xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (revision 370e009188ba90c3290b1479aa06ec98b66e140a)
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "Utils/WebAssemblyUtilities.h"
271 #include "WebAssembly.h"
272 #include "WebAssemblyTargetMachine.h"
273 #include "llvm/ADT/StringExtras.h"
274 #include "llvm/CodeGen/TargetPassConfig.h"
275 #include "llvm/CodeGen/WasmEHFuncInfo.h"
276 #include "llvm/IR/DebugInfoMetadata.h"
277 #include "llvm/IR/Dominators.h"
278 #include "llvm/IR/IRBuilder.h"
279 #include "llvm/IR/IntrinsicsWebAssembly.h"
280 #include "llvm/Support/CommandLine.h"
281 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
282 #include "llvm/Transforms/Utils/Local.h"
283 #include "llvm/Transforms/Utils/SSAUpdater.h"
284 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
285 
286 using namespace llvm;
287 
288 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
289 
290 static cl::list<std::string>
291     EHAllowlist("emscripten-cxx-exceptions-allowed",
292                 cl::desc("The list of function names in which Emscripten-style "
293                          "exception handling is enabled (see emscripten "
294                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
295                 cl::CommaSeparated);
296 
297 namespace {
298 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
299   bool EnableEmEH;     // Enable Emscripten exception handling
300   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
301   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
302   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
303 
304   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
305   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
306   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
307   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
308   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
309   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
310   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
311   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
312   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
313   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
314   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
315 
316   // type of 'struct __WasmLongjmpArgs' defined in emscripten
317   Type *LongjmpArgsTy = nullptr;
318 
319   // __cxa_find_matching_catch_N functions.
320   // Indexed by the number of clauses in an original landingpad instruction.
321   DenseMap<int, Function *> FindMatchingCatches;
322   // Map of <function signature string, invoke_ wrappers>
323   StringMap<Function *> InvokeWrappers;
324   // Set of allowed function names for exception handling
325   std::set<std::string> EHAllowlistSet;
326   // Functions that contains calls to setjmp
327   SmallPtrSet<Function *, 8> SetjmpUsers;
328 
329   StringRef getPassName() const override {
330     return "WebAssembly Lower Emscripten Exceptions";
331   }
332 
333   using InstVector = SmallVectorImpl<Instruction *>;
334   bool runEHOnFunction(Function &F);
335   bool runSjLjOnFunction(Function &F);
336   void handleLongjmpableCallsForEmscriptenSjLj(
337       Function &F, InstVector &SetjmpTableInsts,
338       InstVector &SetjmpTableSizeInsts,
339       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
340   void
341   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
342                                     InstVector &SetjmpTableSizeInsts,
343                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
344   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
345 
346   Value *wrapInvoke(CallBase *CI);
347   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
348                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
349                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
350                       PHINode *&CallEmLongjmpBBThrewPHI,
351                       PHINode *&CallEmLongjmpBBThrewValuePHI,
352                       BasicBlock *&EndBB);
353   Function *getInvokeWrapper(CallBase *CI);
354 
355   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
356   bool supportsException(const Function *F) const {
357     return EnableEmEH && (areAllExceptionsAllowed() ||
358                           EHAllowlistSet.count(std::string(F->getName())));
359   }
360   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
361 
362   void rebuildSSA(Function &F);
363 
364 public:
365   static char ID;
366 
367   WebAssemblyLowerEmscriptenEHSjLj()
368       : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
369         EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
370         EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
371     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
372            "Two SjLj modes cannot be turned on at the same time");
373     assert(!(EnableEmEH && EnableWasmSjLj) &&
374            "Wasm SjLj should be only used with Wasm EH");
375     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
376   }
377   bool runOnModule(Module &M) override;
378 
379   void getAnalysisUsage(AnalysisUsage &AU) const override {
380     AU.addRequired<DominatorTreeWrapperPass>();
381   }
382 };
383 } // End anonymous namespace
384 
385 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
386 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
387                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
388                 false, false)
389 
390 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
391   return new WebAssemblyLowerEmscriptenEHSjLj();
392 }
393 
394 static bool canThrow(const Value *V) {
395   if (const auto *F = dyn_cast<const Function>(V)) {
396     // Intrinsics cannot throw
397     if (F->isIntrinsic())
398       return false;
399     StringRef Name = F->getName();
400     // leave setjmp and longjmp (mostly) alone, we process them properly later
401     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
402       return false;
403     return !F->doesNotThrow();
404   }
405   // not a function, so an indirect call - can throw, we can't tell
406   return true;
407 }
408 
409 // Get a thread-local global variable with the given name. If it doesn't exist
410 // declare it, which will generate an import and assume that it will exist at
411 // link time.
412 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
413                                          WebAssemblyTargetMachine &TM,
414                                          const char *Name) {
415   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
416   if (!GV)
417     report_fatal_error(Twine("unable to create global: ") + Name);
418 
419   // Variables created by this function are thread local. If the target does not
420   // support TLS, we depend on CoalesceFeaturesAndStripAtomics to downgrade it
421   // to non-thread-local ones, in which case we don't allow this object to be
422   // linked with other objects using shared memory.
423   GV->setThreadLocalMode(GlobalValue::GeneralDynamicTLSModel);
424   return GV;
425 }
426 
427 // Simple function name mangler.
428 // This function simply takes LLVM's string representation of parameter types
429 // and concatenate them with '_'. There are non-alphanumeric characters but llc
430 // is ok with it, and we need to postprocess these names after the lowering
431 // phase anyway.
432 static std::string getSignature(FunctionType *FTy) {
433   std::string Sig;
434   raw_string_ostream OS(Sig);
435   OS << *FTy->getReturnType();
436   for (Type *ParamTy : FTy->params())
437     OS << "_" << *ParamTy;
438   if (FTy->isVarArg())
439     OS << "_...";
440   Sig = OS.str();
441   erase_if(Sig, isSpace);
442   // When s2wasm parses .s file, a comma means the end of an argument. So a
443   // mangled function name can contain any character but a comma.
444   std::replace(Sig.begin(), Sig.end(), ',', '.');
445   return Sig;
446 }
447 
448 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
449                                        Module *M) {
450   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
451   // Tell the linker that this function is expected to be imported from the
452   // 'env' module.
453   if (!F->hasFnAttribute("wasm-import-module")) {
454     llvm::AttrBuilder B(M->getContext());
455     B.addAttribute("wasm-import-module", "env");
456     F->addFnAttrs(B);
457   }
458   if (!F->hasFnAttribute("wasm-import-name")) {
459     llvm::AttrBuilder B(M->getContext());
460     B.addAttribute("wasm-import-name", F->getName());
461     F->addFnAttrs(B);
462   }
463   return F;
464 }
465 
466 // Returns an integer type for the target architecture's address space.
467 // i32 for wasm32 and i64 for wasm64.
