponents(LI, SplitLIs); 478 } 479 } 480 481 /// A single-use def in the same block with no intervening memory or register 482 /// dependencies; move the def down and nest it with the current instruction. 483 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, 484 MachineInstr *Def, MachineBasicBlock &MBB, 485 MachineInstr *Insert, LiveIntervals &LIS, 486 WebAssemblyFunctionInfo &MFI, 487 MachineRegisterInfo &MRI) { 488 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 489 490 WebAssemblyDebugValueManager DefDIs(Def); 491 MBB.splice(Insert, &MBB, Def); 492 DefDIs.move(Insert); 493 LIS.handleMove(*Def); 494 495 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 496 // No one else is using this register for anything so we can just stackify 497 // it in place. 498 MFI.stackifyVReg(Reg); 499 } else { 500 // The register may have unrelated uses or defs; create a new register for 501 // just our one def and use so that we can stackify it. 502 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 503 Def->getOperand(0).setReg(NewReg); 504 Op.setReg(NewReg); 505 506 // Tell LiveIntervals about the new register. 507 LIS.createAndComputeVirtRegInterval(NewReg); 508 509 // Tell LiveIntervals about the changes to the old register. 510 LiveInterval &LI = LIS.getInterval(Reg); 511 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 512 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 513 /*RemoveDeadValNo=*/true); 514 515 MFI.stackifyVReg(NewReg); 516 517 DefDIs.updateReg(NewReg); 518 519 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 520 } 521 522 imposeStackOrdering(Def); 523 return Def; 524 } 525 526 /// A trivially cloneable instruction; clone it and nest the new copy with the 527 /// current instruction. 528 static MachineInstr *rematerializeCheapDef( 529 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 530 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 531 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 532 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 533 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 534 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 535 536 WebAssemblyDebugValueManager DefDIs(&Def); 537 538 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 539 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 540 Op.setReg(NewReg); 541 MachineInstr *Clone = &*std::prev(Insert); 542 LIS.InsertMachineInstrInMaps(*Clone); 543 LIS.createAndComputeVirtRegInterval(NewReg); 544 MFI.stackifyVReg(NewReg); 545 imposeStackOrdering(Clone); 546 547 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 548 549 // Shrink the interval. 550 bool IsDead = MRI.use_empty(Reg); 551 if (!IsDead) { 552 LiveInterval &LI = LIS.getInterval(Reg); 553 shrinkToUses(LI, LIS); 554 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 555 } 556 557 // If that was the last use of the original, delete the original. 558 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 559 if (IsDead) { 560 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 561 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 562 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 563 LIS.removeInterval(Reg); 564 LIS.RemoveMachineInstrFromMaps(Def); 565 Def.eraseFromParent(); 566 567 DefDIs.move(&*Insert); 568 DefDIs.updateReg(NewReg); 569 } else { 570 DefDIs.clone(&*Insert, NewReg); 571 } 572 573 return Clone; 574 } 575 576 /// A multiple-use def in the same block with no intervening memory or register 577 /// dependencies; move the def down, nest it with the current instruction, and 578 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 579 /// this: 580 /// 581 /// Reg = INST ... // Def 582 /// INST ..., Reg, ... // Insert 583 /// INST ..., Reg, ... 584 /// INST ..., Reg, ... 585 /// 586 /// to this: 587 /// 588 /// DefReg = INST ... // Def (to become the new Insert) 589 /// TeeReg, Reg = TEE_... DefReg 590 /// INST ..., TeeReg, ... // Insert 591 /// INST ..., Reg, ... 592 /// INST ..., Reg, ... 593 /// 594 /// with DefReg and TeeReg stackified. This eliminates a local.get from the 595 /// resulting code. 596 static MachineInstr *moveAndTeeForMultiUse( 597 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 598 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 599 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 600 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 601 602 WebAssemblyDebugValueManager DefDIs(Def); 603 604 // Move Def into place. 