1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp function 11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try 12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in 13 /// case of Emscripten SjLJ. 14 /// 15 /// * Emscripten exception handling 16 /// This pass lowers invokes and landingpads into library functions in JS glue 17 /// code. Invokes are lowered into function wrappers called invoke wrappers that 18 /// exist in JS side, which wraps the original function call with JS try-catch. 19 /// If an exception occurred, cxa_throw() function in JS side sets some 20 /// variables (see below) so we can check whether an exception occurred from 21 /// wasm code and handle it appropriately. 22 /// 23 /// * Emscripten setjmp-longjmp handling 24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 25 /// The idea is that each block with a setjmp is broken up into two parts: the 26 /// part containing setjmp and the part right after the setjmp. The latter part 27 /// is either reached from the setjmp, or later from a longjmp. To handle the 28 /// longjmp, all calls that might longjmp are also called using invoke wrappers 29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 30 /// we can check / whether a longjmp occurred from wasm code. Each block with a 31 /// function call that might longjmp is also split up after the longjmp call. 32 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 33 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 34 /// We assume setjmp-longjmp handling always run after EH handling, which means 35 /// we don't expect any exception-related instructions when SjLj runs. 36 /// FIXME Currently this scheme does not support indirect call of setjmp, 37 /// because of the limitation of the scheme itself. fastcomp does not support it 38 /// either. 39 /// 40 /// In detail, this pass does following things: 41 /// 42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 43 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 44 /// These variables are used for both exceptions and setjmp/longjmps. 45 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 46 /// means nothing occurred, 1 means an exception occurred, and other numbers 47 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable 48 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 49 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of 50 /// longjmp. 51 /// 52 /// * Emscripten exception handling 53 /// 54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 55 /// at link time. setThrew exists in Emscripten's compiler-rt: 56 /// 57 /// void setThrew(uintptr_t threw, int value) { 58 /// if (__THREW__ == 0) { 59 /// __THREW__ = threw; 60 /// __threwValue = value; 61 /// } 62 /// } 63 // 64 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 65 /// In exception handling, getTempRet0 indicates the type of an exception 66 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 67 /// function. 68 /// 69 /// 3) Lower 70 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 71 /// into 72 /// __THREW__ = 0; 73 /// call @__invoke_SIG(func, arg1, arg2) 74 /// %__THREW__.val = __THREW__; 75 /// __THREW__ = 0; 76 /// if (%__THREW__.val == 1) 77 /// goto %lpad 78 /// else 79 /// goto %invoke.cont 80 /// SIG is a mangled string generated based on the LLVM IR-level function 81 /// signature. After LLVM IR types are lowered to the target wasm types, 82 /// the names for these wrappers will change based on wasm types as well, 83 /// as in invoke_vi (function takes an int and returns void). The bodies of 84 /// these wrappers will be generated in JS glue code, and inside those 85 /// wrappers we use JS try-catch to generate actual exception effects. It 86 /// also calls the original callee function. An example wrapper in JS code 87 /// would look like this: 88 /// function invoke_vi(index,a1) { 89 /// try { 90 /// Module["dynCall_vi"](index,a1); // This calls original callee 91 /// } catch(e) { 92 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 93 /// _setThrew(1, 0); // setThrew is called here 94 /// } 95 /// } 96 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 97 /// so we can jump to the right BB based on this value. 98 /// 99 /// 4) Lower 100 /// %val = landingpad catch c1 catch c2 catch c3 ... 101 /// ... use %val ... 102 /// into 103 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 104 /// %val = {%fmc, getTempRet0()} 105 /// ... use %val ... 106 /// Here N is a number calculated based on the number of clauses. 107 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 108 /// 109 /// 5) Lower 110 /// resume {%a, %b} 111 /// into 112 /// call @__resumeException(%a) 113 /// where __resumeException() is a function in JS glue code. 114 /// 115 /// 6) Lower 116 /// call @llvm.eh.typeid.for(type) (intrinsic) 117 /// into 118 /// call @llvm_eh_typeid_for(type) 119 /// llvm_eh_typeid_for function will be generated in JS glue code. 120 /// 121 /// * Emscripten setjmp / longjmp handling 122 /// 123 /// If there are calls to longjmp() 124 /// 125 /// 1) Lower 126 /// longjmp(env, val) 127 /// into 128 /// emscripten_longjmp(env, val) 129 /// 130 /// If there are calls to setjmp() 131 /// 132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 133 /// sejmpTableSize as follows: 134 /// setjmpTableSize = 4; 135 /// setjmpTable = (int *) malloc(40); 136 /// setjmpTable[0] = 0; 137 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in 138 /// Emscripten compiler-rt. 139 /// 140 /// 3) Lower 141 /// setjmp(env) 142 /// into 143 /// setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 144 /// setjmpTableSize = getTempRet0(); 145 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 146 /// is incrementally assigned from 0) and its label (a unique number that 147 /// represents each callsite of setjmp). When we need more entries in 148 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's 149 /// compiler-rt and it will return the new table address, and assign the new 150 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into 151 /// the buffer 'env'. A BB with setjmp is split into two after setjmp call in 152 /// order to make the post-setjmp BB the possible destination of longjmp BB. 153 /// 154 /// 4) Lower every call that might longjmp into 155 /// __THREW__ = 0; 156 /// call @__invoke_SIG(func, arg1, arg2) 157 /// %__THREW__.val = __THREW__; 158 /// __THREW__ = 0; 159 /// %__threwValue.val = __threwValue; 160 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) { 161 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 162 /// setjmpTableSize); 163 /// if (%label == 0) 164 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val); 165 /// setTempRet0(%__threwValue.val); 166 /// } else { 167 /// %label = -1; 168 /// } 169 /// longjmp_result = getTempRet0(); 170 /// switch %label { 171 /// label 1: goto post-setjmp BB 1 172 /// label 2: goto post-setjmp BB 2 173 /// ... 174 /// default: goto splitted next BB 175 /// } 176 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 177 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 178 /// will be the address of matching jmp_buf buffer and __threwValue be the 179 /// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is 180 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 181 /// each setjmp callsite. Label 0 means this longjmp buffer does not 182 /// correspond to one of the setjmp callsites in this function, so in this 183 /// case we just chain the longjmp to the caller. Label -1 means no longjmp 184 /// occurred. Otherwise we jump to the right post-setjmp BB based on the 185 /// label. 186 /// 187 /// * Wasm setjmp / longjmp handling 188 /// This mode still uses some Emscripten library functions but not JavaScript's 189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics, 190 /// which will be lowered to exception handling instructions. 191 /// 192 /// If there are calls to longjmp() 193 /// 194 /// 1) Lower 195 /// longjmp(env, val) 196 /// into 197 /// __wasm_longjmp(env, val) 198 /// 199 /// If there are calls to setjmp() 200 /// 201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj. 202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite 203 /// transformation) 204 /// 205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value 206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this 207 /// struct: 208 /// 209 /// struct __WasmLongjmpArgs { 210 /// void *env; 211 /// int val; 212 /// }; 213 /// struct __WasmLongjmpArgs __wasm_longjmp_args; 214 /// 215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We 216 /// use this struct to transfer two values by throwing a single value. Wasm 217 /// throw and catch instructions are capable of throwing and catching multiple 218 /// values, but it also requires multivalue support that is currently not very 219 /// reliable. 220 /// TODO Switch to throwing and catching two values without using the struct 221 /// 222 /// All longjmpable function calls will be converted to an invoke that will 223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we 224 /// test the thrown values using testSetjmp function as we do for Emscripten 225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every 226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in 227 /// Wasm SjLj we do the testing in only one place, in this catchpad. 