xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten.
17 ///
18 /// * Exception handling
19 /// This pass lowers invokes and landingpads into library functions in JS glue
20 /// code. Invokes are lowered into function wrappers called invoke wrappers that
21 /// exist in JS side, which wraps the original function call with JS try-catch.
22 /// If an exception occurred, cxa_throw() function in JS side sets some
23 /// variables (see below) so we can check whether an exception occurred from
24 /// wasm code and handle it appropriately.
25 ///
26 /// * Setjmp-longjmp handling
27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
28 /// The idea is that each block with a setjmp is broken up into two parts: the
29 /// part containing setjmp and the part right after the setjmp. The latter part
30 /// is either reached from the setjmp, or later from a longjmp. To handle the
31 /// longjmp, all calls that might longjmp are also called using invoke wrappers
32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
33 /// we can check / whether a longjmp occurred from wasm code. Each block with a
34 /// function call that might longjmp is also split up after the longjmp call.
35 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
36 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
37 /// We assume setjmp-longjmp handling always run after EH handling, which means
38 /// we don't expect any exception-related instructions when SjLj runs.
39 /// FIXME Currently this scheme does not support indirect call of setjmp,
40 /// because of the limitation of the scheme itself. fastcomp does not support it
41 /// either.
42 ///
43 /// In detail, this pass does following things:
44 ///
45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
46 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
47 ///    These variables are used for both exceptions and setjmp/longjmps.
48 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
49 ///    means nothing occurred, 1 means an exception occurred, and other numbers
50 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
51 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
52 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
53 ///    longjmp.
54 ///
55 /// * Exception handling
56 ///
57 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
58 ///    at link time. setThrew exists in Emscripten's compiler-rt:
59 ///
60 ///    void setThrew(uintptr_t threw, int value) {
61 ///      if (__THREW__ == 0) {
62 ///        __THREW__ = threw;
63 ///        __threwValue = value;
64 ///      }
65 ///    }
66 //
67 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
68 ///    In exception handling, getTempRet0 indicates the type of an exception
69 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
70 ///    function.
71 ///
72 /// 3) Lower
73 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
74 ///    into
75 ///      __THREW__ = 0;
76 ///      call @__invoke_SIG(func, arg1, arg2)
77 ///      %__THREW__.val = __THREW__;
78 ///      __THREW__ = 0;
79 ///      if (%__THREW__.val == 1)
80 ///        goto %lpad
81 ///      else
82 ///         goto %invoke.cont
83 ///    SIG is a mangled string generated based on the LLVM IR-level function
84 ///    signature. After LLVM IR types are lowered to the target wasm types,
85 ///    the names for these wrappers will change based on wasm types as well,
86 ///    as in invoke_vi (function takes an int and returns void). The bodies of
87 ///    these wrappers will be generated in JS glue code, and inside those
88 ///    wrappers we use JS try-catch to generate actual exception effects. It
89 ///    also calls the original callee function. An example wrapper in JS code
90 ///    would look like this:
91 ///      function invoke_vi(index,a1) {
92 ///        try {
93 ///          Module["dynCall_vi"](index,a1); // This calls original callee
94 ///        } catch(e) {
95 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
96 ///          _setThrew(1, 0); // setThrew is called here
97 ///        }
98 ///      }
99 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
100 ///    so we can jump to the right BB based on this value.
101 ///
102 /// 4) Lower
103 ///      %val = landingpad catch c1 catch c2 catch c3 ...
104 ///      ... use %val ...
105 ///    into
106 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
107 ///      %val = {%fmc, getTempRet0()}
108 ///      ... use %val ...
109 ///    Here N is a number calculated based on the number of clauses.
110 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
111 ///
112 /// 5) Lower
113 ///      resume {%a, %b}
114 ///    into
115 ///      call @__resumeException(%a)
116 ///    where __resumeException() is a function in JS glue code.
