xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "Utils/WebAssemblyUtilities.h"
24 #include "WebAssembly.h"
25 #include "WebAssemblyDebugValueManager.h"
26 #include "WebAssemblyMachineFunctionInfo.h"
27 #include "WebAssemblySubtarget.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <iterator>
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "wasm-reg-stackify"
43 
44 namespace {
45 class WebAssemblyRegStackify final : public MachineFunctionPass {
46   StringRef getPassName() const override {
47     return "WebAssembly Register Stackify";
48   }
49 
50   void getAnalysisUsage(AnalysisUsage &AU) const override {
51     AU.setPreservesCFG();
52     AU.addRequired<AAResultsWrapperPass>();
53     AU.addRequired<MachineDominatorTree>();
54     AU.addRequired<LiveIntervals>();
55     AU.addPreserved<MachineBlockFrequencyInfo>();
56     AU.addPreserved<SlotIndexes>();
57     AU.addPreserved<LiveIntervals>();
58     AU.addPreservedID(LiveVariablesID);
59     AU.addPreserved<MachineDominatorTree>();
60     MachineFunctionPass::getAnalysisUsage(AU);
61   }
62 
63   bool runOnMachineFunction(MachineFunction &MF) override;
64 
65 public:
66   static char ID; // Pass identification, replacement for typeid
67   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
68 };
69 } // end anonymous namespace
70 
71 char WebAssemblyRegStackify::ID = 0;
72 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
73                 "Reorder instructions to use the WebAssembly value stack",
74                 false, false)
75 
76 FunctionPass *llvm::createWebAssemblyRegStackify() {
77   return new WebAssemblyRegStackify();
78 }
79 
80 // Decorate the given instruction with implicit operands that enforce the
81 // expression stack ordering constraints for an instruction which is on
82 // the expression stack.
83 static void imposeStackOrdering(MachineInstr *MI) {
84   // Write the opaque VALUE_STACK register.
85   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
86     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
87                                              /*isDef=*/true,
88                                              /*isImp=*/true));
89 
90   // Also read the opaque VALUE_STACK register.
91   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
92     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
93                                              /*isDef=*/false,
94                                              /*isImp=*/true));
95 }
96 
97 // Convert an IMPLICIT_DEF instruction into an instruction which defines
98 // a constant zero value.
99 static void convertImplicitDefToConstZero(MachineInstr *MI,
100                                           MachineRegisterInfo &MRI,
101                                           const TargetInstrInfo *TII,
102                                           MachineFunction &MF,
103                                           LiveIntervals &LIS) {
104   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
105 
106   const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
107   if (RegClass == &WebAssembly::I32RegClass) {
108     MI->setDesc(TII->get(WebAssembly::CONST_I32));
109     MI->addOperand(MachineOperand::CreateImm(0));
110   } else if (RegClass == &WebAssembly::I64RegClass) {
111     MI->setDesc(TII->get(WebAssembly::CONST_I64));
112     MI->addOperand(MachineOperand::CreateImm(0));
113   } else if (RegClass == &WebAssembly::F32RegClass) {
114     MI->setDesc(TII->get(WebAssembly::CONST_F32));
115     auto *Val = cast<ConstantFP>(Constant::getNullValue(
116         Type::getFloatTy(MF.getFunction().getContext())));
117     MI->addOperand(MachineOperand::CreateFPImm(Val));
118   } else if (RegClass == &WebAssembly::F64RegClass) {
119     MI->setDesc(TII->get(WebAssembly::CONST_F64));
120     auto *Val = cast<ConstantFP>(Constant::getNullValue(
121         Type::getDoubleTy(MF.getFunction().getContext())));
122     MI->addOperand(MachineOperand::CreateFPImm(Val));
123   } else if (RegClass == &WebAssembly::V128RegClass) {
124     MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
125     MI->addOperand(MachineOperand::CreateImm(0));
126     MI->addOperand(MachineOperand::CreateImm(0));
127   } else {
128     llvm_unreachable("Unexpected reg class");
129   }
130 }
131 
132 // Determine whether a call to the callee referenced by
133 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
134 // effects.
135 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
136                         bool &Effects, bool &StackPointer) {
137   // All calls can use the stack pointer.