228 /// 229 /// After testing calling testSetjmp(), if the longjmp does not correspond to 230 /// one of the setjmps within the current function, it rethrows the longjmp 231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the 232 /// function, we jump to the beginning of the function, which contains a switch 233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for 234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of 235 /// the function. (after setjmpTable/setjmpTableSize initialization) 236 /// 237 /// The below is the pseudocode for what we have described 238 /// 239 /// entry: 240 /// Initialize setjmpTable and setjmpTableSize 241 /// 242 /// setjmp.dispatch: 243 /// switch %label { 244 /// label 1: goto post-setjmp BB 1 245 /// label 2: goto post-setjmp BB 2 246 /// ... 247 /// default: goto splitted next BB 248 /// } 249 /// ... 250 /// 251 /// bb: 252 /// invoke void @foo() ;; foo is a longjmpable function 253 /// to label %next unwind label %catch.dispatch.longjmp 254 /// ... 255 /// 256 /// catch.dispatch.longjmp: 257 /// %0 = catchswitch within none [label %catch.longjmp] unwind to caller 258 /// 259 /// catch.longjmp: 260 /// %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs 261 /// %env = load 'env' field from __WasmLongjmpArgs 262 /// %val = load 'val' field from __WasmLongjmpArgs 263 /// %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize); 264 /// if (%label == 0) 265 /// __wasm_longjmp(%env, %val) 266 /// catchret to %setjmp.dispatch 267 /// 268 ///===----------------------------------------------------------------------===// 269 270 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 271 #include "WebAssembly.h" 272 #include "WebAssemblyTargetMachine.h" 273 #include "llvm/ADT/StringExtras.h" 274 #include "llvm/CodeGen/TargetPassConfig.h" 275 #include "llvm/CodeGen/WasmEHFuncInfo.h" 276 #include "llvm/IR/DebugInfoMetadata.h" 277 #include "llvm/IR/Dominators.h" 278 #include "llvm/IR/IRBuilder.h" 279 #include "llvm/IR/IntrinsicsWebAssembly.h" 280 #include "llvm/Support/CommandLine.h" 281 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 282 #include "llvm/Transforms/Utils/Local.h" 283 #include "llvm/Transforms/Utils/SSAUpdater.h" 284 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 285 #include <set> 286 287 using namespace llvm; 288 289 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 290 291 static cl::list<std::string> 292 EHAllowlist("emscripten-cxx-exceptions-allowed", 293 cl::desc("The list of function names in which Emscripten-style " 294 "exception handling is enabled (see emscripten " 295 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 296 cl::CommaSeparated); 297 298 namespace { 299 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 300 bool EnableEmEH; // Enable Emscripten exception handling 301 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling 302 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling 303 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling 304 305 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten) 306 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten) 307 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten) 308 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten) 309 Function *ResumeF = nullptr; // __resumeException() (Emscripten) 310 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic) 311 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten) 312 Function *SaveSetjmpF = nullptr; // saveSetjmp() (Emscripten) 313 Function *TestSetjmpF = nullptr; // testSetjmp() (Emscripten) 314 Function *WasmLongjmpF = nullptr; // __wasm_longjmp() (Emscripten) 315 Function *CatchF = nullptr; // wasm.catch() (intrinsic) 316 317 // type of 'struct __WasmLongjmpArgs' defined in emscripten 318 Type *LongjmpArgsTy = nullptr; 319 320 // __cxa_find_matching_catch_N functions. 321 // Indexed by the number of clauses in an original landingpad instruction. 322 DenseMap<int, Function *> FindMatchingCatches; 323 // Map of <function signature string, invoke_ wrappers> 324 StringMap<Function *> InvokeWrappers; 325 // Set of allowed function names for exception handling 326 std::set<std::string> EHAllowlistSet; 327 // Functions that contains calls to setjmp 328 SmallPtrSet<Function *, 8> SetjmpUsers; 329 330 StringRef getPassName() const override { 331 return "WebAssembly Lower Emscripten Exceptions"; 332 } 333 334 using InstVector = SmallVectorImpl<Instruction *>; 335 bool runEHOnFunction(Function &F); 336 bool runSjLjOnFunction(Function &F); 337 void handleLongjmpableCallsForEmscriptenSjLj( 338 Function &F, InstVector &SetjmpTableInsts, 339 InstVector &SetjmpTableSizeInsts, 340 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 341 void 342 handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts, 343 InstVector &SetjmpTableSizeInsts, 344 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 345 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 346 347 Value *wrapInvoke(CallBase *CI); 348 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 349 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 350 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB, 351 PHINode *&CallEmLongjmpBBThrewPHI, 352 PHINode *&CallEmLongjmpBBThrewValuePHI, 353 BasicBlock *&EndBB); 354 Function *getInvokeWrapper(CallBase *CI); 355 356 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 357 bool supportsException(const Function *F) const { 358 return EnableEmEH && (areAllExceptionsAllowed() || 359 EHAllowlistSet.count(std::string(F->getName()))); 360 } 361 void replaceLongjmpWith(Function *LongjmpF, Function *NewF); 362 363 void rebuildSSA(Function &F); 364 365 public: 366 static char ID; 367 368 WebAssemblyLowerEmscriptenEHSjLj() 369 : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH), 370 EnableEmSjLj(WebAssembly::WasmEnableEmSjLj), 371 EnableWasmSjLj(WebAssembly::WasmEnableSjLj) { 372 assert(!(EnableEmSjLj && EnableWasmSjLj) && 373 "Two SjLj modes cannot be turned on at the same time"); 374 assert(!(EnableEmEH && EnableWasmSjLj) && 375 "Wasm SjLj should be only used with Wasm EH"); 376 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 377 } 378 bool runOnModule(Module &M) override; 379 380 void getAnalysisUsage(AnalysisUsage &AU) const override { 381 AU.addRequired<DominatorTreeWrapperPass>(); 382 } 383 }; 384 } // End anonymous namespace 385 386 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 387 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 388 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 389 false, false) 390 391 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() { 392 return new WebAssemblyLowerEmscriptenEHSjLj(); 393 } 394 395 static bool canThrow(const Value *V) { 396 if (const auto *F = dyn_cast<const Function>(V)) { 397 // Intrinsics cannot throw 398 if (F->isIntrinsic()) 399 return false; 400 StringRef Name = F->getName(); 401 // leave setjmp and longjmp (mostly) alone, we process them properly later 402 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp") 403 return false; 404 return !F->doesNotThrow(); 405 } 406 // not a function, so an indirect call - can throw, we can't tell 407 return true; 408 } 409 410 // Get a thread-local global variable with the given name. If it doesn't exist 411 // declare it, which will generate an import and assume that it will exist at 412 // link time. 413 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty, 414 WebAssemblyTargetMachine &TM, 415 const char *Name) { 416 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty)); 417 if (!GV) 418 report_fatal_error(Twine("unable to create global: ") + Name); 419 420 // Variables created by this function are thread local. If the target does not 421 // support TLS, we depend on CoalesceFeaturesAndStripAtomics to downgrade it 422 // to non-thread-local ones, in which case we don't allow this object to be 423 // linked with other objects using shared memory. 424 GV->setThreadLocalMode(GlobalValue::GeneralDynamicTLSModel); 425 return GV; 426 } 427 428 // Simple function name mangler. 429 // This function simply takes LLVM's string representation of parameter types 430 // and concatenate them with '_'. There are non-alphanumeric characters but llc 431 // is ok with it, and we need to postprocess these names after the lowering 432 // phase anyway. 433 static std::string getSignature(FunctionType *FTy) { 434 std::string Sig; 435 raw_string_ostream OS(Sig); 436 OS << *FTy->getReturnType(); 437 for (Type *ParamTy : FTy->params()) 438 OS << "_" << *ParamTy; 439 if (FTy->isVarArg()) 440 OS << "_..."; 441 Sig = OS.str(); 442 erase_if(Sig, isSpace); 443 // When s2wasm parses .s file, a comma means the end of an argument. So a 444 // mangled function name can contain any character but a comma. 445 std::replace(Sig.begin(), Sig.end(), ',', '.'); 446 return Sig; 447 } 448 449 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 450 Module *M) { 451 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 452 // Tell the linker that this function is expected to be imported from the 453 // 'env' module. 454 if (!F->hasFnAttribute("wasm-import-module")) { 455 llvm::AttrBuilder B(M->getContext()); 456 B.addAttribute("wasm-import-module", "env"); 457 F->addFnAttrs(B); 458 } 459 if (!F->hasFnAttribute("wasm-import-name")) { 460 llvm::AttrBuilder B(M->getContext()); 461 B.addAttribute("wasm-import-name", F->getName()); 462 F->addFnAttrs(B); 463 } 464 return F; 465 } 466 467 // Returns an integer type for the target architecture's address space. 