468 static Type *getAddrIntType(Module *M) {
469   IRBuilder<> IRB(M->getContext());
470   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
471 }
472 
473 // Returns an integer pointer type for the target architecture's address space.
474 // i32* for wasm32 and i64* for wasm64.
475 static Type *getAddrPtrType(Module *M) {
476   return Type::getIntNPtrTy(M->getContext(),
477                             M->getDataLayout().getPointerSizeInBits());
478 }
479 
480 // Returns an integer whose type is the integer type for the target's address
481 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
482 // integer.
483 static Value *getAddrSizeInt(Module *M, uint64_t C) {
484   IRBuilder<> IRB(M->getContext());
485   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
486 }
487 
488 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
489 // This is because a landingpad instruction contains two more arguments, a
490 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
491 // functions are named after the number of arguments in the original landingpad
492 // instruction.
493 Function *
494 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
495                                                        unsigned NumClauses) {
496   if (FindMatchingCatches.count(NumClauses))
497     return FindMatchingCatches[NumClauses];
498   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
499   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
500   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
501   Function *F = getEmscriptenFunction(
502       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
503   FindMatchingCatches[NumClauses] = F;
504   return F;
505 }
506 
507 // Generate invoke wrapper seqence with preamble and postamble
508 // Preamble:
509 // __THREW__ = 0;
510 // Postamble:
511 // %__THREW__.val = __THREW__; __THREW__ = 0;
512 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
513 // whether longjmp occurred), for future use.
514 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
515   Module *M = CI->getModule();
516   LLVMContext &C = M->getContext();
517 
518   IRBuilder<> IRB(C);
519   IRB.SetInsertPoint(CI);
520 
521   // Pre-invoke
522   // __THREW__ = 0;
523   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
524 
525   // Invoke function wrapper in JavaScript
526   SmallVector<Value *, 16> Args;
527   // Put the pointer to the callee as first argument, so it can be called
528   // within the invoke wrapper later
529   Args.push_back(CI->getCalledOperand());
530   Args.append(CI->arg_begin(), CI->arg_end());
531   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
532   NewCall->takeName(CI);
533   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
534   NewCall->setDebugLoc(CI->getDebugLoc());
535 
536   // Because we added the pointer to the callee as first argument, all
537   // argument attribute indices have to be incremented by one.
538   SmallVector<AttributeSet, 8> ArgAttributes;
539   const AttributeList &InvokeAL = CI->getAttributes();
540 
541   // No attributes for the callee pointer.
542   ArgAttributes.push_back(AttributeSet());
543   // Copy the argument attributes from the original
544   for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
545     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
546 
547   AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
548   if (FnAttrs.contains(Attribute::AllocSize)) {
549     // The allocsize attribute (if any) referes to parameters by index and needs
550     // to be adjusted.
551     unsigned SizeArg;
552     Optional<unsigned> NEltArg;
553     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
554     SizeArg += 1;
555     if (NEltArg)
556       NEltArg = NEltArg.value() + 1;
557     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
558   }
559   // In case the callee has 'noreturn' attribute, We need to remove it, because
560   // we expect invoke wrappers to return.
561   FnAttrs.removeAttribute(Attribute::NoReturn);
562 
563   // Reconstruct the AttributesList based on the vector we constructed.
564   AttributeList NewCallAL = AttributeList::get(
565       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
566   NewCall->setAttributes(NewCallAL);
567 
568   CI->replaceAllUsesWith(NewCall);
569 
570   // Post-invoke
571   // %__THREW__.val = __THREW__; __THREW__ = 0;
572   Value *Threw =
573       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
574   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
575   return Threw;
576 }
577 
578 // Get matching invoke wrapper based on callee signature
579 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
580   Module *M = CI->getModule();
581   SmallVector<Type *, 16> ArgTys;
582   FunctionType *CalleeFTy = CI->getFunctionType();
583 
584   std::string Sig = getSignature(CalleeFTy);
585   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
586     return InvokeWrappers[Sig];
587 
588   // Put the pointer to the callee as first argument
589   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
590   // Add argument types
591   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
592 
593   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
594                                         CalleeFTy->isVarArg());
595   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
596   InvokeWrappers[Sig] = F;
597   return F;
598 }
599 
600 static bool canLongjmp(const Value *Callee) {
601   if (auto *CalleeF = dyn_cast<Function>(Callee))
602     if (CalleeF->isIntrinsic())
603       return false;
604 
605   // Attempting to transform inline assembly will result in something like:
606   //     call void @__invoke_void(void ()* asm ...)
607   // which is invalid because inline assembly blocks do not have addresses
608   // and can't be passed by pointer. The result is a crash with illegal IR.
609   if (isa<InlineAsm>(Callee))
610     return false;
611   StringRef CalleeName = Callee->getName();
612 
613   // TODO Include more functions or consider checking with mangled prefixes
614 
615   // The reason we include malloc/free here is to exclude the malloc/free
616   // calls generated in setjmp prep / cleanup routines.
617   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
618     return false;
619 
620   // There are functions in Emscripten's JS glue code or compiler-rt
621   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
622       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
623       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
624     return false;
625 
626   // __cxa_find_matching_catch_N functions cannot longjmp
627   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
628     return false;
629 
630   // Exception-catching related functions
631   //
632   // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though
633   // it surely cannot longjmp, in order to maintain the unwind relationship from
634   // all existing catchpads (and calls within them) to catch.dispatch.longjmp.
635   //
636   // In Wasm EH + Wasm SjLj, we
637   // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
638   //    catch.dispatch.longjmp instead
639   // 2. Convert all longjmpable calls to invokes that unwind to
640   //    catch.dispatch.longjmp
641   // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
642   // from an exception)'s catchpad does not contain any calls that are converted
643   // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
644   // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
645   // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
646   // CFGSort.
647   // int ret = setjmp(buf);
648   // try {
649   //   foo(); // longjmps
650   // } catch (...) {
651   // }
652   // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
653   // catchswitch, and is not caught by that catchswitch because it is a longjmp,
654   // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
655   // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
656   // it will not unwind to catch.dispatch.longjmp, producing an incorrect
657   // result.
658   //
659   // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
660   // intentionally treat it as longjmpable to work around this problem. This is
661   // a hacky fix but an easy one.
662   //
663   // The comment block in findWasmUnwindDestinations() in
664   // SelectionDAGBuilder.cpp is addressing a similar problem.
665   if (CalleeName == "__cxa_end_catch")
666     return WebAssembly::WasmEnableSjLj;
667   if (CalleeName == "__cxa_begin_catch" ||
668       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
669       CalleeName == "__clang_call_terminate")
670     return false;
671 
672   // std::terminate, which is generated when another exception occurs while
673   // handling an exception, cannot longjmp.