138   StackPointer = true;
139 
140   const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
141   if (MO.isGlobal()) {
142     const Constant *GV = MO.getGlobal();
143     if (const auto *GA = dyn_cast<GlobalAlias>(GV))
144       if (!GA->isInterposable())
145         GV = GA->getAliasee();
146 
147     if (const auto *F = dyn_cast<Function>(GV)) {
148       if (!F->doesNotThrow())
149         Effects = true;
150       if (F->doesNotAccessMemory())
151         return;
152       if (F->onlyReadsMemory()) {
153         Read = true;
154         return;
155       }
156     }
157   }
158 
159   // Assume the worst.
160   Write = true;
161   Read = true;
162   Effects = true;
163 }
164 
165 // Determine whether MI reads memory, writes memory, has side effects,
166 // and/or uses the stack pointer value.
167 static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
168                   bool &Write, bool &Effects, bool &StackPointer) {
169   assert(!MI.isTerminator());
170 
171   if (MI.isDebugInstr() || MI.isPosition())
172     return;
173 
174   // Check for loads.
175   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
176     Read = true;
177 
178   // Check for stores.
179   if (MI.mayStore()) {
180     Write = true;
181   } else if (MI.hasOrderedMemoryRef()) {
182     switch (MI.getOpcode()) {
183     case WebAssembly::DIV_S_I32:
184     case WebAssembly::DIV_S_I64:
185     case WebAssembly::REM_S_I32:
186     case WebAssembly::REM_S_I64:
187     case WebAssembly::DIV_U_I32:
188     case WebAssembly::DIV_U_I64:
189     case WebAssembly::REM_U_I32:
190     case WebAssembly::REM_U_I64:
191     case WebAssembly::I32_TRUNC_S_F32:
192     case WebAssembly::I64_TRUNC_S_F32:
193     case WebAssembly::I32_TRUNC_S_F64:
194     case WebAssembly::I64_TRUNC_S_F64:
195     case WebAssembly::I32_TRUNC_U_F32:
196     case WebAssembly::I64_TRUNC_U_F32:
197     case WebAssembly::I32_TRUNC_U_F64:
198     case WebAssembly::I64_TRUNC_U_F64:
199       // These instruction have hasUnmodeledSideEffects() returning true
200       // because they trap on overflow and invalid so they can't be arbitrarily
201       // moved, however hasOrderedMemoryRef() interprets this plus their lack
202       // of memoperands as having a potential unknown memory reference.
203       break;
204     default:
205       // Record volatile accesses, unless it's a call, as calls are handled
206       // specially below.
207       if (!MI.isCall()) {
208         Write = true;
209         Effects = true;
210       }
211       break;
212     }
213   }
214 
215   // Check for side effects.
216   if (MI.hasUnmodeledSideEffects()) {
217     switch (MI.getOpcode()) {
218     case WebAssembly::DIV_S_I32:
219     case WebAssembly::DIV_S_I64:
220     case WebAssembly::REM_S_I32:
221     case WebAssembly::REM_S_I64:
222     case WebAssembly::DIV_U_I32:
223     case WebAssembly::DIV_U_I64:
224     case WebAssembly::REM_U_I32:
225     case WebAssembly::REM_U_I64:
226     case WebAssembly::I32_TRUNC_S_F32:
227     case WebAssembly::I64_TRUNC_S_F32:
228     case WebAssembly::I32_TRUNC_S_F64:
229     case WebAssembly::I64_TRUNC_S_F64:
230     case WebAssembly::I32_TRUNC_U_F32:
231     case WebAssembly::I64_TRUNC_U_F32:
232     case WebAssembly::I32_TRUNC_U_F64:
233     case WebAssembly::I64_TRUNC_U_F64:
234       // These instructions have hasUnmodeledSideEffects() returning true
235       // because they trap on overflow and invalid so they can't be arbitrarily
236       // moved, however in the specific case of register stackifying, it is safe
237       // to move them because overflow and invalid are Undefined Behavior.
238       break;
239     default:
240       Effects = true;
241       break;
242     }
243   }
244 
245   // Check for writes to __stack_pointer global.
246   if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
247        MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
248       strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
249     StackPointer = true;
250 
251   // Analyze calls.
