1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a register stacking pass. 11 /// 12 /// This pass reorders instructions to put register uses and defs in an order 13 /// such that they form single-use expression trees. Registers fitting this form 14 /// are then marked as "stackified", meaning references to them are replaced by 15 /// "push" and "pop" from the value stack. 16 /// 17 /// This is primarily a code size optimization, since temporary values on the 18 /// value stack don't need to be named. 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 23 #include "WebAssembly.h" 24 #include "WebAssemblyDebugValueManager.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/LiveIntervals.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <iterator> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "wasm-reg-stackify" 43 44 namespace { 45 class WebAssemblyRegStackify final : public MachineFunctionPass { 46 StringRef getPassName() const override { 47 return "WebAssembly Register Stackify"; 48 } 49 50 void getAnalysisUsage(AnalysisUsage &AU) const override { 51 AU.setPreservesCFG(); 52 AU.addRequired<MachineDominatorTreeWrapperPass>(); 53 AU.addRequired<LiveIntervalsWrapperPass>(); 54 AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); 55 AU.addPreserved<SlotIndexesWrapperPass>(); 56 AU.addPreserved<LiveIntervalsWrapperPass>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void imposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK, /*TRI=*/nullptr)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK, /*TRI=*/nullptr)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void convertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF, 102 LiveIntervals &LIS) { 103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 104 105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 106 if (RegClass == &WebAssembly::I32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 108 MI->addOperand(MachineOperand::CreateImm(0)); 109 } else if (RegClass == &WebAssembly::I64RegClass) { 110 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 111 MI->addOperand(MachineOperand::CreateImm(0)); 112 } else if (RegClass == &WebAssembly::F32RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 114 auto *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getFloatTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else if (RegClass == &WebAssembly::F64RegClass) { 118 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 119 auto *Val = cast<ConstantFP>(Constant::getNullValue( 120 Type::getDoubleTy(MF.getFunction().getContext()))); 121 MI->addOperand(MachineOperand::CreateFPImm(Val)); 122 } else if (RegClass == &WebAssembly::V128RegClass) { 123 MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2)); 124 MI->addOperand(MachineOperand::CreateImm(0)); 125 MI->addOperand(MachineOperand::CreateImm(0)); 126 } else { 127 llvm_unreachable("Unexpected reg class"); 128 } 129 } 130 131 // Determine whether a call to the callee referenced by 132 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 133 // effects. 134 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, 135 bool &Effects, bool &StackPointer) { 136 // All calls can use the stack pointer. 137 StackPointer = true; 138 139 const MachineOperand &MO = WebAssembly::getCalleeOp(MI); 140 if (MO.isGlobal()) { 141 const Constant *GV = MO.getGlobal(); 142 if (const auto *GA = dyn_cast<GlobalAlias>(GV)) 143 if (!GA->isInterposable()) 144 GV = GA->getAliasee(); 145 146 if (const auto *F = dyn_cast<Function>(GV)) { 147 if (!F->doesNotThrow()) 148 Effects = true; 149 if (F->doesNotAccessMemory()) 150 return; 151 if (F->onlyReadsMemory()) { 152 Read = true; 153 return; 154 } 155 } 156 } 157 158 // Assume the worst. 159 Write = true; 160 Read = true; 161 Effects = true; 162 } 163 164 // Determine whether MI reads memory, writes memory, has side effects, 165 // and/or uses the stack pointer value. 166 static void query(const MachineInstr &MI, bool &Read, bool &Write, 167 bool &Effects, bool &StackPointer) { 168 assert(!MI.isTerminator()); 169 170 if (MI.isDebugInstr() || MI.isPosition()) 171 return; 172 173 // Check for loads. 174 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) 175 Read = true; 176 177 // Check for stores. 