674   if (CalleeName == "_ZSt9terminatev")
675     return false;
676 
677   // Otherwise we don't know
678   return true;
679 }
680 
681 static bool isEmAsmCall(const Value *Callee) {
682   StringRef CalleeName = Callee->getName();
683   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
684   return CalleeName == "emscripten_asm_const_int" ||
685          CalleeName == "emscripten_asm_const_double" ||
686          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
687          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
688          CalleeName == "emscripten_asm_const_async_on_main_thread";
689 }
690 
691 // Generate testSetjmp function call seqence with preamble and postamble.
692 // The code this generates is equivalent to the following JavaScript code:
693 // %__threwValue.val = __threwValue;
694 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
695 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
696 //   if (%label == 0)
697 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
698 //   setTempRet0(%__threwValue.val);
699 // } else {
700 //   %label = -1;
701 // }
702 // %longjmp_result = getTempRet0();
703 //
704 // As output parameters. returns %label, %longjmp_result, and the BB the last
705 // instruction (%longjmp_result = ...) is in.
706 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
707     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
708     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
709     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
710     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
711   Function *F = BB->getParent();
712   Module *M = F->getParent();
713   LLVMContext &C = M->getContext();
714   IRBuilder<> IRB(C);
715   IRB.SetCurrentDebugLocation(DL);
716 
717   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
718   IRB.SetInsertPoint(BB);
719   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
720   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
721   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
722   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
723   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
724                                      ThrewValueGV->getName() + ".val");
725   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
726   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
727   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
728 
729   // Generate call.em.longjmp BB once and share it within the function
730   if (!CallEmLongjmpBB) {
731     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
732     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
733     IRB.SetInsertPoint(CallEmLongjmpBB);
734     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
735     CallEmLongjmpBBThrewValuePHI =
736         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
737     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
738     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
739     IRB.CreateCall(EmLongjmpF,
740                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
741     IRB.CreateUnreachable();
742   } else {
743     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
744     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
745   }
746 
747   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
748   // if (%label == 0)
749   IRB.SetInsertPoint(ThenBB1);
750   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
751   Value *ThrewPtr =
752       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
753   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
754                                       ThrewPtr->getName() + ".loaded");
755   Value *ThenLabel = IRB.CreateCall(
756       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
757   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
758   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
759 
760   // setTempRet0(%__threwValue.val);
761   IRB.SetInsertPoint(EndBB2);
762   IRB.CreateCall(SetTempRet0F, ThrewValue);
763   IRB.CreateBr(EndBB1);
764 
765   IRB.SetInsertPoint(ElseBB1);
766   IRB.CreateBr(EndBB1);
767 
768   // longjmp_result = getTempRet0();
769   IRB.SetInsertPoint(EndBB1);
770   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
771   LabelPHI->addIncoming(ThenLabel, EndBB2);
772 
773   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
774 
775   // Output parameter assignment
776   Label = LabelPHI;
777   EndBB = EndBB1;
778   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
779 }
780 
781 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
782   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
783   DT.recalculate(F); // CFG has been changed
784 
785   SSAUpdaterBulk SSA;
786   for (BasicBlock &BB : F) {
787     for (Instruction &I : BB) {
788       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
789       // If a value is defined by an invoke instruction, it is only available in
790       // its normal destination and not in its unwind destination.
791       if (auto *II = dyn_cast<InvokeInst>(&I))
792         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
793       else
794         SSA.AddAvailableValue(VarID, &BB, &I);
795       for (auto &U : I.uses()) {
796         auto *User = cast<Instruction>(U.getUser());
797         if (auto *UserPN = dyn_cast<PHINode>(User))
798           if (UserPN->getIncomingBlock(U) == &BB)
799             continue;
800         if (DT.dominates(&I, User))
801           continue;
802         SSA.AddUse(VarID, &U);
803       }
804     }
805   }
806   SSA.RewriteAllUses(&DT);
807 }
808 
809 // Replace uses of longjmp with a new longjmp function in Emscripten library.
810 // In Emscripten SjLj, the new function is
811 //   void emscripten_longjmp(uintptr_t, i32)
812 // In Wasm SjLj, the new function is
813 //   void __wasm_longjmp(i8*, i32)
814 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
815 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
816 // eventually be lowered to i32/i64 in the wasm backend.
817 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
818                                                           Function *NewF) {
819   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
820   Module *M = LongjmpF->getParent();
821   SmallVector<CallInst *, 8> ToErase;
822   LLVMContext &C = LongjmpF->getParent()->getContext();
823   IRBuilder<> IRB(C);
824 
825   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
826   // cast its first argument (jmp_buf*) appropriately
827   for (User *U : LongjmpF->users()) {
828     auto *CI = dyn_cast<CallInst>(U);
829     if (CI && CI->getCalledFunction() == LongjmpF) {
830       IRB.SetInsertPoint(CI);
831       Value *Env = nullptr;
832       if (NewF == EmLongjmpF)
833         Env =
834             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
835       else // WasmLongjmpF
836         Env =
837             IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env");
838       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
839       ToErase.push_back(CI);
840     }
841   }
842   for (auto *I : ToErase)
843     I->eraseFromParent();
844 
845   // If we have any remaining uses of longjmp's function pointer, replace it
846   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
847   if (!LongjmpF->uses().empty()) {
848     Value *NewLongjmp =
849         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
850     LongjmpF->replaceAllUsesWith(NewLongjmp);
851   }
852 }
853 
854 static bool containsLongjmpableCalls(const Function *F) {
855   for (const auto &BB : *F)
856     for (const auto &I : BB)
857       if (const auto *CB = dyn_cast<CallBase>(&I))
858         if (canLongjmp(CB->getCalledOperand()))
859           return true;
860   return false;
861 }
862 
863 // When a function contains a setjmp call but not other calls that can longjmp,
864 // we don't do setjmp transformation for that setjmp. But we need to convert the
865 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
866 // returns 0 when called directly.
867 static void nullifySetjmp(Function *F) {
868   Module &M = *F->getParent();
869   IRBuilder<> IRB(M.getContext());
870   Function *SetjmpF = M.getFunction("setjmp");
871   SmallVector<Instruction *, 1> ToErase;
872 
873   for (User *U : make_early_inc_range(SetjmpF->users())) {
874     auto *CB = cast<CallBase>(U);
875     BasicBlock *BB = CB->getParent();
876     if (BB->getParent() != F) // in other function
877       continue;
878     CallInst *CI = nullptr;
879     // setjmp cannot throw. So if it is an invoke, lower it to a call
880     if (auto *II = dyn_cast<InvokeInst>(CB))
881       CI = llvm::changeToCall(II);
882     else
883       CI = cast<CallInst>(CB);
884     ToErase.push_back(CI);
885     CI->replaceAllUsesWith(IRB.getInt32(0));
886   }
887   for (auto *I : ToErase)
888     I->eraseFromParent();
889 }
890 
891 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
892   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
893 
894   LLVMContext &C = M.getContext();
895   IRBuilder<> IRB(C);
896 
897   Function *SetjmpF = M.getFunction("setjmp");
898   Function *LongjmpF = M.getFunction("longjmp");
899 
900   // In some platforms _setjmp and _longjmp are used instead. Change these to
901   // use setjmp/longjmp instead, because we later detect these functions by
902   // their names.