252   if (MI.isCall()) {
253     queryCallee(MI, Read, Write, Effects, StackPointer);
254   }
255 }
256 
257 // Test whether Def is safe and profitable to rematerialize.
258 static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
259                                 const WebAssemblyInstrInfo *TII) {
260   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
261 }
262 
263 // Identify the definition for this register at this point. This is a
264 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
265 // LiveIntervals to handle complex cases.
266 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
267                                 const MachineRegisterInfo &MRI,
268                                 const LiveIntervals &LIS) {
269   // Most registers are in SSA form here so we try a quick MRI query first.
270   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
271     return Def;
272 
273   // MRI doesn't know what the Def is. Try asking LIS.
274   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
275           LIS.getInstructionIndex(*Insert)))
276     return LIS.getInstructionFromIndex(ValNo->def);
277 
278   return nullptr;
279 }
280 
281 // Test whether Reg, as defined at Def, has exactly one use. This is a
282 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
283 // to handle complex cases.
284 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
285                       MachineDominatorTree &MDT, LiveIntervals &LIS) {
286   // Most registers are in SSA form here so we try a quick MRI query first.
287   if (MRI.hasOneUse(Reg))
288     return true;
289 
290   bool HasOne = false;
291   const LiveInterval &LI = LIS.getInterval(Reg);
292   const VNInfo *DefVNI =
293       LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
294   assert(DefVNI);
295   for (auto &I : MRI.use_nodbg_operands(Reg)) {
296     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
297     if (Result.valueIn() == DefVNI) {
298       if (!Result.isKill())
299         return false;
300       if (HasOne)
301         return false;
302       HasOne = true;
303     }
304   }
305   return HasOne;
306 }
307 
308 // Test whether it's safe to move Def to just before Insert.
309 // TODO: Compute memory dependencies in a way that doesn't require always
310 // walking the block.
311 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
312 // more precise.
313 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
314                          const MachineInstr *Insert, AliasAnalysis &AA,
315                          const WebAssemblyFunctionInfo &MFI,
316                          const MachineRegisterInfo &MRI) {
317   const MachineInstr *DefI = Def->getParent();
318   const MachineInstr *UseI = Use->getParent();
319   assert(DefI->getParent() == Insert->getParent());
320   assert(UseI->getParent() == Insert->getParent());
321 
322   // The first def of a multivalue instruction can be stackified by moving,
323   // since the later defs can always be placed into locals if necessary. Later
324   // defs can only be stackified if all previous defs are already stackified
325   // since ExplicitLocals will not know how to place a def in a local if a
326   // subsequent def is stackified. But only one def can be stackified by moving
327   // the instruction, so it must be the first one.
328   //
329   // TODO: This could be loosened to be the first *live* def, but care would
330   // have to be taken to ensure the drops of the initial dead defs can be
331   // placed. This would require checking that no previous defs are used in the
332   // same instruction as subsequent defs.
333   if (Def != DefI->defs().begin())
334     return false;
335 
336   // If any subsequent def is used prior to the current value by the same
337   // instruction in which the current value is used, we cannot
338   // stackify. Stackifying in this case would require that def moving below the
339   // current def in the stack, which cannot be achieved, even with locals.
340   for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
341     for (const auto &PriorUse : UseI->uses()) {
342       if (&PriorUse == Use)
343         break;
344       if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
345         return false;
346     }
347   }
348 
349   // If moving is a semantic nop, it is always allowed
350   const MachineBasicBlock *MBB = DefI->getParent();
351   auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
352   for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
353     ;
354   if (NextI == Insert)
355     return true;
356 
357   // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
358   // move.
359   if (WebAssembly::isCatch(DefI->getOpcode()))
360     return false;
361 
362   // Check for register dependencies.
363   SmallVector<unsigned, 4> MutableRegisters;
364   for (const MachineOperand &MO : DefI->operands()) {
365     if (!MO.isReg() || MO.isUndef())
366       continue;
367     Register Reg = MO.getReg();
368 
369     // If the register is dead here and at Insert, ignore it.
370     if (MO.isDead() && Insert->definesRegister(Reg) &&
371         !Insert->readsRegister(Reg))
372       continue;
373 
374     if (Register::isPhysicalRegister(Reg)) {
375       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
376       // from moving down, and we've already checked for that.
