xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (revision 7c20397b724a55001c2054fa133a768e9d06eb1c)
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "Utils/WebAssemblyUtilities.h"
271 #include "WebAssembly.h"
272 #include "WebAssemblyTargetMachine.h"
273 #include "llvm/ADT/StringExtras.h"
274 #include "llvm/CodeGen/TargetPassConfig.h"
275 #include "llvm/CodeGen/WasmEHFuncInfo.h"
276 #include "llvm/IR/DebugInfoMetadata.h"
277 #include "llvm/IR/Dominators.h"
278 #include "llvm/IR/IRBuilder.h"
279 #include "llvm/IR/IntrinsicsWebAssembly.h"
280 #include "llvm/Support/CommandLine.h"
281 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
282 #include "llvm/Transforms/Utils/Local.h"
283 #include "llvm/Transforms/Utils/SSAUpdater.h"
284 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
285 
286 using namespace llvm;
287 
288 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
289 
290 static cl::list<std::string>
291     EHAllowlist("emscripten-cxx-exceptions-allowed",
292                 cl::desc("The list of function names in which Emscripten-style "
293                          "exception handling is enabled (see emscripten "
294                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
295                 cl::CommaSeparated);
296 
297 namespace {
298 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
299   bool EnableEmEH;     // Enable Emscripten exception handling
300   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
301   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
302   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
303 
304   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
305   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
306   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
307   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
308   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
309   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
310   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
311   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
312   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
313   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
314   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
315 
316   // type of 'struct __WasmLongjmpArgs' defined in emscripten
317   Type *LongjmpArgsTy = nullptr;
318 
319   // __cxa_find_matching_catch_N functions.
320   // Indexed by the number of clauses in an original landingpad instruction.
321   DenseMap<int, Function *> FindMatchingCatches;
322   // Map of <function signature string, invoke_ wrappers>
323   StringMap<Function *> InvokeWrappers;
324   // Set of allowed function names for exception handling
325   std::set<std::string> EHAllowlistSet;
326   // Functions that contains calls to setjmp
327   SmallPtrSet<Function *, 8> SetjmpUsers;
328 
329   StringRef getPassName() const override {
330     return "WebAssembly Lower Emscripten Exceptions";
331   }
332 
333   using InstVector = SmallVectorImpl<Instruction *>;
334   bool runEHOnFunction(Function &F);
335   bool runSjLjOnFunction(Function &F);
336   void handleLongjmpableCallsForEmscriptenSjLj(
337       Function &F, InstVector &SetjmpTableInsts,
338       InstVector &SetjmpTableSizeInsts,
339       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
340   void
341   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
342                                     InstVector &SetjmpTableSizeInsts,
343                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
344   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
345 
346   Value *wrapInvoke(CallBase *CI);
347   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
348                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
349                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
350                       PHINode *&CallEmLongjmpBBThrewPHI,
351                       PHINode *&CallEmLongjmpBBThrewValuePHI,
352                       BasicBlock *&EndBB);
353   Function *getInvokeWrapper(CallBase *CI);
354 
355   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
356   bool supportsException(const Function *F) const {
357     return EnableEmEH && (areAllExceptionsAllowed() ||
358                           EHAllowlistSet.count(std::string(F->getName())));
359   }
360   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
361 
362   void rebuildSSA(Function &F);
363 
364 public:
365   static char ID;
366 
367   WebAssemblyLowerEmscriptenEHSjLj()
368       : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
369         EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
370         EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
371     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
372            "Two SjLj modes cannot be turned on at the same time");
373     assert(!(EnableEmEH && EnableWasmSjLj) &&
374            "Wasm SjLj should be only used with Wasm EH");
375     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
376   }
377   bool runOnModule(Module &M) override;
378 
379   void getAnalysisUsage(AnalysisUsage &AU) const override {
380     AU.addRequired<DominatorTreeWrapperPass>();
381   }
382 };
383 } // End anonymous namespace
384 
385 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
386 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
387                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
388                 false, false)
389 
390 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
391   return new WebAssemblyLowerEmscriptenEHSjLj();
392 }
393 
394 static bool canThrow(const Value *V) {
395   if (const auto *F = dyn_cast<const Function>(V)) {
396     // Intrinsics cannot throw
397     if (F->isIntrinsic())
398       return false;
399     StringRef Name = F->getName();
400     // leave setjmp and longjmp (mostly) alone, we process them properly later
401     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
402       return false;
403     return !F->doesNotThrow();
404   }
405   // not a function, so an indirect call - can throw, we can't tell
406   return true;
407 }
408 
409 // Get a global variable with the given name. If it doesn't exist declare it,
410 // which will generate an import and assume that it will exist at link time.
411 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
412                                          WebAssemblyTargetMachine &TM,
413                                          const char *Name) {
414   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
415   if (!GV)
416     report_fatal_error(Twine("unable to create global: ") + Name);
417 
418   // If the target supports TLS, make this variable thread-local. We can't just
419   // unconditionally make it thread-local and depend on
420   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
421   // the side effect of disallowing the object from being linked into a
422   // shared-memory module, which we don't want to be responsible for.
423   auto *Subtarget = TM.getSubtargetImpl();
424   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
425                  ? GlobalValue::LocalExecTLSModel
426                  : GlobalValue::NotThreadLocal;
427   GV->setThreadLocalMode(TLS);
428   return GV;
429 }
430 
431 // Simple function name mangler.
432 // This function simply takes LLVM's string representation of parameter types
433 // and concatenate them with '_'. There are non-alphanumeric characters but llc
434 // is ok with it, and we need to postprocess these names after the lowering
435 // phase anyway.
436 static std::string getSignature(FunctionType *FTy) {
437   std::string Sig;
438   raw_string_ostream OS(Sig);
439   OS << *FTy->getReturnType();
440   for (Type *ParamTy : FTy->params())
441     OS << "_" << *ParamTy;
442   if (FTy->isVarArg())
443     OS << "_...";
444   Sig = OS.str();
445   erase_if(Sig, isSpace);
446   // When s2wasm parses .s file, a comma means the end of an argument. So a
447   // mangled function name can contain any character but a comma.
448   std::replace(Sig.begin(), Sig.end(), ',', '.');
449   return Sig;
450 }
451 
452 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
453                                        Module *M) {
454   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
455   // Tell the linker that this function is expected to be imported from the
456   // 'env' module.
457   if (!F->hasFnAttribute("wasm-import-module")) {
458     llvm::AttrBuilder B(M->getContext());
459     B.addAttribute("wasm-import-module", "env");
460     F->addFnAttrs(B);
461   }
462   if (!F->hasFnAttribute("wasm-import-name")) {
463     llvm::AttrBuilder B(M->getContext());
464     B.addAttribute("wasm-import-name", F->getName());
465     F->addFnAttrs(B);
466   }
467   return F;
468 }
469 
470 // Returns an integer type for the target architecture's address space.
