xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (revision 2f9966ff63d65bd474478888c9088eeae3f9c669)
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
271 #include "WebAssembly.h"
272 #include "WebAssemblyTargetMachine.h"
273 #include "llvm/ADT/StringExtras.h"
274 #include "llvm/CodeGen/TargetPassConfig.h"
275 #include "llvm/CodeGen/WasmEHFuncInfo.h"
276 #include "llvm/IR/DebugInfoMetadata.h"
277 #include "llvm/IR/Dominators.h"
278 #include "llvm/IR/IRBuilder.h"
279 #include "llvm/IR/IntrinsicsWebAssembly.h"
280 #include "llvm/Support/CommandLine.h"
281 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
282 #include "llvm/Transforms/Utils/Local.h"
283 #include "llvm/Transforms/Utils/SSAUpdater.h"
284 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
285 #include <set>
286 
287 using namespace llvm;
288 
289 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
290 
291 static cl::list<std::string>
292     EHAllowlist("emscripten-cxx-exceptions-allowed",
293                 cl::desc("The list of function names in which Emscripten-style "
294                          "exception handling is enabled (see emscripten "
295                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
296                 cl::CommaSeparated);
297 
298 namespace {
299 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
300   bool EnableEmEH;     // Enable Emscripten exception handling
301   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
302   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
303   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
304 
305   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
306   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
307   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
308   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
309   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
310   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
311   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
312   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
313   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
314   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
315   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
316 
317   // type of 'struct __WasmLongjmpArgs' defined in emscripten
318   Type *LongjmpArgsTy = nullptr;
319 
320   // __cxa_find_matching_catch_N functions.
321   // Indexed by the number of clauses in an original landingpad instruction.
322   DenseMap<int, Function *> FindMatchingCatches;
323   // Map of <function signature string, invoke_ wrappers>
324   StringMap<Function *> InvokeWrappers;
325   // Set of allowed function names for exception handling
326   std::set<std::string> EHAllowlistSet;
327   // Functions that contains calls to setjmp
328   SmallPtrSet<Function *, 8> SetjmpUsers;
329 
330   StringRef getPassName() const override {
331     return "WebAssembly Lower Emscripten Exceptions";
332   }
333 
334   using InstVector = SmallVectorImpl<Instruction *>;
335   bool runEHOnFunction(Function &F);
336   bool runSjLjOnFunction(Function &F);
337   void handleLongjmpableCallsForEmscriptenSjLj(
338       Function &F, InstVector &SetjmpTableInsts,
339       InstVector &SetjmpTableSizeInsts,
340       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
341   void
342   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
343                                     InstVector &SetjmpTableSizeInsts,
344                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
345   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
346 
347   Value *wrapInvoke(CallBase *CI);
348   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
349                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
350                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
351                       PHINode *&CallEmLongjmpBBThrewPHI,
352                       PHINode *&CallEmLongjmpBBThrewValuePHI,
353                       BasicBlock *&EndBB);
354   Function *getInvokeWrapper(CallBase *CI);
355 
356   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
357   bool supportsException(const Function *F) const {
358     return EnableEmEH && (areAllExceptionsAllowed() ||
359                           EHAllowlistSet.count(std::string(F->getName())));
360   }
361   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
362 
363   void rebuildSSA(Function &F);
364 
365 public:
366   static char ID;
367 
368   WebAssemblyLowerEmscriptenEHSjLj()
369       : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
370         EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
371         EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
372     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
373            "Two SjLj modes cannot be turned on at the same time");
374     assert(!(EnableEmEH && EnableWasmSjLj) &&
375            "Wasm SjLj should be only used with Wasm EH");
376     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
377   }
378   bool runOnModule(Module &M) override;
379 
380   void getAnalysisUsage(AnalysisUsage &AU) const override {
381     AU.addRequired<DominatorTreeWrapperPass>();
382   }
383 };
384 } // End anonymous namespace
385 
386 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
387 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
388                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
389                 false, false)
390 
391 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
392   return new WebAssemblyLowerEmscriptenEHSjLj();
393 }
394 
395 static bool canThrow(const Value *V) {
396   if (const auto *F = dyn_cast<const Function>(V)) {
397     // Intrinsics cannot throw
398     if (F->isIntrinsic())
399       return false;
400     StringRef Name = F->getName();
401     // leave setjmp and longjmp (mostly) alone, we process them properly later
402     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
403       return false;
404     return !F->doesNotThrow();
405   }
406   // not a function, so an indirect call - can throw, we can't tell
407   return true;
408 }
409 
410 // Get a thread-local global variable with the given name. If it doesn't exist
411 // declare it, which will generate an import and assume that it will exist at
412 // link time.
413 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
414                                          WebAssemblyTargetMachine &TM,
415                                          const char *Name) {
416   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
417   if (!GV)
418     report_fatal_error(Twine("unable to create global: ") + Name);
419 
420   // Variables created by this function are thread local. If the target does not
421   // support TLS, we depend on CoalesceFeaturesAndStripAtomics to downgrade it
422   // to non-thread-local ones, in which case we don't allow this object to be
423   // linked with other objects using shared memory.
424   GV->setThreadLocalMode(GlobalValue::GeneralDynamicTLSModel);
425   return GV;
426 }
427 
428 // Simple function name mangler.
429 // This function simply takes LLVM's string representation of parameter types
430 // and concatenate them with '_'. There are non-alphanumeric characters but llc
431 // is ok with it, and we need to postprocess these names after the lowering
432 // phase anyway.
433 static std::string getSignature(FunctionType *FTy) {
434   std::string Sig;
435   raw_string_ostream OS(Sig);
436   OS << *FTy->getReturnType();
437   for (Type *ParamTy : FTy->params())
438     OS << "_" << *ParamTy;
439   if (FTy->isVarArg())
440     OS << "_...";
441   Sig = OS.str();
442   erase_if(Sig, isSpace);
443   // When s2wasm parses .s file, a comma means the end of an argument. So a
444   // mangled function name can contain any character but a comma.
445   std::replace(Sig.begin(), Sig.end(), ',', '.');
446   return Sig;
447 }
448 
449 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
450                                        Module *M) {
451   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
452   // Tell the linker that this function is expected to be imported from the
453   // 'env' module.
454   if (!F->hasFnAttribute("wasm-import-module")) {
455     llvm::AttrBuilder B(M->getContext());
456     B.addAttribute("wasm-import-module", "env");
457     F->addFnAttrs(B);
458   }
459   if (!F->hasFnAttribute("wasm-import-name")) {
460     llvm::AttrBuilder B(M->getContext());
461     B.addAttribute("wasm-import-name", F->getName());
462     F->addFnAttrs(B);
463   }
464   return F;
465 }
466 
467 // Returns an integer type for the target architecture's address space.
468 // i32 for wasm32 and i64 for wasm64.
469 static Type *getAddrIntType(Module *M) {
470   IRBuilder<> IRB(M->getContext());
471   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
472 }
473 
474 // Returns an integer pointer type for the target architecture's address space.