468 // i32 for wasm32 and i64 for wasm64. 469 static Type *getAddrIntType(Module *M) { 470 IRBuilder<> IRB(M->getContext()); 471 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits()); 472 } 473 474 // Returns an integer pointer type for the target architecture's address space. 475 // i32* for wasm32 and i64* for wasm64. With opaque pointers this is just a ptr 476 // in address space zero. 477 static Type *getAddrPtrType(Module *M) { 478 return PointerType::getUnqual(M->getContext()); 479 } 480 481 // Returns an integer whose type is the integer type for the target's address 482 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the 483 // integer. 484 static Value *getAddrSizeInt(Module *M, uint64_t C) { 485 IRBuilder<> IRB(M->getContext()); 486 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C); 487 } 488 489 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 490 // This is because a landingpad instruction contains two more arguments, a 491 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 492 // functions are named after the number of arguments in the original landingpad 493 // instruction. 494 Function * 495 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 496 unsigned NumClauses) { 497 if (FindMatchingCatches.count(NumClauses)) 498 return FindMatchingCatches[NumClauses]; 499 PointerType *Int8PtrTy = PointerType::getUnqual(M.getContext()); 500 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 501 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 502 Function *F = getEmscriptenFunction( 503 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 504 FindMatchingCatches[NumClauses] = F; 505 return F; 506 } 507 508 // Generate invoke wrapper seqence with preamble and postamble 509 // Preamble: 510 // __THREW__ = 0; 511 // Postamble: 512 // %__THREW__.val = __THREW__; __THREW__ = 0; 513 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 514 // whether longjmp occurred), for future use. 515 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 516 Module *M = CI->getModule(); 517 LLVMContext &C = M->getContext(); 518 519 IRBuilder<> IRB(C); 520 IRB.SetInsertPoint(CI); 521 522 // Pre-invoke 523 // __THREW__ = 0; 524 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 525 526 // Invoke function wrapper in JavaScript 527 SmallVector<Value *, 16> Args; 528 // Put the pointer to the callee as first argument, so it can be called 529 // within the invoke wrapper later 530 Args.push_back(CI->getCalledOperand()); 531 Args.append(CI->arg_begin(), CI->arg_end()); 532 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 533 NewCall->takeName(CI); 534 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 535 NewCall->setDebugLoc(CI->getDebugLoc()); 536 537 // Because we added the pointer to the callee as first argument, all 538 // argument attribute indices have to be incremented by one. 539 SmallVector<AttributeSet, 8> ArgAttributes; 540 const AttributeList &InvokeAL = CI->getAttributes(); 541 542 // No attributes for the callee pointer. 543 ArgAttributes.push_back(AttributeSet()); 544 // Copy the argument attributes from the original 545 for (unsigned I = 0, E = CI->arg_size(); I < E; ++I) 546 ArgAttributes.push_back(InvokeAL.getParamAttrs(I)); 547 548 AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs()); 549 if (auto Args = FnAttrs.getAllocSizeArgs()) { 550 // The allocsize attribute (if any) referes to parameters by index and needs 551 // to be adjusted. 552 auto [SizeArg, NEltArg] = *Args; 553 SizeArg += 1; 554 if (NEltArg) 555 NEltArg = *NEltArg + 1; 556 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 557 } 558 // In case the callee has 'noreturn' attribute, We need to remove it, because 559 // we expect invoke wrappers to return. 560 FnAttrs.removeAttribute(Attribute::NoReturn); 561 562 // Reconstruct the AttributesList based on the vector we constructed. 563 AttributeList NewCallAL = AttributeList::get( 564 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes); 565 NewCall->setAttributes(NewCallAL); 566 567 CI->replaceAllUsesWith(NewCall); 568 569 // Post-invoke 570 // %__THREW__.val = __THREW__; __THREW__ = 0; 571 Value *Threw = 572 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val"); 573 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 574 return Threw; 575 } 576 577 // Get matching invoke wrapper based on callee signature 578 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 579 Module *M = CI->getModule(); 580 SmallVector<Type *, 16> ArgTys; 581 FunctionType *CalleeFTy = CI->getFunctionType(); 582 583 std::string Sig = getSignature(CalleeFTy); 584 if (InvokeWrappers.contains(Sig)) 585 return InvokeWrappers[Sig]; 586 587 // Put the pointer to the callee as first argument 588 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 589 // Add argument types 590 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 591 592 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 593 CalleeFTy->isVarArg()); 594 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 595 InvokeWrappers[Sig] = F; 596 return F; 597 } 598 599 static bool canLongjmp(const Value *Callee) { 600 if (auto *CalleeF = dyn_cast<Function>(Callee)) 601 if (CalleeF->isIntrinsic()) 602 return false; 603 604 // Attempting to transform inline assembly will result in something like: 605 // call void @__invoke_void(void ()* asm ...) 606 // which is invalid because inline assembly blocks do not have addresses 607 // and can't be passed by pointer. The result is a crash with illegal IR. 608 if (isa<InlineAsm>(Callee)) 609 return false; 610 StringRef CalleeName = Callee->getName(); 611 612 // TODO Include more functions or consider checking with mangled prefixes 613 614 // The reason we include malloc/free here is to exclude the malloc/free 615 // calls generated in setjmp prep / cleanup routines. 616 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 617 return false; 618 619 // There are functions in Emscripten's JS glue code or compiler-rt 620 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 621 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 622 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 623 return false; 624 625 // __cxa_find_matching_catch_N functions cannot longjmp 626 if (Callee->getName().starts_with("__cxa_find_matching_catch_")) 627 return false; 628 629 // Exception-catching related functions 630 // 631 // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though 632 // it surely cannot longjmp, in order to maintain the unwind relationship from 633 // all existing catchpads (and calls within them) to catch.dispatch.longjmp. 634 // 635 // In Wasm EH + Wasm SjLj, we 636 // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to 637 // catch.dispatch.longjmp instead 638 // 2. Convert all longjmpable calls to invokes that unwind to 639 // catch.dispatch.longjmp 640 // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated 641 // from an exception)'s catchpad does not contain any calls that are converted 642 // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship 643 // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and 644 // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in 645 // CFGSort. 646 // int ret = setjmp(buf); 647 // try { 648 // foo(); // longjmps 649 // } catch (...) { 650 // } 651 // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)' 652 // catchswitch, and is not caught by that catchswitch because it is a longjmp, 653 // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch 654 // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost, 655 // it will not unwind to catch.dispatch.longjmp, producing an incorrect 656 // result. 657 // 658 // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we 659 // intentionally treat it as longjmpable to work around this problem. This is 660 // a hacky fix but an easy one. 661 // 662 // The comment block in findWasmUnwindDestinations() in 663 // SelectionDAGBuilder.cpp is addressing a similar problem. 664 if (CalleeName == "__cxa_end_catch") 665 return WebAssembly::WasmEnableSjLj; 666 if (CalleeName == "__cxa_begin_catch" || 667 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 668 CalleeName == "__clang_call_terminate") 669 return false; 670 671 // std::terminate, which is generated when another exception occurs while 672 // handling an exception, cannot longjmp. 673 if (CalleeName == "_ZSt9terminatev") 674 return false; 675 676 // Otherwise we don't know 677 return true; 678 } 679 680 static bool isEmAsmCall(const Value *Callee) { 681 StringRef CalleeName = Callee->getName(); 682 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 683 return CalleeName == "emscripten_asm_const_int" || 684 CalleeName == "emscripten_asm_const_double" || 685 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 686 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 687 CalleeName == "emscripten_asm_const_async_on_main_thread"; 688 } 689 690 // Generate testSetjmp function call seqence with preamble and postamble. 