903   Function *SetjmpF2 = M.getFunction("_setjmp");
904   Function *LongjmpF2 = M.getFunction("_longjmp");
905   if (SetjmpF2) {
906     if (SetjmpF) {
907       if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
908         report_fatal_error("setjmp and _setjmp have different function types");
909     } else {
910       SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
911                                  GlobalValue::ExternalLinkage, "setjmp", M);
912     }
913     SetjmpF2->replaceAllUsesWith(SetjmpF);
914   }
915   if (LongjmpF2) {
916     if (LongjmpF) {
917       if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
918         report_fatal_error(
919             "longjmp and _longjmp have different function types");
920     } else {
921       LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
922                                   GlobalValue::ExternalLinkage, "setjmp", M);
923     }
924     LongjmpF2->replaceAllUsesWith(LongjmpF);
925   }
926 
927   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
928   assert(TPC && "Expected a TargetPassConfig");
929   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
930 
931   // Declare (or get) global variables __THREW__, __threwValue, and
932   // getTempRet0/setTempRet0 function which are used in common for both
933   // exception handling and setjmp/longjmp handling
934   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
935   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
936   GetTempRet0F = getEmscriptenFunction(
937       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
938   SetTempRet0F = getEmscriptenFunction(
939       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
940       "setTempRet0", &M);
941   GetTempRet0F->setDoesNotThrow();
942   SetTempRet0F->setDoesNotThrow();
943 
944   bool Changed = false;
945 
946   // Function registration for exception handling
947   if (EnableEmEH) {
948     // Register __resumeException function
949     FunctionType *ResumeFTy =
950         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
951     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
952     ResumeF->addFnAttr(Attribute::NoReturn);
953 
954     // Register llvm_eh_typeid_for function
955     FunctionType *EHTypeIDTy =
956         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
957     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
958   }
959 
960   // Functions that contains calls to setjmp but don't have other longjmpable
961   // calls within them.
962   SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
963 
964   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
965     // Precompute setjmp users
966     for (User *U : SetjmpF->users()) {
967       if (auto *CB = dyn_cast<CallBase>(U)) {
968         auto *UserF = CB->getFunction();
969         // If a function that calls setjmp does not contain any other calls that
970         // can longjmp, we don't need to do any transformation on that function,
971         // so can ignore it
972         if (containsLongjmpableCalls(UserF))
973           SetjmpUsers.insert(UserF);
974         else
975           SetjmpUsersToNullify.insert(UserF);
976       } else {
977         std::string S;
978         raw_string_ostream SS(S);
979         SS << *U;
980         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
981                            SS.str());
982       }
983     }
984   }
985 
986   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
987   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
988   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
989 
990   // Function registration and data pre-gathering for setjmp/longjmp handling
991   if (DoSjLj) {
992     assert(EnableEmSjLj || EnableWasmSjLj);
993     if (EnableEmSjLj) {
994       // Register emscripten_longjmp function
995       FunctionType *FTy = FunctionType::get(
996           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
997       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
998       EmLongjmpF->addFnAttr(Attribute::NoReturn);
999     } else { // EnableWasmSjLj
1000       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
1001       FunctionType *FTy = FunctionType::get(
1002           IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false);
1003       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
1004       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
1005     }
1006 
1007     if (SetjmpF) {
1008       // Register saveSetjmp function
1009       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1010       FunctionType *FTy =
1011           FunctionType::get(Type::getInt32PtrTy(C),
1012                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
1013                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
1014                             false);
1015       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
1016 
1017       // Register testSetjmp function
1018       FTy = FunctionType::get(
1019           IRB.getInt32Ty(),
1020           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
1021           false);
1022       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
1023 
1024       // wasm.catch() will be lowered down to wasm 'catch' instruction in
1025       // instruction selection.
1026       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
1027       // Type for struct __WasmLongjmpArgs
1028       LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env
1029                                       IRB.getInt32Ty()    // val
1030       );
1031     }
1032   }
1033 
1034   // Exception handling transformation
1035   if (EnableEmEH) {
1036     for (Function &F : M) {
1037       if (F.isDeclaration())
1038         continue;
1039       Changed |= runEHOnFunction(F);
1040     }
1041   }
1042 
1043   // Setjmp/longjmp handling transformation
1044   if (DoSjLj) {
1045     Changed = true; // We have setjmp or longjmp somewhere
1046     if (LongjmpF)
1047       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1048     // Only traverse functions that uses setjmp in order not to insert
1049     // unnecessary prep / cleanup code in every function
1050     if (SetjmpF)
1051       for (Function *F : SetjmpUsers)
1052         runSjLjOnFunction(*F);
1053   }
1054 
1055   // Replace unnecessary setjmp calls with 0
1056   if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1057     Changed = true;
1058     assert(SetjmpF);
1059     for (Function *F : SetjmpUsersToNullify)
1060       nullifySetjmp(F);
1061   }
1062 
1063   // Delete unused global variables and functions
1064   for (auto *V : {ThrewGV, ThrewValueGV})
1065     if (V && V->use_empty())
1066       V->eraseFromParent();
1067   for (auto *V : {GetTempRet0F, SetTempRet0F, ResumeF, EHTypeIDF, EmLongjmpF,
1068                   SaveSetjmpF, TestSetjmpF, WasmLongjmpF, CatchF})
1069     if (V && V->use_empty())
1070       V->eraseFromParent();
1071 
1072   return Changed;
1073 }
1074 
1075 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1076   Module &M = *F.getParent();
1077   LLVMContext &C = F.getContext();
1078   IRBuilder<> IRB(C);
1079   bool Changed = false;
1080   SmallVector<Instruction *, 64> ToErase;
1081   SmallPtrSet<LandingPadInst *, 32> LandingPads;
1082 
1083   // rethrow.longjmp BB that will be shared within the function.
1084   BasicBlock *RethrowLongjmpBB = nullptr;
1085   // PHI node for the loaded value of __THREW__ global variable in
1086   // rethrow.longjmp BB
1087   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1088 
1089   for (BasicBlock &BB : F) {
1090     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1091     if (!II)
1092       continue;
1093     Changed = true;
1094     LandingPads.insert(II->getLandingPadInst());
1095     IRB.SetInsertPoint(II);
1096 
1097     const Value *Callee = II->getCalledOperand();
1098     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1099     if (NeedInvoke) {
1100       // Wrap invoke with invoke wrapper and generate preamble/postamble
1101       Value *Threw = wrapInvoke(II);
1102       ToErase.push_back(II);
1103 
1104       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1105       // exception but a longjmp. If the current function contains calls to
1106       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1107       // if the function does not contain setjmp calls, we shouldn't silently
1108       // ignore longjmps; we should rethrow them so they can be correctly
1109       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1110       // value is 0 when nothing happened, 1 when an exception is thrown, and
1111       // other values when longjmp is thrown.