377       if (Reg == WebAssembly::ARGUMENTS)
378         continue;
379       // If the physical register is never modified, ignore it.
380       if (!MRI.isPhysRegModified(Reg))
381         continue;
382       // Otherwise, it's a physical register with unknown liveness.
383       return false;
384     }
385 
386     // If one of the operands isn't in SSA form, it has different values at
387     // different times, and we need to make sure we don't move our use across
388     // a different def.
389     if (!MO.isDef() && !MRI.hasOneDef(Reg))
390       MutableRegisters.push_back(Reg);
391   }
392 
393   bool Read = false, Write = false, Effects = false, StackPointer = false;
394   query(*DefI, AA, Read, Write, Effects, StackPointer);
395 
396   // If the instruction does not access memory and has no side effects, it has
397   // no additional dependencies.
398   bool HasMutableRegisters = !MutableRegisters.empty();
399   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
400     return true;
401 
402   // Scan through the intervening instructions between DefI and Insert.
403   MachineBasicBlock::const_iterator D(DefI), I(Insert);
404   for (--I; I != D; --I) {
405     bool InterveningRead = false;
406     bool InterveningWrite = false;
407     bool InterveningEffects = false;
408     bool InterveningStackPointer = false;
409     query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
410           InterveningStackPointer);
411     if (Effects && InterveningEffects)
412       return false;
413     if (Read && InterveningWrite)
414       return false;
415     if (Write && (InterveningRead || InterveningWrite))
416       return false;
417     if (StackPointer && InterveningStackPointer)
418       return false;
419 
420     for (unsigned Reg : MutableRegisters)
421       for (const MachineOperand &MO : I->operands())
422         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
423           return false;
424   }
425 
426   return true;
427 }
428 
429 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
430 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
431                                      const MachineBasicBlock &MBB,
432                                      const MachineRegisterInfo &MRI,
433                                      const MachineDominatorTree &MDT,
434                                      LiveIntervals &LIS,
435                                      WebAssemblyFunctionInfo &MFI) {
436   const LiveInterval &LI = LIS.getInterval(Reg);
437 
438   const MachineInstr *OneUseInst = OneUse.getParent();
439   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
440 
441   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
442     if (&Use == &OneUse)
443       continue;
444 
445     const MachineInstr *UseInst = Use.getParent();
446     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
447 
448     if (UseVNI != OneUseVNI)
449       continue;
450 
451     if (UseInst == OneUseInst) {
452       // Another use in the same instruction. We need to ensure that the one
453       // selected use happens "before" it.
454       if (&OneUse > &Use)
455         return false;
456     } else {
457       // Test that the use is dominated by the one selected use.
458       while (!MDT.dominates(OneUseInst, UseInst)) {
459         // Actually, dominating is over-conservative. Test that the use would
460         // happen after the one selected use in the stack evaluation order.
461         //
462         // This is needed as a consequence of using implicit local.gets for
463         // uses and implicit local.sets for defs.
464         if (UseInst->getDesc().getNumDefs() == 0)
465           return false;
466         const MachineOperand &MO = UseInst->getOperand(0);
467         if (!MO.isReg())
468           return false;
469         Register DefReg = MO.getReg();
470         if (!Register::isVirtualRegister(DefReg) ||
471             !MFI.isVRegStackified(DefReg))
472           return false;
473         assert(MRI.hasOneNonDBGUse(DefReg));
474         const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
475         const MachineInstr *NewUseInst = NewUse.getParent();
476         if (NewUseInst == OneUseInst) {
477           if (&OneUse > &NewUse)
478             return false;
479           break;
480         }
481         UseInst = NewUseInst;
482       }
483     }
484   }
485   return true;
486 }
487 
488 /// Get the appropriate tee opcode for the given register class.
489 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
490   if (RC == &WebAssembly::I32RegClass)
491     return WebAssembly::TEE_I32;
492   if (RC == &WebAssembly::I64RegClass)
493     return WebAssembly::TEE_I64;
494   if (RC == &WebAssembly::F32RegClass)
495     return WebAssembly::TEE_F32;
496   if (RC == &WebAssembly::F64RegClass)
497     return WebAssembly::TEE_F64;
498   if (RC == &WebAssembly::V128RegClass)
499     return WebAssembly::TEE_V128;
500   llvm_unreachable("Unexpected register class");
501 }
502 
503 // Shrink LI to its uses, cleaning up LI.