605 MBB.splice(Insert, &MBB, Def); 606 LIS.handleMove(*Def); 607 608 // Create the Tee and attach the registers. 609 const auto *RegClass = MRI.getRegClass(Reg); 610 Register TeeReg = MRI.createVirtualRegister(RegClass); 611 Register DefReg = MRI.createVirtualRegister(RegClass); 612 MachineOperand &DefMO = Def->getOperand(0); 613 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 614 TII->get(getTeeOpcode(RegClass)), TeeReg) 615 .addReg(Reg, RegState::Define) 616 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 617 Op.setReg(TeeReg); 618 DefMO.setReg(DefReg); 619 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 620 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 621 622 DefDIs.move(Insert); 623 624 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 625 LiveInterval &LI = LIS.getInterval(Reg); 626 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 627 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 628 I->start = TeeIdx; 629 ValNo->def = TeeIdx; 630 shrinkToUses(LI, LIS); 631 632 // Finish stackifying the new regs. 633 LIS.createAndComputeVirtRegInterval(TeeReg); 634 LIS.createAndComputeVirtRegInterval(DefReg); 635 MFI.stackifyVReg(DefReg); 636 MFI.stackifyVReg(TeeReg); 637 imposeStackOrdering(Def); 638 imposeStackOrdering(Tee); 639 640 DefDIs.clone(Tee, DefReg); 641 DefDIs.clone(Insert, TeeReg); 642 643 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 644 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 645 return Def; 646 } 647 648 namespace { 649 /// A stack for walking the tree of instructions being built, visiting the 650 /// MachineOperands in DFS order. 651 class TreeWalkerState { 652 using mop_iterator = MachineInstr::mop_iterator; 653 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; 654 using RangeTy = iterator_range<mop_reverse_iterator>; 655 SmallVector<RangeTy, 4> Worklist; 656 657 public: 658 explicit TreeWalkerState(MachineInstr *Insert) { 659 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 660 if (Range.begin() != Range.end()) 661 Worklist.push_back(reverse(Range)); 662 } 663 664 bool done() const { return Worklist.empty(); } 665 666 MachineOperand &pop() { 667 RangeTy &Range = Worklist.back(); 668 MachineOperand &Op = *Range.begin(); 669 Range = drop_begin(Range, 1); 670 if (Range.begin() == Range.end()) 671 Worklist.pop_back(); 672 assert((Worklist.empty() || 673 Worklist.back().begin() != Worklist.back().end()) && 674 "Empty ranges shouldn't remain in the worklist"); 675 return Op; 676 } 677 678 /// Push Instr's operands onto the stack to be visited. 679 void pushOperands(MachineInstr *Instr) { 680 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 681 if (Range.begin() != Range.end()) 682 Worklist.push_back(reverse(Range)); 683 } 684 685 /// Some of Instr's operands are on the top of the stack; remove them and 686 /// re-insert them starting from the beginning (because we've commuted them). 687 void resetTopOperands(MachineInstr *Instr) { 688 assert(hasRemainingOperands(Instr) && 689 "Reseting operands should only be done when the instruction has " 690 "an operand still on the stack"); 691 Worklist.back() = reverse(Instr->explicit_uses()); 692 } 693 694 /// Test whether Instr has operands remaining to be visited at the top of 695 /// the stack. 696 bool hasRemainingOperands(const MachineInstr *Instr) const { 697 if (Worklist.empty()) 698 return false; 699 const RangeTy &Range = Worklist.back(); 700 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 701 } 702 703 /// Test whether the given register is present on the stack, indicating an 704 /// operand in the tree that we haven't visited yet. Moving a definition of 705 /// Reg to a point in the tree after that would change its value. 