691 // The code this generates is equivalent to the following JavaScript code: 692 // %__threwValue.val = __threwValue; 693 // if (%__THREW__.val != 0 & %__threwValue.val != 0) { 694 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 695 // if (%label == 0) 696 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 697 // setTempRet0(%__threwValue.val); 698 // } else { 699 // %label = -1; 700 // } 701 // %longjmp_result = getTempRet0(); 702 // 703 // As output parameters. returns %label, %longjmp_result, and the BB the last 704 // instruction (%longjmp_result = ...) is in. 705 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 706 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 707 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 708 BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI, 709 PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) { 710 Function *F = BB->getParent(); 711 Module *M = F->getParent(); 712 LLVMContext &C = M->getContext(); 713 IRBuilder<> IRB(C); 714 IRB.SetCurrentDebugLocation(DL); 715 716 // if (%__THREW__.val != 0 & %__threwValue.val != 0) 717 IRB.SetInsertPoint(BB); 718 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 719 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 720 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 721 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0)); 722 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 723 ThrewValueGV->getName() + ".val"); 724 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 725 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 726 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 727 728 // Generate call.em.longjmp BB once and share it within the function 729 if (!CallEmLongjmpBB) { 730 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 731 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F); 732 IRB.SetInsertPoint(CallEmLongjmpBB); 733 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi"); 734 CallEmLongjmpBBThrewValuePHI = 735 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi"); 736 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 737 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 738 IRB.CreateCall(EmLongjmpF, 739 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI}); 740 IRB.CreateUnreachable(); 741 } else { 742 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 743 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 744 } 745 746 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 747 // if (%label == 0) 748 IRB.SetInsertPoint(ThenBB1); 749 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 750 Value *ThrewPtr = 751 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p"); 752 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr, 753 ThrewPtr->getName() + ".loaded"); 754 Value *ThenLabel = IRB.CreateCall( 755 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 756 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 757 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2); 758 759 // setTempRet0(%__threwValue.val); 760 IRB.SetInsertPoint(EndBB2); 761 IRB.CreateCall(SetTempRet0F, ThrewValue); 762 IRB.CreateBr(EndBB1); 763 764 IRB.SetInsertPoint(ElseBB1); 765 IRB.CreateBr(EndBB1); 766 767 // longjmp_result = getTempRet0(); 768 IRB.SetInsertPoint(EndBB1); 769 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 770 LabelPHI->addIncoming(ThenLabel, EndBB2); 771 772 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 773 774 // Output parameter assignment 775 Label = LabelPHI; 776 EndBB = EndBB1; 777 LongjmpResult = IRB.CreateCall(GetTempRet0F, std::nullopt, "longjmp_result"); 778 } 779 780 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 781 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 782 DT.recalculate(F); // CFG has been changed 783 784 SSAUpdaterBulk SSA; 785 for (BasicBlock &BB : F) { 786 for (Instruction &I : BB) { 787 unsigned VarID = SSA.AddVariable(I.getName(), I.getType()); 788 // If a value is defined by an invoke instruction, it is only available in 789 // its normal destination and not in its unwind destination. 790 if (auto *II = dyn_cast<InvokeInst>(&I)) 791 SSA.AddAvailableValue(VarID, II->getNormalDest(), II); 792 else 793 SSA.AddAvailableValue(VarID, &BB, &I); 794 for (auto &U : I.uses()) { 795 auto *User = cast<Instruction>(U.getUser()); 796 if (auto *UserPN = dyn_cast<PHINode>(User)) 797 if (UserPN->getIncomingBlock(U) == &BB) 798 continue; 799 if (DT.dominates(&I, User)) 800 continue; 801 SSA.AddUse(VarID, &U); 802 } 803 } 804 } 805 SSA.RewriteAllUses(&DT); 806 } 807 808 // Replace uses of longjmp with a new longjmp function in Emscripten library. 809 // In Emscripten SjLj, the new function is 810 // void emscripten_longjmp(uintptr_t, i32) 811 // In Wasm SjLj, the new function is 812 // void __wasm_longjmp(i8*, i32) 813 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a 814 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will 815 // eventually be lowered to i32/i64 in the wasm backend. 816 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF, 817 Function *NewF) { 818 assert(NewF == EmLongjmpF || NewF == WasmLongjmpF); 819 Module *M = LongjmpF->getParent(); 820 SmallVector<CallInst *, 8> ToErase; 821 LLVMContext &C = LongjmpF->getParent()->getContext(); 822 IRBuilder<> IRB(C); 823 824 // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and 825 // cast its first argument (jmp_buf*) appropriately 826 for (User *U : LongjmpF->users()) { 827 auto *CI = dyn_cast<CallInst>(U); 828 if (CI && CI->getCalledFunction() == LongjmpF) { 829 IRB.SetInsertPoint(CI); 830 Value *Env = nullptr; 831 if (NewF == EmLongjmpF) 832 Env = 833 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env"); 834 else // WasmLongjmpF 835 Env = IRB.CreateBitCast(CI->getArgOperand(0), IRB.getPtrTy(), "env"); 836 IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)}); 837 ToErase.push_back(CI); 838 } 839 } 840 for (auto *I : ToErase) 841 I->eraseFromParent(); 842 843 // If we have any remaining uses of longjmp's function pointer, replace it 844 // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp. 845 if (!LongjmpF->uses().empty()) { 846 Value *NewLongjmp = 847 IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast"); 848 LongjmpF->replaceAllUsesWith(NewLongjmp); 849 } 850 } 851 852 static bool containsLongjmpableCalls(const Function *F) { 853 for (const auto &BB : *F) 854 for (const auto &I : BB) 855 if (const auto *CB = dyn_cast<CallBase>(&I)) 856 if (canLongjmp(CB->getCalledOperand())) 857 return true; 858 return false; 859 } 860 861 // When a function contains a setjmp call but not other calls that can longjmp, 862 // we don't do setjmp transformation for that setjmp. But we need to convert the 863 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always 864 // returns 0 when called directly. 865 static void nullifySetjmp(Function *F) { 866 Module &M = *F->getParent(); 867 IRBuilder<> IRB(M.getContext()); 868 Function *SetjmpF = M.getFunction("setjmp"); 869 SmallVector<Instruction *, 1> ToErase; 870 871 for (User *U : make_early_inc_range(SetjmpF->users())) { 872 auto *CB = cast<CallBase>(U); 873 BasicBlock *BB = CB->getParent(); 874 if (BB->getParent() != F) // in other function 875 continue; 876 CallInst *CI = nullptr; 877 // setjmp cannot throw. So if it is an invoke, lower it to a call 878 if (auto *II = dyn_cast<InvokeInst>(CB)) 879 CI = llvm::changeToCall(II); 880 else 881 CI = cast<CallInst>(CB); 882 ToErase.push_back(CI); 883 CI->replaceAllUsesWith(IRB.getInt32(0)); 884 } 885 for (auto *I : ToErase) 886 I->eraseFromParent(); 887 } 888 889 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 890 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 891 892 LLVMContext &C = M.getContext(); 893 IRBuilder<> IRB(C); 894 895 Function *SetjmpF = M.getFunction("setjmp"); 896 Function *LongjmpF = M.getFunction("longjmp"); 897 898 // In some platforms _setjmp and _longjmp are used instead. Change these to 899 // use setjmp/longjmp instead, because we later detect these functions by 900 // their names. 901 Function *SetjmpF2 = M.getFunction("_setjmp"); 902 Function *LongjmpF2 = M.getFunction("_longjmp"); 903 if (SetjmpF2) { 904 if (SetjmpF) { 905 if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType()) 906 report_fatal_error("setjmp and _setjmp have different function types"); 907 } else { 908 SetjmpF = Function::Create(SetjmpF2->getFunctionType(), 909 GlobalValue::ExternalLinkage, "setjmp", M); 910 } 911 SetjmpF2->replaceAllUsesWith(SetjmpF); 912 } 913 if (LongjmpF2) { 914 if (LongjmpF) { 915 if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType()) 916 report_fatal_error( 917 "longjmp and _longjmp have different function types"); 918 } else { 919 LongjmpF = Function::Create(LongjmpF2->getFunctionType(), 920 GlobalValue::ExternalLinkage, "setjmp", M); 921 } 922 LongjmpF2->replaceAllUsesWith(LongjmpF); 923 } 924 925 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 926 assert(TPC && "Expected a TargetPassConfig"); 927 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 928 929 // Declare (or get) global variables __THREW__, __threwValue, and 930 // getTempRet0/setTempRet0 function which are used in common for both 931 // exception handling and setjmp/longjmp handling 932 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__"); 933 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue"); 934 GetTempRet0F = getEmscriptenFunction( 935 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 