504 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
505   if (LIS.shrinkToUses(&LI)) {
506     SmallVector<LiveInterval *, 4> SplitLIs;
507     LIS.splitSeparateComponents(LI, SplitLIs);
508   }
509 }
510 
511 /// A single-use def in the same block with no intervening memory or register
512 /// dependencies; move the def down and nest it with the current instruction.
513 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
514                                       MachineInstr *Def, MachineBasicBlock &MBB,
515                                       MachineInstr *Insert, LiveIntervals &LIS,
516                                       WebAssemblyFunctionInfo &MFI,
517                                       MachineRegisterInfo &MRI) {
518   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
519 
520   WebAssemblyDebugValueManager DefDIs(Def);
521   MBB.splice(Insert, &MBB, Def);
522   DefDIs.move(Insert);
523   LIS.handleMove(*Def);
524 
525   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
526     // No one else is using this register for anything so we can just stackify
527     // it in place.
528     MFI.stackifyVReg(MRI, Reg);
529   } else {
530     // The register may have unrelated uses or defs; create a new register for
531     // just our one def and use so that we can stackify it.
532     Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
533     Def->getOperand(0).setReg(NewReg);
534     Op.setReg(NewReg);
535 
536     // Tell LiveIntervals about the new register.
537     LIS.createAndComputeVirtRegInterval(NewReg);
538 
539     // Tell LiveIntervals about the changes to the old register.
540     LiveInterval &LI = LIS.getInterval(Reg);
541     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
542                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
543                      /*RemoveDeadValNo=*/true);
544 
545     MFI.stackifyVReg(MRI, NewReg);
546 
547     DefDIs.updateReg(NewReg);
548 
549     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
550   }
551 
552   imposeStackOrdering(Def);
553   return Def;
554 }
555 
556 /// A trivially cloneable instruction; clone it and nest the new copy with the
557 /// current instruction.
558 static MachineInstr *rematerializeCheapDef(
559     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
560     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
561     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
562     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
563   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
564   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
565 
566   WebAssemblyDebugValueManager DefDIs(&Def);
567 
568   Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
569   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
570   Op.setReg(NewReg);
571   MachineInstr *Clone = &*std::prev(Insert);
572   LIS.InsertMachineInstrInMaps(*Clone);
573   LIS.createAndComputeVirtRegInterval(NewReg);
574   MFI.stackifyVReg(MRI, NewReg);
575   imposeStackOrdering(Clone);
576 
577   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
578 
579   // Shrink the interval.
580   bool IsDead = MRI.use_empty(Reg);
581   if (!IsDead) {
582     LiveInterval &LI = LIS.getInterval(Reg);
583     shrinkToUses(LI, LIS);
584     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
585   }
586 
587   // If that was the last use of the original, delete the original.
588   // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
589   if (IsDead) {
590     LLVM_DEBUG(dbgs() << " - Deleting original\n");
591     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
592     LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
593     LIS.removeInterval(Reg);
594     LIS.RemoveMachineInstrFromMaps(Def);
595     Def.eraseFromParent();
596 
597     DefDIs.move(&*Insert);
598     DefDIs.updateReg(NewReg);
599   } else {
600     DefDIs.clone(&*Insert, NewReg);
601   }
602 
603   return Clone;
604 }
605 
606 /// A multiple-use def in the same block with no intervening memory or register
607 /// dependencies; move the def down, nest it with the current instruction, and
608 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
609 /// this:
610 ///
611 ///    Reg = INST ...        // Def
612 ///    INST ..., Reg, ...    // Insert
613 ///    INST ..., Reg, ...
614 ///    INST ..., Reg, ...
615 ///
616 /// to this:
617 ///
618 ///    DefReg = INST ...     // Def (to become the new Insert)
619 ///    TeeReg, Reg = TEE_... DefReg
620 ///    INST ..., TeeReg, ... // Insert
621 ///    INST ..., Reg, ...