475 // i32* for wasm32 and i64* for wasm64. With opaque pointers this is just a ptr
476 // in address space zero.
477 static Type *getAddrPtrType(Module *M) {
478   return PointerType::getUnqual(M->getContext());
479 }
480 
481 // Returns an integer whose type is the integer type for the target's address
482 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
483 // integer.
484 static Value *getAddrSizeInt(Module *M, uint64_t C) {
485   IRBuilder<> IRB(M->getContext());
486   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
487 }
488 
489 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
490 // This is because a landingpad instruction contains two more arguments, a
491 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
492 // functions are named after the number of arguments in the original landingpad
493 // instruction.
494 Function *
495 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
496                                                        unsigned NumClauses) {
497   if (FindMatchingCatches.count(NumClauses))
498     return FindMatchingCatches[NumClauses];
499   PointerType *Int8PtrTy = PointerType::getUnqual(M.getContext());
500   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
501   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
502   Function *F = getEmscriptenFunction(
503       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
504   FindMatchingCatches[NumClauses] = F;
505   return F;
506 }
507 
508 // Generate invoke wrapper seqence with preamble and postamble
509 // Preamble:
510 // __THREW__ = 0;
511 // Postamble:
512 // %__THREW__.val = __THREW__; __THREW__ = 0;
513 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
514 // whether longjmp occurred), for future use.
515 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
516   Module *M = CI->getModule();
517   LLVMContext &C = M->getContext();
518 
519   IRBuilder<> IRB(C);
520   IRB.SetInsertPoint(CI);
521 
522   // Pre-invoke
523   // __THREW__ = 0;
524   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
525 
526   // Invoke function wrapper in JavaScript
527   SmallVector<Value *, 16> Args;
528   // Put the pointer to the callee as first argument, so it can be called
529   // within the invoke wrapper later
530   Args.push_back(CI->getCalledOperand());
531   Args.append(CI->arg_begin(), CI->arg_end());
532   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
533   NewCall->takeName(CI);
534   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
535   NewCall->setDebugLoc(CI->getDebugLoc());
536 
537   // Because we added the pointer to the callee as first argument, all
538   // argument attribute indices have to be incremented by one.
539   SmallVector<AttributeSet, 8> ArgAttributes;
540   const AttributeList &InvokeAL = CI->getAttributes();
541 
542   // No attributes for the callee pointer.
543   ArgAttributes.push_back(AttributeSet());
544   // Copy the argument attributes from the original
545   for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
546     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
547 
548   AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
549   if (auto Args = FnAttrs.getAllocSizeArgs()) {
550     // The allocsize attribute (if any) referes to parameters by index and needs
551     // to be adjusted.
552     auto [SizeArg, NEltArg] = *Args;
553     SizeArg += 1;
554     if (NEltArg)
555       NEltArg = *NEltArg + 1;
556     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
557   }
558   // In case the callee has 'noreturn' attribute, We need to remove it, because
559   // we expect invoke wrappers to return.
560   FnAttrs.removeAttribute(Attribute::NoReturn);
561 
562   // Reconstruct the AttributesList based on the vector we constructed.
563   AttributeList NewCallAL = AttributeList::get(
564       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
565   NewCall->setAttributes(NewCallAL);
566 
567   CI->replaceAllUsesWith(NewCall);
568 
569   // Post-invoke
570   // %__THREW__.val = __THREW__; __THREW__ = 0;
571   Value *Threw =
572       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
573   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
574   return Threw;
575 }
576 
577 // Get matching invoke wrapper based on callee signature
578 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
579   Module *M = CI->getModule();
580   SmallVector<Type *, 16> ArgTys;
581   FunctionType *CalleeFTy = CI->getFunctionType();
582 
583   std::string Sig = getSignature(CalleeFTy);
584   if (InvokeWrappers.contains(Sig))
585     return InvokeWrappers[Sig];
586 
587   // Put the pointer to the callee as first argument
588   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
589   // Add argument types
590   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
591 
592   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
593                                         CalleeFTy->isVarArg());
594   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
595   InvokeWrappers[Sig] = F;
596   return F;
597 }
598 
599 static bool canLongjmp(const Value *Callee) {
600   if (auto *CalleeF = dyn_cast<Function>(Callee))
601     if (CalleeF->isIntrinsic())
602       return false;
603 
604   // Attempting to transform inline assembly will result in something like:
605   //     call void @__invoke_void(void ()* asm ...)
606   // which is invalid because inline assembly blocks do not have addresses
607   // and can't be passed by pointer. The result is a crash with illegal IR.
608   if (isa<InlineAsm>(Callee))
609     return false;
610   StringRef CalleeName = Callee->getName();
611 
612   // TODO Include more functions or consider checking with mangled prefixes
613 
614   // The reason we include malloc/free here is to exclude the malloc/free
615   // calls generated in setjmp prep / cleanup routines.
616   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
617     return false;
618 
619   // There are functions in Emscripten's JS glue code or compiler-rt
620   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
621       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
622       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
623     return false;
624 
625   // __cxa_find_matching_catch_N functions cannot longjmp
626   if (Callee->getName().starts_with("__cxa_find_matching_catch_"))
627     return false;
628 
629   // Exception-catching related functions
630   //
631   // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though
632   // it surely cannot longjmp, in order to maintain the unwind relationship from
633   // all existing catchpads (and calls within them) to catch.dispatch.longjmp.
634   //
635   // In Wasm EH + Wasm SjLj, we
636   // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
637   //    catch.dispatch.longjmp instead
638   // 2. Convert all longjmpable calls to invokes that unwind to
639   //    catch.dispatch.longjmp
640   // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
641   // from an exception)'s catchpad does not contain any calls that are converted
642   // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
643   // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
644   // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
645   // CFGSort.
646   // int ret = setjmp(buf);
647   // try {
648   //   foo(); // longjmps
649   // } catch (...) {
650   // }
651   // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
652   // catchswitch, and is not caught by that catchswitch because it is a longjmp,
653   // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
654   // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
655   // it will not unwind to catch.dispatch.longjmp, producing an incorrect
656   // result.
657   //
658   // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
659   // intentionally treat it as longjmpable to work around this problem. This is
660   // a hacky fix but an easy one.
661   //
662   // The comment block in findWasmUnwindDestinations() in
663   // SelectionDAGBuilder.cpp is addressing a similar problem.
664   if (CalleeName == "__cxa_end_catch")
665     return WebAssembly::WasmEnableSjLj;
666   if (CalleeName == "__cxa_begin_catch" ||
667       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
668       CalleeName == "__clang_call_terminate")
669     return false;
670 
671   // std::terminate, which is generated when another exception occurs while
672   // handling an exception, cannot longjmp.
673   if (CalleeName == "_ZSt9terminatev")
674     return false;
675 
676   // Otherwise we don't know
677   return true;
678 }
679 
680 static bool isEmAsmCall(const Value *Callee) {
681   StringRef CalleeName = Callee->getName();
682   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
683   return CalleeName == "emscripten_asm_const_int" ||
684          CalleeName == "emscripten_asm_const_double" ||
685          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
686          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
687          CalleeName == "emscripten_asm_const_async_on_main_thread";
688 }
689 
690 // Generate testSetjmp function call seqence with preamble and postamble.