117 ///
118 /// 6) Lower
119 ///      call @llvm.eh.typeid.for(type) (intrinsic)
120 ///    into
121 ///      call @llvm_eh_typeid_for(type)
122 ///    llvm_eh_typeid_for function will be generated in JS glue code.
123 ///
124 /// * Setjmp / Longjmp handling
125 ///
126 /// In case calls to longjmp() exists
127 ///
128 /// 1) Lower
129 ///      longjmp(buf, value)
130 ///    into
131 ///      emscripten_longjmp(buf, value)
132 ///
133 /// In case calls to setjmp() exists
134 ///
135 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
136 ///    sejmpTableSize as follows:
137 ///      setjmpTableSize = 4;
138 ///      setjmpTable = (int *) malloc(40);
139 ///      setjmpTable[0] = 0;
140 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
141 ///    Emscripten compiler-rt.
142 ///
143 /// 3) Lower
144 ///      setjmp(buf)
145 ///    into
146 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
147 ///      setjmpTableSize = getTempRet0();
148 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
149 ///    is incrementally assigned from 0) and its label (a unique number that
150 ///    represents each callsite of setjmp). When we need more entries in
151 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
152 ///    compiler-rt and it will return the new table address, and assign the new
153 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
154 ///    the buffer buf. A BB with setjmp is split into two after setjmp call in
155 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
156 ///
157 ///
158 /// 4) Lower every call that might longjmp into
159 ///      __THREW__ = 0;
160 ///      call @__invoke_SIG(func, arg1, arg2)
161 ///      %__THREW__.val = __THREW__;
162 ///      __THREW__ = 0;
163 ///      %__threwValue.val = __threwValue;
164 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
165 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
166 ///                            setjmpTableSize);
167 ///        if (%label == 0)
168 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
169 ///        setTempRet0(%__threwValue.val);
170 ///      } else {
171 ///        %label = -1;
172 ///      }
173 ///      longjmp_result = getTempRet0();
174 ///      switch label {
175 ///        label 1: goto post-setjmp BB 1
176 ///        label 2: goto post-setjmp BB 2
177 ///        ...
178 ///        default: goto splitted next BB
179 ///      }
180 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
181 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
182 ///    will be the address of matching jmp_buf buffer and __threwValue be the
183 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
184 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
185 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
186 ///    correspond to one of the setjmp callsites in this function, so in this
187 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
188 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
189 ///    label.
190 ///
191 ///===----------------------------------------------------------------------===//
192 
193 #include "WebAssembly.h"
194 #include "WebAssemblyTargetMachine.h"
195 #include "llvm/ADT/StringExtras.h"
196 #include "llvm/CodeGen/TargetPassConfig.h"
197 #include "llvm/IR/DebugInfoMetadata.h"
198 #include "llvm/IR/Dominators.h"
199 #include "llvm/IR/IRBuilder.h"
200 #include "llvm/Support/CommandLine.h"
201 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
202 #include "llvm/Transforms/Utils/SSAUpdater.h"
203 
204 using namespace llvm;
205 
206 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
207 
208 static cl::list<std::string>
209     EHAllowlist("emscripten-cxx-exceptions-allowed",
210                 cl::desc("The list of function names in which Emscripten-style "
211                          "exception handling is enabled (see emscripten "
212                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
213                 cl::CommaSeparated);
214 
215 namespace {
216 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
217   bool EnableEH;   // Enable exception handling
218   bool EnableSjLj; // Enable setjmp/longjmp handling
219   bool DoSjLj;     // Whether we actually perform setjmp/longjmp handling
220 
221   GlobalVariable *ThrewGV = nullptr;
222   GlobalVariable *ThrewValueGV = nullptr;
223   Function *GetTempRet0Func = nullptr;
224   Function *SetTempRet0Func = nullptr;
225   Function *ResumeF = nullptr;
226   Function *EHTypeIDF = nullptr;
227   Function *EmLongjmpF = nullptr;
228   Function *SaveSetjmpF = nullptr;
229   Function *TestSetjmpF = nullptr;
230 
231   // __cxa_find_matching_catch_N functions.