622 ///    INST ..., Reg, ...
623 ///
624 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
625 /// resulting code.
626 static MachineInstr *moveAndTeeForMultiUse(
627     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
628     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
629     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
630   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
631 
632   WebAssemblyDebugValueManager DefDIs(Def);
633 
634   // Move Def into place.
635   MBB.splice(Insert, &MBB, Def);
636   LIS.handleMove(*Def);
637 
638   // Create the Tee and attach the registers.
639   const auto *RegClass = MRI.getRegClass(Reg);
640   Register TeeReg = MRI.createVirtualRegister(RegClass);
641   Register DefReg = MRI.createVirtualRegister(RegClass);
642   MachineOperand &DefMO = Def->getOperand(0);
643   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
644                               TII->get(getTeeOpcode(RegClass)), TeeReg)
645                           .addReg(Reg, RegState::Define)
646                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
647   Op.setReg(TeeReg);
648   DefMO.setReg(DefReg);
649   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
650   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
651 
652   DefDIs.move(Insert);
653 
654   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
655   LiveInterval &LI = LIS.getInterval(Reg);
656   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
657   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
658   I->start = TeeIdx;
659   ValNo->def = TeeIdx;
660   shrinkToUses(LI, LIS);
661 
662   // Finish stackifying the new regs.
663   LIS.createAndComputeVirtRegInterval(TeeReg);
664   LIS.createAndComputeVirtRegInterval(DefReg);
665   MFI.stackifyVReg(MRI, DefReg);
666   MFI.stackifyVReg(MRI, TeeReg);
667   imposeStackOrdering(Def);
668   imposeStackOrdering(Tee);
669 
670   DefDIs.clone(Tee, DefReg);
671   DefDIs.clone(Insert, TeeReg);
672 
673   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
674   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
675   return Def;
676 }
677 
678 namespace {
679 /// A stack for walking the tree of instructions being built, visiting the
680 /// MachineOperands in DFS order.
681 class TreeWalkerState {
682   using mop_iterator = MachineInstr::mop_iterator;
683   using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
684   using RangeTy = iterator_range<mop_reverse_iterator>;
685   SmallVector<RangeTy, 4> Worklist;
686 
687 public:
688   explicit TreeWalkerState(MachineInstr *Insert) {
689     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
690     if (!Range.empty())
691       Worklist.push_back(reverse(Range));
692   }
693 
694   bool done() const { return Worklist.empty(); }
695 
696   MachineOperand &pop() {
697     RangeTy &Range = Worklist.back();
698     MachineOperand &Op = *Range.begin();
699     Range = drop_begin(Range);
700     if (Range.empty())
701       Worklist.pop_back();
702     assert((Worklist.empty() || !Worklist.back().empty()) &&
703            "Empty ranges shouldn't remain in the worklist");
704     return Op;
705   }
706 
707   /// Push Instr's operands onto the stack to be visited.
708   void pushOperands(MachineInstr *Instr) {
709     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
710     if (!Range.empty())
711       Worklist.push_back(reverse(Range));
712   }
713 
714   /// Some of Instr's operands are on the top of the stack; remove them and
715   /// re-insert them starting from the beginning (because we've commuted them).
716   void resetTopOperands(MachineInstr *Instr) {
717     assert(hasRemainingOperands(Instr) &&
718            "Reseting operands should only be done when the instruction has "
719            "an operand still on the stack");
720     Worklist.back() = reverse(Instr->explicit_uses());
721   }
722 
723   /// Test whether Instr has operands remaining to be visited at the top of
724   /// the stack.
725   bool hasRemainingOperands(const MachineInstr *Instr) const {
726     if (Worklist.empty())
727       return false;
728     const RangeTy &Range = Worklist.back();
729     return !Range.empty() && Range.begin()->getParent() == Instr;
730   }
731 
732   /// Test whether the given register is present on the stack, indicating an
733   /// operand in the tree that we haven't visited yet. Moving a definition of
734   /// Reg to a point in the tree after that would change its value.
735   ///
736   /// This is needed as a consequence of using implicit local.gets for
737   /// uses and implicit local.sets for defs.