178 if (MI.mayStore()) { 179 Write = true; 180 } else if (MI.hasOrderedMemoryRef()) { 181 switch (MI.getOpcode()) { 182 case WebAssembly::DIV_S_I32: 183 case WebAssembly::DIV_S_I64: 184 case WebAssembly::REM_S_I32: 185 case WebAssembly::REM_S_I64: 186 case WebAssembly::DIV_U_I32: 187 case WebAssembly::DIV_U_I64: 188 case WebAssembly::REM_U_I32: 189 case WebAssembly::REM_U_I64: 190 case WebAssembly::I32_TRUNC_S_F32: 191 case WebAssembly::I64_TRUNC_S_F32: 192 case WebAssembly::I32_TRUNC_S_F64: 193 case WebAssembly::I64_TRUNC_S_F64: 194 case WebAssembly::I32_TRUNC_U_F32: 195 case WebAssembly::I64_TRUNC_U_F32: 196 case WebAssembly::I32_TRUNC_U_F64: 197 case WebAssembly::I64_TRUNC_U_F64: 198 // These instruction have hasUnmodeledSideEffects() returning true 199 // because they trap on overflow and invalid so they can't be arbitrarily 200 // moved, however hasOrderedMemoryRef() interprets this plus their lack 201 // of memoperands as having a potential unknown memory reference. 202 break; 203 default: 204 // Record volatile accesses, unless it's a call, as calls are handled 205 // specially below. 206 if (!MI.isCall()) { 207 Write = true; 208 Effects = true; 209 } 210 break; 211 } 212 } 213 214 // Check for side effects. 215 if (MI.hasUnmodeledSideEffects()) { 216 switch (MI.getOpcode()) { 217 case WebAssembly::DIV_S_I32: 218 case WebAssembly::DIV_S_I64: 219 case WebAssembly::REM_S_I32: 220 case WebAssembly::REM_S_I64: 221 case WebAssembly::DIV_U_I32: 222 case WebAssembly::DIV_U_I64: 223 case WebAssembly::REM_U_I32: 224 case WebAssembly::REM_U_I64: 225 case WebAssembly::I32_TRUNC_S_F32: 226 case WebAssembly::I64_TRUNC_S_F32: 227 case WebAssembly::I32_TRUNC_S_F64: 228 case WebAssembly::I64_TRUNC_S_F64: 229 case WebAssembly::I32_TRUNC_U_F32: 230 case WebAssembly::I64_TRUNC_U_F32: 231 case WebAssembly::I32_TRUNC_U_F64: 232 case WebAssembly::I64_TRUNC_U_F64: 233 // These instructions have hasUnmodeledSideEffects() returning true 234 // because they trap on overflow and invalid so they can't be arbitrarily 235 // moved, however in the specific case of register stackifying, it is safe 236 // to move them because overflow and invalid are Undefined Behavior. 237 break; 238 default: 239 Effects = true; 240 break; 241 } 242 } 243 244 // Check for writes to __stack_pointer global. 245 if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 || 246 MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) && 247 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) 248 StackPointer = true; 249 250 // Analyze calls. 251 if (MI.isCall()) { 252 queryCallee(MI, Read, Write, Effects, StackPointer); 253 } 254 } 255 256 // Test whether Def is safe and profitable to rematerialize. 257 static bool shouldRematerialize(const MachineInstr &Def, 258 const WebAssemblyInstrInfo *TII) { 259 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def); 260 } 261 262 // Identify the definition for this register at this point. This is a 263 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 264 // LiveIntervals to handle complex cases. 265 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, 266 const MachineRegisterInfo &MRI, 267 const LiveIntervals &LIS) { 268 // Most registers are in SSA form here so we try a quick MRI query first. 269 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 270 return Def; 271 272 // MRI doesn't know what the Def is. Try asking LIS. 273 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 274 LIS.getInstructionIndex(*Insert))) 275 return LIS.getInstructionFromIndex(ValNo->def); 276 277 return nullptr; 278 } 279 280 // Test whether Reg, as defined at Def, has exactly one use. This is a 281 // generalization of MachineRegisterInfo::hasOneNonDBGUse that uses 282 // LiveIntervals to handle complex cases. 283 static bool hasOneNonDBGUse(unsigned Reg, MachineInstr *Def, 284 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 285 LiveIntervals &LIS) { 286 // Most registers are in SSA form here so we try a quick MRI query first. 287 if (MRI.hasOneNonDBGUse(Reg)) 288 return true; 289 290 bool HasOne = false; 291 const LiveInterval &LI = LIS.getInterval(Reg); 292 const VNInfo *DefVNI = 293 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 294 assert(DefVNI); 295 for (auto &I : MRI.use_nodbg_operands(Reg)) { 296 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 297 if (Result.valueIn() == DefVNI) { 298 if (!Result.isKill()) 299 return false; 300 if (HasOne) 301 return false; 302 HasOne = true; 303 } 304 } 305 return HasOne; 306 } 307 308 // Test whether it's safe to move Def to just before Insert. 