1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. This is similar 17 /// to the current Emscripten asm.js exception handling in fastcomp. For 18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 19 /// (Location: https://github.com/kripken/emscripten-fastcomp) 20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 22 /// lib/Target/JSBackend/JSBackend.cpp 23 /// lib/Target/JSBackend/CallHandlers.h 24 /// 25 /// * Exception handling 26 /// This pass lowers invokes and landingpads into library functions in JS glue 27 /// code. Invokes are lowered into function wrappers called invoke wrappers that 28 /// exist in JS side, which wraps the original function call with JS try-catch. 29 /// If an exception occurred, cxa_throw() function in JS side sets some 30 /// variables (see below) so we can check whether an exception occurred from 31 /// wasm code and handle it appropriately. 32 /// 33 /// * Setjmp-longjmp handling 34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 35 /// The idea is that each block with a setjmp is broken up into two parts: the 36 /// part containing setjmp and the part right after the setjmp. The latter part 37 /// is either reached from the setjmp, or later from a longjmp. To handle the 38 /// longjmp, all calls that might longjmp are also called using invoke wrappers 39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 40 /// we can check / whether a longjmp occurred from wasm code. Each block with a 41 /// function call that might longjmp is also split up after the longjmp call. 42 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 43 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 44 /// We assume setjmp-longjmp handling always run after EH handling, which means 45 /// we don't expect any exception-related instructions when SjLj runs. 46 /// FIXME Currently this scheme does not support indirect call of setjmp, 47 /// because of the limitation of the scheme itself. fastcomp does not support it 48 /// either. 49 /// 50 /// In detail, this pass does following things: 51 /// 52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 53 /// __THREW__ and __threwValue will be set in invoke wrappers 54 /// in JS glue code. For what invoke wrappers are, refer to 3). These 55 /// variables are used for both exceptions and setjmp/longjmps. 56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 57 /// means nothing occurred, 1 means an exception occurred, and other numbers 58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 59 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 60 /// 61 /// * Exception handling 62 /// 63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 64 /// at link time. 65 /// The global variables in 1) will exist in wasm address space, 66 /// but their values should be set in JS code, so these functions 67 /// as interfaces to JS glue code. These functions are equivalent to the 68 /// following JS functions, which actually exist in asm.js version of JS 69 /// library. 70 /// 71 /// function setThrew(threw, value) { 72 /// if (__THREW__ == 0) { 73 /// __THREW__ = threw; 74 /// __threwValue = value; 75 /// } 76 /// } 77 // 78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 79 /// 80 /// In exception handling, getTempRet0 indicates the type of an exception 81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 82 /// function. 83 /// 84 /// 3) Lower 85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 86 /// into 87 /// __THREW__ = 0; 88 /// call @__invoke_SIG(func, arg1, arg2) 89 /// %__THREW__.val = __THREW__; 90 /// __THREW__ = 0; 91 /// if (%__THREW__.val == 1) 92 /// goto %lpad 93 /// else 94 /// goto %invoke.cont 95 /// SIG is a mangled string generated based on the LLVM IR-level function 96 /// signature. After LLVM IR types are lowered to the target wasm types, 97 /// the names for these wrappers will change based on wasm types as well, 98 /// as in invoke_vi (function takes an int and returns void). The bodies of 99 /// these wrappers will be generated in JS glue code, and inside those 100 /// wrappers we use JS try-catch to generate actual exception effects. It 101 /// also calls the original callee function. An example wrapper in JS code 102 /// would look like this: 103 /// function invoke_vi(index,a1) { 104 /// try { 105 /// Module["dynCall_vi"](index,a1); // This calls original callee 106 /// } catch(e) { 107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 108 /// asm["setThrew"](1, 0); // setThrew is called here 109 /// } 110 /// } 111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 112 /// so we can jump to the right BB based on this value. 113 /// 114 /// 4) Lower 115 /// %val = landingpad catch c1 catch c2 catch c3 ... 116 /// ... use %val ... 117 /// into 118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 119 /// %val = {%fmc, getTempRet0()} 120 /// ... use %val ... 121 /// Here N is a number calculated based on the number of clauses. 