471 // i32 for wasm32 and i64 for wasm64.
472 static Type *getAddrIntType(Module *M) {
473   IRBuilder<> IRB(M->getContext());
474   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
475 }
476 
477 // Returns an integer pointer type for the target architecture's address space.
478 // i32* for wasm32 and i64* for wasm64.
479 static Type *getAddrPtrType(Module *M) {
480   return Type::getIntNPtrTy(M->getContext(),
481                             M->getDataLayout().getPointerSizeInBits());
482 }
483 
484 // Returns an integer whose type is the integer type for the target's address
485 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
486 // integer.
487 static Value *getAddrSizeInt(Module *M, uint64_t C) {
488   IRBuilder<> IRB(M->getContext());
489   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
490 }
491 
492 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
493 // This is because a landingpad instruction contains two more arguments, a
494 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
495 // functions are named after the number of arguments in the original landingpad
496 // instruction.
497 Function *
498 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
499                                                        unsigned NumClauses) {
500   if (FindMatchingCatches.count(NumClauses))
501     return FindMatchingCatches[NumClauses];
502   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
503   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
504   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
505   Function *F = getEmscriptenFunction(
506       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
507   FindMatchingCatches[NumClauses] = F;
508   return F;
509 }
510 
511 // Generate invoke wrapper seqence with preamble and postamble
512 // Preamble:
513 // __THREW__ = 0;
514 // Postamble:
515 // %__THREW__.val = __THREW__; __THREW__ = 0;
516 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
517 // whether longjmp occurred), for future use.
518 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
519   Module *M = CI->getModule();
520   LLVMContext &C = M->getContext();
521 
522   IRBuilder<> IRB(C);
523   IRB.SetInsertPoint(CI);
524 
525   // Pre-invoke
526   // __THREW__ = 0;
527   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
528 
529   // Invoke function wrapper in JavaScript
530   SmallVector<Value *, 16> Args;
531   // Put the pointer to the callee as first argument, so it can be called
532   // within the invoke wrapper later
533   Args.push_back(CI->getCalledOperand());
534   Args.append(CI->arg_begin(), CI->arg_end());
535   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
536   NewCall->takeName(CI);
537   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
538   NewCall->setDebugLoc(CI->getDebugLoc());
539 
540   // Because we added the pointer to the callee as first argument, all
541   // argument attribute indices have to be incremented by one.
542   SmallVector<AttributeSet, 8> ArgAttributes;
543   const AttributeList &InvokeAL = CI->getAttributes();
544 
545   // No attributes for the callee pointer.
546   ArgAttributes.push_back(AttributeSet());
547   // Copy the argument attributes from the original
548   for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
549     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
550 
551   AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
552   if (FnAttrs.contains(Attribute::AllocSize)) {
553     // The allocsize attribute (if any) referes to parameters by index and needs
554     // to be adjusted.
555     unsigned SizeArg;
556     Optional<unsigned> NEltArg;
557     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
558     SizeArg += 1;
559     if (NEltArg.hasValue())
560       NEltArg = NEltArg.getValue() + 1;
561     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
562   }
563   // In case the callee has 'noreturn' attribute, We need to remove it, because
564   // we expect invoke wrappers to return.
565   FnAttrs.removeAttribute(Attribute::NoReturn);
566 
567   // Reconstruct the AttributesList based on the vector we constructed.
568   AttributeList NewCallAL = AttributeList::get(
569       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
570   NewCall->setAttributes(NewCallAL);
571 
572   CI->replaceAllUsesWith(NewCall);
573 
574   // Post-invoke
575   // %__THREW__.val = __THREW__; __THREW__ = 0;
576   Value *Threw =
577       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
578   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
579   return Threw;
580 }
581 
582 // Get matching invoke wrapper based on callee signature
583 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
584   Module *M = CI->getModule();
585   SmallVector<Type *, 16> ArgTys;
586   FunctionType *CalleeFTy = CI->getFunctionType();
587 
588   std::string Sig = getSignature(CalleeFTy);
589   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
590     return InvokeWrappers[Sig];
591 
592   // Put the pointer to the callee as first argument
593   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
594   // Add argument types
595   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
596 
597   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
598                                         CalleeFTy->isVarArg());
599   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
600   InvokeWrappers[Sig] = F;
601   return F;
602 }
603 
604 static bool canLongjmp(const Value *Callee) {
605   if (auto *CalleeF = dyn_cast<Function>(Callee))
606     if (CalleeF->isIntrinsic())
607       return false;
608 
609   // Attempting to transform inline assembly will result in something like:
610   //     call void @__invoke_void(void ()* asm ...)
611   // which is invalid because inline assembly blocks do not have addresses
612   // and can't be passed by pointer. The result is a crash with illegal IR.
613   if (isa<InlineAsm>(Callee))
614     return false;
615   StringRef CalleeName = Callee->getName();
616 
617   // TODO Include more functions or consider checking with mangled prefixes
618 
619   // The reason we include malloc/free here is to exclude the malloc/free
620   // calls generated in setjmp prep / cleanup routines.
621   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
622     return false;
623 
624   // There are functions in Emscripten's JS glue code or compiler-rt
625   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
626       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
627       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
628     return false;
629 
630   // __cxa_find_matching_catch_N functions cannot longjmp
631   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
632     return false;
633 
634   // Exception-catching related functions
635   //
636   // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though
637   // it surely cannot longjmp, in order to maintain the unwind relationship from
638   // all existing catchpads (and calls within them) to catch.dispatch.longjmp.
639   //
640   // In Wasm EH + Wasm SjLj, we
641   // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
642   //    catch.dispatch.longjmp instead
643   // 2. Convert all longjmpable calls to invokes that unwind to
644   //    catch.dispatch.longjmp
645   // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
646   // from an exception)'s catchpad does not contain any calls that are converted
647   // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
648   // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
649   // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
650   // CFGSort.
651   // int ret = setjmp(buf);
652   // try {
653   //   foo(); // longjmps
654   // } catch (...) {
655   // }
656   // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
657   // catchswitch, and is not caught by that catchswitch because it is a longjmp,
658   // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
659   // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
660   // it will not unwind to catch.dispatch.longjmp, producing an incorrect
661   // result.
662   //
663   // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
664   // intentionally treat it as longjmpable to work around this problem. This is
665   // a hacky fix but an easy one.
666   //
667   // The comment block in findWasmUnwindDestinations() in
668   // SelectionDAGBuilder.cpp is addressing a similar problem.
669   if (CalleeName == "__cxa_end_catch")
670     return WebAssembly::WasmEnableSjLj;
671   if (CalleeName == "__cxa_begin_catch" ||
672       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
673       CalleeName == "__clang_call_terminate")
674     return false;
675 
676   // std::terminate, which is generated when another exception occurs while
677   // handling an exception, cannot longjmp.