309 // TODO: Compute memory dependencies in a way that doesn't require always 310 // walking the block. 311 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 312 // more precise. 313 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, 314 const MachineInstr *Insert, 315 const WebAssemblyFunctionInfo &MFI, 316 const MachineRegisterInfo &MRI) { 317 const MachineInstr *DefI = Def->getParent(); 318 const MachineInstr *UseI = Use->getParent(); 319 assert(DefI->getParent() == Insert->getParent()); 320 assert(UseI->getParent() == Insert->getParent()); 321 322 // The first def of a multivalue instruction can be stackified by moving, 323 // since the later defs can always be placed into locals if necessary. Later 324 // defs can only be stackified if all previous defs are already stackified 325 // since ExplicitLocals will not know how to place a def in a local if a 326 // subsequent def is stackified. But only one def can be stackified by moving 327 // the instruction, so it must be the first one. 328 // 329 // TODO: This could be loosened to be the first *live* def, but care would 330 // have to be taken to ensure the drops of the initial dead defs can be 331 // placed. This would require checking that no previous defs are used in the 332 // same instruction as subsequent defs. 333 if (Def != DefI->defs().begin()) 334 return false; 335 336 // If any subsequent def is used prior to the current value by the same 337 // instruction in which the current value is used, we cannot 338 // stackify. Stackifying in this case would require that def moving below the 339 // current def in the stack, which cannot be achieved, even with locals. 340 // Also ensure we don't sink the def past any other prior uses. 341 for (const auto &SubsequentDef : drop_begin(DefI->defs())) { 342 auto I = std::next(MachineBasicBlock::const_iterator(DefI)); 343 auto E = std::next(MachineBasicBlock::const_iterator(UseI)); 344 for (; I != E; ++I) { 345 for (const auto &PriorUse : I->uses()) { 346 if (&PriorUse == Use) 347 break; 348 if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg()) 349 return false; 350 } 351 } 352 } 353 354 // If moving is a semantic nop, it is always allowed 355 const MachineBasicBlock *MBB = DefI->getParent(); 356 auto NextI = std::next(MachineBasicBlock::const_iterator(DefI)); 357 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) 358 ; 359 if (NextI == Insert) 360 return true; 361 362 // 'catch' and 'catch_all' should be the first instruction of a BB and cannot 363 // move. 364 if (WebAssembly::isCatch(DefI->getOpcode())) 365 return false; 366 367 // Check for register dependencies. 368 SmallVector<unsigned, 4> MutableRegisters; 369 for (const MachineOperand &MO : DefI->operands()) { 370 if (!MO.isReg() || MO.isUndef()) 371 continue; 372 Register Reg = MO.getReg(); 373 374 // If the register is dead here and at Insert, ignore it. 375 if (MO.isDead() && Insert->definesRegister(Reg, /*TRI=*/nullptr) && 376 !Insert->readsRegister(Reg, /*TRI=*/nullptr)) 377 continue; 378 379 if (Reg.isPhysical()) { 380 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 381 // from moving down, and we've already checked for that. 382 if (Reg == WebAssembly::ARGUMENTS) 383 continue; 384 // If the physical register is never modified, ignore it. 385 if (!MRI.isPhysRegModified(Reg)) 386 continue; 387 // Otherwise, it's a physical register with unknown liveness. 388 return false; 389 } 390 391 // If one of the operands isn't in SSA form, it has different values at 392 // different times, and we need to make sure we don't move our use across 393 // a different def. 394 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 395 MutableRegisters.push_back(Reg); 396 } 397 398 bool Read = false, Write = false, Effects = false, StackPointer = false; 399 query(*DefI, Read, Write, Effects, StackPointer); 400 401 // If the instruction does not access memory and has no side effects, it has 402 // no additional dependencies. 