691 // The code this generates is equivalent to the following JavaScript code:
692 // %__threwValue.val = __threwValue;
693 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
694 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
695 //   if (%label == 0)
696 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
697 //   setTempRet0(%__threwValue.val);
698 // } else {
699 //   %label = -1;
700 // }
701 // %longjmp_result = getTempRet0();
702 //
703 // As output parameters. returns %label, %longjmp_result, and the BB the last
704 // instruction (%longjmp_result = ...) is in.
705 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
706     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
707     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
708     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
709     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
710   Function *F = BB->getParent();
711   Module *M = F->getParent();
712   LLVMContext &C = M->getContext();
713   IRBuilder<> IRB(C);
714   IRB.SetCurrentDebugLocation(DL);
715 
716   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
717   IRB.SetInsertPoint(BB);
718   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
719   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
720   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
721   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
722   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
723                                      ThrewValueGV->getName() + ".val");
724   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
725   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
726   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
727 
728   // Generate call.em.longjmp BB once and share it within the function
729   if (!CallEmLongjmpBB) {
730     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
731     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
732     IRB.SetInsertPoint(CallEmLongjmpBB);
733     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
734     CallEmLongjmpBBThrewValuePHI =
735         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
736     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
737     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
738     IRB.CreateCall(EmLongjmpF,
739                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
740     IRB.CreateUnreachable();
741   } else {
742     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
743     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
744   }
745 
746   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
747   // if (%label == 0)
748   IRB.SetInsertPoint(ThenBB1);
749   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
750   Value *ThrewPtr =
751       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
752   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
753                                       ThrewPtr->getName() + ".loaded");
754   Value *ThenLabel = IRB.CreateCall(
755       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
756   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
757   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
758 
759   // setTempRet0(%__threwValue.val);
760   IRB.SetInsertPoint(EndBB2);
761   IRB.CreateCall(SetTempRet0F, ThrewValue);
762   IRB.CreateBr(EndBB1);
763 
764   IRB.SetInsertPoint(ElseBB1);
765   IRB.CreateBr(EndBB1);
766 
767   // longjmp_result = getTempRet0();
768   IRB.SetInsertPoint(EndBB1);
769   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
770   LabelPHI->addIncoming(ThenLabel, EndBB2);
771 
772   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
773 
774   // Output parameter assignment
775   Label = LabelPHI;
776   EndBB = EndBB1;
777   LongjmpResult = IRB.CreateCall(GetTempRet0F, std::nullopt, "longjmp_result");
778 }
779 
780 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
781   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
782   DT.recalculate(F); // CFG has been changed
783 
784   SSAUpdaterBulk SSA;
785   for (BasicBlock &BB : F) {
786     for (Instruction &I : BB) {
787       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
788       // If a value is defined by an invoke instruction, it is only available in
789       // its normal destination and not in its unwind destination.
790       if (auto *II = dyn_cast<InvokeInst>(&I))
791         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
792       else
793         SSA.AddAvailableValue(VarID, &BB, &I);
794       for (auto &U : I.uses()) {
795         auto *User = cast<Instruction>(U.getUser());
796         if (auto *UserPN = dyn_cast<PHINode>(User))
797           if (UserPN->getIncomingBlock(U) == &BB)
798             continue;
799         if (DT.dominates(&I, User))
800           continue;
801         SSA.AddUse(VarID, &U);
802       }
803     }
804   }
805   SSA.RewriteAllUses(&DT);
806 }
807 
808 // Replace uses of longjmp with a new longjmp function in Emscripten library.
809 // In Emscripten SjLj, the new function is
810 //   void emscripten_longjmp(uintptr_t, i32)
811 // In Wasm SjLj, the new function is
812 //   void __wasm_longjmp(i8*, i32)
813 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
814 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
815 // eventually be lowered to i32/i64 in the wasm backend.
816 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
817                                                           Function *NewF) {
818   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
819   Module *M = LongjmpF->getParent();
820   SmallVector<CallInst *, 8> ToErase;
821   LLVMContext &C = LongjmpF->getParent()->getContext();
822   IRBuilder<> IRB(C);
823 
824   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
825   // cast its first argument (jmp_buf*) appropriately
826   for (User *U : LongjmpF->users()) {
827     auto *CI = dyn_cast<CallInst>(U);
828     if (CI && CI->getCalledFunction() == LongjmpF) {
829       IRB.SetInsertPoint(CI);
830       Value *Env = nullptr;
831       if (NewF == EmLongjmpF)
832         Env =
833             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
834       else // WasmLongjmpF
835         Env = IRB.CreateBitCast(CI->getArgOperand(0), IRB.getPtrTy(), "env");
836       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
837       ToErase.push_back(CI);
838     }
839   }
840   for (auto *I : ToErase)
841     I->eraseFromParent();
842 
843   // If we have any remaining uses of longjmp's function pointer, replace it
844   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
845   if (!LongjmpF->uses().empty()) {
846     Value *NewLongjmp =
847         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
848     LongjmpF->replaceAllUsesWith(NewLongjmp);
849   }
850 }
851 
852 static bool containsLongjmpableCalls(const Function *F) {
853   for (const auto &BB : *F)
854     for (const auto &I : BB)
855       if (const auto *CB = dyn_cast<CallBase>(&I))
856         if (canLongjmp(CB->getCalledOperand()))
857           return true;
858   return false;
859 }
860 
861 // When a function contains a setjmp call but not other calls that can longjmp,
862 // we don't do setjmp transformation for that setjmp. But we need to convert the
863 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
864 // returns 0 when called directly.
865 static void nullifySetjmp(Function *F) {
866   Module &M = *F->getParent();
867   IRBuilder<> IRB(M.getContext());
868   Function *SetjmpF = M.getFunction("setjmp");
869   SmallVector<Instruction *, 1> ToErase;
870 
871   for (User *U : make_early_inc_range(SetjmpF->users())) {
872     auto *CB = cast<CallBase>(U);
873     BasicBlock *BB = CB->getParent();
874     if (BB->getParent() != F) // in other function
875       continue;
876     CallInst *CI = nullptr;
877     // setjmp cannot throw. So if it is an invoke, lower it to a call
878     if (auto *II = dyn_cast<InvokeInst>(CB))
879       CI = llvm::changeToCall(II);
880     else
881       CI = cast<CallInst>(CB);
882     ToErase.push_back(CI);
883     CI->replaceAllUsesWith(IRB.getInt32(0));
884   }
885   for (auto *I : ToErase)
886     I->eraseFromParent();
887 }
888 
889 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
890   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
891 
892   LLVMContext &C = M.getContext();
893   IRBuilder<> IRB(C);
894 
895   Function *SetjmpF = M.getFunction("setjmp");
896   Function *LongjmpF = M.getFunction("longjmp");
897 
898   // In some platforms _setjmp and _longjmp are used instead. Change these to
899   // use setjmp/longjmp instead, because we later detect these functions by
900   // their names.