678   if (CalleeName == "_ZSt9terminatev")
679     return false;
680 
681   // Otherwise we don't know
682   return true;
683 }
684 
685 static bool isEmAsmCall(const Value *Callee) {
686   StringRef CalleeName = Callee->getName();
687   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
688   return CalleeName == "emscripten_asm_const_int" ||
689          CalleeName == "emscripten_asm_const_double" ||
690          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
691          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
692          CalleeName == "emscripten_asm_const_async_on_main_thread";
693 }
694 
695 // Generate testSetjmp function call seqence with preamble and postamble.
696 // The code this generates is equivalent to the following JavaScript code:
697 // %__threwValue.val = __threwValue;
698 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
699 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
700 //   if (%label == 0)
701 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
702 //   setTempRet0(%__threwValue.val);
703 // } else {
704 //   %label = -1;
705 // }
706 // %longjmp_result = getTempRet0();
707 //
708 // As output parameters. returns %label, %longjmp_result, and the BB the last
709 // instruction (%longjmp_result = ...) is in.
710 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
711     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
712     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
713     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
714     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
715   Function *F = BB->getParent();
716   Module *M = F->getParent();
717   LLVMContext &C = M->getContext();
718   IRBuilder<> IRB(C);
719   IRB.SetCurrentDebugLocation(DL);
720 
721   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
722   IRB.SetInsertPoint(BB);
723   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
724   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
725   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
726   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
727   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
728                                      ThrewValueGV->getName() + ".val");
729   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
730   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
731   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
732 
733   // Generate call.em.longjmp BB once and share it within the function
734   if (!CallEmLongjmpBB) {
735     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
736     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
737     IRB.SetInsertPoint(CallEmLongjmpBB);
738     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
739     CallEmLongjmpBBThrewValuePHI =
740         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
741     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
742     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
743     IRB.CreateCall(EmLongjmpF,
744                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
745     IRB.CreateUnreachable();
746   } else {
747     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
748     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
749   }
750 
751   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
752   // if (%label == 0)
753   IRB.SetInsertPoint(ThenBB1);
754   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
755   Value *ThrewPtr =
756       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
757   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
758                                       ThrewPtr->getName() + ".loaded");
759   Value *ThenLabel = IRB.CreateCall(
760       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
761   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
762   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
763 
764   // setTempRet0(%__threwValue.val);
765   IRB.SetInsertPoint(EndBB2);
766   IRB.CreateCall(SetTempRet0F, ThrewValue);
767   IRB.CreateBr(EndBB1);
768 
769   IRB.SetInsertPoint(ElseBB1);
770   IRB.CreateBr(EndBB1);
771 
772   // longjmp_result = getTempRet0();
773   IRB.SetInsertPoint(EndBB1);
774   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
775   LabelPHI->addIncoming(ThenLabel, EndBB2);
776 
777   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
778 
779   // Output parameter assignment
780   Label = LabelPHI;
781   EndBB = EndBB1;
782   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
783 }
784 
785 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
786   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
787   DT.recalculate(F); // CFG has been changed
788 
789   SSAUpdaterBulk SSA;
790   for (BasicBlock &BB : F) {
791     for (Instruction &I : BB) {
792       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
793       // If a value is defined by an invoke instruction, it is only available in
794       // its normal destination and not in its unwind destination.
795       if (auto *II = dyn_cast<InvokeInst>(&I))
796         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
797       else
798         SSA.AddAvailableValue(VarID, &BB, &I);
799       for (auto &U : I.uses()) {
800         auto *User = cast<Instruction>(U.getUser());
801         if (auto *UserPN = dyn_cast<PHINode>(User))
802           if (UserPN->getIncomingBlock(U) == &BB)
803             continue;
804         if (DT.dominates(&I, User))
805           continue;
806         SSA.AddUse(VarID, &U);
807       }
808     }
809   }
810   SSA.RewriteAllUses(&DT);
811 }
812 
813 // Replace uses of longjmp with a new longjmp function in Emscripten library.
814 // In Emscripten SjLj, the new function is
815 //   void emscripten_longjmp(uintptr_t, i32)
816 // In Wasm SjLj, the new function is
817 //   void __wasm_longjmp(i8*, i32)
818 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
819 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
820 // eventually be lowered to i32/i64 in the wasm backend.
821 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
822                                                           Function *NewF) {
823   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
824   Module *M = LongjmpF->getParent();
825   SmallVector<CallInst *, 8> ToErase;
826   LLVMContext &C = LongjmpF->getParent()->getContext();
827   IRBuilder<> IRB(C);
828 
829   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
830   // cast its first argument (jmp_buf*) appropriately
831   for (User *U : LongjmpF->users()) {
832     auto *CI = dyn_cast<CallInst>(U);
833     if (CI && CI->getCalledFunction() == LongjmpF) {
834       IRB.SetInsertPoint(CI);
835       Value *Env = nullptr;
836       if (NewF == EmLongjmpF)
837         Env =
838             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
839       else // WasmLongjmpF
840         Env =
841             IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env");
842       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
843       ToErase.push_back(CI);
844     }
845   }
846   for (auto *I : ToErase)
847     I->eraseFromParent();
848 
849   // If we have any remaining uses of longjmp's function pointer, replace it
850   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
851   if (!LongjmpF->uses().empty()) {
852     Value *NewLongjmp =
853         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
854     LongjmpF->replaceAllUsesWith(NewLongjmp);
855   }
856 }
857 
858 static bool containsLongjmpableCalls(const Function *F) {
859   for (const auto &BB : *F)
860     for (const auto &I : BB)
861       if (const auto *CB = dyn_cast<CallBase>(&I))
862         if (canLongjmp(CB->getCalledOperand()))
863           return true;
864   return false;
865 }
866 
867 // When a function contains a setjmp call but not other calls that can longjmp,
868 // we don't do setjmp transformation for that setjmp. But we need to convert the
869 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
870 // returns 0 when called directly.
871 static void nullifySetjmp(Function *F) {
872   Module &M = *F->getParent();
873   IRBuilder<> IRB(M.getContext());
874   Function *SetjmpF = M.getFunction("setjmp");
875   SmallVector<Instruction *, 1> ToErase;
876 
877   for (User *U : make_early_inc_range(SetjmpF->users())) {
878     auto *CB = cast<CallBase>(U);
879     BasicBlock *BB = CB->getParent();
880     if (BB->getParent() != F) // in other function
881       continue;
882     CallInst *CI = nullptr;
883     // setjmp cannot throw. So if it is an invoke, lower it to a call
884     if (auto *II = dyn_cast<InvokeInst>(CB))
885       CI = llvm::changeToCall(II);
886     else
887       CI = cast<CallInst>(CB);
888     ToErase.push_back(CI);
889     CI->replaceAllUsesWith(IRB.getInt32(0));
890   }
891   for (auto *I : ToErase)
892     I->eraseFromParent();
893 }
894 
895 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
896   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
897 
898   LLVMContext &C = M.getContext();
899   IRBuilder<> IRB(C);
900 
901   Function *SetjmpF = M.getFunction("setjmp");
902   Function *LongjmpF = M.getFunction("longjmp");
903 
904   // In some platforms _setjmp and _longjmp are used instead. Change these to
905   // use setjmp/longjmp instead, because we later detect these functions by
906   // their names.