1112       //
1113       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1114       //   goto %tail
1115       // else
1116       //   goto %longjmp.rethrow
1117       //
1118       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1119       //   %__threwValue.val = __threwValue
1120       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1121       //
1122       // tail: ;; Nothing happened or an exception is thrown
1123       //   ... Continue exception handling ...
1124       if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1125           canLongjmp(Callee)) {
1126         // Create longjmp.rethrow BB once and share it within the function
1127         if (!RethrowLongjmpBB) {
1128           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1129           IRB.SetInsertPoint(RethrowLongjmpBB);
1130           RethrowLongjmpBBThrewPHI =
1131               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1132           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1133           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1134                                              ThrewValueGV->getName() + ".val");
1135           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1136           IRB.CreateUnreachable();
1137         } else {
1138           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1139         }
1140 
1141         IRB.SetInsertPoint(II); // Restore the insert point back
1142         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1143         Value *CmpEqOne =
1144             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1145         Value *CmpEqZero =
1146             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1147         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1148         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1149         IRB.SetInsertPoint(Tail);
1150         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1151       }
1152 
1153       // Insert a branch based on __THREW__ variable
1154       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1155       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1156 
1157     } else {
1158       // This can't throw, and we don't need this invoke, just replace it with a
1159       // call+branch
1160       changeToCall(II);
1161     }
1162   }
1163 
1164   // Process resume instructions
1165   for (BasicBlock &BB : F) {
1166     // Scan the body of the basic block for resumes
1167     for (Instruction &I : BB) {
1168       auto *RI = dyn_cast<ResumeInst>(&I);
1169       if (!RI)
1170         continue;
1171       Changed = true;
1172 
1173       // Split the input into legal values
1174       Value *Input = RI->getValue();
1175       IRB.SetInsertPoint(RI);
1176       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1177       // Create a call to __resumeException function
1178       IRB.CreateCall(ResumeF, {Low});
1179       // Add a terminator to the block
1180       IRB.CreateUnreachable();
1181       ToErase.push_back(RI);
1182     }
1183   }
1184 
1185   // Process llvm.eh.typeid.for intrinsics
1186   for (BasicBlock &BB : F) {
1187     for (Instruction &I : BB) {
1188       auto *CI = dyn_cast<CallInst>(&I);
1189       if (!CI)
1190         continue;
1191       const Function *Callee = CI->getCalledFunction();
1192       if (!Callee)
1193         continue;
1194       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1195         continue;
1196       Changed = true;
1197 
1198       IRB.SetInsertPoint(CI);
1199       CallInst *NewCI =
1200           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1201       CI->replaceAllUsesWith(NewCI);
1202       ToErase.push_back(CI);
1203     }
1204   }
1205 
1206   // Look for orphan landingpads, can occur in blocks with no predecessors
1207   for (BasicBlock &BB : F) {
1208     Instruction *I = BB.getFirstNonPHI();
1209     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1210       LandingPads.insert(LPI);
1211   }
1212   Changed |= !LandingPads.empty();
1213 
1214   // Handle all the landingpad for this function together, as multiple invokes
1215   // may share a single lp
1216   for (LandingPadInst *LPI : LandingPads) {
1217     IRB.SetInsertPoint(LPI);
1218     SmallVector<Value *, 16> FMCArgs;
1219     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1220       Constant *Clause = LPI->getClause(I);
1221       // TODO Handle filters (= exception specifications).
1222       // https://bugs.llvm.org/show_bug.cgi?id=50396
1223       if (LPI->isCatch(I))
1224         FMCArgs.push_back(Clause);
1225     }
1226 
1227     // Create a call to __cxa_find_matching_catch_N function
1228     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1229     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1230     Value *Undef = UndefValue::get(LPI->getType());
1231     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
1232     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
1233     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1234 
1235     LPI->replaceAllUsesWith(Pair1);
1236     ToErase.push_back(LPI);
1237   }
1238 
1239   // Erase everything we no longer need in this function
1240   for (Instruction *I : ToErase)
1241     I->eraseFromParent();
1242 
1243   return Changed;
1244 }
1245 
1246 // This tries to get debug info from the instruction before which a new
1247 // instruction will be inserted, and if there's no debug info in that
1248 // instruction, tries to get the info instead from the previous instruction (if
1249 // any). If none of these has debug info and a DISubprogram is provided, it
1250 // creates a dummy debug info with the first line of the function, because IR
1251 // verifier requires all inlinable callsites should have debug info when both a
1252 // caller and callee have DISubprogram. If none of these conditions are met,
1253 // returns empty info.
1254 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1255                                     DISubprogram *SP) {
1256   assert(InsertBefore);
1257   if (InsertBefore->getDebugLoc())
1258     return InsertBefore->getDebugLoc();
1259   const Instruction *Prev = InsertBefore->getPrevNode();
1260   if (Prev && Prev->getDebugLoc())
1261     return Prev->getDebugLoc();
1262   if (SP)
1263     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1264   return DebugLoc();
1265 }
1266 
1267 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1268   assert(EnableEmSjLj || EnableWasmSjLj);
1269   Module &M = *F.getParent();
1270   LLVMContext &C = F.getContext();
1271   IRBuilder<> IRB(C);
1272   SmallVector<Instruction *, 64> ToErase;
1273   // Vector of %setjmpTable values
1274   SmallVector<Instruction *, 4> SetjmpTableInsts;
1275   // Vector of %setjmpTableSize values
1276   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1277 
1278   // Setjmp preparation
1279 
1280   // This instruction effectively means %setjmpTableSize = 4.
1281   // We create this as an instruction intentionally, and we don't want to fold
1282   // this instruction to a constant 4, because this value will be used in
1283   // SSAUpdater.AddAvailableValue(...) later.
1284   BasicBlock *Entry = &F.getEntryBlock();
1285   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1286   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1287 
1288   BinaryOperator *SetjmpTableSize =
1289       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1290                              "setjmpTableSize", Entry->getTerminator());
1291   SetjmpTableSize->setDebugLoc(FirstDL);
1292   // setjmpTable = (int *) malloc(40);
1293   Instruction *SetjmpTable = CallInst::CreateMalloc(
1294       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1295       nullptr, nullptr, "setjmpTable");
1296   SetjmpTable->setDebugLoc(FirstDL);
1297   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1298   // mismatch. We need to set the debug loc for the original call too.