936 SetTempRet0F = getEmscriptenFunction( 937 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 938 "setTempRet0", &M); 939 GetTempRet0F->setDoesNotThrow(); 940 SetTempRet0F->setDoesNotThrow(); 941 942 bool Changed = false; 943 944 // Function registration for exception handling 945 if (EnableEmEH) { 946 // Register __resumeException function 947 FunctionType *ResumeFTy = 948 FunctionType::get(IRB.getVoidTy(), IRB.getPtrTy(), false); 949 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 950 ResumeF->addFnAttr(Attribute::NoReturn); 951 952 // Register llvm_eh_typeid_for function 953 FunctionType *EHTypeIDTy = 954 FunctionType::get(IRB.getInt32Ty(), IRB.getPtrTy(), false); 955 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 956 } 957 958 // Functions that contains calls to setjmp but don't have other longjmpable 959 // calls within them. 960 SmallPtrSet<Function *, 4> SetjmpUsersToNullify; 961 962 if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) { 963 // Precompute setjmp users 964 for (User *U : SetjmpF->users()) { 965 if (auto *CB = dyn_cast<CallBase>(U)) { 966 auto *UserF = CB->getFunction(); 967 // If a function that calls setjmp does not contain any other calls that 968 // can longjmp, we don't need to do any transformation on that function, 969 // so can ignore it 970 if (containsLongjmpableCalls(UserF)) 971 SetjmpUsers.insert(UserF); 972 else 973 SetjmpUsersToNullify.insert(UserF); 974 } else { 975 std::string S; 976 raw_string_ostream SS(S); 977 SS << *U; 978 report_fatal_error(Twine("Indirect use of setjmp is not supported: ") + 979 SS.str()); 980 } 981 } 982 } 983 984 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty(); 985 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 986 DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed); 987 988 // Function registration and data pre-gathering for setjmp/longjmp handling 989 if (DoSjLj) { 990 assert(EnableEmSjLj || EnableWasmSjLj); 991 if (EnableEmSjLj) { 992 // Register emscripten_longjmp function 993 FunctionType *FTy = FunctionType::get( 994 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false); 995 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 996 EmLongjmpF->addFnAttr(Attribute::NoReturn); 997 } else { // EnableWasmSjLj 998 Type *Int8PtrTy = IRB.getPtrTy(); 999 // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp. 1000 FunctionType *FTy = FunctionType::get( 1001 IRB.getVoidTy(), {Int8PtrTy, IRB.getInt32Ty()}, false); 1002 WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M); 1003 WasmLongjmpF->addFnAttr(Attribute::NoReturn); 1004 } 1005 1006 if (SetjmpF) { 1007 Type *Int8PtrTy = IRB.getPtrTy(); 1008 Type *Int32PtrTy = IRB.getPtrTy(); 1009 Type *Int32Ty = IRB.getInt32Ty(); 1010 // Register saveSetjmp function 1011 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 1012 FunctionType *FTy = FunctionType::get( 1013 Int32PtrTy, 1014 {SetjmpFTy->getParamType(0), Int32Ty, Int32PtrTy, Int32Ty}, false); 1015 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 1016 1017 // Register testSetjmp function 1018 FTy = FunctionType::get(Int32Ty, 1019 {getAddrIntType(&M), Int32PtrTy, Int32Ty}, false); 1020 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 1021 1022 // wasm.catch() will be lowered down to wasm 'catch' instruction in 1023 // instruction selection. 1024 CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch); 1025 // Type for struct __WasmLongjmpArgs 1026 LongjmpArgsTy = StructType::get(Int8PtrTy, // env 1027 Int32Ty // val 1028 ); 1029 } 1030 } 1031 1032 // Exception handling transformation 1033 if (EnableEmEH) { 1034 for (Function &F : M) { 1035 if (F.isDeclaration()) 1036 continue; 1037 Changed |= runEHOnFunction(F); 1038 } 1039 } 1040 1041 // Setjmp/longjmp handling transformation 1042 if (DoSjLj) { 1043 Changed = true; // We have setjmp or longjmp somewhere 1044 if (LongjmpF) 1045 replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF); 1046 // Only traverse functions that uses setjmp in order not to insert 1047 // unnecessary prep / cleanup code in every function 1048 if (SetjmpF) 1049 for (Function *F : SetjmpUsers) 1050 runSjLjOnFunction(*F); 1051 } 1052 1053 // Replace unnecessary setjmp calls with 0 1054 if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) { 1055 Changed = true; 1056 assert(SetjmpF); 1057 for (Function *F : SetjmpUsersToNullify) 1058 nullifySetjmp(F); 1059 } 1060 1061 // Delete unused global variables and functions 1062 for (auto *V : {ThrewGV, ThrewValueGV}) 1063 if (V && V->use_empty()) 1064 V->eraseFromParent(); 1065 for (auto *V : {GetTempRet0F, SetTempRet0F, ResumeF, EHTypeIDF, EmLongjmpF, 1066 SaveSetjmpF, TestSetjmpF, WasmLongjmpF, CatchF}) 1067 if (V && V->use_empty()) 1068 V->eraseFromParent(); 1069 1070 return Changed; 1071 } 1072 1073 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 1074 Module &M = *F.getParent(); 1075 LLVMContext &C = F.getContext(); 1076 IRBuilder<> IRB(C); 1077 bool Changed = false; 1078 SmallVector<Instruction *, 64> ToErase; 1079 SmallPtrSet<LandingPadInst *, 32> LandingPads; 1080 1081 // rethrow.longjmp BB that will be shared within the function. 1082 BasicBlock *RethrowLongjmpBB = nullptr; 1083 // PHI node for the loaded value of __THREW__ global variable in 1084 // rethrow.longjmp BB 1085 PHINode *RethrowLongjmpBBThrewPHI = nullptr; 1086 1087 for (BasicBlock &BB : F) { 1088 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 1089 if (!II) 1090 continue; 1091 Changed = true; 1092 LandingPads.insert(II->getLandingPadInst()); 1093 IRB.SetInsertPoint(II); 1094 1095 const Value *Callee = II->getCalledOperand(); 1096 bool NeedInvoke = supportsException(&F) && canThrow(Callee); 1097 if (NeedInvoke) { 1098 // Wrap invoke with invoke wrapper and generate preamble/postamble 1099 Value *Threw = wrapInvoke(II); 1100 ToErase.push_back(II); 1101 1102 // If setjmp/longjmp handling is enabled, the thrown value can be not an 1103 // exception but a longjmp. If the current function contains calls to 1104 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even 1105 // if the function does not contain setjmp calls, we shouldn't silently 1106 // ignore longjmps; we should rethrow them so they can be correctly 1107 // handled in somewhere up the call chain where setjmp is. __THREW__'s 1108 // value is 0 when nothing happened, 1 when an exception is thrown, and 1109 // other values when longjmp is thrown. 1110 // 1111 // if (%__THREW__.val == 0 || %__THREW__.val == 1) 1112 // goto %tail 1113 // else 1114 // goto %longjmp.rethrow 1115 // 1116 // rethrow.longjmp: ;; This is longjmp. Rethrow it 1117 // %__threwValue.val = __threwValue 1118 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 1119 // 1120 // tail: ;; Nothing happened or an exception is thrown 1121 // ... Continue exception handling ... 1122 if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) && 1123 canLongjmp(Callee)) { 1124 // Create longjmp.rethrow BB once and share it within the function 1125 if (!RethrowLongjmpBB) { 1126 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F); 1127 IRB.SetInsertPoint(RethrowLongjmpBB); 1128 RethrowLongjmpBBThrewPHI = 1129 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi"); 1130 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1131 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 1132 ThrewValueGV->getName() + ".val"); 1133 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue}); 1134 IRB.CreateUnreachable(); 1135 } else { 1136 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1137 } 1138 1139 IRB.SetInsertPoint(II); // Restore the insert point back 1140 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F); 1141 Value *CmpEqOne = 1142 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1143 Value *CmpEqZero = 1144 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero"); 1145 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or"); 1146 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB); 1147 IRB.SetInsertPoint(Tail); 1148 BB.replaceSuccessorsPhiUsesWith(&BB, Tail); 1149 } 1150 1151 // Insert a branch based on __THREW__ variable 1152 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp"); 1153 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 1154 1155 } else { 1156 // This can't throw, and we don't need this invoke, just replace it with a 1157 // call+branch 1158 changeToCall(II); 1159 } 1160 } 1161 1162 // Process resume instructions 1163 for (BasicBlock &BB : F) { 1164 // Scan the body of the basic block for resumes 1165 for (Instruction &I : BB) { 1166 auto *RI = dyn_cast<ResumeInst>(&I); 1167 if (!RI) 1168 continue; 1169 Changed = true; 1170 1171 // Split the input into legal values 1172 Value *Input = RI->getValue(); 1173 IRB.SetInsertPoint(RI); 1174 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 1175 // Create a call to __resumeException function 1176 IRB.CreateCall(ResumeF, {Low}); 1177 // Add a terminator to the block 1178 IRB.CreateUnreachable(); 1179 ToErase.push_back(RI); 1180 } 1181 } 1182 1183 // Process llvm.eh.typeid.for intrinsics 1184 for (BasicBlock &BB : F) { 1185 for (Instruction &I : BB) { 1186 auto *CI = dyn_cast<CallInst>(&I); 1187 if (!CI) 1188 continue; 1189 const Function *Callee = CI->getCalledFunction(); 1190 if (!Callee) 1191 continue; 1192 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 1193 continue; 1194 Changed = true; 1195 1196 IRB.SetInsertPoint(CI); 1197 CallInst *NewCI = 1198 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 1199 CI->replaceAllUsesWith(NewCI); 1200 ToErase.push_back(CI); 1201 } 1202 } 1203 1204 // Look for orphan landingpads, can occur in blocks with no predecessors 1205 for (BasicBlock &BB : F) { 1206 Instruction *I = BB.getFirstNonPHI(); 1207 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 1208 LandingPads.insert(LPI); 1209 } 1210 Changed |= !LandingPads.empty(); 1211 1212 // Handle all the landingpad for this function together, as multiple invokes 1213 // may share a single lp 1214 for (LandingPadInst *LPI : LandingPads) { 1215 IRB.SetInsertPoint(LPI); 1216 SmallVector<Value *, 16> FMCArgs; 1217 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 1218 Constant *Clause = LPI->getClause(I); 1219 // TODO Handle filters (= exception specifications). 