907   Function *SetjmpF2 = M.getFunction("_setjmp");
908   Function *LongjmpF2 = M.getFunction("_longjmp");
909   if (SetjmpF2) {
910     if (SetjmpF) {
911       if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
912         report_fatal_error("setjmp and _setjmp have different function types");
913     } else {
914       SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
915                                  GlobalValue::ExternalLinkage, "setjmp", M);
916     }
917     SetjmpF2->replaceAllUsesWith(SetjmpF);
918   }
919   if (LongjmpF2) {
920     if (LongjmpF) {
921       if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
922         report_fatal_error(
923             "longjmp and _longjmp have different function types");
924     } else {
925       LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
926                                   GlobalValue::ExternalLinkage, "setjmp", M);
927     }
928     LongjmpF2->replaceAllUsesWith(LongjmpF);
929   }
930 
931   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
932   assert(TPC && "Expected a TargetPassConfig");
933   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
934 
935   // Declare (or get) global variables __THREW__, __threwValue, and
936   // getTempRet0/setTempRet0 function which are used in common for both
937   // exception handling and setjmp/longjmp handling
938   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
939   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
940   GetTempRet0F = getEmscriptenFunction(
941       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
942   SetTempRet0F = getEmscriptenFunction(
943       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
944       "setTempRet0", &M);
945   GetTempRet0F->setDoesNotThrow();
946   SetTempRet0F->setDoesNotThrow();
947 
948   bool Changed = false;
949 
950   // Function registration for exception handling
951   if (EnableEmEH) {
952     // Register __resumeException function
953     FunctionType *ResumeFTy =
954         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
955     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
956     ResumeF->addFnAttr(Attribute::NoReturn);
957 
958     // Register llvm_eh_typeid_for function
959     FunctionType *EHTypeIDTy =
960         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
961     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
962   }
963 
964   // Functions that contains calls to setjmp but don't have other longjmpable
965   // calls within them.
966   SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
967 
968   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
969     // Precompute setjmp users
970     for (User *U : SetjmpF->users()) {
971       if (auto *CB = dyn_cast<CallBase>(U)) {
972         auto *UserF = CB->getFunction();
973         // If a function that calls setjmp does not contain any other calls that
974         // can longjmp, we don't need to do any transformation on that function,
975         // so can ignore it
976         if (containsLongjmpableCalls(UserF))
977           SetjmpUsers.insert(UserF);
978         else
979           SetjmpUsersToNullify.insert(UserF);
980       } else {
981         std::string S;
982         raw_string_ostream SS(S);
983         SS << *U;
984         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
985                            SS.str());
986       }
987     }
988   }
989 
990   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
991   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
992   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
993 
994   // Function registration and data pre-gathering for setjmp/longjmp handling
995   if (DoSjLj) {
996     assert(EnableEmSjLj || EnableWasmSjLj);
997     if (EnableEmSjLj) {
998       // Register emscripten_longjmp function
999       FunctionType *FTy = FunctionType::get(
1000           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
1001       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
1002       EmLongjmpF->addFnAttr(Attribute::NoReturn);
1003     } else { // EnableWasmSjLj
1004       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
1005       FunctionType *FTy = FunctionType::get(
1006           IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false);
1007       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
1008       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
1009     }
1010 
1011     if (SetjmpF) {
1012       // Register saveSetjmp function
1013       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1014       FunctionType *FTy =
1015           FunctionType::get(Type::getInt32PtrTy(C),
1016                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
1017                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
1018                             false);
1019       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
1020 
1021       // Register testSetjmp function
1022       FTy = FunctionType::get(
1023           IRB.getInt32Ty(),
1024           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
1025           false);
1026       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
1027 
1028       // wasm.catch() will be lowered down to wasm 'catch' instruction in
1029       // instruction selection.
1030       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
1031       // Type for struct __WasmLongjmpArgs
1032       LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env
1033                                       IRB.getInt32Ty()    // val
1034       );
1035     }
1036   }
1037 
1038   // Exception handling transformation
1039   if (EnableEmEH) {
1040     for (Function &F : M) {
1041       if (F.isDeclaration())
1042         continue;
1043       Changed |= runEHOnFunction(F);
1044     }
1045   }
1046 
1047   // Setjmp/longjmp handling transformation
1048   if (DoSjLj) {
1049     Changed = true; // We have setjmp or longjmp somewhere
1050     if (LongjmpF)
1051       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1052     // Only traverse functions that uses setjmp in order not to insert
1053     // unnecessary prep / cleanup code in every function
1054     if (SetjmpF)
1055       for (Function *F : SetjmpUsers)
1056         runSjLjOnFunction(*F);
1057   }
1058 
1059   // Replace unnecessary setjmp calls with 0
1060   if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1061     Changed = true;
1062     assert(SetjmpF);
1063     for (Function *F : SetjmpUsersToNullify)
1064       nullifySetjmp(F);
1065   }
1066 
1067   if (!Changed) {
1068     // Delete unused global variables and functions
1069     if (ResumeF)
1070       ResumeF->eraseFromParent();
1071     if (EHTypeIDF)
1072       EHTypeIDF->eraseFromParent();
1073     if (EmLongjmpF)
1074       EmLongjmpF->eraseFromParent();
1075     if (SaveSetjmpF)
1076       SaveSetjmpF->eraseFromParent();
1077     if (TestSetjmpF)
1078       TestSetjmpF->eraseFromParent();
1079     return false;
1080   }
1081 
1082   return true;
1083 }
1084 
1085 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1086   Module &M = *F.getParent();
1087   LLVMContext &C = F.getContext();
1088   IRBuilder<> IRB(C);
1089   bool Changed = false;
1090   SmallVector<Instruction *, 64> ToErase;
1091   SmallPtrSet<LandingPadInst *, 32> LandingPads;
1092 
1093   // rethrow.longjmp BB that will be shared within the function.