1299   auto *MallocCall = SetjmpTable->stripPointerCasts();
1300   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1301     MallocCallI->setDebugLoc(FirstDL);
1302   }
1303   // setjmpTable[0] = 0;
1304   IRB.SetInsertPoint(SetjmpTableSize);
1305   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1306   SetjmpTableInsts.push_back(SetjmpTable);
1307   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1308 
1309   // Setjmp transformation
1310   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1311   Function *SetjmpF = M.getFunction("setjmp");
1312   for (auto *U : make_early_inc_range(SetjmpF->users())) {
1313     auto *CB = cast<CallBase>(U);
1314     BasicBlock *BB = CB->getParent();
1315     if (BB->getParent() != &F) // in other function
1316       continue;
1317     if (CB->getOperandBundle(LLVMContext::OB_funclet)) {
1318       std::string S;
1319       raw_string_ostream SS(S);
1320       SS << "In function " + F.getName() +
1321                 ": setjmp within a catch clause is not supported in Wasm EH:\n";
1322       SS << *CB;
1323       report_fatal_error(StringRef(SS.str()));
1324     }
1325 
1326     CallInst *CI = nullptr;
1327     // setjmp cannot throw. So if it is an invoke, lower it to a call
1328     if (auto *II = dyn_cast<InvokeInst>(CB))
1329       CI = llvm::changeToCall(II);
1330     else
1331       CI = cast<CallInst>(CB);
1332 
1333     // The tail is everything right after the call, and will be reached once
1334     // when setjmp is called, and later when longjmp returns to the setjmp
1335     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1336     // Add a phi to the tail, which will be the output of setjmp, which
1337     // indicates if this is the first call or a longjmp back. The phi directly
1338     // uses the right value based on where we arrive from
1339     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1340     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1341 
1342     // setjmp initial call returns 0
1343     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1344     // The proper output is now this, not the setjmp call itself
1345     CI->replaceAllUsesWith(SetjmpRet);
1346     // longjmp returns to the setjmp will add themselves to this phi
1347     SetjmpRetPHIs.push_back(SetjmpRet);
1348 
1349     // Fix call target
1350     // Our index in the function is our place in the array + 1 to avoid index
1351     // 0, because index 0 means the longjmp is not ours to handle.
1352     IRB.SetInsertPoint(CI);
1353     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1354                      SetjmpTable, SetjmpTableSize};
1355     Instruction *NewSetjmpTable =
1356         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1357     Instruction *NewSetjmpTableSize =
1358         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1359     SetjmpTableInsts.push_back(NewSetjmpTable);
1360     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1361     ToErase.push_back(CI);
1362   }
1363 
1364   // Handle longjmpable calls.
1365   if (EnableEmSjLj)
1366     handleLongjmpableCallsForEmscriptenSjLj(
1367         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1368   else // EnableWasmSjLj
1369     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1370                                       SetjmpRetPHIs);
1371 
1372   // Erase everything we no longer need in this function
1373   for (Instruction *I : ToErase)
1374     I->eraseFromParent();
1375 
1376   // Free setjmpTable buffer before each return instruction + function-exiting
1377   // call
1378   SmallVector<Instruction *, 16> ExitingInsts;
1379   for (BasicBlock &BB : F) {
1380     Instruction *TI = BB.getTerminator();
1381     if (isa<ReturnInst>(TI))
1382       ExitingInsts.push_back(TI);
1383     // Any 'call' instruction with 'noreturn' attribute exits the function at
1384     // this point. If this throws but unwinds to another EH pad within this
1385     // function instead of exiting, this would have been an 'invoke', which
1386     // happens if we use Wasm EH or Wasm SjLJ.
1387     for (auto &I : BB) {
1388       if (auto *CI = dyn_cast<CallInst>(&I)) {
1389         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1390         if (Function *CalleeF = CI->getCalledFunction())
1391           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1392         if (IsNoReturn)
1393           ExitingInsts.push_back(&I);
1394       }
1395     }
1396   }
1397   for (auto *I : ExitingInsts) {
1398     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1399     // If this existing instruction is a call within a catchpad, we should add
1400     // it as "funclet" to the operand bundle of 'free' call
1401     SmallVector<OperandBundleDef, 1> Bundles;
1402     if (auto *CB = dyn_cast<CallBase>(I))
1403       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1404         Bundles.push_back(OperandBundleDef(*Bundle));
1405     auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I);
1406     Free->setDebugLoc(DL);
1407     // CallInst::CreateFree may create a bitcast instruction if its argument
1408     // types mismatch. We need to set the debug loc for the bitcast too.
1409     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1410       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1411         BitCastI->setDebugLoc(DL);
1412     }
1413   }
1414 
1415   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1416   // (when buffer reallocation occurs)
1417   // entry:
1418   //   setjmpTableSize = 4;
1419   //   setjmpTable = (int *) malloc(40);
1420   //   setjmpTable[0] = 0;
1421   // ...
1422   // somebb:
1423   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1424   //   setjmpTableSize = getTempRet0();
1425   // So we need to make sure the SSA for these variables is valid so that every
1426   // saveSetjmp and testSetjmp calls have the correct arguments.
1427   SSAUpdater SetjmpTableSSA;
1428   SSAUpdater SetjmpTableSizeSSA;
1429   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1430   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1431   for (Instruction *I : SetjmpTableInsts)
1432     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1433   for (Instruction *I : SetjmpTableSizeInsts)
1434     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1435 
1436   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1437     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1438       if (I->getParent() != Entry)
1439         SetjmpTableSSA.RewriteUse(U);
1440   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1441     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1442       if (I->getParent() != Entry)
1443         SetjmpTableSizeSSA.RewriteUse(U);
1444 
1445   // Finally, our modifications to the cfg can break dominance of SSA variables.
1446   // For example, in this code,
1447   // if (x()) { .. setjmp() .. }
1448   // if (y()) { .. longjmp() .. }
1449   // We must split the longjmp block, and it can jump into the block splitted
1450   // from setjmp one. But that means that when we split the setjmp block, it's
1451   // first part no longer dominates its second part - there is a theoretically
1452   // possible control flow path where x() is false, then y() is true and we
1453   // reach the second part of the setjmp block, without ever reaching the first
1454   // part. So, we rebuild SSA form here.
1455   rebuildSSA(F);
1456   return true;
1457 }
1458 
1459 // Update each call that can longjmp so it can return to the corresponding
1460 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1461 // comments at top of the file for details.
1462 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1463     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1464     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1465   Module &M = *F.getParent();
1466   LLVMContext &C = F.getContext();
1467   IRBuilder<> IRB(C);
1468   SmallVector<Instruction *, 64> ToErase;
1469 
1470   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1471   // These values are defined in the beginning of the function and also in each
1472   // setjmp callsite, but we don't know which values we should use at this
1473   // point. So here we arbitraily use the ones defined in the beginning of the
1474   // function, and SSAUpdater will later update them to the correct values.
1475   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1476   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1477 
1478   // call.em.longjmp BB that will be shared within the function.