1220 // https://github.com/llvm/llvm-project/issues/49740 1221 if (LPI->isCatch(I)) 1222 FMCArgs.push_back(Clause); 1223 } 1224 1225 // Create a call to __cxa_find_matching_catch_N function 1226 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 1227 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 1228 Value *Poison = PoisonValue::get(LPI->getType()); 1229 Value *Pair0 = IRB.CreateInsertValue(Poison, FMCI, 0, "pair0"); 1230 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, std::nullopt, "tempret0"); 1231 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 1232 1233 LPI->replaceAllUsesWith(Pair1); 1234 ToErase.push_back(LPI); 1235 } 1236 1237 // Erase everything we no longer need in this function 1238 for (Instruction *I : ToErase) 1239 I->eraseFromParent(); 1240 1241 return Changed; 1242 } 1243 1244 // This tries to get debug info from the instruction before which a new 1245 // instruction will be inserted, and if there's no debug info in that 1246 // instruction, tries to get the info instead from the previous instruction (if 1247 // any). If none of these has debug info and a DISubprogram is provided, it 1248 // creates a dummy debug info with the first line of the function, because IR 1249 // verifier requires all inlinable callsites should have debug info when both a 1250 // caller and callee have DISubprogram. If none of these conditions are met, 1251 // returns empty info. 1252 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 1253 DISubprogram *SP) { 1254 assert(InsertBefore); 1255 if (InsertBefore->getDebugLoc()) 1256 return InsertBefore->getDebugLoc(); 1257 const Instruction *Prev = InsertBefore->getPrevNode(); 1258 if (Prev && Prev->getDebugLoc()) 1259 return Prev->getDebugLoc(); 1260 if (SP) 1261 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 1262 return DebugLoc(); 1263 } 1264 1265 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 1266 assert(EnableEmSjLj || EnableWasmSjLj); 1267 Module &M = *F.getParent(); 1268 LLVMContext &C = F.getContext(); 1269 IRBuilder<> IRB(C); 1270 SmallVector<Instruction *, 64> ToErase; 1271 // Vector of %setjmpTable values 1272 SmallVector<Instruction *, 4> SetjmpTableInsts; 1273 // Vector of %setjmpTableSize values 1274 SmallVector<Instruction *, 4> SetjmpTableSizeInsts; 1275 1276 // Setjmp preparation 1277 1278 // This instruction effectively means %setjmpTableSize = 4. 1279 // We create this as an instruction intentionally, and we don't want to fold 1280 // this instruction to a constant 4, because this value will be used in 1281 // SSAUpdater.AddAvailableValue(...) later. 1282 BasicBlock *Entry = &F.getEntryBlock(); 1283 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1284 SplitBlock(Entry, &*Entry->getFirstInsertionPt()); 1285 1286 BinaryOperator *SetjmpTableSize = 1287 BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), 1288 "setjmpTableSize", Entry->getTerminator()); 1289 SetjmpTableSize->setDebugLoc(FirstDL); 1290 // setjmpTable = (int *) malloc(40); 1291 Type *IntPtrTy = getAddrIntType(&M); 1292 Constant *size = ConstantInt::get(IntPtrTy, 40); 1293 IRB.SetInsertPoint(SetjmpTableSize); 1294 auto *SetjmpTable = IRB.CreateMalloc(IntPtrTy, IRB.getInt32Ty(), size, 1295 nullptr, nullptr, "setjmpTable"); 1296 SetjmpTable->setDebugLoc(FirstDL); 1297 // CallInst::CreateMalloc may return a bitcast instruction if the result types 1298 // mismatch. We need to set the debug loc for the original call too. 1299 auto *MallocCall = SetjmpTable->stripPointerCasts(); 1300 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 1301 MallocCallI->setDebugLoc(FirstDL); 1302 } 1303 // setjmpTable[0] = 0; 1304 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 1305 SetjmpTableInsts.push_back(SetjmpTable); 1306 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 1307 1308 // Setjmp transformation 1309 SmallVector<PHINode *, 4> SetjmpRetPHIs; 1310 Function *SetjmpF = M.getFunction("setjmp"); 1311 for (auto *U : make_early_inc_range(SetjmpF->users())) { 1312 auto *CB = cast<CallBase>(U); 1313 BasicBlock *BB = CB->getParent(); 1314 if (BB->getParent() != &F) // in other function 1315 continue; 1316 if (CB->getOperandBundle(LLVMContext::OB_funclet)) { 1317 std::string S; 1318 raw_string_ostream SS(S); 1319 SS << "In function " + F.getName() + 1320 ": setjmp within a catch clause is not supported in Wasm EH:\n"; 1321 SS << *CB; 1322 report_fatal_error(StringRef(SS.str())); 1323 } 1324 1325 CallInst *CI = nullptr; 1326 // setjmp cannot throw. So if it is an invoke, lower it to a call 1327 if (auto *II = dyn_cast<InvokeInst>(CB)) 1328 CI = llvm::changeToCall(II); 1329 else 1330 CI = cast<CallInst>(CB); 1331 1332 // The tail is everything right after the call, and will be reached once 1333 // when setjmp is called, and later when longjmp returns to the setjmp 1334 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1335 // Add a phi to the tail, which will be the output of setjmp, which 1336 // indicates if this is the first call or a longjmp back. The phi directly 1337 // uses the right value based on where we arrive from 1338 IRB.SetInsertPoint(Tail, Tail->getFirstNonPHIIt()); 1339 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 1340 1341 // setjmp initial call returns 0 1342 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1343 // The proper output is now this, not the setjmp call itself 1344 CI->replaceAllUsesWith(SetjmpRet); 1345 // longjmp returns to the setjmp will add themselves to this phi 1346 SetjmpRetPHIs.push_back(SetjmpRet); 1347 1348 // Fix call target 1349 // Our index in the function is our place in the array + 1 to avoid index 1350 // 0, because index 0 means the longjmp is not ours to handle. 1351 IRB.SetInsertPoint(CI); 1352 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1353 SetjmpTable, SetjmpTableSize}; 1354 Instruction *NewSetjmpTable = 1355 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1356 Instruction *NewSetjmpTableSize = 1357 IRB.CreateCall(GetTempRet0F, std::nullopt, "setjmpTableSize"); 1358 SetjmpTableInsts.push_back(NewSetjmpTable); 1359 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1360 ToErase.push_back(CI); 1361 } 1362 1363 // Handle longjmpable calls. 1364 if (EnableEmSjLj) 1365 handleLongjmpableCallsForEmscriptenSjLj( 1366 F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs); 1367 else // EnableWasmSjLj 1368 handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts, 1369 SetjmpRetPHIs); 1370 1371 // Erase everything we no longer need in this function 1372 for (Instruction *I : ToErase) 1373 I->eraseFromParent(); 1374 1375 // Free setjmpTable buffer before each return instruction + function-exiting 1376 // call 1377 SmallVector<Instruction *, 16> ExitingInsts; 1378 for (BasicBlock &BB : F) { 1379 Instruction *TI = BB.getTerminator(); 1380 if (isa<ReturnInst>(TI)) 1381 ExitingInsts.push_back(TI); 1382 // Any 'call' instruction with 'noreturn' attribute exits the function at 1383 // this point. If this throws but unwinds to another EH pad within this 1384 // function instead of exiting, this would have been an 'invoke', which 1385 // happens if we use Wasm EH or Wasm SjLJ. 1386 for (auto &I : BB) { 1387 if (auto *CI = dyn_cast<CallInst>(&I)) { 1388 bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn); 1389 if (Function *CalleeF = CI->getCalledFunction()) 1390 IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn); 1391 if (IsNoReturn) 1392 ExitingInsts.push_back(&I); 1393 } 1394 } 1395 } 1396 for (auto *I : ExitingInsts) { 1397 DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram()); 1398 // If this existing instruction is a call within a catchpad, we should add 1399 // it as "funclet" to the operand bundle of 'free' call 1400 SmallVector<OperandBundleDef, 1> Bundles; 1401 if (auto *CB = dyn_cast<CallBase>(I)) 1402 if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet)) 1403 Bundles.push_back(OperandBundleDef(*Bundle)); 1404 IRB.SetInsertPoint(I); 1405 auto *Free = IRB.CreateFree(SetjmpTable, Bundles); 1406 Free->setDebugLoc(DL); 1407 } 1408 1409 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1410 // (when buffer reallocation occurs) 1411 // entry: 1412 // setjmpTableSize = 4; 1413 // setjmpTable = (int *) malloc(40); 1414 // setjmpTable[0] = 0; 1415 // ... 1416 // somebb: 1417 // setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 1418 // setjmpTableSize = getTempRet0(); 1419 // So we need to make sure the SSA for these variables is valid so that every 1420 // saveSetjmp and testSetjmp calls have the correct arguments. 