1094   BasicBlock *RethrowLongjmpBB = nullptr;
1095   // PHI node for the loaded value of __THREW__ global variable in
1096   // rethrow.longjmp BB
1097   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1098 
1099   for (BasicBlock &BB : F) {
1100     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1101     if (!II)
1102       continue;
1103     Changed = true;
1104     LandingPads.insert(II->getLandingPadInst());
1105     IRB.SetInsertPoint(II);
1106 
1107     const Value *Callee = II->getCalledOperand();
1108     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1109     if (NeedInvoke) {
1110       // Wrap invoke with invoke wrapper and generate preamble/postamble
1111       Value *Threw = wrapInvoke(II);
1112       ToErase.push_back(II);
1113 
1114       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1115       // exception but a longjmp. If the current function contains calls to
1116       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1117       // if the function does not contain setjmp calls, we shouldn't silently
1118       // ignore longjmps; we should rethrow them so they can be correctly
1119       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1120       // value is 0 when nothing happened, 1 when an exception is thrown, and
1121       // other values when longjmp is thrown.
1122       //
1123       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1124       //   goto %tail
1125       // else
1126       //   goto %longjmp.rethrow
1127       //
1128       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1129       //   %__threwValue.val = __threwValue
1130       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1131       //
1132       // tail: ;; Nothing happened or an exception is thrown
1133       //   ... Continue exception handling ...
1134       if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1135           canLongjmp(Callee)) {
1136         // Create longjmp.rethrow BB once and share it within the function
1137         if (!RethrowLongjmpBB) {
1138           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1139           IRB.SetInsertPoint(RethrowLongjmpBB);
1140           RethrowLongjmpBBThrewPHI =
1141               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1142           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1143           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1144                                              ThrewValueGV->getName() + ".val");
1145           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1146           IRB.CreateUnreachable();
1147         } else {
1148           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1149         }
1150 
1151         IRB.SetInsertPoint(II); // Restore the insert point back
1152         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1153         Value *CmpEqOne =
1154             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1155         Value *CmpEqZero =
1156             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1157         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1158         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1159         IRB.SetInsertPoint(Tail);
1160         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1161       }
1162 
1163       // Insert a branch based on __THREW__ variable
1164       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1165       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1166 
1167     } else {
1168       // This can't throw, and we don't need this invoke, just replace it with a
1169       // call+branch
1170       changeToCall(II);
1171     }
1172   }
1173 
1174   // Process resume instructions
1175   for (BasicBlock &BB : F) {
1176     // Scan the body of the basic block for resumes
1177     for (Instruction &I : BB) {
1178       auto *RI = dyn_cast<ResumeInst>(&I);
1179       if (!RI)
1180         continue;
1181       Changed = true;
1182 
1183       // Split the input into legal values
1184       Value *Input = RI->getValue();
1185       IRB.SetInsertPoint(RI);
1186       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1187       // Create a call to __resumeException function
1188       IRB.CreateCall(ResumeF, {Low});
1189       // Add a terminator to the block
1190       IRB.CreateUnreachable();
1191       ToErase.push_back(RI);
1192     }
1193   }
1194 
1195   // Process llvm.eh.typeid.for intrinsics
1196   for (BasicBlock &BB : F) {
1197     for (Instruction &I : BB) {
1198       auto *CI = dyn_cast<CallInst>(&I);
1199       if (!CI)
1200         continue;
1201       const Function *Callee = CI->getCalledFunction();
1202       if (!Callee)
1203         continue;
1204       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1205         continue;
1206       Changed = true;
1207 
1208       IRB.SetInsertPoint(CI);
1209       CallInst *NewCI =
1210           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1211       CI->replaceAllUsesWith(NewCI);
1212       ToErase.push_back(CI);
1213     }
1214   }
1215 
1216   // Look for orphan landingpads, can occur in blocks with no predecessors
1217   for (BasicBlock &BB : F) {
1218     Instruction *I = BB.getFirstNonPHI();
1219     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1220       LandingPads.insert(LPI);
1221   }
1222   Changed |= !LandingPads.empty();
1223 
1224   // Handle all the landingpad for this function together, as multiple invokes
1225   // may share a single lp
1226   for (LandingPadInst *LPI : LandingPads) {
1227     IRB.SetInsertPoint(LPI);
1228     SmallVector<Value *, 16> FMCArgs;
1229     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1230       Constant *Clause = LPI->getClause(I);
1231       // TODO Handle filters (= exception specifications).
1232       // https://bugs.llvm.org/show_bug.cgi?id=50396
1233       if (LPI->isCatch(I))
1234         FMCArgs.push_back(Clause);
1235     }
1236 
1237     // Create a call to __cxa_find_matching_catch_N function
1238     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1239     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1240     Value *Undef = UndefValue::get(LPI->getType());
1241     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
1242     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
1243     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1244 
1245     LPI->replaceAllUsesWith(Pair1);
1246     ToErase.push_back(LPI);
1247   }
1248 
1249   // Erase everything we no longer need in this function
1250   for (Instruction *I : ToErase)
1251     I->eraseFromParent();
1252 
1253   return Changed;
1254 }
1255 
1256 // This tries to get debug info from the instruction before which a new
1257 // instruction will be inserted, and if there's no debug info in that
1258 // instruction, tries to get the info instead from the previous instruction (if
1259 // any). If none of these has debug info and a DISubprogram is provided, it
1260 // creates a dummy debug info with the first line of the function, because IR
1261 // verifier requires all inlinable callsites should have debug info when both a
1262 // caller and callee have DISubprogram. If none of these conditions are met,
1263 // returns empty info.
1264 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1265                                     DISubprogram *SP) {
1266   assert(InsertBefore);
1267   if (InsertBefore->getDebugLoc())
1268     return InsertBefore->getDebugLoc();
1269   const Instruction *Prev = InsertBefore->getPrevNode();
1270   if (Prev && Prev->getDebugLoc())
1271     return Prev->getDebugLoc();
1272   if (SP)
1273     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1274   return DebugLoc();
1275 }
1276 
1277 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1278   assert(EnableEmSjLj || EnableWasmSjLj);
1279   Module &M = *F.getParent();
1280   LLVMContext &C = F.getContext();
1281   IRBuilder<> IRB(C);
1282   SmallVector<Instruction *, 64> ToErase;
1283   // Vector of %setjmpTable values
1284   SmallVector<Instruction *, 4> SetjmpTableInsts;
1285   // Vector of %setjmpTableSize values
1286   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1287 
1288   // Setjmp preparation
1289 
1290   // This instruction effectively means %setjmpTableSize = 4.
1291   // We create this as an instruction intentionally, and we don't want to fold
1292   // this instruction to a constant 4, because this value will be used in
1293   // SSAUpdater.AddAvailableValue(...) later.
1294   BasicBlock *Entry = &F.getEntryBlock();
1295   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1296   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1297 
1298   BinaryOperator *SetjmpTableSize =
1299       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1300                              "setjmpTableSize", Entry->getTerminator());
1301   SetjmpTableSize->setDebugLoc(FirstDL);
1302   // setjmpTable = (int *) malloc(40);
1303   Instruction *SetjmpTable = CallInst::CreateMalloc(
1304       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1305       nullptr, nullptr, "setjmpTable");
1306   SetjmpTable->setDebugLoc(FirstDL);
1307   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1308   // mismatch. We need to set the debug loc for the original call too.