706 /// 707 /// This is needed as a consequence of using implicit local.gets for 708 /// uses and implicit local.sets for defs. 709 bool isOnStack(unsigned Reg) const { 710 for (const RangeTy &Range : Worklist) 711 for (const MachineOperand &MO : Range) 712 if (MO.isReg() && MO.getReg() == Reg) 713 return true; 714 return false; 715 } 716 }; 717 718 /// State to keep track of whether commuting is in flight or whether it's been 719 /// tried for the current instruction and didn't work. 720 class CommutingState { 721 /// There are effectively three states: the initial state where we haven't 722 /// started commuting anything and we don't know anything yet, the tentative 723 /// state where we've commuted the operands of the current instruction and are 724 /// revisiting it, and the declined state where we've reverted the operands 725 /// back to their original order and will no longer commute it further. 726 bool TentativelyCommuting = false; 727 bool Declined = false; 728 729 /// During the tentative state, these hold the operand indices of the commuted 730 /// operands. 731 unsigned Operand0, Operand1; 732 733 public: 734 /// Stackification for an operand was not successful due to ordering 735 /// constraints. If possible, and if we haven't already tried it and declined 736 /// it, commute Insert's operands and prepare to revisit it. 737 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 738 const WebAssemblyInstrInfo *TII) { 739 if (TentativelyCommuting) { 740 assert(!Declined && 741 "Don't decline commuting until you've finished trying it"); 742 // Commuting didn't help. Revert it. 743 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 744 TentativelyCommuting = false; 745 Declined = true; 746 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) { 747 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 748 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 749 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 750 // Tentatively commute the operands and try again. 751 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 752 TreeWalker.resetTopOperands(Insert); 753 TentativelyCommuting = true; 754 Declined = false; 755 } 756 } 757 } 758 759 /// Stackification for some operand was successful. Reset to the default 760 /// state. 761 void reset() { 762 TentativelyCommuting = false; 763 Declined = false; 764 } 765 }; 766 } // end anonymous namespace 767 768 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 769 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 770 "********** Function: " 771 << MF.getName() << '\n'); 772 773 bool Changed = false; 774 MachineRegisterInfo &MRI = MF.getRegInfo(); 775 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 776 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 777 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 778 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 779 auto &MDT = getAnalysis<MachineDominatorTree>(); 780 auto &LIS = getAnalysis<LiveIntervals>(); 781 782 // Walk the instructions from the bottom up. Currently we don't look past 783 // block boundaries, and the blocks aren't ordered so the block visitation 784 // order isn't significant, but we may want to change this in the future. 785 for (MachineBasicBlock &MBB : MF) { 786 // Don't use a range-based for loop, because we modify the list as we're 787 // iterating over it and the end iterator may change. 788 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 789 MachineInstr *Insert = &*MII; 790 // Don't nest anything inside an inline asm, because we don't have 791 // constraints for $push inputs. 792 if (Insert->isInlineAsm()) 793 continue; 794 795 // Ignore debugging intrinsics. 796 if (Insert->isDebugValue()) 797 continue; 798 799 // Iterate through the inputs in reverse order, since we'll be pulling 800 // operands off the stack in LIFO order. 801 CommutingState Commuting; 802 TreeWalkerState TreeWalker(Insert); 803 while (!TreeWalker.done()) { 804 MachineOperand &Op = TreeWalker.pop(); 805 806 // We're only interested in explicit virtual register operands. 807 if (!Op.isReg()) 808 continue; 809 810 Register Reg = Op.getReg(); 811 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 812 assert(!Op.isImplicit() && 813 "explicit_uses() should only iterate over explicit operands"); 814 if (Register::isPhysicalRegister(Reg)) 815 continue; 816 817 // Identify the definition for this register at this point. 