232   // Indexed by the number of clauses in an original landingpad instruction.
233   DenseMap<int, Function *> FindMatchingCatches;
234   // Map of <function signature string, invoke_ wrappers>
235   StringMap<Function *> InvokeWrappers;
236   // Set of allowed function names for exception handling
237   std::set<std::string> EHAllowlistSet;
238   // Functions that contains calls to setjmp
239   SmallPtrSet<Function *, 8> SetjmpUsers;
240 
241   StringRef getPassName() const override {
242     return "WebAssembly Lower Emscripten Exceptions";
243   }
244 
245   bool runEHOnFunction(Function &F);
246   bool runSjLjOnFunction(Function &F);
247   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
248 
249   Value *wrapInvoke(CallBase *CI);
250   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
251                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
252                       Value *&LongjmpResult, BasicBlock *&EndBB);
253   Function *getInvokeWrapper(CallBase *CI);
254 
255   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
256   bool canLongjmp(Module &M, const Value *Callee) const;
257   bool isEmAsmCall(Module &M, const Value *Callee) const;
258   bool supportsException(const Function *F) const {
259     return EnableEH && (areAllExceptionsAllowed() ||
260                         EHAllowlistSet.count(std::string(F->getName())));
261   }
262 
263   void rebuildSSA(Function &F);
264 
265 public:
266   static char ID;
267 
268   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
269       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
270     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
271   }
272   bool runOnModule(Module &M) override;
273 
274   void getAnalysisUsage(AnalysisUsage &AU) const override {
275     AU.addRequired<DominatorTreeWrapperPass>();
276   }
277 };
278 } // End anonymous namespace
279 
280 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
281 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
282                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
283                 false, false)
284 
285 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
286                                                          bool EnableSjLj) {
287   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
288 }
289 
290 static bool canThrow(const Value *V) {
291   if (const auto *F = dyn_cast<const Function>(V)) {
292     // Intrinsics cannot throw
293     if (F->isIntrinsic())
294       return false;
295     StringRef Name = F->getName();
296     // leave setjmp and longjmp (mostly) alone, we process them properly later
297     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
298       return false;
299     return !F->doesNotThrow();
300   }
301   // not a function, so an indirect call - can throw, we can't tell
302   return true;
303 }
304 
305 // Get a global variable with the given name. If it doesn't exist declare it,
306 // which will generate an import and assume that it will exist at link time.
307 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
308                                          WebAssemblyTargetMachine &TM,
309                                          const char *Name) {
310   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
311   if (!GV)
312     report_fatal_error(Twine("unable to create global: ") + Name);
313 
314   // If the target supports TLS, make this variable thread-local. We can't just
315   // unconditionally make it thread-local and depend on
316   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
317   // the side effect of disallowing the object from being linked into a
318   // shared-memory module, which we don't want to be responsible for.
319   auto *Subtarget = TM.getSubtargetImpl();
320   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
321                  ? GlobalValue::LocalExecTLSModel
322                  : GlobalValue::NotThreadLocal;
323   GV->setThreadLocalMode(TLS);
324   return GV;
325 }
326 
327 // Simple function name mangler.
328 // This function simply takes LLVM's string representation of parameter types
329 // and concatenate them with '_'. There are non-alphanumeric characters but llc
330 // is ok with it, and we need to postprocess these names after the lowering
331 // phase anyway.
332 static std::string getSignature(FunctionType *FTy) {
333   std::string Sig;
334   raw_string_ostream OS(Sig);
335   OS << *FTy->getReturnType();
336   for (Type *ParamTy : FTy->params())
337     OS << "_" << *ParamTy;
338   if (FTy->isVarArg())
339     OS << "_...";
340   Sig = OS.str();
341   erase_if(Sig, isSpace);
342   // When s2wasm parses .s file, a comma means the end of an argument. So a
343   // mangled function name can contain any character but a comma.