1309   auto *MallocCall = SetjmpTable->stripPointerCasts();
1310   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1311     MallocCallI->setDebugLoc(FirstDL);
1312   }
1313   // setjmpTable[0] = 0;
1314   IRB.SetInsertPoint(SetjmpTableSize);
1315   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1316   SetjmpTableInsts.push_back(SetjmpTable);
1317   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1318 
1319   // Setjmp transformation
1320   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1321   Function *SetjmpF = M.getFunction("setjmp");
1322   for (auto *U : make_early_inc_range(SetjmpF->users())) {
1323     auto *CB = cast<CallBase>(U);
1324     BasicBlock *BB = CB->getParent();
1325     if (BB->getParent() != &F) // in other function
1326       continue;
1327     if (CB->getOperandBundle(LLVMContext::OB_funclet))
1328       report_fatal_error(
1329           "setjmp within a catch clause is not supported in Wasm EH");
1330 
1331     CallInst *CI = nullptr;
1332     // setjmp cannot throw. So if it is an invoke, lower it to a call
1333     if (auto *II = dyn_cast<InvokeInst>(CB))
1334       CI = llvm::changeToCall(II);
1335     else
1336       CI = cast<CallInst>(CB);
1337 
1338     // The tail is everything right after the call, and will be reached once
1339     // when setjmp is called, and later when longjmp returns to the setjmp
1340     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1341     // Add a phi to the tail, which will be the output of setjmp, which
1342     // indicates if this is the first call or a longjmp back. The phi directly
1343     // uses the right value based on where we arrive from
1344     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1345     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1346 
1347     // setjmp initial call returns 0
1348     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1349     // The proper output is now this, not the setjmp call itself
1350     CI->replaceAllUsesWith(SetjmpRet);
1351     // longjmp returns to the setjmp will add themselves to this phi
1352     SetjmpRetPHIs.push_back(SetjmpRet);
1353 
1354     // Fix call target
1355     // Our index in the function is our place in the array + 1 to avoid index
1356     // 0, because index 0 means the longjmp is not ours to handle.
1357     IRB.SetInsertPoint(CI);
1358     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1359                      SetjmpTable, SetjmpTableSize};
1360     Instruction *NewSetjmpTable =
1361         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1362     Instruction *NewSetjmpTableSize =
1363         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1364     SetjmpTableInsts.push_back(NewSetjmpTable);
1365     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1366     ToErase.push_back(CI);
1367   }
1368 
1369   // Handle longjmpable calls.
1370   if (EnableEmSjLj)
1371     handleLongjmpableCallsForEmscriptenSjLj(
1372         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1373   else // EnableWasmSjLj
1374     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1375                                       SetjmpRetPHIs);
1376 
1377   // Erase everything we no longer need in this function
1378   for (Instruction *I : ToErase)
1379     I->eraseFromParent();
1380 
1381   // Free setjmpTable buffer before each return instruction + function-exiting
1382   // call
1383   SmallVector<Instruction *, 16> ExitingInsts;
1384   for (BasicBlock &BB : F) {
1385     Instruction *TI = BB.getTerminator();
1386     if (isa<ReturnInst>(TI))
1387       ExitingInsts.push_back(TI);
1388     // Any 'call' instruction with 'noreturn' attribute exits the function at
1389     // this point. If this throws but unwinds to another EH pad within this
1390     // function instead of exiting, this would have been an 'invoke', which
1391     // happens if we use Wasm EH or Wasm SjLJ.
1392     for (auto &I : BB) {
1393       if (auto *CI = dyn_cast<CallInst>(&I)) {
1394         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1395         if (Function *CalleeF = CI->getCalledFunction())
1396           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1397         if (IsNoReturn)
1398           ExitingInsts.push_back(&I);
1399       }
1400     }
1401   }
1402   for (auto *I : ExitingInsts) {
1403     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1404     // If this existing instruction is a call within a catchpad, we should add
1405     // it as "funclet" to the operand bundle of 'free' call
1406     SmallVector<OperandBundleDef, 1> Bundles;
1407     if (auto *CB = dyn_cast<CallBase>(I))
1408       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1409         Bundles.push_back(OperandBundleDef(*Bundle));
1410     auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I);
1411     Free->setDebugLoc(DL);
1412     // CallInst::CreateFree may create a bitcast instruction if its argument
1413     // types mismatch. We need to set the debug loc for the bitcast too.
1414     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1415       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1416         BitCastI->setDebugLoc(DL);
1417     }
1418   }
1419 
1420   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1421   // (when buffer reallocation occurs)
1422   // entry:
1423   //   setjmpTableSize = 4;
1424   //   setjmpTable = (int *) malloc(40);
1425   //   setjmpTable[0] = 0;
1426   // ...
1427   // somebb:
1428   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1429   //   setjmpTableSize = getTempRet0();
1430   // So we need to make sure the SSA for these variables is valid so that every
1431   // saveSetjmp and testSetjmp calls have the correct arguments.
1432   SSAUpdater SetjmpTableSSA;
1433   SSAUpdater SetjmpTableSizeSSA;
1434   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1435   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1436   for (Instruction *I : SetjmpTableInsts)
1437     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1438   for (Instruction *I : SetjmpTableSizeInsts)
1439     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1440 
1441   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1442     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1443       if (I->getParent() != Entry)
1444         SetjmpTableSSA.RewriteUse(U);
1445   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1446     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1447       if (I->getParent() != Entry)
1448         SetjmpTableSizeSSA.RewriteUse(U);
1449 
1450   // Finally, our modifications to the cfg can break dominance of SSA variables.
1451   // For example, in this code,
1452   // if (x()) { .. setjmp() .. }
1453   // if (y()) { .. longjmp() .. }
1454   // We must split the longjmp block, and it can jump into the block splitted
1455   // from setjmp one. But that means that when we split the setjmp block, it's
1456   // first part no longer dominates its second part - there is a theoretically
1457   // possible control flow path where x() is false, then y() is true and we
1458   // reach the second part of the setjmp block, without ever reaching the first
1459   // part. So, we rebuild SSA form here.
1460   rebuildSSA(F);
1461   return true;
1462 }
1463 
1464 // Update each call that can longjmp so it can return to the corresponding
1465 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1466 // comments at top of the file for details.
1467 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1468     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1469     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1470   Module &M = *F.getParent();
1471   LLVMContext &C = F.getContext();
1472   IRBuilder<> IRB(C);
1473   SmallVector<Instruction *, 64> ToErase;
1474 
1475   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1476   // These values are defined in the beginning of the function and also in each
1477   // setjmp callsite, but we don't know which values we should use at this
1478   // point. So here we arbitraily use the ones defined in the beginning of the
1479   // function, and SSAUpdater will later update them to the correct values.