1421 SSAUpdater SetjmpTableSSA; 1422 SSAUpdater SetjmpTableSizeSSA; 1423 SetjmpTableSSA.Initialize(PointerType::get(C, 0), "setjmpTable"); 1424 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1425 for (Instruction *I : SetjmpTableInsts) 1426 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1427 for (Instruction *I : SetjmpTableSizeInsts) 1428 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1429 1430 for (auto &U : make_early_inc_range(SetjmpTable->uses())) 1431 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1432 if (I->getParent() != Entry) 1433 SetjmpTableSSA.RewriteUse(U); 1434 for (auto &U : make_early_inc_range(SetjmpTableSize->uses())) 1435 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1436 if (I->getParent() != Entry) 1437 SetjmpTableSizeSSA.RewriteUse(U); 1438 1439 // Finally, our modifications to the cfg can break dominance of SSA variables. 1440 // For example, in this code, 1441 // if (x()) { .. setjmp() .. } 1442 // if (y()) { .. longjmp() .. } 1443 // We must split the longjmp block, and it can jump into the block splitted 1444 // from setjmp one. But that means that when we split the setjmp block, it's 1445 // first part no longer dominates its second part - there is a theoretically 1446 // possible control flow path where x() is false, then y() is true and we 1447 // reach the second part of the setjmp block, without ever reaching the first 1448 // part. So, we rebuild SSA form here. 1449 rebuildSSA(F); 1450 return true; 1451 } 1452 1453 // Update each call that can longjmp so it can return to the corresponding 1454 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the 1455 // comments at top of the file for details. 1456 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj( 1457 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1458 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1459 Module &M = *F.getParent(); 1460 LLVMContext &C = F.getContext(); 1461 IRBuilder<> IRB(C); 1462 SmallVector<Instruction *, 64> ToErase; 1463 1464 // We need to pass setjmpTable and setjmpTableSize to testSetjmp function. 1465 // These values are defined in the beginning of the function and also in each 1466 // setjmp callsite, but we don't know which values we should use at this 1467 // point. So here we arbitraily use the ones defined in the beginning of the 1468 // function, and SSAUpdater will later update them to the correct values. 1469 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1470 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1471 1472 // call.em.longjmp BB that will be shared within the function. 1473 BasicBlock *CallEmLongjmpBB = nullptr; 1474 // PHI node for the loaded value of __THREW__ global variable in 1475 // call.em.longjmp BB 1476 PHINode *CallEmLongjmpBBThrewPHI = nullptr; 1477 // PHI node for the loaded value of __threwValue global variable in 1478 // call.em.longjmp BB 1479 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr; 1480 // rethrow.exn BB that will be shared within the function. 1481 BasicBlock *RethrowExnBB = nullptr; 1482 1483 // Because we are creating new BBs while processing and don't want to make 1484 // all these newly created BBs candidates again for longjmp processing, we 1485 // first make the vector of candidate BBs. 1486 std::vector<BasicBlock *> BBs; 1487 for (BasicBlock &BB : F) 1488 BBs.push_back(&BB); 1489 1490 // BBs.size() will change within the loop, so we query it every time 1491 for (unsigned I = 0; I < BBs.size(); I++) { 1492 BasicBlock *BB = BBs[I]; 1493 for (Instruction &I : *BB) { 1494 if (isa<InvokeInst>(&I)) { 1495 std::string S; 1496 raw_string_ostream SS(S); 1497 SS << "In function " << F.getName() 1498 << ": When using Wasm EH with Emscripten SjLj, there is a " 1499 "restriction that `setjmp` function call and exception cannot be " 1500 "used within the same function:\n"; 1501 SS << I; 1502 report_fatal_error(StringRef(SS.str())); 1503 } 1504 auto *CI = dyn_cast<CallInst>(&I); 1505 if (!CI) 1506 continue; 1507 1508 const Value *Callee = CI->getCalledOperand(); 1509 if (!canLongjmp(Callee)) 1510 continue; 1511 if (isEmAsmCall(Callee)) 1512 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1513 F.getName() + 1514 ". Please consider using EM_JS, or move the " 1515 "EM_ASM into another function.", 1516 false); 1517 1518 Value *Threw = nullptr; 1519 BasicBlock *Tail; 1520 if (Callee->getName().starts_with("__invoke_")) { 1521 // If invoke wrapper has already been generated for this call in 1522 // previous EH phase, search for the load instruction 1523 // %__THREW__.val = __THREW__; 1524 // in postamble after the invoke wrapper call 1525 LoadInst *ThrewLI = nullptr; 1526 StoreInst *ThrewResetSI = nullptr; 1527 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1528 I != IE; ++I) { 1529 if (auto *LI = dyn_cast<LoadInst>(I)) 1530 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1531 if (GV == ThrewGV) { 1532 Threw = ThrewLI = LI; 1533 break; 1534 } 1535 } 1536 // Search for the store instruction after the load above 1537 // __THREW__ = 0; 1538 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1539 I != IE; ++I) { 1540 if (auto *SI = dyn_cast<StoreInst>(I)) { 1541 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) { 1542 if (GV == ThrewGV && 1543 SI->getValueOperand() == getAddrSizeInt(&M, 0)) { 1544 ThrewResetSI = SI; 1545 break; 1546 } 1547 } 1548 } 1549 } 1550 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1551 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1552 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1553 1554 } else { 1555 // Wrap call with invoke wrapper and generate preamble/postamble 1556 Threw = wrapInvoke(CI); 1557 ToErase.push_back(CI); 1558 Tail = SplitBlock(BB, CI->getNextNode()); 1559 1560 // If exception handling is enabled, the thrown value can be not a 1561 // longjmp but an exception, in which case we shouldn't silently ignore 1562 // exceptions; we should rethrow them. 1563 // __THREW__'s value is 0 when nothing happened, 1 when an exception is 1564 // thrown, other values when longjmp is thrown. 1565 // 1566 // if (%__THREW__.val == 1) 1567 // goto %eh.rethrow 1568 // else 1569 // goto %normal 1570 // 1571 // eh.rethrow: ;; Rethrow exception 1572 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr 1573 // __resumeException(%exn) 1574 // 1575 // normal: 1576 // <-- Insertion point. Will insert sjlj handling code from here 1577 // goto %tail 1578 // 1579 // tail: 1580 // ... 1581 if (supportsException(&F) && canThrow(Callee)) { 1582 // We will add a new conditional branch. So remove the branch created 1583 // when we split the BB 1584 ToErase.push_back(BB->getTerminator()); 1585 1586 // Generate rethrow.exn BB once and share it within the function 1587 if (!RethrowExnBB) { 1588 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F); 1589 IRB.SetInsertPoint(RethrowExnBB); 1590 CallInst *Exn = 1591 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn"); 1592 IRB.CreateCall(ResumeF, {Exn}); 1593 IRB.CreateUnreachable(); 1594 } 1595 1596 IRB.SetInsertPoint(CI); 1597 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F); 1598 Value *CmpEqOne = 1599 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1600 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB); 1601 1602 IRB.SetInsertPoint(NormalBB); 1603 IRB.CreateBr(Tail); 1604 BB = NormalBB; // New insertion point to insert testSetjmp() 1605 } 1606 } 1607 1608 // We need to replace the terminator in Tail - SplitBlock makes BB go 1609 // straight to Tail, we need to check if a longjmp occurred, and go to the 1610 // right setjmp-tail if so 1611 ToErase.push_back(BB->getTerminator()); 1612 1613 // Generate a function call to testSetjmp function and preamble/postamble 1614 // code to figure out (1) whether longjmp occurred (2) if longjmp 1615 // occurred, which setjmp it corresponds to 1616 Value *Label = nullptr; 1617 Value *LongjmpResult = nullptr; 1618 BasicBlock *EndBB = nullptr; 1619 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1620 Label, LongjmpResult, CallEmLongjmpBB, 1621 CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI, 1622 EndBB); 1623 assert(Label && LongjmpResult && EndBB); 1624 1625 // Create switch instruction 1626 IRB.SetInsertPoint(EndBB); 1627 IRB.SetCurrentDebugLocation(EndBB->back().getDebugLoc()); 1628 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1629 // -1 means no longjmp happened, continue normally (will hit the default 1630 // switch case). 0 means a longjmp that is not ours to handle, needs a 1631 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1632 // 0). 1633 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1634 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1635 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1636 } 1637 1638 // We are splitting the block here, and must continue to find other calls 1639 // in the block - which is now split. so continue to traverse in the Tail 1640 BBs.push_back(Tail); 1641 } 1642 } 1643 1644 for (Instruction *I : ToErase) 1645 I->eraseFromParent(); 1646 } 1647 1648 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) { 1649 for (const User *U : CPI->users()) 1650 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 1651 return CRI->getUnwindDest(); 1652 return nullptr; 1653 } 1654 1655 // Create a catchpad in which we catch a longjmp's env and val arguments, test 1656 // if the longjmp corresponds to one of setjmps in the current function, and if 1657 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp 1658 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at 1659 // top of the file for details. 