901   Function *SetjmpF2 = M.getFunction("_setjmp");
902   Function *LongjmpF2 = M.getFunction("_longjmp");
903   if (SetjmpF2) {
904     if (SetjmpF) {
905       if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
906         report_fatal_error("setjmp and _setjmp have different function types");
907     } else {
908       SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
909                                  GlobalValue::ExternalLinkage, "setjmp", M);
910     }
911     SetjmpF2->replaceAllUsesWith(SetjmpF);
912   }
913   if (LongjmpF2) {
914     if (LongjmpF) {
915       if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
916         report_fatal_error(
917             "longjmp and _longjmp have different function types");
918     } else {
919       LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
920                                   GlobalValue::ExternalLinkage, "setjmp", M);
921     }
922     LongjmpF2->replaceAllUsesWith(LongjmpF);
923   }
924 
925   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
926   assert(TPC && "Expected a TargetPassConfig");
927   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
928 
929   // Declare (or get) global variables __THREW__, __threwValue, and
930   // getTempRet0/setTempRet0 function which are used in common for both
931   // exception handling and setjmp/longjmp handling
932   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
933   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
934   GetTempRet0F = getEmscriptenFunction(
935       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
936   SetTempRet0F = getEmscriptenFunction(
937       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
938       "setTempRet0", &M);
939   GetTempRet0F->setDoesNotThrow();
940   SetTempRet0F->setDoesNotThrow();
941 
942   bool Changed = false;
943 
944   // Function registration for exception handling
945   if (EnableEmEH) {
946     // Register __resumeException function
947     FunctionType *ResumeFTy =
948         FunctionType::get(IRB.getVoidTy(), IRB.getPtrTy(), false);
949     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
950     ResumeF->addFnAttr(Attribute::NoReturn);
951 
952     // Register llvm_eh_typeid_for function
953     FunctionType *EHTypeIDTy =
954         FunctionType::get(IRB.getInt32Ty(), IRB.getPtrTy(), false);
955     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
956   }
957 
958   // Functions that contains calls to setjmp but don't have other longjmpable
959   // calls within them.
960   SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
961 
962   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
963     // Precompute setjmp users
964     for (User *U : SetjmpF->users()) {
965       if (auto *CB = dyn_cast<CallBase>(U)) {
966         auto *UserF = CB->getFunction();
967         // If a function that calls setjmp does not contain any other calls that
968         // can longjmp, we don't need to do any transformation on that function,
969         // so can ignore it
970         if (containsLongjmpableCalls(UserF))
971           SetjmpUsers.insert(UserF);
972         else
973           SetjmpUsersToNullify.insert(UserF);
974       } else {
975         std::string S;
976         raw_string_ostream SS(S);
977         SS << *U;
978         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
979                            SS.str());
980       }
981     }
982   }
983 
984   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
985   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
986   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
987 
988   // Function registration and data pre-gathering for setjmp/longjmp handling
989   if (DoSjLj) {
990     assert(EnableEmSjLj || EnableWasmSjLj);
991     if (EnableEmSjLj) {
992       // Register emscripten_longjmp function
993       FunctionType *FTy = FunctionType::get(
994           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
995       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
996       EmLongjmpF->addFnAttr(Attribute::NoReturn);
997     } else { // EnableWasmSjLj
998       Type *Int8PtrTy = IRB.getPtrTy();
999       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
1000       FunctionType *FTy = FunctionType::get(
1001           IRB.getVoidTy(), {Int8PtrTy, IRB.getInt32Ty()}, false);
1002       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
1003       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
1004     }
1005 
1006     if (SetjmpF) {
1007       Type *Int8PtrTy = IRB.getPtrTy();
1008       Type *Int32PtrTy = IRB.getPtrTy();
1009       Type *Int32Ty = IRB.getInt32Ty();
1010       // Register saveSetjmp function
1011       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1012       FunctionType *FTy = FunctionType::get(
1013           Int32PtrTy,
1014           {SetjmpFTy->getParamType(0), Int32Ty, Int32PtrTy, Int32Ty}, false);
1015       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
1016 
1017       // Register testSetjmp function
1018       FTy = FunctionType::get(Int32Ty,
1019                               {getAddrIntType(&M), Int32PtrTy, Int32Ty}, false);
1020       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
1021 
1022       // wasm.catch() will be lowered down to wasm 'catch' instruction in
1023       // instruction selection.
1024       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
1025       // Type for struct __WasmLongjmpArgs
1026       LongjmpArgsTy = StructType::get(Int8PtrTy, // env
1027                                       Int32Ty    // val
1028       );
1029     }
1030   }
1031 
1032   // Exception handling transformation
1033   if (EnableEmEH) {
1034     for (Function &F : M) {
1035       if (F.isDeclaration())
1036         continue;
1037       Changed |= runEHOnFunction(F);
1038     }
1039   }
1040 
1041   // Setjmp/longjmp handling transformation
1042   if (DoSjLj) {
1043     Changed = true; // We have setjmp or longjmp somewhere
1044     if (LongjmpF)
1045       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1046     // Only traverse functions that uses setjmp in order not to insert
1047     // unnecessary prep / cleanup code in every function
1048     if (SetjmpF)
1049       for (Function *F : SetjmpUsers)
1050         runSjLjOnFunction(*F);
1051   }
1052 
1053   // Replace unnecessary setjmp calls with 0
1054   if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1055     Changed = true;
1056     assert(SetjmpF);
1057     for (Function *F : SetjmpUsersToNullify)
1058       nullifySetjmp(F);
1059   }
1060 
1061   // Delete unused global variables and functions
1062   for (auto *V : {ThrewGV, ThrewValueGV})
1063     if (V && V->use_empty())
1064       V->eraseFromParent();
1065   for (auto *V : {GetTempRet0F, SetTempRet0F, ResumeF, EHTypeIDF, EmLongjmpF,
1066                   SaveSetjmpF, TestSetjmpF, WasmLongjmpF, CatchF})
1067     if (V && V->use_empty())
1068       V->eraseFromParent();
1069 
1070   return Changed;
1071 }
1072 
1073 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1074   Module &M = *F.getParent();
1075   LLVMContext &C = F.getContext();
1076   IRBuilder<> IRB(C);
1077   bool Changed = false;
1078   SmallVector<Instruction *, 64> ToErase;
1079   SmallPtrSet<LandingPadInst *, 32> LandingPads;
1080 
1081   // rethrow.longjmp BB that will be shared within the function.
1082   BasicBlock *RethrowLongjmpBB = nullptr;
1083   // PHI node for the loaded value of __THREW__ global variable in
1084   // rethrow.longjmp BB
1085   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1086 
1087   for (BasicBlock &BB : F) {
1088     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1089     if (!II)
1090       continue;
1091     Changed = true;
1092     LandingPads.insert(II->getLandingPadInst());
1093     IRB.SetInsertPoint(II);
1094 
1095     const Value *Callee = II->getCalledOperand();
1096     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1097     if (NeedInvoke) {
1098       // Wrap invoke with invoke wrapper and generate preamble/postamble
1099       Value *Threw = wrapInvoke(II);
1100       ToErase.push_back(II);
1101 
1102       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1103       // exception but a longjmp. If the current function contains calls to
1104       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1105       // if the function does not contain setjmp calls, we shouldn't silently
1106       // ignore longjmps; we should rethrow them so they can be correctly
1107       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1108       // value is 0 when nothing happened, 1 when an exception is thrown, and
1109       // other values when longjmp is thrown.