1480   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1481   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1482 
1483   // call.em.longjmp BB that will be shared within the function.
1484   BasicBlock *CallEmLongjmpBB = nullptr;
1485   // PHI node for the loaded value of __THREW__ global variable in
1486   // call.em.longjmp BB
1487   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1488   // PHI node for the loaded value of __threwValue global variable in
1489   // call.em.longjmp BB
1490   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1491   // rethrow.exn BB that will be shared within the function.
1492   BasicBlock *RethrowExnBB = nullptr;
1493 
1494   // Because we are creating new BBs while processing and don't want to make
1495   // all these newly created BBs candidates again for longjmp processing, we
1496   // first make the vector of candidate BBs.
1497   std::vector<BasicBlock *> BBs;
1498   for (BasicBlock &BB : F)
1499     BBs.push_back(&BB);
1500 
1501   // BBs.size() will change within the loop, so we query it every time
1502   for (unsigned I = 0; I < BBs.size(); I++) {
1503     BasicBlock *BB = BBs[I];
1504     for (Instruction &I : *BB) {
1505       if (isa<InvokeInst>(&I))
1506         report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1507                            "a restriction that `setjmp` function call and "
1508                            "exception cannot be used within the same function");
1509       auto *CI = dyn_cast<CallInst>(&I);
1510       if (!CI)
1511         continue;
1512 
1513       const Value *Callee = CI->getCalledOperand();
1514       if (!canLongjmp(Callee))
1515         continue;
1516       if (isEmAsmCall(Callee))
1517         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1518                                F.getName() +
1519                                ". Please consider using EM_JS, or move the "
1520                                "EM_ASM into another function.",
1521                            false);
1522 
1523       Value *Threw = nullptr;
1524       BasicBlock *Tail;
1525       if (Callee->getName().startswith("__invoke_")) {
1526         // If invoke wrapper has already been generated for this call in
1527         // previous EH phase, search for the load instruction
1528         // %__THREW__.val = __THREW__;
1529         // in postamble after the invoke wrapper call
1530         LoadInst *ThrewLI = nullptr;
1531         StoreInst *ThrewResetSI = nullptr;
1532         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1533              I != IE; ++I) {
1534           if (auto *LI = dyn_cast<LoadInst>(I))
1535             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1536               if (GV == ThrewGV) {
1537                 Threw = ThrewLI = LI;
1538                 break;
1539               }
1540         }
1541         // Search for the store instruction after the load above
1542         // __THREW__ = 0;
1543         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1544              I != IE; ++I) {
1545           if (auto *SI = dyn_cast<StoreInst>(I)) {
1546             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1547               if (GV == ThrewGV &&
1548                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1549                 ThrewResetSI = SI;
1550                 break;
1551               }
1552             }
1553           }
1554         }
1555         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1556         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1557         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1558 
1559       } else {
1560         // Wrap call with invoke wrapper and generate preamble/postamble
1561         Threw = wrapInvoke(CI);
1562         ToErase.push_back(CI);
1563         Tail = SplitBlock(BB, CI->getNextNode());
1564 
1565         // If exception handling is enabled, the thrown value can be not a
1566         // longjmp but an exception, in which case we shouldn't silently ignore
1567         // exceptions; we should rethrow them.
1568         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1569         // thrown, other values when longjmp is thrown.
1570         //
1571         // if (%__THREW__.val == 1)
1572         //   goto %eh.rethrow
1573         // else
1574         //   goto %normal
1575         //
1576         // eh.rethrow: ;; Rethrow exception
1577         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1578         //   __resumeException(%exn)
1579         //
1580         // normal:
1581         //   <-- Insertion point. Will insert sjlj handling code from here
1582         //   goto %tail
1583         //
1584         // tail:
1585         //   ...
1586         if (supportsException(&F) && canThrow(Callee)) {
1587           // We will add a new conditional branch. So remove the branch created
1588           // when we split the BB
1589           ToErase.push_back(BB->getTerminator());
1590 
1591           // Generate rethrow.exn BB once and share it within the function
1592           if (!RethrowExnBB) {
1593             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1594             IRB.SetInsertPoint(RethrowExnBB);
1595             CallInst *Exn =
1596                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1597             IRB.CreateCall(ResumeF, {Exn});
1598             IRB.CreateUnreachable();
1599           }
1600 
1601           IRB.SetInsertPoint(CI);
1602           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1603           Value *CmpEqOne =
1604               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1605           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1606 
1607           IRB.SetInsertPoint(NormalBB);
1608           IRB.CreateBr(Tail);
1609           BB = NormalBB; // New insertion point to insert testSetjmp()
1610         }
1611       }
1612 
1613       // We need to replace the terminator in Tail - SplitBlock makes BB go
1614       // straight to Tail, we need to check if a longjmp occurred, and go to the
1615       // right setjmp-tail if so
1616       ToErase.push_back(BB->getTerminator());
1617 
1618       // Generate a function call to testSetjmp function and preamble/postamble
1619       // code to figure out (1) whether longjmp occurred (2) if longjmp
1620       // occurred, which setjmp it corresponds to
1621       Value *Label = nullptr;
1622       Value *LongjmpResult = nullptr;
1623       BasicBlock *EndBB = nullptr;
1624       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1625                      Label, LongjmpResult, CallEmLongjmpBB,
1626                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1627                      EndBB);
1628       assert(Label && LongjmpResult && EndBB);
1629 
1630       // Create switch instruction
1631       IRB.SetInsertPoint(EndBB);
1632       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1633       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1634       // -1 means no longjmp happened, continue normally (will hit the default
1635       // switch case). 0 means a longjmp that is not ours to handle, needs a
1636       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1637       // 0).
1638       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1639         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1640         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1641       }
1642 
1643       // We are splitting the block here, and must continue to find other calls
1644       // in the block - which is now split. so continue to traverse in the Tail
1645       BBs.push_back(Tail);
1646     }
1647   }
1648 
1649   for (Instruction *I : ToErase)
1650     I->eraseFromParent();
1651 }
1652 
1653 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) {
1654   for (const User *U : CPI->users())
1655     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1656       return CRI->getUnwindDest();
1657   return nullptr;
1658 }
1659 
1660 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1661 // if the longjmp corresponds to one of setjmps in the current function, and if
1662 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1663 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1664 // top of the file for details.
1665 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1666     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1667     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1668   Module &M = *F.getParent();
1669   LLVMContext &C = F.getContext();
1670   IRBuilder<> IRB(C);
1671 
1672   // A function with catchswitch/catchpad instruction should have a personality
1673   // function attached to it. Search for the wasm personality function, and if
1674   // it exists, use it, and if it doesn't, create a dummy personality function.
1675   // (SjLj is not going to call it anyway.)