403 bool HasMutableRegisters = !MutableRegisters.empty(); 404 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 405 return true; 406 407 // Scan through the intervening instructions between DefI and Insert. 408 MachineBasicBlock::const_iterator D(DefI), I(Insert); 409 for (--I; I != D; --I) { 410 bool InterveningRead = false; 411 bool InterveningWrite = false; 412 bool InterveningEffects = false; 413 bool InterveningStackPointer = false; 414 query(*I, InterveningRead, InterveningWrite, InterveningEffects, 415 InterveningStackPointer); 416 if (Effects && InterveningEffects) 417 return false; 418 if (Read && InterveningWrite) 419 return false; 420 if (Write && (InterveningRead || InterveningWrite)) 421 return false; 422 if (StackPointer && InterveningStackPointer) 423 return false; 424 425 for (unsigned Reg : MutableRegisters) 426 for (const MachineOperand &MO : I->operands()) 427 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 428 return false; 429 } 430 431 return true; 432 } 433 434 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 435 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 436 const MachineBasicBlock &MBB, 437 const MachineRegisterInfo &MRI, 438 const MachineDominatorTree &MDT, 439 LiveIntervals &LIS, 440 WebAssemblyFunctionInfo &MFI) { 441 const LiveInterval &LI = LIS.getInterval(Reg); 442 443 const MachineInstr *OneUseInst = OneUse.getParent(); 444 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 445 446 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 447 if (&Use == &OneUse) 448 continue; 449 450 const MachineInstr *UseInst = Use.getParent(); 451 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 452 453 if (UseVNI != OneUseVNI) 454 continue; 455 456 if (UseInst == OneUseInst) { 457 // Another use in the same instruction. We need to ensure that the one 458 // selected use happens "before" it. 459 if (&OneUse > &Use) 460 return false; 461 } else { 462 // Test that the use is dominated by the one selected use. 463 while (!MDT.dominates(OneUseInst, UseInst)) { 464 // Actually, dominating is over-conservative. Test that the use would 465 // happen after the one selected use in the stack evaluation order. 466 // 467 // This is needed as a consequence of using implicit local.gets for 468 // uses and implicit local.sets for defs. 469 if (UseInst->getDesc().getNumDefs() == 0) 470 return false; 471 const MachineOperand &MO = UseInst->getOperand(0); 472 if (!MO.isReg()) 473 return false; 474 Register DefReg = MO.getReg(); 475 if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg)) 476 return false; 477 assert(MRI.hasOneNonDBGUse(DefReg)); 478 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 479 const MachineInstr *NewUseInst = NewUse.getParent(); 480 if (NewUseInst == OneUseInst) { 481 if (&OneUse > &NewUse) 482 return false; 483 break; 484 } 485 UseInst = NewUseInst; 486 } 487 } 488 } 489 return true; 490 } 491 492 /// Get the appropriate tee opcode for the given register class. 493 static unsigned getTeeOpcode(const TargetRegisterClass *RC) { 494 if (RC == &WebAssembly::I32RegClass) 495 return WebAssembly::TEE_I32; 496 if (RC == &WebAssembly::I64RegClass) 497 return WebAssembly::TEE_I64; 498 if (RC == &WebAssembly::F32RegClass) 499 return WebAssembly::TEE_F32; 500 if (RC == &WebAssembly::F64RegClass) 501 return WebAssembly::TEE_F64; 502 if (RC == &WebAssembly::V128RegClass) 503 return WebAssembly::TEE_V128; 504 if (RC == &WebAssembly::EXTERNREFRegClass) 505 return WebAssembly::TEE_EXTERNREF; 506 if (RC == &WebAssembly::FUNCREFRegClass) 507 return WebAssembly::TEE_FUNCREF; 508 if (RC == &WebAssembly::EXNREFRegClass) 509 return WebAssembly::TEE_EXNREF; 510 llvm_unreachable("Unexpected register class"); 511 } 512 513 // Shrink LI to its uses, cleaning up LI. 514 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 515 if (LIS.shrinkToUses(&LI)) { 516 SmallVector<LiveInterval *, 4> SplitLIs; 517 LIS.splitSeparateComponents(LI, SplitLIs); 518 } 519 } 520 521 /// A single-use def in the same block with no intervening memory or register 522 /// dependencies; move the def down and nest it with the current instruction. 