1110       //
1111       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1112       //   goto %tail
1113       // else
1114       //   goto %longjmp.rethrow
1115       //
1116       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1117       //   %__threwValue.val = __threwValue
1118       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1119       //
1120       // tail: ;; Nothing happened or an exception is thrown
1121       //   ... Continue exception handling ...
1122       if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1123           canLongjmp(Callee)) {
1124         // Create longjmp.rethrow BB once and share it within the function
1125         if (!RethrowLongjmpBB) {
1126           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1127           IRB.SetInsertPoint(RethrowLongjmpBB);
1128           RethrowLongjmpBBThrewPHI =
1129               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1130           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1131           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1132                                              ThrewValueGV->getName() + ".val");
1133           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1134           IRB.CreateUnreachable();
1135         } else {
1136           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1137         }
1138 
1139         IRB.SetInsertPoint(II); // Restore the insert point back
1140         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1141         Value *CmpEqOne =
1142             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1143         Value *CmpEqZero =
1144             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1145         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1146         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1147         IRB.SetInsertPoint(Tail);
1148         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1149       }
1150 
1151       // Insert a branch based on __THREW__ variable
1152       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1153       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1154 
1155     } else {
1156       // This can't throw, and we don't need this invoke, just replace it with a
1157       // call+branch
1158       changeToCall(II);
1159     }
1160   }
1161 
1162   // Process resume instructions
1163   for (BasicBlock &BB : F) {
1164     // Scan the body of the basic block for resumes
1165     for (Instruction &I : BB) {
1166       auto *RI = dyn_cast<ResumeInst>(&I);
1167       if (!RI)
1168         continue;
1169       Changed = true;
1170 
1171       // Split the input into legal values
1172       Value *Input = RI->getValue();
1173       IRB.SetInsertPoint(RI);
1174       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1175       // Create a call to __resumeException function
1176       IRB.CreateCall(ResumeF, {Low});
1177       // Add a terminator to the block
1178       IRB.CreateUnreachable();
1179       ToErase.push_back(RI);
1180     }
1181   }
1182 
1183   // Process llvm.eh.typeid.for intrinsics
1184   for (BasicBlock &BB : F) {
1185     for (Instruction &I : BB) {
1186       auto *CI = dyn_cast<CallInst>(&I);
1187       if (!CI)
1188         continue;
1189       const Function *Callee = CI->getCalledFunction();
1190       if (!Callee)
1191         continue;
1192       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1193         continue;
1194       Changed = true;
1195 
1196       IRB.SetInsertPoint(CI);
1197       CallInst *NewCI =
1198           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1199       CI->replaceAllUsesWith(NewCI);
1200       ToErase.push_back(CI);
1201     }
1202   }
1203 
1204   // Look for orphan landingpads, can occur in blocks with no predecessors
1205   for (BasicBlock &BB : F) {
1206     Instruction *I = BB.getFirstNonPHI();
1207     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1208       LandingPads.insert(LPI);
1209   }
1210   Changed |= !LandingPads.empty();
1211 
1212   // Handle all the landingpad for this function together, as multiple invokes
1213   // may share a single lp
1214   for (LandingPadInst *LPI : LandingPads) {
1215     IRB.SetInsertPoint(LPI);
1216     SmallVector<Value *, 16> FMCArgs;
1217     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1218       Constant *Clause = LPI->getClause(I);
1219       // TODO Handle filters (= exception specifications).
1220       // https://github.com/llvm/llvm-project/issues/49740
1221       if (LPI->isCatch(I))
1222         FMCArgs.push_back(Clause);
1223     }
1224 
1225     // Create a call to __cxa_find_matching_catch_N function
1226     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1227     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1228     Value *Poison = PoisonValue::get(LPI->getType());
1229     Value *Pair0 = IRB.CreateInsertValue(Poison, FMCI, 0, "pair0");
1230     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, std::nullopt, "tempret0");
1231     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1232 
1233     LPI->replaceAllUsesWith(Pair1);
1234     ToErase.push_back(LPI);
1235   }
1236 
1237   // Erase everything we no longer need in this function
1238   for (Instruction *I : ToErase)
1239     I->eraseFromParent();
1240 
1241   return Changed;
1242 }
1243 
1244 // This tries to get debug info from the instruction before which a new
1245 // instruction will be inserted, and if there's no debug info in that
1246 // instruction, tries to get the info instead from the previous instruction (if
1247 // any). If none of these has debug info and a DISubprogram is provided, it
1248 // creates a dummy debug info with the first line of the function, because IR
1249 // verifier requires all inlinable callsites should have debug info when both a
1250 // caller and callee have DISubprogram. If none of these conditions are met,
1251 // returns empty info.
1252 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1253                                     DISubprogram *SP) {
1254   assert(InsertBefore);
1255   if (InsertBefore->getDebugLoc())
1256     return InsertBefore->getDebugLoc();
1257   const Instruction *Prev = InsertBefore->getPrevNode();
1258   if (Prev && Prev->getDebugLoc())
1259     return Prev->getDebugLoc();
1260   if (SP)
1261     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1262   return DebugLoc();
1263 }
1264 
1265 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1266   assert(EnableEmSjLj || EnableWasmSjLj);
1267   Module &M = *F.getParent();
1268   LLVMContext &C = F.getContext();
1269   IRBuilder<> IRB(C);
1270   SmallVector<Instruction *, 64> ToErase;
1271   // Vector of %setjmpTable values
1272   SmallVector<Instruction *, 4> SetjmpTableInsts;
1273   // Vector of %setjmpTableSize values
1274   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1275 
1276   // Setjmp preparation
1277 
1278   // This instruction effectively means %setjmpTableSize = 4.
1279   // We create this as an instruction intentionally, and we don't want to fold
1280   // this instruction to a constant 4, because this value will be used in
1281   // SSAUpdater.AddAvailableValue(...) later.
1282   BasicBlock *Entry = &F.getEntryBlock();
1283   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1284   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1285 
1286   BinaryOperator *SetjmpTableSize =
1287       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1288                              "setjmpTableSize", Entry->getTerminator());
1289   SetjmpTableSize->setDebugLoc(FirstDL);
1290   // setjmpTable = (int *) malloc(40);
1291   Type *IntPtrTy = getAddrIntType(&M);
1292   Constant *size = ConstantInt::get(IntPtrTy, 40);
1293   IRB.SetInsertPoint(SetjmpTableSize);
1294   auto *SetjmpTable = IRB.CreateMalloc(IntPtrTy, IRB.getInt32Ty(), size,
1295                                        nullptr, nullptr, "setjmpTable");
1296   SetjmpTable->setDebugLoc(FirstDL);
1297   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1298   // mismatch. We need to set the debug loc for the original call too.