1479   BasicBlock *CallEmLongjmpBB = nullptr;
1480   // PHI node for the loaded value of __THREW__ global variable in
1481   // call.em.longjmp BB
1482   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1483   // PHI node for the loaded value of __threwValue global variable in
1484   // call.em.longjmp BB
1485   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1486   // rethrow.exn BB that will be shared within the function.
1487   BasicBlock *RethrowExnBB = nullptr;
1488 
1489   // Because we are creating new BBs while processing and don't want to make
1490   // all these newly created BBs candidates again for longjmp processing, we
1491   // first make the vector of candidate BBs.
1492   std::vector<BasicBlock *> BBs;
1493   for (BasicBlock &BB : F)
1494     BBs.push_back(&BB);
1495 
1496   // BBs.size() will change within the loop, so we query it every time
1497   for (unsigned I = 0; I < BBs.size(); I++) {
1498     BasicBlock *BB = BBs[I];
1499     for (Instruction &I : *BB) {
1500       if (isa<InvokeInst>(&I)) {
1501         std::string S;
1502         raw_string_ostream SS(S);
1503         SS << "In function " << F.getName()
1504            << ": When using Wasm EH with Emscripten SjLj, there is a "
1505               "restriction that `setjmp` function call and exception cannot be "
1506               "used within the same function:\n";
1507         SS << I;
1508         report_fatal_error(StringRef(SS.str()));
1509       }
1510       auto *CI = dyn_cast<CallInst>(&I);
1511       if (!CI)
1512         continue;
1513 
1514       const Value *Callee = CI->getCalledOperand();
1515       if (!canLongjmp(Callee))
1516         continue;
1517       if (isEmAsmCall(Callee))
1518         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1519                                F.getName() +
1520                                ". Please consider using EM_JS, or move the "
1521                                "EM_ASM into another function.",
1522                            false);
1523 
1524       Value *Threw = nullptr;
1525       BasicBlock *Tail;
1526       if (Callee->getName().startswith("__invoke_")) {
1527         // If invoke wrapper has already been generated for this call in
1528         // previous EH phase, search for the load instruction
1529         // %__THREW__.val = __THREW__;
1530         // in postamble after the invoke wrapper call
1531         LoadInst *ThrewLI = nullptr;
1532         StoreInst *ThrewResetSI = nullptr;
1533         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1534              I != IE; ++I) {
1535           if (auto *LI = dyn_cast<LoadInst>(I))
1536             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1537               if (GV == ThrewGV) {
1538                 Threw = ThrewLI = LI;
1539                 break;
1540               }
1541         }
1542         // Search for the store instruction after the load above
1543         // __THREW__ = 0;
1544         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1545              I != IE; ++I) {
1546           if (auto *SI = dyn_cast<StoreInst>(I)) {
1547             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1548               if (GV == ThrewGV &&
1549                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1550                 ThrewResetSI = SI;
1551                 break;
1552               }
1553             }
1554           }
1555         }
1556         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1557         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1558         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1559 
1560       } else {
1561         // Wrap call with invoke wrapper and generate preamble/postamble
1562         Threw = wrapInvoke(CI);
1563         ToErase.push_back(CI);
1564         Tail = SplitBlock(BB, CI->getNextNode());
1565 
1566         // If exception handling is enabled, the thrown value can be not a
1567         // longjmp but an exception, in which case we shouldn't silently ignore
1568         // exceptions; we should rethrow them.
1569         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1570         // thrown, other values when longjmp is thrown.
1571         //
1572         // if (%__THREW__.val == 1)
1573         //   goto %eh.rethrow
1574         // else
1575         //   goto %normal
1576         //
1577         // eh.rethrow: ;; Rethrow exception
1578         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1579         //   __resumeException(%exn)
1580         //
1581         // normal:
1582         //   <-- Insertion point. Will insert sjlj handling code from here
1583         //   goto %tail
1584         //
1585         // tail:
1586         //   ...
1587         if (supportsException(&F) && canThrow(Callee)) {
1588           // We will add a new conditional branch. So remove the branch created
1589           // when we split the BB
1590           ToErase.push_back(BB->getTerminator());
1591 
1592           // Generate rethrow.exn BB once and share it within the function
1593           if (!RethrowExnBB) {
1594             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1595             IRB.SetInsertPoint(RethrowExnBB);
1596             CallInst *Exn =
1597                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1598             IRB.CreateCall(ResumeF, {Exn});
1599             IRB.CreateUnreachable();
1600           }
1601 
1602           IRB.SetInsertPoint(CI);
1603           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1604           Value *CmpEqOne =
1605               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1606           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1607 
1608           IRB.SetInsertPoint(NormalBB);
1609           IRB.CreateBr(Tail);
1610           BB = NormalBB; // New insertion point to insert testSetjmp()
1611         }
1612       }
1613 
1614       // We need to replace the terminator in Tail - SplitBlock makes BB go
1615       // straight to Tail, we need to check if a longjmp occurred, and go to the
1616       // right setjmp-tail if so
1617       ToErase.push_back(BB->getTerminator());
1618 
1619       // Generate a function call to testSetjmp function and preamble/postamble
1620       // code to figure out (1) whether longjmp occurred (2) if longjmp
1621       // occurred, which setjmp it corresponds to
1622       Value *Label = nullptr;
1623       Value *LongjmpResult = nullptr;
1624       BasicBlock *EndBB = nullptr;
1625       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1626                      Label, LongjmpResult, CallEmLongjmpBB,
1627                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1628                      EndBB);
1629       assert(Label && LongjmpResult && EndBB);
1630 
1631       // Create switch instruction
1632       IRB.SetInsertPoint(EndBB);
1633       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1634       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1635       // -1 means no longjmp happened, continue normally (will hit the default
1636       // switch case). 0 means a longjmp that is not ours to handle, needs a
1637       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1638       // 0).
1639       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1640         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1641         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1642       }
1643 
1644       // We are splitting the block here, and must continue to find other calls
1645       // in the block - which is now split. so continue to traverse in the Tail
1646       BBs.push_back(Tail);
1647     }
1648   }
1649 
1650   for (Instruction *I : ToErase)
1651     I->eraseFromParent();
1652 }
1653 
1654 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) {
1655   for (const User *U : CPI->users())
1656     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1657       return CRI->getUnwindDest();
1658   return nullptr;
1659 }
1660 
1661 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1662 // if the longjmp corresponds to one of setjmps in the current function, and if
1663 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1664 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1665 // top of the file for details.
1666 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1667     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1668     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1669   Module &M = *F.getParent();
1670   LLVMContext &C = F.getContext();
1671   IRBuilder<> IRB(C);
1672 
1673   // A function with catchswitch/catchpad instruction should have a personality
1674   // function attached to it. Search for the wasm personality function, and if
1675   // it exists, use it, and if it doesn't, create a dummy personality function.
1676   // (SjLj is not going to call it anyway.)