122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 123 /// 124 /// 5) Lower 125 /// resume {%a, %b} 126 /// into 127 /// call @__resumeException(%a) 128 /// where __resumeException() is a function in JS glue code. 129 /// 130 /// 6) Lower 131 /// call @llvm.eh.typeid.for(type) (intrinsic) 132 /// into 133 /// call @llvm_eh_typeid_for(type) 134 /// llvm_eh_typeid_for function will be generated in JS glue code. 135 /// 136 /// * Setjmp / Longjmp handling 137 /// 138 /// In case calls to longjmp() exists 139 /// 140 /// 1) Lower 141 /// longjmp(buf, value) 142 /// into 143 /// emscripten_longjmp_jmpbuf(buf, value) 144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 145 /// 146 /// In case calls to setjmp() exists 147 /// 148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 149 /// sejmpTableSize as follows: 150 /// setjmpTableSize = 4; 151 /// setjmpTable = (int *) malloc(40); 152 /// setjmpTable[0] = 0; 153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 154 /// code. 155 /// 156 /// 3) Lower 157 /// setjmp(buf) 158 /// into 159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 160 /// setjmpTableSize = getTempRet0(); 161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 162 /// is incrementally assigned from 0) and its label (a unique number that 163 /// represents each callsite of setjmp). When we need more entries in 164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 165 /// return the new table address, and assign the new table size in 166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer 167 /// buf. A BB with setjmp is split into two after setjmp call in order to 168 /// make the post-setjmp BB the possible destination of longjmp BB. 169 /// 170 /// 171 /// 4) Lower every call that might longjmp into 172 /// __THREW__ = 0; 173 /// call @__invoke_SIG(func, arg1, arg2) 174 /// %__THREW__.val = __THREW__; 175 /// __THREW__ = 0; 176 /// if (%__THREW__.val != 0 & __threwValue != 0) { 177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 178 /// setjmpTableSize); 179 /// if (%label == 0) 180 /// emscripten_longjmp(%__THREW__.val, __threwValue); 181 /// setTempRet0(__threwValue); 182 /// } else { 183 /// %label = -1; 184 /// } 185 /// longjmp_result = getTempRet0(); 186 /// switch label { 187 /// label 1: goto post-setjmp BB 1 188 /// label 2: goto post-setjmp BB 2 189 /// ... 190 /// default: goto splitted next BB 191 /// } 192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 194 /// will be the address of matching jmp_buf buffer and __threwValue be the 195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 197 /// each setjmp callsite. Label 0 means this longjmp buffer does not 198 /// correspond to one of the setjmp callsites in this function, so in this 199 /// case we just chain the longjmp to the caller. (Here we call 200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 204 /// can't translate an int value to a jmp_buf.) 205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 206 /// post-setjmp BB based on the label. 207 /// 208 ///===----------------------------------------------------------------------===// 209 210 #include "WebAssembly.h" 211 #include "llvm/ADT/StringExtras.h" 212 #include "llvm/IR/DebugInfoMetadata.h" 213 #include "llvm/IR/Dominators.h" 214 #include "llvm/IR/IRBuilder.h" 215 #include "llvm/Support/CommandLine.h" 216 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 217 #include "llvm/Transforms/Utils/SSAUpdater.h" 218 219 using namespace llvm; 220 221 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 222 223 static cl::list<std::string> 224 EHAllowlist("emscripten-cxx-exceptions-allowed", 225 cl::desc("The list of function names in which Emscripten-style " 226 "exception handling is enabled (see emscripten " 227 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 228 cl::CommaSeparated); 229 230 namespace { 231 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 232 bool EnableEH; // Enable exception handling 233 bool EnableSjLj; // Enable setjmp/longjmp handling 234 235 GlobalVariable *ThrewGV = nullptr; 236 GlobalVariable *ThrewValueGV = nullptr; 237 Function *GetTempRet0Func = nullptr; 238 Function *SetTempRet0Func = nullptr; 239 Function *ResumeF = nullptr; 240 Function *EHTypeIDF = nullptr; 241 Function *EmLongjmpF = nullptr; 242 Function *EmLongjmpJmpbufF = nullptr; 243 Function *SaveSetjmpF = nullptr; 244 Function *TestSetjmpF = nullptr; 245 246 // __cxa_find_matching_catch_N functions. 247 // Indexed by the number of clauses in an original landingpad instruction. 248 DenseMap<int, Function *> FindMatchingCatches; 249 // Map of <function signature string, invoke_ wrappers> 250 StringMap<Function *> InvokeWrappers; 251 // Set of allowed function names for exception handling 252 std::set<std::string> EHAllowlistSet; 253 254 StringRef getPassName() const override { 255 return "WebAssembly Lower Emscripten Exceptions"; 256 } 257 258 bool runEHOnFunction(Function &F); 259 bool runSjLjOnFunction(Function &F); 260 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 261 262 Value *wrapInvoke(CallBase *CI); 263 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 264 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 265 Value *&LongjmpResult, BasicBlock *&EndBB); 266 Function *getInvokeWrapper(CallBase *CI); 267 268 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 269 bool canLongjmp(Module &M, const Value *Callee) const; 270 bool isEmAsmCall(Module &M, const Value *Callee) const; 271 272 void rebuildSSA(Function &F); 273 274 public: 275 static char ID; 276 277 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 278 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) { 279 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 280 } 281 bool runOnModule(Module &M) override; 282 283 void getAnalysisUsage(AnalysisUsage &AU) const override { 284 AU.addRequired<DominatorTreeWrapperPass>(); 285 } 286 }; 287 } // End anonymous namespace 288 289 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 290 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 291 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 292 false, false) 293 294 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 295 bool EnableSjLj) { 296 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 297 } 298 299 static bool canThrow(const Value *V) { 300 if (const auto *F = dyn_cast<const Function>(V)) { 301 // Intrinsics cannot throw 302 if (F->isIntrinsic()) 303 return false; 304 StringRef Name = F->getName(); 305 // leave setjmp and longjmp (mostly) alone, we process them properly later 306 if (Name == "setjmp" || Name == "longjmp") 307 return false; 308 return !F->doesNotThrow(); 309 } 310 // not a function, so an indirect call - can throw, we can't tell 311 return true; 312 } 313 314 // Get a global variable with the given name. If it doesn't exist declare it, 315 // which will generate an import and asssumes that it will exist at link time. 316 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 317 const char *Name) { 318 319 auto *GV = 320 dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty())); 321 if (!GV) 322 report_fatal_error(Twine("unable to create global: ") + Name); 323 324 return GV; 325 } 326 327 // Simple function name mangler. 328 // This function simply takes LLVM's string representation of parameter types 329 // and concatenate them with '_'. There are non-alphanumeric characters but llc 330 // is ok with it, and we need to postprocess these names after the lowering 331 // phase anyway. 332 static std::string getSignature(FunctionType *FTy) { 333 std::string Sig; 334 raw_string_ostream OS(Sig); 335 OS << *FTy->getReturnType(); 336 for (Type *ParamTy : FTy->params()) 337 OS << "_" << *ParamTy; 338 if (FTy->isVarArg()) 339 OS << "_..."; 340 Sig = OS.str(); 341 Sig.erase(remove_if(Sig, isSpace), Sig.end()); 342 // When s2wasm parses .s file, a comma means the end of an argument. So a 343 // mangled function name can contain any character but a comma. 344 std::replace(Sig.begin(), Sig.end(), ',', '.'); 345 return Sig; 346 } 347 348 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 349 Module *M) { 350 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 351 // Tell the linker that this function is expected to be imported from the 352 // 'env' module. 353 if (!F->hasFnAttribute("wasm-import-module")) { 354 llvm::AttrBuilder B; 355 B.addAttribute("wasm-import-module", "env"); 356 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 357 } 358 if (!F->hasFnAttribute("wasm-import-name")) { 359 llvm::AttrBuilder B; 360 B.addAttribute("wasm-import-name", F->getName()); 361 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 362 } 363 return F; 364 } 365 366 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 367 // This is because a landingpad instruction contains two more arguments, a 368 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 369 // functions are named after the number of arguments in the original landingpad 370 // instruction. 371 Function * 372 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 373 unsigned NumClauses) { 374 if (FindMatchingCatches.count(NumClauses)) 375 return FindMatchingCatches[NumClauses]; 376 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 377 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 378 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 379 Function *F = getEmscriptenFunction( 380 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 381 FindMatchingCatches[NumClauses] = F; 382 return F; 383 } 384 385 // Generate invoke wrapper seqence with preamble and postamble 386 // Preamble: 387 // __THREW__ = 0; 388 // Postamble: 389 // %__THREW__.val = __THREW__; __THREW__ = 0; 390 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 391 // whether longjmp occurred), for future use. 392 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 393 LLVMContext &C = CI->getModule()->getContext(); 394 395 // If we are calling a function that is noreturn, we must remove that 396 // attribute. The code we insert here does expect it to return, after we 397 // catch the exception. 398 if (CI->doesNotReturn()) { 399 if (auto *F = CI->getCalledFunction()) 400 F->removeFnAttr(Attribute::NoReturn); 401 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 402 } 403 404 IRBuilder<> IRB(C); 405 IRB.SetInsertPoint(CI); 406 407 // Pre-invoke 408 // __THREW__ = 0; 409 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 410 411 // Invoke function wrapper in JavaScript 412 SmallVector<Value *, 16> Args; 413 // Put the pointer to the callee as first argument, so it can be called 414 // within the invoke wrapper later 415 Args.push_back(CI->getCalledOperand()); 416 Args.append(CI->arg_begin(), CI->arg_end()); 417 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 418 NewCall->takeName(CI); 419 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 420 NewCall->setDebugLoc(CI->getDebugLoc()); 421 422 // Because we added the pointer to the callee as first argument, all 423 // argument attribute indices have to be incremented by one. 424 SmallVector<AttributeSet, 8> ArgAttributes; 425 const AttributeList &InvokeAL = CI->getAttributes(); 426 427 // No attributes for the callee pointer. 