1299   auto *MallocCall = SetjmpTable->stripPointerCasts();
1300   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1301     MallocCallI->setDebugLoc(FirstDL);
1302   }
1303   // setjmpTable[0] = 0;
1304   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1305   SetjmpTableInsts.push_back(SetjmpTable);
1306   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1307 
1308   // Setjmp transformation
1309   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1310   Function *SetjmpF = M.getFunction("setjmp");
1311   for (auto *U : make_early_inc_range(SetjmpF->users())) {
1312     auto *CB = cast<CallBase>(U);
1313     BasicBlock *BB = CB->getParent();
1314     if (BB->getParent() != &F) // in other function
1315       continue;
1316     if (CB->getOperandBundle(LLVMContext::OB_funclet)) {
1317       std::string S;
1318       raw_string_ostream SS(S);
1319       SS << "In function " + F.getName() +
1320                 ": setjmp within a catch clause is not supported in Wasm EH:\n";
1321       SS << *CB;
1322       report_fatal_error(StringRef(SS.str()));
1323     }
1324 
1325     CallInst *CI = nullptr;
1326     // setjmp cannot throw. So if it is an invoke, lower it to a call
1327     if (auto *II = dyn_cast<InvokeInst>(CB))
1328       CI = llvm::changeToCall(II);
1329     else
1330       CI = cast<CallInst>(CB);
1331 
1332     // The tail is everything right after the call, and will be reached once
1333     // when setjmp is called, and later when longjmp returns to the setjmp
1334     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1335     // Add a phi to the tail, which will be the output of setjmp, which
1336     // indicates if this is the first call or a longjmp back. The phi directly
1337     // uses the right value based on where we arrive from
1338     IRB.SetInsertPoint(Tail, Tail->getFirstNonPHIIt());
1339     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1340 
1341     // setjmp initial call returns 0
1342     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1343     // The proper output is now this, not the setjmp call itself
1344     CI->replaceAllUsesWith(SetjmpRet);
1345     // longjmp returns to the setjmp will add themselves to this phi
1346     SetjmpRetPHIs.push_back(SetjmpRet);
1347 
1348     // Fix call target
1349     // Our index in the function is our place in the array + 1 to avoid index
1350     // 0, because index 0 means the longjmp is not ours to handle.
1351     IRB.SetInsertPoint(CI);
1352     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1353                      SetjmpTable, SetjmpTableSize};
1354     Instruction *NewSetjmpTable =
1355         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1356     Instruction *NewSetjmpTableSize =
1357         IRB.CreateCall(GetTempRet0F, std::nullopt, "setjmpTableSize");
1358     SetjmpTableInsts.push_back(NewSetjmpTable);
1359     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1360     ToErase.push_back(CI);
1361   }
1362 
1363   // Handle longjmpable calls.
1364   if (EnableEmSjLj)
1365     handleLongjmpableCallsForEmscriptenSjLj(
1366         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1367   else // EnableWasmSjLj
1368     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1369                                       SetjmpRetPHIs);
1370 
1371   // Erase everything we no longer need in this function
1372   for (Instruction *I : ToErase)
1373     I->eraseFromParent();
1374 
1375   // Free setjmpTable buffer before each return instruction + function-exiting
1376   // call
1377   SmallVector<Instruction *, 16> ExitingInsts;
1378   for (BasicBlock &BB : F) {
1379     Instruction *TI = BB.getTerminator();
1380     if (isa<ReturnInst>(TI))
1381       ExitingInsts.push_back(TI);
1382     // Any 'call' instruction with 'noreturn' attribute exits the function at
1383     // this point. If this throws but unwinds to another EH pad within this
1384     // function instead of exiting, this would have been an 'invoke', which
1385     // happens if we use Wasm EH or Wasm SjLJ.
1386     for (auto &I : BB) {
1387       if (auto *CI = dyn_cast<CallInst>(&I)) {
1388         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1389         if (Function *CalleeF = CI->getCalledFunction())
1390           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1391         if (IsNoReturn)
1392           ExitingInsts.push_back(&I);
1393       }
1394     }
1395   }
1396   for (auto *I : ExitingInsts) {
1397     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1398     // If this existing instruction is a call within a catchpad, we should add
1399     // it as "funclet" to the operand bundle of 'free' call
1400     SmallVector<OperandBundleDef, 1> Bundles;
1401     if (auto *CB = dyn_cast<CallBase>(I))
1402       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1403         Bundles.push_back(OperandBundleDef(*Bundle));
1404     IRB.SetInsertPoint(I);
1405     auto *Free = IRB.CreateFree(SetjmpTable, Bundles);
1406     Free->setDebugLoc(DL);
1407   }
1408 
1409   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1410   // (when buffer reallocation occurs)
1411   // entry:
1412   //   setjmpTableSize = 4;
1413   //   setjmpTable = (int *) malloc(40);
1414   //   setjmpTable[0] = 0;
1415   // ...
1416   // somebb:
1417   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1418   //   setjmpTableSize = getTempRet0();
1419   // So we need to make sure the SSA for these variables is valid so that every
1420   // saveSetjmp and testSetjmp calls have the correct arguments.
1421   SSAUpdater SetjmpTableSSA;
1422   SSAUpdater SetjmpTableSizeSSA;
1423   SetjmpTableSSA.Initialize(PointerType::get(C, 0), "setjmpTable");
1424   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1425   for (Instruction *I : SetjmpTableInsts)
1426     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1427   for (Instruction *I : SetjmpTableSizeInsts)
1428     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1429 
1430   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1431     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1432       if (I->getParent() != Entry)
1433         SetjmpTableSSA.RewriteUse(U);
1434   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1435     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1436       if (I->getParent() != Entry)
1437         SetjmpTableSizeSSA.RewriteUse(U);
1438 
1439   // Finally, our modifications to the cfg can break dominance of SSA variables.
1440   // For example, in this code,
1441   // if (x()) { .. setjmp() .. }
1442   // if (y()) { .. longjmp() .. }
1443   // We must split the longjmp block, and it can jump into the block splitted
1444   // from setjmp one. But that means that when we split the setjmp block, it's
1445   // first part no longer dominates its second part - there is a theoretically
1446   // possible control flow path where x() is false, then y() is true and we
1447   // reach the second part of the setjmp block, without ever reaching the first
1448   // part. So, we rebuild SSA form here.
1449   rebuildSSA(F);
1450   return true;
1451 }
1452 
1453 // Update each call that can longjmp so it can return to the corresponding
1454 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1455 // comments at top of the file for details.
1456 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1457     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1458     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1459   Module &M = *F.getParent();
1460   LLVMContext &C = F.getContext();
1461   IRBuilder<> IRB(C);
1462   SmallVector<Instruction *, 64> ToErase;
1463 
1464   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1465   // These values are defined in the beginning of the function and also in each
1466   // setjmp callsite, but we don't know which values we should use at this
1467   // point. So here we arbitraily use the ones defined in the beginning of the
1468   // function, and SSAUpdater will later update them to the correct values.