523 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, 524 MachineInstr *Def, MachineBasicBlock &MBB, 525 MachineInstr *Insert, LiveIntervals &LIS, 526 WebAssemblyFunctionInfo &MFI, 527 MachineRegisterInfo &MRI) { 528 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 529 530 WebAssemblyDebugValueManager DefDIs(Def); 531 DefDIs.sink(Insert); 532 LIS.handleMove(*Def); 533 534 if (MRI.hasOneDef(Reg) && MRI.hasOneNonDBGUse(Reg)) { 535 // No one else is using this register for anything so we can just stackify 536 // it in place. 537 MFI.stackifyVReg(MRI, Reg); 538 } else { 539 // The register may have unrelated uses or defs; create a new register for 540 // just our one def and use so that we can stackify it. 541 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 542 Op.setReg(NewReg); 543 DefDIs.updateReg(NewReg); 544 545 // Tell LiveIntervals about the new register. 546 LIS.createAndComputeVirtRegInterval(NewReg); 547 548 // Tell LiveIntervals about the changes to the old register. 549 LiveInterval &LI = LIS.getInterval(Reg); 550 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 551 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 552 /*RemoveDeadValNo=*/true); 553 554 MFI.stackifyVReg(MRI, NewReg); 555 556 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 557 } 558 559 imposeStackOrdering(Def); 560 return Def; 561 } 562 563 static MachineInstr *getPrevNonDebugInst(MachineInstr *MI) { 564 for (auto *I = MI->getPrevNode(); I; I = I->getPrevNode()) 565 if (!I->isDebugInstr()) 566 return I; 567 return nullptr; 568 } 569 570 /// A trivially cloneable instruction; clone it and nest the new copy with the 571 /// current instruction. 572 static MachineInstr *rematerializeCheapDef( 573 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 574 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 575 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 576 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 577 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 578 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 579 580 WebAssemblyDebugValueManager DefDIs(&Def); 581 582 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 583 DefDIs.cloneSink(&*Insert, NewReg); 584 Op.setReg(NewReg); 585 MachineInstr *Clone = getPrevNonDebugInst(&*Insert); 586 assert(Clone); 587 LIS.InsertMachineInstrInMaps(*Clone); 588 LIS.createAndComputeVirtRegInterval(NewReg); 589 MFI.stackifyVReg(MRI, NewReg); 590 imposeStackOrdering(Clone); 591 592 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 593 594 // Shrink the interval. 595 bool IsDead = MRI.use_empty(Reg); 596 if (!IsDead) { 597 LiveInterval &LI = LIS.getInterval(Reg); 598 shrinkToUses(LI, LIS); 599 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 600 } 601 602 // If that was the last use of the original, delete the original. 603 if (IsDead) { 604 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 605 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 606 LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx); 607 LIS.removeInterval(Reg); 608 LIS.RemoveMachineInstrFromMaps(Def); 609 DefDIs.removeDef(); 610 } 611 612 return Clone; 613 } 614 615 /// A multiple-use def in the same block with no intervening memory or register 616 /// dependencies; move the def down, nest it with the current instruction, and 617 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 618 /// this: 619 /// 620 /// Reg = INST ... // Def 621 /// INST ..., Reg, ... // Insert 622 /// INST ..., Reg, ... 623 /// INST ..., Reg, ... 624 /// 625 /// to this: 626 /// 627 /// DefReg = INST ... // Def (to become the new Insert) 628 /// TeeReg, Reg = TEE_... DefReg 629 /// INST ..., TeeReg, ... // Insert 630 /// INST ..., Reg, ... 631 /// INST ..., Reg, ... 632 /// 633 /// with DefReg and TeeReg stackified. This eliminates a local.get from the 634 /// resulting code. 635 static MachineInstr *moveAndTeeForMultiUse( 636 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 637 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 638 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 639 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 640 641 const auto *RegClass = MRI.getRegClass(Reg); 642 Register TeeReg = MRI.createVirtualRegister(RegClass); 643 Register DefReg = MRI.createVirtualRegister(RegClass); 644 645 // Move Def into place. 646 WebAssemblyDebugValueManager DefDIs(Def); 647 DefDIs.sink(Insert); 648 LIS.handleMove(*Def); 649 650 // Create the Tee and attach the registers. 