428 ArgAttributes.push_back(AttributeSet()); 429 // Copy the argument attributes from the original 430 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 431 ArgAttributes.push_back(InvokeAL.getParamAttributes(I)); 432 433 AttrBuilder FnAttrs(InvokeAL.getFnAttributes()); 434 if (FnAttrs.contains(Attribute::AllocSize)) { 435 // The allocsize attribute (if any) referes to parameters by index and needs 436 // to be adjusted. 437 unsigned SizeArg; 438 Optional<unsigned> NEltArg; 439 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 440 SizeArg += 1; 441 if (NEltArg.hasValue()) 442 NEltArg = NEltArg.getValue() + 1; 443 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 444 } 445 446 // Reconstruct the AttributesList based on the vector we constructed. 447 AttributeList NewCallAL = 448 AttributeList::get(C, AttributeSet::get(C, FnAttrs), 449 InvokeAL.getRetAttributes(), ArgAttributes); 450 NewCall->setAttributes(NewCallAL); 451 452 CI->replaceAllUsesWith(NewCall); 453 454 // Post-invoke 455 // %__THREW__.val = __THREW__; __THREW__ = 0; 456 Value *Threw = 457 IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val"); 458 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 459 return Threw; 460 } 461 462 // Get matching invoke wrapper based on callee signature 463 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 464 Module *M = CI->getModule(); 465 SmallVector<Type *, 16> ArgTys; 466 FunctionType *CalleeFTy = CI->getFunctionType(); 467 468 std::string Sig = getSignature(CalleeFTy); 469 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 470 return InvokeWrappers[Sig]; 471 472 // Put the pointer to the callee as first argument 473 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 474 // Add argument types 475 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 476 477 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 478 CalleeFTy->isVarArg()); 479 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 480 InvokeWrappers[Sig] = F; 481 return F; 482 } 483 484 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 485 const Value *Callee) const { 486 if (auto *CalleeF = dyn_cast<Function>(Callee)) 487 if (CalleeF->isIntrinsic()) 488 return false; 489 490 // Attempting to transform inline assembly will result in something like: 491 // call void @__invoke_void(void ()* asm ...) 492 // which is invalid because inline assembly blocks do not have addresses 493 // and can't be passed by pointer. The result is a crash with illegal IR. 494 if (isa<InlineAsm>(Callee)) 495 return false; 496 StringRef CalleeName = Callee->getName(); 497 498 // The reason we include malloc/free here is to exclude the malloc/free 499 // calls generated in setjmp prep / cleanup routines. 500 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 501 return false; 502 503 // There are functions in JS glue code 504 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 505 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 506 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 507 return false; 508 509 // __cxa_find_matching_catch_N functions cannot longjmp 510 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 511 return false; 512 513 // Exception-catching related functions 514 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 515 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 516 CalleeName == "__clang_call_terminate") 517 return false; 518 519 // Otherwise we don't know 520 return true; 521 } 522 523 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M, 524 const Value *Callee) const { 525 StringRef CalleeName = Callee->getName(); 526 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 527 return CalleeName == "emscripten_asm_const_int" || 528 CalleeName == "emscripten_asm_const_double" || 529 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 530 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 531 CalleeName == "emscripten_asm_const_async_on_main_thread"; 532 } 533 534 // Generate testSetjmp function call seqence with preamble and postamble. 535 // The code this generates is equivalent to the following JavaScript code: 536 // if (%__THREW__.val != 0 & threwValue != 0) { 537 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 538 // if (%label == 0) 539 // emscripten_longjmp(%__THREW__.val, threwValue); 540 // setTempRet0(threwValue); 541 // } else { 542 // %label = -1; 543 // } 544 // %longjmp_result = getTempRet0(); 545 // 546 // As output parameters. returns %label, %longjmp_result, and the BB the last 547 // instruction (%longjmp_result = ...) is in. 548 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 549 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 550 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 551 BasicBlock *&EndBB) { 552 Function *F = BB->getParent(); 553 LLVMContext &C = BB->getModule()->getContext(); 554 IRBuilder<> IRB(C); 555 IRB.SetCurrentDebugLocation(DL); 556 557 // if (%__THREW__.val != 0 & threwValue != 0) 558 IRB.SetInsertPoint(BB); 559 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 560 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 561 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 562 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 563 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 564 ThrewValueGV->getName() + ".val"); 565 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 566 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 567 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 568 569 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 