1677   if (!F.hasPersonalityFn()) {
1678     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1679     FunctionType *PersType =
1680         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1681     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1682     F.setPersonalityFn(
1683         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy())));
1684   }
1685 
1686   // Use the entry BB's debugloc as a fallback
1687   BasicBlock *Entry = &F.getEntryBlock();
1688   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1689   IRB.SetCurrentDebugLocation(FirstDL);
1690 
1691   // Arbitrarily use the ones defined in the beginning of the function.
1692   // SSAUpdater will later update them to the correct values.
1693   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1694   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1695 
1696   // Add setjmp.dispatch BB right after the entry block. Because we have
1697   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1698   // rest into another BB, here 'OrigEntry' is the function's original entry
1699   // block before the transformation.
1700   //
1701   // entry:
1702   //   setjmpTable / setjmpTableSize initialization
1703   // setjmp.dispatch:
1704   //   switch will be inserted here later
1705   // entry.split: (OrigEntry)
1706   //   the original function starts here
1707   BasicBlock *OrigEntry = Entry->getNextNode();
1708   BasicBlock *SetjmpDispatchBB =
1709       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1710   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1711 
1712   // Create catch.dispatch.longjmp BB and a catchswitch instruction
1713   BasicBlock *CatchDispatchLongjmpBB =
1714       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1715   IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1716   CatchSwitchInst *CatchSwitchLongjmp =
1717       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1718 
1719   // Create catch.longjmp BB and a catchpad instruction
1720   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1721   CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1722   IRB.SetInsertPoint(CatchLongjmpBB);
1723   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1724 
1725   // Wasm throw and catch instructions can throw and catch multiple values, but
1726   // that requires multivalue support in the toolchain, which is currently not
1727   // very reliable. We instead throw and catch a pointer to a struct value of
1728   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1729   Instruction *CatchCI =
1730       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1731   Value *LongjmpArgs =
1732       IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args");
1733   Value *EnvField =
1734       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1735   Value *ValField =
1736       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1737   // void *env = __wasm_longjmp_args.env;
1738   Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env");
1739   // int val = __wasm_longjmp_args.val;
1740   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1741 
1742   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1743   // if (%label == 0)
1744   //   __wasm_longjmp(%env, %val)
1745   // catchret to %setjmp.dispatch
1746   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1747   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1748   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1749   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1750   Value *Label =
1751       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1752                      OperandBundleDef("funclet", CatchPad), "label");
1753   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1754   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1755 
1756   IRB.SetInsertPoint(ThenBB);
1757   CallInst *WasmLongjmpCI = IRB.CreateCall(
1758       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1759   IRB.CreateUnreachable();
1760 
1761   IRB.SetInsertPoint(EndBB);
1762   // Jump to setjmp.dispatch block
1763   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1764 
1765   // Go back to setjmp.dispatch BB
1766   // setjmp.dispatch:
1767   //   switch %label {
1768   //     label 1: goto post-setjmp BB 1
1769   //     label 2: goto post-setjmp BB 2
1770   //     ...
1771   //     default: goto splitted next BB
1772   //   }
1773   IRB.SetInsertPoint(SetjmpDispatchBB);
1774   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1775   LabelPHI->addIncoming(Label, EndBB);
1776   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1777   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1778   // -1 means no longjmp happened, continue normally (will hit the default
1779   // switch case). 0 means a longjmp that is not ours to handle, needs a
1780   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1781   // 0).
1782   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1783     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1784     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1785   }
1786 
1787   // Convert all longjmpable call instructions to invokes that unwind to the
1788   // newly created catch.dispatch.longjmp BB.
1789   SmallVector<CallInst *, 64> LongjmpableCalls;
1790   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1791     for (auto &I : *BB) {
1792       auto *CI = dyn_cast<CallInst>(&I);
1793       if (!CI)
1794         continue;
1795       const Value *Callee = CI->getCalledOperand();
1796       if (!canLongjmp(Callee))
1797         continue;
1798       if (isEmAsmCall(Callee))
1799         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1800                                F.getName() +
1801                                ". Please consider using EM_JS, or move the "
1802                                "EM_ASM into another function.",
1803                            false);
1804       // This is __wasm_longjmp() call we inserted in this function, which
1805       // rethrows the longjmp when the longjmp does not correspond to one of
1806       // setjmps in this function. We should not convert this call to an invoke.
1807       if (CI == WasmLongjmpCI)
1808         continue;
1809       LongjmpableCalls.push_back(CI);
1810     }
1811   }
1812 
1813   for (auto *CI : LongjmpableCalls) {
1814     // Even if the callee function has attribute 'nounwind', which is true for
1815     // all C functions, it can longjmp, which means it can throw a Wasm
1816     // exception now.
1817     CI->removeFnAttr(Attribute::NoUnwind);
1818     if (Function *CalleeF = CI->getCalledFunction())
1819       CalleeF->removeFnAttr(Attribute::NoUnwind);
1820 
1821     // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1822     // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1823     // to its parent pad's unwind destination instead to preserve the scope
1824     // structure. It will eventually unwind to the catch.dispatch.longjmp.
1825     SmallVector<OperandBundleDef, 1> Bundles;
1826     BasicBlock *UnwindDest = nullptr;
1827     if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1828       Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1829       while (!UnwindDest) {
1830         if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1831           UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1832           break;
1833         }
1834         if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1835           // getCleanupRetUnwindDest() can return nullptr when
1836           // 1. This cleanuppad's matching cleanupret uwninds to caller
1837           // 2. There is no matching cleanupret because it ends with
1838           //    unreachable.
1839           // In case of 2, we need to traverse the parent pad chain.
1840           UnwindDest = getCleanupRetUnwindDest(CPI);
1841           Value *ParentPad = CPI->getParentPad();
1842           if (isa<ConstantTokenNone>(ParentPad))
1843             break;
1844           FromPad = cast<Instruction>(ParentPad);
1845         }
1846       }
1847     }
1848     if (!UnwindDest)
1849       UnwindDest = CatchDispatchLongjmpBB;
1850     changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1851   }
1852 
1853   SmallVector<Instruction *, 16> ToErase;
1854   for (auto &BB : F) {
1855     if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) {
1856       if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1857         IRB.SetInsertPoint(CSI);
1858         ToErase.push_back(CSI);
1859         auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1860                                              CatchDispatchLongjmpBB, 1);
1861         NewCSI->addHandler(*CSI->handler_begin());
1862         NewCSI->takeName(CSI);
1863         CSI->replaceAllUsesWith(NewCSI);
1864       }
1865     }
1866 
1867     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1868       if (CRI->unwindsToCaller()) {
1869         IRB.SetInsertPoint(CRI);
1870         ToErase.push_back(CRI);
1871         IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1872       }
1873     }
1874   }
1875 
1876   for (Instruction *I : ToErase)
1877     I->eraseFromParent();
1878 }
1879