651 MachineOperand &DefMO = Def->getOperand(0); 652 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 653 TII->get(getTeeOpcode(RegClass)), TeeReg) 654 .addReg(Reg, RegState::Define) 655 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 656 Op.setReg(TeeReg); 657 DefDIs.updateReg(DefReg); 658 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 659 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 660 661 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 662 LiveInterval &LI = LIS.getInterval(Reg); 663 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 664 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 665 I->start = TeeIdx; 666 ValNo->def = TeeIdx; 667 shrinkToUses(LI, LIS); 668 669 // Finish stackifying the new regs. 670 LIS.createAndComputeVirtRegInterval(TeeReg); 671 LIS.createAndComputeVirtRegInterval(DefReg); 672 MFI.stackifyVReg(MRI, DefReg); 673 MFI.stackifyVReg(MRI, TeeReg); 674 imposeStackOrdering(Def); 675 imposeStackOrdering(Tee); 676 677 // Even though 'TeeReg, Reg = TEE ...', has two defs, we don't need to clone 678 // DBG_VALUEs for both of them, given that the latter will cancel the former 679 // anyway. Here we only clone DBG_VALUEs for TeeReg, which will be converted 680 // to a local index in ExplicitLocals pass. 681 DefDIs.cloneSink(Insert, TeeReg, /* CloneDef */ false); 682 683 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 684 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 685 return Def; 686 } 687 688 namespace { 689 /// A stack for walking the tree of instructions being built, visiting the 690 /// MachineOperands in DFS order. 691 class TreeWalkerState { 692 using mop_iterator = MachineInstr::mop_iterator; 693 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; 694 using RangeTy = iterator_range<mop_reverse_iterator>; 695 SmallVector<RangeTy, 4> Worklist; 696 697 public: 698 explicit TreeWalkerState(MachineInstr *Insert) { 699 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 700 if (!Range.empty()) 701 Worklist.push_back(reverse(Range)); 702 } 703 704 bool done() const { return Worklist.empty(); } 705 706 MachineOperand &pop() { 707 RangeTy &Range = Worklist.back(); 708 MachineOperand &Op = *Range.begin(); 709 Range = drop_begin(Range); 710 if (Range.empty()) 711 Worklist.pop_back(); 712 assert((Worklist.empty() || !Worklist.back().empty()) && 713 "Empty ranges shouldn't remain in the worklist"); 714 return Op; 715 } 716 717 /// Push Instr's operands onto the stack to be visited. 718 void pushOperands(MachineInstr *Instr) { 719 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 720 if (!Range.empty()) 721 Worklist.push_back(reverse(Range)); 722 } 723 724 /// Some of Instr's operands are on the top of the stack; remove them and 725 /// re-insert them starting from the beginning (because we've commuted them). 726 void resetTopOperands(MachineInstr *Instr) { 727 assert(hasRemainingOperands(Instr) && 728 "Reseting operands should only be done when the instruction has " 729 "an operand still on the stack"); 730 Worklist.back() = reverse(Instr->explicit_uses()); 731 } 732 733 /// Test whether Instr has operands remaining to be visited at the top of 734 /// the stack. 735 bool hasRemainingOperands(const MachineInstr *Instr) const { 736 if (Worklist.empty()) 737 return false; 738 const RangeTy &Range = Worklist.back(); 739 return !Range.empty() && Range.begin()->getParent() == Instr; 740 } 741 742 /// Test whether the given register is present on the stack, indicating an 743 /// operand in the tree that we haven't visited yet. Moving a definition of 744 /// Reg to a point in the tree after that would change its value. 745 /// 746 /// This is needed as a consequence of using implicit local.gets for 747 /// uses and implicit local.sets for defs. 748 bool isOnStack(unsigned Reg) const { 749 for (const RangeTy &Range : Worklist) 750 for (const MachineOperand &MO : Range) 751 if (MO.isReg() && MO.getReg() == Reg) 752 return true; 753 return false; 754 } 755 }; 756 757 /// State to keep track of whether commuting is in flight or whether it's been 758 /// tried for the current instruction and didn't work. 759 class CommutingState { 760 /// There are effectively three states: the initial state where we haven't 761 /// started commuting anything and we don't know anything yet, the tentative 762 /// state where we've commuted the operands of the current instruction and are 763 /// revisiting it, and the declined state where we've reverted the operands 764 /// back to their original order and will no longer commute it further. 