570 // if (%label == 0) 571 IRB.SetInsertPoint(ThenBB1); 572 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 573 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 574 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 575 Threw->getName() + ".i32p"); 576 Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt, 577 ThrewInt->getName() + ".loaded"); 578 Value *ThenLabel = IRB.CreateCall( 579 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 580 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 581 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 582 583 // emscripten_longjmp(%__THREW__.val, threwValue); 584 IRB.SetInsertPoint(ThenBB2); 585 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 586 IRB.CreateUnreachable(); 587 588 // setTempRet0(threwValue); 589 IRB.SetInsertPoint(EndBB2); 590 IRB.CreateCall(SetTempRet0Func, ThrewValue); 591 IRB.CreateBr(EndBB1); 592 593 IRB.SetInsertPoint(ElseBB1); 594 IRB.CreateBr(EndBB1); 595 596 // longjmp_result = getTempRet0(); 597 IRB.SetInsertPoint(EndBB1); 598 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 599 LabelPHI->addIncoming(ThenLabel, EndBB2); 600 601 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 602 603 // Output parameter assignment 604 Label = LabelPHI; 605 EndBB = EndBB1; 606 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 607 } 608 609 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 610 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 611 DT.recalculate(F); // CFG has been changed 612 SSAUpdater SSA; 613 for (BasicBlock &BB : F) { 614 for (Instruction &I : BB) { 615 SSA.Initialize(I.getType(), I.getName()); 616 SSA.AddAvailableValue(&BB, &I); 617 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 618 Use &U = *UI; 619 ++UI; 620 auto *User = cast<Instruction>(U.getUser()); 621 if (auto *UserPN = dyn_cast<PHINode>(User)) 622 if (UserPN->getIncomingBlock(U) == &BB) 623 continue; 624 625 if (DT.dominates(&I, User)) 626 continue; 627 SSA.RewriteUseAfterInsertions(U); 628 } 629 } 630 } 631 } 632 633 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 634 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 635 636 LLVMContext &C = M.getContext(); 637 IRBuilder<> IRB(C); 638 639 Function *SetjmpF = M.getFunction("setjmp"); 640 Function *LongjmpF = M.getFunction("longjmp"); 641 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 642 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 643 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 644 645 // Declare (or get) global variables __THREW__, __threwValue, and 646 // getTempRet0/setTempRet0 function which are used in common for both 647 // exception handling and setjmp/longjmp handling 648 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 649 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 650 GetTempRet0Func = getEmscriptenFunction( 651 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 652 SetTempRet0Func = getEmscriptenFunction( 653 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 654 "setTempRet0", &M); 655 GetTempRet0Func->setDoesNotThrow(); 656 SetTempRet0Func->setDoesNotThrow(); 657 658 bool Changed = false; 659 660 // Exception handling 661 if (EnableEH) { 662 // Register __resumeException function 663 FunctionType *ResumeFTy = 664 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 665 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 666 667 // Register llvm_eh_typeid_for function 668 FunctionType *EHTypeIDTy = 669 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 670 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 671 672 for (Function &F : M) { 673 if (F.isDeclaration()) 674 continue; 675 Changed |= runEHOnFunction(F); 676 } 677 } 678 679 // Setjmp/longjmp handling 680 if (DoSjLj) { 681 Changed = true; // We have setjmp or longjmp somewhere 682 683 if (LongjmpF) { 684 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 685 // defined in JS code 686 EmLongjmpJmpbufF = getEmscriptenFunction(LongjmpF->getFunctionType(), 687 "emscripten_longjmp_jmpbuf", &M); 688 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 689 } 690 691 if (SetjmpF) { 692 // Register saveSetjmp function 693 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 694 FunctionType *FTy = 695 FunctionType::get(Type::getInt32PtrTy(C), 696 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(), 697 Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 698 false); 699 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 700 701 // Register testSetjmp function 702 FTy = FunctionType::get( 703 IRB.getInt32Ty(), 704 {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, false); 705 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 706 707 FTy = FunctionType::get(IRB.getVoidTy(), 708 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 709 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 710 711 // Only traverse functions that uses setjmp in order not to insert 712 // unnecessary prep / cleanup code in every function 713 SmallPtrSet<Function *, 8> SetjmpUsers; 714 for (User *U : SetjmpF->users()) { 715 auto *UI = cast<Instruction>(U); 716 SetjmpUsers.insert(UI->getFunction()); 717 } 718 for (Function *F : SetjmpUsers) 719 runSjLjOnFunction(*F); 720 } 721 } 722 723 if (!Changed) { 724 // Delete unused global variables and functions 725 if (ResumeF) 726 ResumeF->eraseFromParent(); 727 if (EHTypeIDF) 728 EHTypeIDF->eraseFromParent(); 