1660 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj( 1661 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1662 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1663 Module &M = *F.getParent(); 1664 LLVMContext &C = F.getContext(); 1665 IRBuilder<> IRB(C); 1666 1667 // A function with catchswitch/catchpad instruction should have a personality 1668 // function attached to it. Search for the wasm personality function, and if 1669 // it exists, use it, and if it doesn't, create a dummy personality function. 1670 // (SjLj is not going to call it anyway.) 1671 if (!F.hasPersonalityFn()) { 1672 StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX); 1673 FunctionType *PersType = 1674 FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true); 1675 Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee(); 1676 F.setPersonalityFn( 1677 cast<Constant>(IRB.CreateBitCast(PersF, IRB.getPtrTy()))); 1678 } 1679 1680 // Use the entry BB's debugloc as a fallback 1681 BasicBlock *Entry = &F.getEntryBlock(); 1682 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1683 IRB.SetCurrentDebugLocation(FirstDL); 1684 1685 // Arbitrarily use the ones defined in the beginning of the function. 1686 // SSAUpdater will later update them to the correct values. 1687 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1688 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1689 1690 // Add setjmp.dispatch BB right after the entry block. Because we have 1691 // initialized setjmpTable/setjmpTableSize in the entry block and split the 1692 // rest into another BB, here 'OrigEntry' is the function's original entry 1693 // block before the transformation. 1694 // 1695 // entry: 1696 // setjmpTable / setjmpTableSize initialization 1697 // setjmp.dispatch: 1698 // switch will be inserted here later 1699 // entry.split: (OrigEntry) 1700 // the original function starts here 1701 BasicBlock *OrigEntry = Entry->getNextNode(); 1702 BasicBlock *SetjmpDispatchBB = 1703 BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry); 1704 cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB); 1705 1706 // Create catch.dispatch.longjmp BB and a catchswitch instruction 1707 BasicBlock *CatchDispatchLongjmpBB = 1708 BasicBlock::Create(C, "catch.dispatch.longjmp", &F); 1709 IRB.SetInsertPoint(CatchDispatchLongjmpBB); 1710 CatchSwitchInst *CatchSwitchLongjmp = 1711 IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1); 1712 1713 // Create catch.longjmp BB and a catchpad instruction 1714 BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F); 1715 CatchSwitchLongjmp->addHandler(CatchLongjmpBB); 1716 IRB.SetInsertPoint(CatchLongjmpBB); 1717 CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {}); 1718 1719 // Wasm throw and catch instructions can throw and catch multiple values, but 1720 // that requires multivalue support in the toolchain, which is currently not 1721 // very reliable. We instead throw and catch a pointer to a struct value of 1722 // type 'struct __WasmLongjmpArgs', which is defined in Emscripten. 1723 Instruction *LongjmpArgs = 1724 IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown"); 1725 Value *EnvField = 1726 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep"); 1727 Value *ValField = 1728 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep"); 1729 // void *env = __wasm_longjmp_args.env; 1730 Instruction *Env = IRB.CreateLoad(IRB.getPtrTy(), EnvField, "env"); 1731 // int val = __wasm_longjmp_args.val; 1732 Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val"); 1733 1734 // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize); 1735 // if (%label == 0) 1736 // __wasm_longjmp(%env, %val) 1737 // catchret to %setjmp.dispatch 1738 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F); 1739 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F); 1740 Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p"); 1741 Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id"); 1742 Value *Label = 1743 IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize}, 1744 OperandBundleDef("funclet", CatchPad), "label"); 1745 Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0)); 1746 IRB.CreateCondBr(Cmp, ThenBB, EndBB); 1747 1748 IRB.SetInsertPoint(ThenBB); 1749 CallInst *WasmLongjmpCI = IRB.CreateCall( 1750 WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad)); 1751 IRB.CreateUnreachable(); 1752 1753 IRB.SetInsertPoint(EndBB); 1754 // Jump to setjmp.dispatch block 1755 IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB); 1756 1757 // Go back to setjmp.dispatch BB 1758 // setjmp.dispatch: 1759 // switch %label { 1760 // label 1: goto post-setjmp BB 1 1761 // label 2: goto post-setjmp BB 2 1762 // ... 1763 // default: goto splitted next BB 1764 // } 1765 IRB.SetInsertPoint(SetjmpDispatchBB); 1766 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi"); 1767 LabelPHI->addIncoming(Label, EndBB); 1768 LabelPHI->addIncoming(IRB.getInt32(-1), Entry); 1769 SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size()); 1770 // -1 means no longjmp happened, continue normally (will hit the default 1771 // switch case). 0 means a longjmp that is not ours to handle, needs a 1772 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1773 // 0). 1774 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1775 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1776 SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB); 1777 } 1778 1779 // Convert all longjmpable call instructions to invokes that unwind to the 1780 // newly created catch.dispatch.longjmp BB. 1781 SmallVector<CallInst *, 64> LongjmpableCalls; 1782 for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) { 1783 for (auto &I : *BB) { 1784 auto *CI = dyn_cast<CallInst>(&I); 1785 if (!CI) 1786 continue; 1787 const Value *Callee = CI->getCalledOperand(); 1788 if (!canLongjmp(Callee)) 1789 continue; 1790 if (isEmAsmCall(Callee)) 1791 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1792 F.getName() + 1793 ". Please consider using EM_JS, or move the " 1794 "EM_ASM into another function.", 1795 false); 1796 // This is __wasm_longjmp() call we inserted in this function, which 1797 // rethrows the longjmp when the longjmp does not correspond to one of 1798 // setjmps in this function. We should not convert this call to an invoke. 1799 if (CI == WasmLongjmpCI) 1800 continue; 1801 LongjmpableCalls.push_back(CI); 1802 } 1803 } 1804 1805 for (auto *CI : LongjmpableCalls) { 1806 // Even if the callee function has attribute 'nounwind', which is true for 1807 // all C functions, it can longjmp, which means it can throw a Wasm 1808 // exception now. 1809 CI->removeFnAttr(Attribute::NoUnwind); 1810 if (Function *CalleeF = CI->getCalledFunction()) 1811 CalleeF->removeFnAttr(Attribute::NoUnwind); 1812 1813 // Change it to an invoke and make it unwind to the catch.dispatch.longjmp 1814 // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind 1815 // to its parent pad's unwind destination instead to preserve the scope 1816 // structure. It will eventually unwind to the catch.dispatch.longjmp. 1817 SmallVector<OperandBundleDef, 1> Bundles; 1818 BasicBlock *UnwindDest = nullptr; 1819 if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 1820 Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]); 1821 while (!UnwindDest) { 1822 if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) { 1823 UnwindDest = CPI->getCatchSwitch()->getUnwindDest(); 1824 break; 1825 } 1826 if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) { 1827 // getCleanupRetUnwindDest() can return nullptr when 1828 // 1. This cleanuppad's matching cleanupret uwninds to caller 1829 // 2. There is no matching cleanupret because it ends with 1830 // unreachable. 1831 // In case of 2, we need to traverse the parent pad chain. 1832 UnwindDest = getCleanupRetUnwindDest(CPI); 1833 Value *ParentPad = CPI->getParentPad(); 1834 if (isa<ConstantTokenNone>(ParentPad)) 1835 break; 1836 FromPad = cast<Instruction>(ParentPad); 1837 } 1838 } 1839 } 1840 if (!UnwindDest) 1841 UnwindDest = CatchDispatchLongjmpBB; 1842 changeToInvokeAndSplitBasicBlock(CI, UnwindDest); 1843 } 1844 1845 SmallVector<Instruction *, 16> ToErase; 1846 for (auto &BB : F) { 1847 if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) { 1848 if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) { 1849 IRB.SetInsertPoint(CSI); 1850 ToErase.push_back(CSI); 1851 auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(), 1852 CatchDispatchLongjmpBB, 1); 1853 NewCSI->addHandler(*CSI->handler_begin()); 1854 NewCSI->takeName(CSI); 1855 CSI->replaceAllUsesWith(NewCSI); 1856 } 1857 } 1858 1859 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) { 1860 if (CRI->unwindsToCaller()) { 1861 IRB.SetInsertPoint(CRI); 1862 ToErase.push_back(CRI); 1863 IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB); 1864 } 1865 } 1866 } 1867 1868 for (Instruction *I : ToErase) 1869 I->eraseFromParent(); 1870 } 1871