1469   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1470   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1471 
1472   // call.em.longjmp BB that will be shared within the function.
1473   BasicBlock *CallEmLongjmpBB = nullptr;
1474   // PHI node for the loaded value of __THREW__ global variable in
1475   // call.em.longjmp BB
1476   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1477   // PHI node for the loaded value of __threwValue global variable in
1478   // call.em.longjmp BB
1479   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1480   // rethrow.exn BB that will be shared within the function.
1481   BasicBlock *RethrowExnBB = nullptr;
1482 
1483   // Because we are creating new BBs while processing and don't want to make
1484   // all these newly created BBs candidates again for longjmp processing, we
1485   // first make the vector of candidate BBs.
1486   std::vector<BasicBlock *> BBs;
1487   for (BasicBlock &BB : F)
1488     BBs.push_back(&BB);
1489 
1490   // BBs.size() will change within the loop, so we query it every time
1491   for (unsigned I = 0; I < BBs.size(); I++) {
1492     BasicBlock *BB = BBs[I];
1493     for (Instruction &I : *BB) {
1494       if (isa<InvokeInst>(&I)) {
1495         std::string S;
1496         raw_string_ostream SS(S);
1497         SS << "In function " << F.getName()
1498            << ": When using Wasm EH with Emscripten SjLj, there is a "
1499               "restriction that `setjmp` function call and exception cannot be "
1500               "used within the same function:\n";
1501         SS << I;
1502         report_fatal_error(StringRef(SS.str()));
1503       }
1504       auto *CI = dyn_cast<CallInst>(&I);
1505       if (!CI)
1506         continue;
1507 
1508       const Value *Callee = CI->getCalledOperand();
1509       if (!canLongjmp(Callee))
1510         continue;
1511       if (isEmAsmCall(Callee))
1512         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1513                                F.getName() +
1514                                ". Please consider using EM_JS, or move the "
1515                                "EM_ASM into another function.",
1516                            false);
1517 
1518       Value *Threw = nullptr;
1519       BasicBlock *Tail;
1520       if (Callee->getName().starts_with("__invoke_")) {
1521         // If invoke wrapper has already been generated for this call in
1522         // previous EH phase, search for the load instruction
1523         // %__THREW__.val = __THREW__;
1524         // in postamble after the invoke wrapper call
1525         LoadInst *ThrewLI = nullptr;
1526         StoreInst *ThrewResetSI = nullptr;
1527         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1528              I != IE; ++I) {
1529           if (auto *LI = dyn_cast<LoadInst>(I))
1530             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1531               if (GV == ThrewGV) {
1532                 Threw = ThrewLI = LI;
1533                 break;
1534               }
1535         }
1536         // Search for the store instruction after the load above
1537         // __THREW__ = 0;
1538         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1539              I != IE; ++I) {
1540           if (auto *SI = dyn_cast<StoreInst>(I)) {
1541             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1542               if (GV == ThrewGV &&
1543                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1544                 ThrewResetSI = SI;
1545                 break;
1546               }
1547             }
1548           }
1549         }
1550         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1551         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1552         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1553 
1554       } else {
1555         // Wrap call with invoke wrapper and generate preamble/postamble
1556         Threw = wrapInvoke(CI);
1557         ToErase.push_back(CI);
1558         Tail = SplitBlock(BB, CI->getNextNode());
1559 
1560         // If exception handling is enabled, the thrown value can be not a
1561         // longjmp but an exception, in which case we shouldn't silently ignore
1562         // exceptions; we should rethrow them.
1563         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1564         // thrown, other values when longjmp is thrown.
1565         //
1566         // if (%__THREW__.val == 1)
1567         //   goto %eh.rethrow
1568         // else
1569         //   goto %normal
1570         //
1571         // eh.rethrow: ;; Rethrow exception
1572         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1573         //   __resumeException(%exn)
1574         //
1575         // normal:
1576         //   <-- Insertion point. Will insert sjlj handling code from here
1577         //   goto %tail
1578         //
1579         // tail:
1580         //   ...
1581         if (supportsException(&F) && canThrow(Callee)) {
1582           // We will add a new conditional branch. So remove the branch created
1583           // when we split the BB
1584           ToErase.push_back(BB->getTerminator());
1585 
1586           // Generate rethrow.exn BB once and share it within the function
1587           if (!RethrowExnBB) {
1588             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1589             IRB.SetInsertPoint(RethrowExnBB);
1590             CallInst *Exn =
1591                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1592             IRB.CreateCall(ResumeF, {Exn});
1593             IRB.CreateUnreachable();
1594           }
1595 
1596           IRB.SetInsertPoint(CI);
1597           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1598           Value *CmpEqOne =
1599               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1600           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1601 
1602           IRB.SetInsertPoint(NormalBB);
1603           IRB.CreateBr(Tail);
1604           BB = NormalBB; // New insertion point to insert testSetjmp()
1605         }
1606       }
1607 
1608       // We need to replace the terminator in Tail - SplitBlock makes BB go
1609       // straight to Tail, we need to check if a longjmp occurred, and go to the
1610       // right setjmp-tail if so
1611       ToErase.push_back(BB->getTerminator());
1612 
1613       // Generate a function call to testSetjmp function and preamble/postamble
1614       // code to figure out (1) whether longjmp occurred (2) if longjmp
1615       // occurred, which setjmp it corresponds to
1616       Value *Label = nullptr;
1617       Value *LongjmpResult = nullptr;
1618       BasicBlock *EndBB = nullptr;
1619       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1620                      Label, LongjmpResult, CallEmLongjmpBB,
1621                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1622                      EndBB);
1623       assert(Label && LongjmpResult && EndBB);
1624 
1625       // Create switch instruction
1626       IRB.SetInsertPoint(EndBB);
1627       IRB.SetCurrentDebugLocation(EndBB->back().getDebugLoc());
1628       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1629       // -1 means no longjmp happened, continue normally (will hit the default
1630       // switch case). 0 means a longjmp that is not ours to handle, needs a
1631       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1632       // 0).
1633       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1634         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1635         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1636       }
1637 
1638       // We are splitting the block here, and must continue to find other calls
1639       // in the block - which is now split. so continue to traverse in the Tail
1640       BBs.push_back(Tail);
1641     }
1642   }
1643 
1644   for (Instruction *I : ToErase)
1645     I->eraseFromParent();
1646 }
1647 
1648 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) {
1649   for (const User *U : CPI->users())
1650     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1651       return CRI->getUnwindDest();
1652   return nullptr;
1653 }
1654 
1655 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1656 // if the longjmp corresponds to one of setjmps in the current function, and if
1657 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1658 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1659 // top of the file for details.
1660 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1661     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1662     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1663   Module &M = *F.getParent();
1664   LLVMContext &C = F.getContext();
1665   IRBuilder<> IRB(C);
1666 
1667   // A function with catchswitch/catchpad instruction should have a personality
1668   // function attached to it. Search for the wasm personality function, and if
1669   // it exists, use it, and if it doesn't, create a dummy personality function.