729 if (EmLongjmpF) 730 EmLongjmpF->eraseFromParent(); 731 if (SaveSetjmpF) 732 SaveSetjmpF->eraseFromParent(); 733 if (TestSetjmpF) 734 TestSetjmpF->eraseFromParent(); 735 return false; 736 } 737 738 return true; 739 } 740 741 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 742 Module &M = *F.getParent(); 743 LLVMContext &C = F.getContext(); 744 IRBuilder<> IRB(C); 745 bool Changed = false; 746 SmallVector<Instruction *, 64> ToErase; 747 SmallPtrSet<LandingPadInst *, 32> LandingPads; 748 bool AllowExceptions = areAllExceptionsAllowed() || 749 EHAllowlistSet.count(std::string(F.getName())); 750 751 for (BasicBlock &BB : F) { 752 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 753 if (!II) 754 continue; 755 Changed = true; 756 LandingPads.insert(II->getLandingPadInst()); 757 IRB.SetInsertPoint(II); 758 759 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledOperand()); 760 if (NeedInvoke) { 761 // Wrap invoke with invoke wrapper and generate preamble/postamble 762 Value *Threw = wrapInvoke(II); 763 ToErase.push_back(II); 764 765 // Insert a branch based on __THREW__ variable 766 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 767 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 768 769 } else { 770 // This can't throw, and we don't need this invoke, just replace it with a 771 // call+branch 772 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 773 CallInst *NewCall = 774 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args); 775 NewCall->takeName(II); 776 NewCall->setCallingConv(II->getCallingConv()); 777 NewCall->setDebugLoc(II->getDebugLoc()); 778 NewCall->setAttributes(II->getAttributes()); 779 II->replaceAllUsesWith(NewCall); 780 ToErase.push_back(II); 781 782 IRB.CreateBr(II->getNormalDest()); 783 784 // Remove any PHI node entries from the exception destination 785 II->getUnwindDest()->removePredecessor(&BB); 786 } 787 } 788 789 // Process resume instructions 790 for (BasicBlock &BB : F) { 791 // Scan the body of the basic block for resumes 792 for (Instruction &I : BB) { 793 auto *RI = dyn_cast<ResumeInst>(&I); 794 if (!RI) 795 continue; 796 Changed = true; 797 798 // Split the input into legal values 799 Value *Input = RI->getValue(); 800 IRB.SetInsertPoint(RI); 801 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 802 // Create a call to __resumeException function 803 IRB.CreateCall(ResumeF, {Low}); 804 // Add a terminator to the block 805 IRB.CreateUnreachable(); 806 ToErase.push_back(RI); 807 } 808 } 809 810 // Process llvm.eh.typeid.for intrinsics 811 for (BasicBlock &BB : F) { 812 for (Instruction &I : BB) { 813 auto *CI = dyn_cast<CallInst>(&I); 814 if (!CI) 815 continue; 816 const Function *Callee = CI->getCalledFunction(); 817 if (!Callee) 818 continue; 819 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 820 continue; 821 Changed = true; 822 823 IRB.SetInsertPoint(CI); 824 CallInst *NewCI = 825 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 826 CI->replaceAllUsesWith(NewCI); 827 ToErase.push_back(CI); 828 } 829 } 830 831 // Look for orphan landingpads, can occur in blocks with no predecessors 832 for (BasicBlock &BB : F) { 833 Instruction *I = BB.getFirstNonPHI(); 834 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 835 LandingPads.insert(LPI); 836 } 837 Changed |= !LandingPads.empty(); 838 839 // Handle all the landingpad for this function together, as multiple invokes 840 // may share a single lp 841 for (LandingPadInst *LPI : LandingPads) { 842 IRB.SetInsertPoint(LPI); 843 SmallVector<Value *, 16> FMCArgs; 844 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 845 Constant *Clause = LPI->getClause(I); 846 // As a temporary workaround for the lack of aggregate varargs support 847 // in the interface between JS and wasm, break out filter operands into 848 // their component elements. 849 if (LPI->isFilter(I)) { 850 auto *ATy = cast<ArrayType>(Clause->getType()); 851 for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) { 852 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter"); 853 FMCArgs.push_back(EV); 854 } 855 } else 856 FMCArgs.push_back(Clause); 857 } 858 859 // Create a call to __cxa_find_matching_catch_N function 860 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 861 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 862 Value *Undef = UndefValue::get(LPI->getType()); 863 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 864 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 865 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 866 867 LPI->replaceAllUsesWith(Pair1); 868 ToErase.push_back(LPI); 869 } 870 871 // Erase everything we no longer need in this function 872 for (Instruction *I : ToErase) 873 I->eraseFromParent(); 874 875 return Changed; 876 } 877 878 // This tries to get debug info from the instruction before which a new 879 // instruction will be inserted, and if there's no debug info in that 880 // instruction, tries to get the info instead from the previous instruction (if 881 // any). If none of these has debug info and a DISubprogram is provided, it 882 // creates a dummy debug info with the first line of the function, because IR 883 // verifier requires all inlinable callsites should have debug info when both a 884 // caller and callee have DISubprogram. If none of these conditions are met, 885 // returns empty info. 886 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 887 DISubprogram *SP) { 888 assert(InsertBefore); 889 if (InsertBefore->getDebugLoc()) 890 return InsertBefore->getDebugLoc(); 891 const Instruction *Prev = InsertBefore->getPrevNode(); 892 if (Prev && Prev->getDebugLoc()) 893 return Prev->getDebugLoc(); 894 if (SP) 895 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 896 return DebugLoc(); 897 } 898 899 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 900 Module &M = *F.getParent(); 901 LLVMContext &C = F.getContext(); 902 IRBuilder<> IRB(C); 903 SmallVector<Instruction *, 64> ToErase; 904 // Vector of %setjmpTable values 905 std::vector<Instruction *> SetjmpTableInsts; 906 // Vector of %setjmpTableSize values 907 std::vector<Instruction *> SetjmpTableSizeInsts; 908 909 // Setjmp preparation 910 911 // This instruction effectively means %setjmpTableSize = 4. 912 // We create this as an instruction intentionally, and we don't want to fold 913 // this instruction to a constant 4, because this value will be used in 914 // SSAUpdater.AddAvailableValue(...) later. 915 BasicBlock &EntryBB = F.getEntryBlock(); 916 DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram()); 917 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 918 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 919 &*EntryBB.getFirstInsertionPt()); 920 SetjmpTableSize->setDebugLoc(FirstDL); 921 // setjmpTable = (int *) malloc(40); 922 Instruction *SetjmpTable = CallInst::CreateMalloc( 923 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 924 nullptr, nullptr, "setjmpTable"); 925 SetjmpTable->setDebugLoc(FirstDL); 926 // CallInst::CreateMalloc may return a bitcast instruction if the result types 927 // mismatch. We need to set the debug loc for the original call too. 928 auto *MallocCall = SetjmpTable->stripPointerCasts(); 929 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 930 MallocCallI->setDebugLoc(FirstDL); 931 } 932 // setjmpTable[0] = 0; 933 IRB.SetInsertPoint(SetjmpTableSize); 934 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 935 SetjmpTableInsts.push_back(SetjmpTable); 936 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 937 938 // Setjmp transformation 939 std::vector<PHINode *> SetjmpRetPHIs; 940 Function *SetjmpF = M.getFunction("setjmp"); 941 for (User *U : SetjmpF->users()) { 942 auto *CI = dyn_cast<CallInst>(U); 943 if (!CI) 944 report_fatal_error("Does not support indirect calls to setjmp"); 945 946 BasicBlock *BB = CI->getParent(); 947 if (BB->getParent() != &F) // in other function 948 continue; 949 950 // The tail is everything right after the call, and will be reached once 951 // when setjmp is called, and later when longjmp returns to the setjmp 952 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 953 // Add a phi to the tail, which will be the output of setjmp, which 954 // indicates if this is the first call or a longjmp back. The phi directly 955 // uses the right value based on where we arrive from 956 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 957 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 958 959 // setjmp initial call returns 0 960 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 961 // The proper output is now this, not the setjmp call itself 962 CI->replaceAllUsesWith(SetjmpRet); 963 // longjmp returns to the setjmp will add themselves to this phi 964 SetjmpRetPHIs.push_back(SetjmpRet); 965 966 // Fix call target 967 // Our index in the function is our place in the array + 1 to avoid index 968 // 0, because index 0 means the longjmp is not ours to handle. 969 IRB.SetInsertPoint(CI); 970 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 971 SetjmpTable, SetjmpTableSize}; 972 Instruction *NewSetjmpTable = 973 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 974 Instruction *NewSetjmpTableSize = 975 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 976 SetjmpTableInsts.push_back(NewSetjmpTable); 977 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 978 ToErase.push_back(CI); 979 } 980 981 // Update each call that can longjmp so it can return to a setjmp where 982 // relevant. 983 984 // Because we are creating new BBs while processing and don't want to make 985 // all these newly created BBs candidates again for longjmp processing, we 986 // first make the vector of candidate BBs. 987 std::vector<BasicBlock *> BBs; 988 for (BasicBlock &BB : F) 989 BBs.push_back(&BB); 990 991 // BBs.size() will change within the loop, so we query it every time 992 for (unsigned I = 0; I < BBs.size(); I++) { 993 BasicBlock *BB = BBs[I]; 994 for (Instruction &I : *BB) { 995 assert(!isa<InvokeInst>(&I)); 996 auto *CI = dyn_cast<CallInst>(&I); 997 if (!CI) 998 continue; 999 1000 const Value *Callee = CI->getCalledOperand(); 1001 if (!canLongjmp(M, Callee)) 1002 continue; 1003 if (isEmAsmCall(M, Callee)) 1004 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1005 F.getName() + 1006 ". Please consider using EM_JS, or move the " 1007 "EM_ASM into another function.", 1008 false); 1009 1010 Value *Threw = nullptr; 1011 BasicBlock *Tail; 1012 if (Callee->getName().startswith("__invoke_")) { 1013 // If invoke wrapper has already been generated for this call in 1014 // previous EH phase, search for the load instruction 1015 // %__THREW__.val = __THREW__; 1016 // in postamble after the invoke wrapper call 1017 LoadInst *ThrewLI = nullptr; 1018 StoreInst *ThrewResetSI = nullptr; 1019 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1020 