344   std::replace(Sig.begin(), Sig.end(), ',', '.');
345   return Sig;
346 }
347 
348 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
349                                        Module *M) {
350   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
351   // Tell the linker that this function is expected to be imported from the
352   // 'env' module.
353   if (!F->hasFnAttribute("wasm-import-module")) {
354     llvm::AttrBuilder B;
355     B.addAttribute("wasm-import-module", "env");
356     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
357   }
358   if (!F->hasFnAttribute("wasm-import-name")) {
359     llvm::AttrBuilder B;
360     B.addAttribute("wasm-import-name", F->getName());
361     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
362   }
363   return F;
364 }
365 
366 // Returns an integer type for the target architecture's address space.
367 // i32 for wasm32 and i64 for wasm64.
368 static Type *getAddrIntType(Module *M) {
369   IRBuilder<> IRB(M->getContext());
370   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
371 }
372 
373 // Returns an integer pointer type for the target architecture's address space.
374 // i32* for wasm32 and i64* for wasm64.
375 static Type *getAddrPtrType(Module *M) {
376   return Type::getIntNPtrTy(M->getContext(),
377                             M->getDataLayout().getPointerSizeInBits());
378 }
379 
380 // Returns an integer whose type is the integer type for the target's address
381 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
382 // integer.
383 static Value *getAddrSizeInt(Module *M, uint64_t C) {
384   IRBuilder<> IRB(M->getContext());
385   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
386 }
387 
388 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
389 // This is because a landingpad instruction contains two more arguments, a
390 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
391 // functions are named after the number of arguments in the original landingpad
392 // instruction.
393 Function *
394 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
395                                                        unsigned NumClauses) {
396   if (FindMatchingCatches.count(NumClauses))
397     return FindMatchingCatches[NumClauses];
398   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
399   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
400   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
401   Function *F = getEmscriptenFunction(
402       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
403   FindMatchingCatches[NumClauses] = F;
404   return F;
405 }
406 
407 // Generate invoke wrapper seqence with preamble and postamble
408 // Preamble:
409 // __THREW__ = 0;
410 // Postamble:
411 // %__THREW__.val = __THREW__; __THREW__ = 0;
412 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
413 // whether longjmp occurred), for future use.
414 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
415   Module *M = CI->getModule();
416   LLVMContext &C = M->getContext();
417 
418   // If we are calling a function that is noreturn, we must remove that
419   // attribute. The code we insert here does expect it to return, after we
420   // catch the exception.
421   if (CI->doesNotReturn()) {
422     if (auto *F = CI->getCalledFunction())
423       F->removeFnAttr(Attribute::NoReturn);
424     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
425   }
426 
427   IRBuilder<> IRB(C);
428   IRB.SetInsertPoint(CI);
429 
430   // Pre-invoke
431   // __THREW__ = 0;
432   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
433 
434   // Invoke function wrapper in JavaScript
435   SmallVector<Value *, 16> Args;
436   // Put the pointer to the callee as first argument, so it can be called
437   // within the invoke wrapper later
438   Args.push_back(CI->getCalledOperand());
439   Args.append(CI->arg_begin(), CI->arg_end());
440   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
441   NewCall->takeName(CI);
442   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
443   NewCall->setDebugLoc(CI->getDebugLoc());
444 
445   // Because we added the pointer to the callee as first argument, all
446   // argument attribute indices have to be incremented by one.
447   SmallVector<AttributeSet, 8> ArgAttributes;
448   const AttributeList &InvokeAL = CI->getAttributes();
449 
450   // No attributes for the callee pointer.
451   ArgAttributes.push_back(AttributeSet());
452   // Copy the argument attributes from the original
453   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
454     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
455 
456   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
457   if (FnAttrs.contains(Attribute::AllocSize)) {
458     // The allocsize attribute (if any) referes to parameters by index and needs
459     // to be adjusted.
460     unsigned SizeArg;
461     Optional<unsigned> NEltArg;
462     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
463     SizeArg += 1;
464     if (NEltArg.hasValue())
465       NEltArg = NEltArg.getValue() + 1;
466     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
467   }
468 
469   // Reconstruct the AttributesList based on the vector we constructed.