738   bool isOnStack(unsigned Reg) const {
739     for (const RangeTy &Range : Worklist)
740       for (const MachineOperand &MO : Range)
741         if (MO.isReg() && MO.getReg() == Reg)
742           return true;
743     return false;
744   }
745 };
746 
747 /// State to keep track of whether commuting is in flight or whether it's been
748 /// tried for the current instruction and didn't work.
749 class CommutingState {
750   /// There are effectively three states: the initial state where we haven't
751   /// started commuting anything and we don't know anything yet, the tentative
752   /// state where we've commuted the operands of the current instruction and are
753   /// revisiting it, and the declined state where we've reverted the operands
754   /// back to their original order and will no longer commute it further.
755   bool TentativelyCommuting = false;
756   bool Declined = false;
757 
758   /// During the tentative state, these hold the operand indices of the commuted
759   /// operands.
760   unsigned Operand0, Operand1;
761 
762 public:
763   /// Stackification for an operand was not successful due to ordering
764   /// constraints. If possible, and if we haven't already tried it and declined
765   /// it, commute Insert's operands and prepare to revisit it.
766   void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
767                     const WebAssemblyInstrInfo *TII) {
768     if (TentativelyCommuting) {
769       assert(!Declined &&
770              "Don't decline commuting until you've finished trying it");
771       // Commuting didn't help. Revert it.
772       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
773       TentativelyCommuting = false;
774       Declined = true;
775     } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
776       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
777       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
778       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
779         // Tentatively commute the operands and try again.
780         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
781         TreeWalker.resetTopOperands(Insert);
782         TentativelyCommuting = true;
783         Declined = false;
784       }
785     }
786   }
787 
788   /// Stackification for some operand was successful. Reset to the default
789   /// state.
790   void reset() {
791     TentativelyCommuting = false;
792     Declined = false;
793   }
794 };
795 } // end anonymous namespace
796 
797 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
798   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
799                        "********** Function: "
800                     << MF.getName() << '\n');
801 
802   bool Changed = false;
803   MachineRegisterInfo &MRI = MF.getRegInfo();
804   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
805   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
806   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
807   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
808   auto &MDT = getAnalysis<MachineDominatorTree>();
809   auto &LIS = getAnalysis<LiveIntervals>();
810 
811   // Walk the instructions from the bottom up. Currently we don't look past
812   // block boundaries, and the blocks aren't ordered so the block visitation
813   // order isn't significant, but we may want to change this in the future.
814   for (MachineBasicBlock &MBB : MF) {
815     // Don't use a range-based for loop, because we modify the list as we're
816     // iterating over it and the end iterator may change.
817     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
818       MachineInstr *Insert = &*MII;
819       // Don't nest anything inside an inline asm, because we don't have
820       // constraints for $push inputs.
821       if (Insert->isInlineAsm())
822         continue;
823 
824       // Ignore debugging intrinsics.
825       if (Insert->isDebugValue())
826         continue;
827 
828       // Iterate through the inputs in reverse order, since we'll be pulling
829       // operands off the stack in LIFO order.
830       CommutingState Commuting;
831       TreeWalkerState TreeWalker(Insert);
832       while (!TreeWalker.done()) {
833         MachineOperand &Use = TreeWalker.pop();
834 
835         // We're only interested in explicit virtual register operands.
836         if (!Use.isReg())
837           continue;
838 
839         Register Reg = Use.getReg();
840         assert(Use.isUse() && "explicit_uses() should only iterate over uses");
841         assert(!Use.isImplicit() &&
842                "explicit_uses() should only iterate over explicit operands");
843         if (Register::isPhysicalRegister(Reg))
844           continue;
845 
846         // Identify the definition for this register at this point.
847         MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
848         if (!DefI)
849           continue;
850 
851         // Don't nest an INLINE_ASM def into anything, because we don't have
852         // constraints for $pop outputs.
853         if (DefI->isInlineAsm())
854           continue;
855 
856         // Argument instructions represent live-in registers and not real
857         // instructions.
858         if (WebAssembly::isArgument(DefI->getOpcode()))
859           continue;
860 
861         MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
862         assert(Def != nullptr);
863 
864         // Decide which strategy to take. Prefer to move a single-use value
865         // over cloning it, and prefer cloning over introducing a tee.