I != IE; ++I) { 1021 if (auto *LI = dyn_cast<LoadInst>(I)) 1022 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1023 if (GV == ThrewGV) { 1024 Threw = ThrewLI = LI; 1025 break; 1026 } 1027 } 1028 // Search for the store instruction after the load above 1029 // __THREW__ = 0; 1030 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1031 I != IE; ++I) { 1032 if (auto *SI = dyn_cast<StoreInst>(I)) 1033 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 1034 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 1035 ThrewResetSI = SI; 1036 break; 1037 } 1038 } 1039 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1040 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1041 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1042 1043 } else { 1044 // Wrap call with invoke wrapper and generate preamble/postamble 1045 Threw = wrapInvoke(CI); 1046 ToErase.push_back(CI); 1047 Tail = SplitBlock(BB, CI->getNextNode()); 1048 } 1049 1050 // We need to replace the terminator in Tail - SplitBlock makes BB go 1051 // straight to Tail, we need to check if a longjmp occurred, and go to the 1052 // right setjmp-tail if so 1053 ToErase.push_back(BB->getTerminator()); 1054 1055 // Generate a function call to testSetjmp function and preamble/postamble 1056 // code to figure out (1) whether longjmp occurred (2) if longjmp 1057 // occurred, which setjmp it corresponds to 1058 Value *Label = nullptr; 1059 Value *LongjmpResult = nullptr; 1060 BasicBlock *EndBB = nullptr; 1061 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1062 Label, LongjmpResult, EndBB); 1063 assert(Label && LongjmpResult && EndBB); 1064 1065 // Create switch instruction 1066 IRB.SetInsertPoint(EndBB); 1067 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc()); 1068 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1069 // -1 means no longjmp happened, continue normally (will hit the default 1070 // switch case). 0 means a longjmp that is not ours to handle, needs a 1071 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1072 // 0). 1073 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1074 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1075 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1076 } 1077 1078 // We are splitting the block here, and must continue to find other calls 1079 // in the block - which is now split. so continue to traverse in the Tail 1080 BBs.push_back(Tail); 1081 } 1082 } 1083 1084 // Erase everything we no longer need in this function 1085 for (Instruction *I : ToErase) 1086 I->eraseFromParent(); 1087 1088 // Free setjmpTable buffer before each return instruction 1089 for (BasicBlock &BB : F) { 1090 Instruction *TI = BB.getTerminator(); 1091 if (isa<ReturnInst>(TI)) { 1092 DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram()); 1093 auto *Free = CallInst::CreateFree(SetjmpTable, TI); 1094 Free->setDebugLoc(DL); 1095 // CallInst::CreateFree may create a bitcast instruction if its argument 1096 // types mismatch. We need to set the debug loc for the bitcast too. 1097 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) { 1098 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0))) 1099 BitCastI->setDebugLoc(DL); 1100 } 1101 } 1102 } 1103 1104 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1105 // (when buffer reallocation occurs) 1106 // entry: 1107 // setjmpTableSize = 4; 1108 // setjmpTable = (int *) malloc(40); 1109 // setjmpTable[0] = 0; 1110 // ... 1111 // somebb: 1112 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1113 // setjmpTableSize = getTempRet0(); 1114 // So we need to make sure the SSA for these variables is valid so that every 1115 // saveSetjmp and testSetjmp calls have the correct arguments. 1116 SSAUpdater SetjmpTableSSA; 1117 SSAUpdater SetjmpTableSizeSSA; 1118 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1119 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1120 for (Instruction *I : SetjmpTableInsts) 1121 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1122 for (Instruction *I : SetjmpTableSizeInsts) 1123 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1124 1125 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1126 UI != UE;) { 1127 // Grab the use before incrementing the iterator. 1128 Use &U = *UI; 1129 // Increment the iterator before removing the use from the list. 1130 ++UI; 1131 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1132 if (I->getParent() != &EntryBB) 1133 SetjmpTableSSA.RewriteUse(U); 1134 } 1135 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1136 UI != UE;) { 1137 Use &U = *UI; 1138 ++UI; 1139 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1140 if (I->getParent() != &EntryBB) 1141 SetjmpTableSizeSSA.RewriteUse(U); 1142 } 1143 1144 // Finally, our modifications to the cfg can break dominance of SSA variables. 1145 // For example, in this code, 1146 // if (x()) { .. setjmp() .. } 1147 // if (y()) { .. longjmp() .. } 1148 // We must split the longjmp block, and it can jump into the block splitted 1149 // from setjmp one. But that means that when we split the setjmp block, it's 1150 // first part no longer dominates its second part - there is a theoretically 1151 // possible control flow path where x() is false, then y() is true and we 1152 // reach the second part of the setjmp block, without ever reaching the first 1153 // part. So, we rebuild SSA form here. 1154 rebuildSSA(F); 1155 return true; 1156 } 1157