1676   if (!F.hasPersonalityFn()) {
1677     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1678     FunctionType *PersType =
1679         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1680     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1681     F.setPersonalityFn(
1682         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy())));
1683   }
1684 
1685   // Use the entry BB's debugloc as a fallback
1686   BasicBlock *Entry = &F.getEntryBlock();
1687   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1688   IRB.SetCurrentDebugLocation(FirstDL);
1689 
1690   // Arbitrarily use the ones defined in the beginning of the function.
1691   // SSAUpdater will later update them to the correct values.
1692   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1693   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1694 
1695   // Add setjmp.dispatch BB right after the entry block. Because we have
1696   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1697   // rest into another BB, here 'OrigEntry' is the function's original entry
1698   // block before the transformation.
1699   //
1700   // entry:
1701   //   setjmpTable / setjmpTableSize initialization
1702   // setjmp.dispatch:
1703   //   switch will be inserted here later
1704   // entry.split: (OrigEntry)
1705   //   the original function starts here
1706   BasicBlock *OrigEntry = Entry->getNextNode();
1707   BasicBlock *SetjmpDispatchBB =
1708       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1709   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1710 
1711   // Create catch.dispatch.longjmp BB and a catchswitch instruction
1712   BasicBlock *CatchDispatchLongjmpBB =
1713       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1714   IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1715   CatchSwitchInst *CatchSwitchLongjmp =
1716       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1717 
1718   // Create catch.longjmp BB and a catchpad instruction
1719   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1720   CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1721   IRB.SetInsertPoint(CatchLongjmpBB);
1722   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1723 
1724   // Wasm throw and catch instructions can throw and catch multiple values, but
1725   // that requires multivalue support in the toolchain, which is currently not
1726   // very reliable. We instead throw and catch a pointer to a struct value of
1727   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1728   Instruction *CatchCI =
1729       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1730   Value *LongjmpArgs =
1731       IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args");
1732   Value *EnvField =
1733       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1734   Value *ValField =
1735       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1736   // void *env = __wasm_longjmp_args.env;
1737   Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env");
1738   // int val = __wasm_longjmp_args.val;
1739   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1740 
1741   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1742   // if (%label == 0)
1743   //   __wasm_longjmp(%env, %val)
1744   // catchret to %setjmp.dispatch
1745   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1746   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1747   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1748   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1749   Value *Label =
1750       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1751                      OperandBundleDef("funclet", CatchPad), "label");
1752   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1753   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1754 
1755   IRB.SetInsertPoint(ThenBB);
1756   CallInst *WasmLongjmpCI = IRB.CreateCall(
1757       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1758   IRB.CreateUnreachable();
1759 
1760   IRB.SetInsertPoint(EndBB);
1761   // Jump to setjmp.dispatch block
1762   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1763 
1764   // Go back to setjmp.dispatch BB
1765   // setjmp.dispatch:
1766   //   switch %label {
1767   //     label 1: goto post-setjmp BB 1
1768   //     label 2: goto post-setjmp BB 2
1769   //     ...
1770   //     default: goto splitted next BB
1771   //   }
1772   IRB.SetInsertPoint(SetjmpDispatchBB);
1773   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1774   LabelPHI->addIncoming(Label, EndBB);
1775   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1776   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1777   // -1 means no longjmp happened, continue normally (will hit the default
1778   // switch case). 0 means a longjmp that is not ours to handle, needs a
1779   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1780   // 0).
1781   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1782     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1783     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1784   }
1785 
1786   // Convert all longjmpable call instructions to invokes that unwind to the
1787   // newly created catch.dispatch.longjmp BB.
1788   SmallVector<CallInst *, 64> LongjmpableCalls;
1789   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1790     for (auto &I : *BB) {
1791       auto *CI = dyn_cast<CallInst>(&I);
1792       if (!CI)
1793         continue;
1794       const Value *Callee = CI->getCalledOperand();
1795       if (!canLongjmp(Callee))
1796         continue;
1797       if (isEmAsmCall(Callee))
1798         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1799                                F.getName() +
1800                                ". Please consider using EM_JS, or move the "
1801                                "EM_ASM into another function.",
1802                            false);
1803       // This is __wasm_longjmp() call we inserted in this function, which
1804       // rethrows the longjmp when the longjmp does not correspond to one of
1805       // setjmps in this function. We should not convert this call to an invoke.
1806       if (CI == WasmLongjmpCI)
1807         continue;
1808       LongjmpableCalls.push_back(CI);
1809     }
1810   }
1811 
1812   for (auto *CI : LongjmpableCalls) {
1813     // Even if the callee function has attribute 'nounwind', which is true for
1814     // all C functions, it can longjmp, which means it can throw a Wasm
1815     // exception now.
1816     CI->removeFnAttr(Attribute::NoUnwind);
1817     if (Function *CalleeF = CI->getCalledFunction())
1818       CalleeF->removeFnAttr(Attribute::NoUnwind);
1819 
1820     // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1821     // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1822     // to its parent pad's unwind destination instead to preserve the scope
1823     // structure. It will eventually unwind to the catch.dispatch.longjmp.
1824     SmallVector<OperandBundleDef, 1> Bundles;
1825     BasicBlock *UnwindDest = nullptr;
1826     if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1827       Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1828       while (!UnwindDest) {
1829         if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1830           UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1831           break;
1832         } else if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1833           // getCleanupRetUnwindDest() can return nullptr when
1834           // 1. This cleanuppad's matching cleanupret uwninds to caller
1835           // 2. There is no matching cleanupret because it ends with
1836           //    unreachable.
1837           // In case of 2, we need to traverse the parent pad chain.
1838           UnwindDest = getCleanupRetUnwindDest(CPI);
1839           Value *ParentPad = CPI->getParentPad();
1840           if (isa<ConstantTokenNone>(ParentPad))
1841             break;
1842           FromPad = cast<Instruction>(ParentPad);
1843         }
1844       }
1845     }
1846     if (!UnwindDest)
1847       UnwindDest = CatchDispatchLongjmpBB;
1848     changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1849   }
1850 
1851   SmallVector<Instruction *, 16> ToErase;
1852   for (auto &BB : F) {
1853     if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) {
1854       if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1855         IRB.SetInsertPoint(CSI);
1856         ToErase.push_back(CSI);
1857         auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1858                                              CatchDispatchLongjmpBB, 1);
1859         NewCSI->addHandler(*CSI->handler_begin());
1860         NewCSI->takeName(CSI);
1861         CSI->replaceAllUsesWith(NewCSI);
1862       }
1863     }
1864 
1865     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1866       if (CRI->unwindsToCaller()) {
1867         IRB.SetInsertPoint(CRI);
1868         ToErase.push_back(CRI);
1869         IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1870       }
1871     }
1872   }
1873 
1874   for (Instruction *I : ToErase)
1875     I->eraseFromParent();
1876 }
1877