866         // For moving, we require the def to be in the same block as the use;
867         // this makes things simpler (LiveIntervals' handleMove function only
868         // supports intra-block moves) and it's MachineSink's job to catch all
869         // the sinking opportunities anyway.
870         bool SameBlock = DefI->getParent() == &MBB;
871         bool CanMove = SameBlock &&
872                        isSafeToMove(Def, &Use, Insert, AA, MFI, MRI) &&
873                        !TreeWalker.isOnStack(Reg);
874         if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) {
875           Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
876 
877           // If we are removing the frame base reg completely, remove the debug
878           // info as well.
879           // TODO: Encode this properly as a stackified value.
880           if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
881             MFI.clearFrameBaseVreg();
882         } else if (shouldRematerialize(*DefI, AA, TII)) {
883           Insert =
884               rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
885                                     LIS, MFI, MRI, TII, TRI);
886         } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
887                                                        LIS, MFI)) {
888           Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
889                                          MRI, TII);
890         } else {
891           // We failed to stackify the operand. If the problem was ordering
892           // constraints, Commuting may be able to help.
893           if (!CanMove && SameBlock)
894             Commuting.maybeCommute(Insert, TreeWalker, TII);
895           // Proceed to the next operand.
896           continue;
897         }
898 
899         // Stackifying a multivalue def may unlock in-place stackification of
900         // subsequent defs. TODO: Handle the case where the consecutive uses are
901         // not all in the same instruction.
902         auto *SubsequentDef = Insert->defs().begin();
903         auto *SubsequentUse = &Use;
904         while (SubsequentDef != Insert->defs().end() &&
905                SubsequentUse != Use.getParent()->uses().end()) {
906           if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
907             break;
908           unsigned DefReg = SubsequentDef->getReg();
909           unsigned UseReg = SubsequentUse->getReg();
910           // TODO: This single-use restriction could be relaxed by using tees
911           if (DefReg != UseReg || !MRI.hasOneUse(DefReg))
912             break;
913           MFI.stackifyVReg(MRI, DefReg);
914           ++SubsequentDef;
915           ++SubsequentUse;
916         }
917 
918         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
919         // to a constant 0 so that the def is explicit, and the push/pop
920         // correspondence is maintained.
921         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
922           convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
923 
924         // We stackified an operand. Add the defining instruction's operands to
925         // the worklist stack now to continue to build an ever deeper tree.
926         Commuting.reset();
927         TreeWalker.pushOperands(Insert);
928       }
929 
930       // If we stackified any operands, skip over the tree to start looking for
931       // the next instruction we can build a tree on.
932       if (Insert != &*MII) {
933         imposeStackOrdering(&*MII);
934         MII = MachineBasicBlock::iterator(Insert).getReverse();
935         Changed = true;
936       }
937     }
938   }
939 
940   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
941   // that it never looks like a use-before-def.
942   if (Changed) {
943     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
944     for (MachineBasicBlock &MBB : MF)
945       MBB.addLiveIn(WebAssembly::VALUE_STACK);
946   }
947 
948 #ifndef NDEBUG
949   // Verify that pushes and pops are performed in LIFO order.
950   SmallVector<unsigned, 0> Stack;
951   for (MachineBasicBlock &MBB : MF) {
952     for (MachineInstr &MI : MBB) {
953       if (MI.isDebugInstr())
954         continue;
955       for (MachineOperand &MO : reverse(MI.explicit_uses())) {
956         if (!MO.isReg())
957           continue;
958         Register Reg = MO.getReg();
959         if (MFI.isVRegStackified(Reg))
960           assert(Stack.pop_back_val() == Reg &&
961                  "Register stack pop should be paired with a push");
962       }
963       for (MachineOperand &MO : MI.defs()) {
964         if (!MO.isReg())
965           continue;
966         Register Reg = MO.getReg();
967         if (MFI.isVRegStackified(Reg))
968           Stack.push_back(MO.getReg());
969       }
970     }
971     // TODO: Generalize this code to support keeping values on the stack across
972     // basic block boundaries.
973     assert(Stack.empty() &&
974            "Register stack pushes and pops should be balanced");
975   }
976 #endif
977 
978   return Changed;
979 }
980