1670   // (SjLj is not going to call it anyway.)
1671   if (!F.hasPersonalityFn()) {
1672     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1673     FunctionType *PersType =
1674         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1675     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1676     F.setPersonalityFn(
1677         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getPtrTy())));
1678   }
1679 
1680   // Use the entry BB's debugloc as a fallback
1681   BasicBlock *Entry = &F.getEntryBlock();
1682   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1683   IRB.SetCurrentDebugLocation(FirstDL);
1684 
1685   // Arbitrarily use the ones defined in the beginning of the function.
1686   // SSAUpdater will later update them to the correct values.
1687   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1688   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1689 
1690   // Add setjmp.dispatch BB right after the entry block. Because we have
1691   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1692   // rest into another BB, here 'OrigEntry' is the function's original entry
1693   // block before the transformation.
1694   //
1695   // entry:
1696   //   setjmpTable / setjmpTableSize initialization
1697   // setjmp.dispatch:
1698   //   switch will be inserted here later
1699   // entry.split: (OrigEntry)
1700   //   the original function starts here
1701   BasicBlock *OrigEntry = Entry->getNextNode();
1702   BasicBlock *SetjmpDispatchBB =
1703       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1704   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1705 
1706   // Create catch.dispatch.longjmp BB and a catchswitch instruction
1707   BasicBlock *CatchDispatchLongjmpBB =
1708       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1709   IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1710   CatchSwitchInst *CatchSwitchLongjmp =
1711       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1712 
1713   // Create catch.longjmp BB and a catchpad instruction
1714   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1715   CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1716   IRB.SetInsertPoint(CatchLongjmpBB);
1717   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1718 
1719   // Wasm throw and catch instructions can throw and catch multiple values, but
1720   // that requires multivalue support in the toolchain, which is currently not
1721   // very reliable. We instead throw and catch a pointer to a struct value of
1722   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1723   Instruction *LongjmpArgs =
1724       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1725   Value *EnvField =
1726       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1727   Value *ValField =
1728       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1729   // void *env = __wasm_longjmp_args.env;
1730   Instruction *Env = IRB.CreateLoad(IRB.getPtrTy(), EnvField, "env");
1731   // int val = __wasm_longjmp_args.val;
1732   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1733 
1734   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1735   // if (%label == 0)
1736   //   __wasm_longjmp(%env, %val)
1737   // catchret to %setjmp.dispatch
1738   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1739   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1740   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1741   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1742   Value *Label =
1743       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1744                      OperandBundleDef("funclet", CatchPad), "label");
1745   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1746   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1747 
1748   IRB.SetInsertPoint(ThenBB);
1749   CallInst *WasmLongjmpCI = IRB.CreateCall(
1750       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1751   IRB.CreateUnreachable();
1752 
1753   IRB.SetInsertPoint(EndBB);
1754   // Jump to setjmp.dispatch block
1755   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1756 
1757   // Go back to setjmp.dispatch BB
1758   // setjmp.dispatch:
1759   //   switch %label {
1760   //     label 1: goto post-setjmp BB 1
1761   //     label 2: goto post-setjmp BB 2
1762   //     ...
1763   //     default: goto splitted next BB
1764   //   }
1765   IRB.SetInsertPoint(SetjmpDispatchBB);
1766   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1767   LabelPHI->addIncoming(Label, EndBB);
1768   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1769   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1770   // -1 means no longjmp happened, continue normally (will hit the default
1771   // switch case). 0 means a longjmp that is not ours to handle, needs a
1772   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1773   // 0).
1774   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1775     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1776     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1777   }
1778 
1779   // Convert all longjmpable call instructions to invokes that unwind to the
1780   // newly created catch.dispatch.longjmp BB.
1781   SmallVector<CallInst *, 64> LongjmpableCalls;
1782   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1783     for (auto &I : *BB) {
1784       auto *CI = dyn_cast<CallInst>(&I);
1785       if (!CI)
1786         continue;
1787       const Value *Callee = CI->getCalledOperand();
1788       if (!canLongjmp(Callee))
1789         continue;
1790       if (isEmAsmCall(Callee))
1791         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1792                                F.getName() +
1793                                ". Please consider using EM_JS, or move the "
1794                                "EM_ASM into another function.",
1795                            false);
1796       // This is __wasm_longjmp() call we inserted in this function, which
1797       // rethrows the longjmp when the longjmp does not correspond to one of
1798       // setjmps in this function. We should not convert this call to an invoke.
1799       if (CI == WasmLongjmpCI)
1800         continue;
1801       LongjmpableCalls.push_back(CI);
1802     }
1803   }
1804 
1805   for (auto *CI : LongjmpableCalls) {
1806     // Even if the callee function has attribute 'nounwind', which is true for
1807     // all C functions, it can longjmp, which means it can throw a Wasm
1808     // exception now.
1809     CI->removeFnAttr(Attribute::NoUnwind);
1810     if (Function *CalleeF = CI->getCalledFunction())
1811       CalleeF->removeFnAttr(Attribute::NoUnwind);
1812 
1813     // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1814     // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1815     // to its parent pad's unwind destination instead to preserve the scope
1816     // structure. It will eventually unwind to the catch.dispatch.longjmp.
1817     SmallVector<OperandBundleDef, 1> Bundles;
1818     BasicBlock *UnwindDest = nullptr;
1819     if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1820       Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1821       while (!UnwindDest) {
1822         if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1823           UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1824           break;
1825         }
1826         if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1827           // getCleanupRetUnwindDest() can return nullptr when
1828           // 1. This cleanuppad's matching cleanupret uwninds to caller
1829           // 2. There is no matching cleanupret because it ends with
1830           //    unreachable.
1831           // In case of 2, we need to traverse the parent pad chain.
1832           UnwindDest = getCleanupRetUnwindDest(CPI);
1833           Value *ParentPad = CPI->getParentPad();
1834           if (isa<ConstantTokenNone>(ParentPad))
1835             break;
1836           FromPad = cast<Instruction>(ParentPad);
1837         }
1838       }
1839     }
1840     if (!UnwindDest)
1841       UnwindDest = CatchDispatchLongjmpBB;
1842     changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1843   }
1844 
1845   SmallVector<Instruction *, 16> ToErase;
1846   for (auto &BB : F) {
1847     if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) {
1848       if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1849         IRB.SetInsertPoint(CSI);
1850         ToErase.push_back(CSI);
1851         auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1852                                              CatchDispatchLongjmpBB, 1);
1853         NewCSI->addHandler(*CSI->handler_begin());
1854         NewCSI->takeName(CSI);
1855         CSI->replaceAllUsesWith(NewCSI);
1856       }
1857     }
1858 
1859     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1860       if (CRI->unwindsToCaller()) {
1861         IRB.SetInsertPoint(CRI);
1862         ToErase.push_back(CRI);
1863         IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1864       }
1865     }
1866   }
1867 
1868   for (Instruction *I : ToErase)
1869     I->eraseFromParent();
1870 }
1871