765 bool TentativelyCommuting = false; 766 bool Declined = false; 767 768 /// During the tentative state, these hold the operand indices of the commuted 769 /// operands. 770 unsigned Operand0, Operand1; 771 772 public: 773 /// Stackification for an operand was not successful due to ordering 774 /// constraints. If possible, and if we haven't already tried it and declined 775 /// it, commute Insert's operands and prepare to revisit it. 776 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 777 const WebAssemblyInstrInfo *TII) { 778 if (TentativelyCommuting) { 779 assert(!Declined && 780 "Don't decline commuting until you've finished trying it"); 781 // Commuting didn't help. Revert it. 782 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 783 TentativelyCommuting = false; 784 Declined = true; 785 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) { 786 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 787 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 788 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 789 // Tentatively commute the operands and try again. 790 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 791 TreeWalker.resetTopOperands(Insert); 792 TentativelyCommuting = true; 793 Declined = false; 794 } 795 } 796 } 797 798 /// Stackification for some operand was successful. Reset to the default 799 /// state. 800 void reset() { 801 TentativelyCommuting = false; 802 Declined = false; 803 } 804 }; 805 } // end anonymous namespace 806 807 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 808 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 809 "********** Function: " 810 << MF.getName() << '\n'); 811 812 bool Changed = false; 813 MachineRegisterInfo &MRI = MF.getRegInfo(); 814 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 815 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 816 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 817 auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 818 auto &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 819 820 // Walk the instructions from the bottom up. Currently we don't look past 821 // block boundaries, and the blocks aren't ordered so the block visitation 822 // order isn't significant, but we may want to change this in the future. 823 for (MachineBasicBlock &MBB : MF) { 824 // Don't use a range-based for loop, because we modify the list as we're 825 // iterating over it and the end iterator may change. 826 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 827 MachineInstr *Insert = &*MII; 828 // Don't nest anything inside an inline asm, because we don't have 829 // constraints for $push inputs. 830 if (Insert->isInlineAsm()) 831 continue; 832 833 // Ignore debugging intrinsics. 834 if (Insert->isDebugValue()) 835 continue; 836 837 // Iterate through the inputs in reverse order, since we'll be pulling 838 // operands off the stack in LIFO order. 839 CommutingState Commuting; 840 TreeWalkerState TreeWalker(Insert); 841 while (!TreeWalker.done()) { 842 MachineOperand &Use = TreeWalker.pop(); 843 844 // We're only interested in explicit virtual register operands. 845 if (!Use.isReg()) 846 continue; 847 848 Register Reg = Use.getReg(); 849 assert(Use.isUse() && "explicit_uses() should only iterate over uses"); 850 assert(!Use.isImplicit() && 851 "explicit_uses() should only iterate over explicit operands"); 852 if (Reg.isPhysical()) 853 continue; 854 855 // Identify the definition for this register at this point. 856 MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS); 857 if (!DefI) 858 continue; 859 860 // Don't nest an INLINE_ASM def into anything, because we don't have 861 // constraints for $pop outputs. 862 if (DefI->isInlineAsm()) 863 continue; 864 865 // Argument instructions represent live-in registers and not real 866 // instructions. 