818 MachineInstr *Def = getVRegDef(Reg, Insert, MRI, LIS); 819 if (!Def) 820 continue; 821 822 // Don't nest an INLINE_ASM def into anything, because we don't have 823 // constraints for $pop outputs. 824 if (Def->isInlineAsm()) 825 continue; 826 827 // Argument instructions represent live-in registers and not real 828 // instructions. 829 if (WebAssembly::isArgument(Def->getOpcode())) 830 continue; 831 832 // Currently catch's return value register cannot be stackified, because 833 // the wasm LLVM backend currently does not support live-in values 834 // entering blocks, which is a part of multi-value proposal. 835 // 836 // Once we support live-in values of wasm blocks, this can be: 837 // catch ; push exnref value onto stack 838 // block exnref -> i32 839 // br_on_exn $__cpp_exception ; pop the exnref value 840 // end_block 841 // 842 // But because we don't support it yet, the catch instruction's dst 843 // register should be assigned to a local to be propagated across 844 // 'block' boundary now. 845 // 846 // TODO Fix this once we support the multi-value proposal. 847 if (Def->getOpcode() == WebAssembly::CATCH) 848 continue; 849 850 // Decide which strategy to take. Prefer to move a single-use value 851 // over cloning it, and prefer cloning over introducing a tee. 852 // For moving, we require the def to be in the same block as the use; 853 // this makes things simpler (LiveIntervals' handleMove function only 854 // supports intra-block moves) and it's MachineSink's job to catch all 855 // the sinking opportunities anyway. 856 bool SameBlock = Def->getParent() == &MBB; 857 bool CanMove = SameBlock && isSafeToMove(Def, Insert, AA, MRI) && 858 !TreeWalker.isOnStack(Reg); 859 if (CanMove && hasOneUse(Reg, Def, MRI, MDT, LIS)) { 860 Insert = moveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 861 } else if (shouldRematerialize(*Def, AA, TII)) { 862 Insert = 863 rematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 864 LIS, MFI, MRI, TII, TRI); 865 } else if (CanMove && 866 oneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 867 Insert = moveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 868 MRI, TII); 869 } else { 870 // We failed to stackify the operand. If the problem was ordering 871 // constraints, Commuting may be able to help. 872 if (!CanMove && SameBlock) 873 Commuting.maybeCommute(Insert, TreeWalker, TII); 874 // Proceed to the next operand. 875 continue; 876 } 877 878 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 879 // to a constant 0 so that the def is explicit, and the push/pop 880 // correspondence is maintained. 881 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 882 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 883 884 // We stackified an operand. Add the defining instruction's operands to 885 // the worklist stack now to continue to build an ever deeper tree. 886 Commuting.reset(); 887 TreeWalker.pushOperands(Insert); 888 } 889 890 // If we stackified any operands, skip over the tree to start looking for 891 // the next instruction we can build a tree on. 892 if (Insert != &*MII) { 893 imposeStackOrdering(&*MII); 894 MII = MachineBasicBlock::iterator(Insert).getReverse(); 895 Changed = true; 896 } 897 } 898 } 899 900 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 901 // that it never looks like a use-before-def. 902 if (Changed) { 903 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 904 for (MachineBasicBlock &MBB : MF) 905 MBB.addLiveIn(WebAssembly::VALUE_STACK); 906 } 907 908 #ifndef NDEBUG 909 // Verify that pushes and pops are performed in LIFO order. 910 SmallVector<unsigned, 0> Stack; 911 for (MachineBasicBlock &MBB : MF) { 912 for (MachineInstr &MI : MBB) { 913 if (MI.isDebugInstr()) 914 continue; 915 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 916 if (!MO.isReg()) 917 continue; 918 Register Reg = MO.getReg(); 919 920 if (MFI.isVRegStackified(Reg)) { 921 if (MO.isDef()) 922 Stack.push_back(Reg); 923 else 924 assert(Stack.pop_back_val() == Reg && 925 "Register stack pop should be paired with a push"); 926 } 927 } 928 } 929 // TODO: Generalize this code to support keeping values on the stack across 930 // basic block boundaries. 931 assert(Stack.empty() && 932 "Register stack pushes and pops should be balanced"); 933 } 934 #endif 935 936 return Changed; 937 } 938