867 if (WebAssembly::isArgument(DefI->getOpcode())) 868 continue; 869 870 MachineOperand *Def = 871 DefI->findRegisterDefOperand(Reg, /*TRI=*/nullptr); 872 assert(Def != nullptr); 873 874 // Decide which strategy to take. Prefer to move a single-use value 875 // over cloning it, and prefer cloning over introducing a tee. 876 // For moving, we require the def to be in the same block as the use; 877 // this makes things simpler (LiveIntervals' handleMove function only 878 // supports intra-block moves) and it's MachineSink's job to catch all 879 // the sinking opportunities anyway. 880 bool SameBlock = DefI->getParent() == &MBB; 881 bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) && 882 !TreeWalker.isOnStack(Reg); 883 if (CanMove && hasOneNonDBGUse(Reg, DefI, MRI, MDT, LIS)) { 884 Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI); 885 886 // If we are removing the frame base reg completely, remove the debug 887 // info as well. 888 // TODO: Encode this properly as a stackified value. 889 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) 890 MFI.clearFrameBaseVreg(); 891 } else if (shouldRematerialize(*DefI, TII)) { 892 Insert = 893 rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(), 894 LIS, MFI, MRI, TII, TRI); 895 } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT, 896 LIS, MFI)) { 897 Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, 898 MRI, TII); 899 } else { 900 // We failed to stackify the operand. If the problem was ordering 901 // constraints, Commuting may be able to help. 902 if (!CanMove && SameBlock) 903 Commuting.maybeCommute(Insert, TreeWalker, TII); 904 // Proceed to the next operand. 905 continue; 906 } 907 908 // Stackifying a multivalue def may unlock in-place stackification of 909 // subsequent defs. TODO: Handle the case where the consecutive uses are 910 // not all in the same instruction. 911 auto *SubsequentDef = Insert->defs().begin(); 912 auto *SubsequentUse = &Use; 913 while (SubsequentDef != Insert->defs().end() && 914 SubsequentUse != Use.getParent()->uses().end()) { 915 if (!SubsequentDef->isReg() || !SubsequentUse->isReg()) 916 break; 917 Register DefReg = SubsequentDef->getReg(); 918 Register UseReg = SubsequentUse->getReg(); 919 // TODO: This single-use restriction could be relaxed by using tees 920 if (DefReg != UseReg || !MRI.hasOneNonDBGUse(DefReg)) 921 break; 922 MFI.stackifyVReg(MRI, DefReg); 923 ++SubsequentDef; 924 ++SubsequentUse; 925 } 926 927 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 928 // to a constant 0 so that the def is explicit, and the push/pop 929 // correspondence is maintained. 930 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 931 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 932 933 // We stackified an operand. Add the defining instruction's operands to 934 // the worklist stack now to continue to build an ever deeper tree. 935 Commuting.reset(); 936 TreeWalker.pushOperands(Insert); 937 } 938 939 // If we stackified any operands, skip over the tree to start looking for 940 // the next instruction we can build a tree on. 941 if (Insert != &*MII) { 942 imposeStackOrdering(&*MII); 943 MII = MachineBasicBlock::iterator(Insert).getReverse(); 944 Changed = true; 945 } 946 } 947 } 948 949 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 950 // that it never looks like a use-before-def. 951 if (Changed) { 952 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 953 for (MachineBasicBlock &MBB : MF) 954 MBB.addLiveIn(WebAssembly::VALUE_STACK); 955 } 956 957 #ifndef NDEBUG 958 // Verify that pushes and pops are performed in LIFO order. 959 SmallVector<unsigned, 0> Stack; 960 for (MachineBasicBlock &MBB : MF) { 961 for (MachineInstr &MI : MBB) { 962 if (MI.isDebugInstr()) 963 continue; 964 for (MachineOperand &MO : reverse(MI.explicit_uses())) { 965 if (!MO.isReg()) 966 continue; 967 Register Reg = MO.getReg(); 968 if (MFI.isVRegStackified(Reg)) 969 assert(Stack.pop_back_val() == Reg && 970 "Register stack pop should be paired with a push"); 971 } 972 for (MachineOperand &MO : MI.defs()) { 973 if (!MO.isReg()) 974 continue; 975 Register Reg = MO.getReg(); 976 if (MFI.isVRegStackified(Reg)) 977 Stack.push_back(MO.getReg()); 978 } 979 } 980 // TODO: Generalize this code to support keeping values on the stack across 981 // basic block boundaries. 982 assert(Stack.empty() && 983 "Register stack pushes and pops should be balanced"); 984 } 985 #endif 986 987 return Changed; 988 } 989