470   AttributeList NewCallAL =
471       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
472                          InvokeAL.getRetAttributes(), ArgAttributes);
473   NewCall->setAttributes(NewCallAL);
474 
475   CI->replaceAllUsesWith(NewCall);
476 
477   // Post-invoke
478   // %__THREW__.val = __THREW__; __THREW__ = 0;
479   Value *Threw =
480       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
481   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
482   return Threw;
483 }
484 
485 // Get matching invoke wrapper based on callee signature
486 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
487   Module *M = CI->getModule();
488   SmallVector<Type *, 16> ArgTys;
489   FunctionType *CalleeFTy = CI->getFunctionType();
490 
491   std::string Sig = getSignature(CalleeFTy);
492   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
493     return InvokeWrappers[Sig];
494 
495   // Put the pointer to the callee as first argument
496   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
497   // Add argument types
498   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
499 
500   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
501                                         CalleeFTy->isVarArg());
502   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
503   InvokeWrappers[Sig] = F;
504   return F;
505 }
506 
507 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
508                                                   const Value *Callee) const {
509   if (auto *CalleeF = dyn_cast<Function>(Callee))
510     if (CalleeF->isIntrinsic())
511       return false;
512 
513   // Attempting to transform inline assembly will result in something like:
514   //     call void @__invoke_void(void ()* asm ...)
515   // which is invalid because inline assembly blocks do not have addresses
516   // and can't be passed by pointer. The result is a crash with illegal IR.
517   if (isa<InlineAsm>(Callee))
518     return false;
519   StringRef CalleeName = Callee->getName();
520 
521   // The reason we include malloc/free here is to exclude the malloc/free
522   // calls generated in setjmp prep / cleanup routines.
523   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
524     return false;
525 
526   // There are functions in Emscripten's JS glue code or compiler-rt
527   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
528       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
529       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
530     return false;
531 
532   // __cxa_find_matching_catch_N functions cannot longjmp
533   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
534     return false;
535 
536   // Exception-catching related functions
537   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
538       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
539       CalleeName == "__clang_call_terminate")
540     return false;
541 
542   // Otherwise we don't know
543   return true;
544 }
545 
546 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
547                                                    const Value *Callee) const {
548   StringRef CalleeName = Callee->getName();
549   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
550   return CalleeName == "emscripten_asm_const_int" ||
551          CalleeName == "emscripten_asm_const_double" ||
552          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
553          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
554          CalleeName == "emscripten_asm_const_async_on_main_thread";
555 }
556 
557 // Generate testSetjmp function call seqence with preamble and postamble.
558 // The code this generates is equivalent to the following JavaScript code:
559 // %__threwValue.val = __threwValue;
560 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
561 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
562 //   if (%label == 0)
563 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
564 //   setTempRet0(%__threwValue.val);
565 // } else {
566 //   %label = -1;
567 // }
568 // %longjmp_result = getTempRet0();
569 //
570 // As output parameters. returns %label, %longjmp_result, and the BB the last
571 // instruction (%longjmp_result = ...) is in.
572 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
573     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
574     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
575     BasicBlock *&EndBB) {
576   Function *F = BB->getParent();
577   Module *M = F->getParent();
578   LLVMContext &C = M->getContext();
579   IRBuilder<> IRB(C);
580   IRB.SetCurrentDebugLocation(DL);
581 
582   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
583   IRB.SetInsertPoint(BB);
584   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
585   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
586   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
587   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
588   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
589                                      ThrewValueGV->getName() + ".val");
590   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
591   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
592   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
593 
594   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
595   // if (%label == 0)
596   IRB.SetInsertPoint(ThenBB1);
597   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
598   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
599   Value *ThrewPtr =
600       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
601   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
602                                       ThrewPtr->getName() + ".loaded");
603   Value *ThenLabel = IRB.CreateCall(
604       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
605   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
606   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
607 
608   // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
609   IRB.SetInsertPoint(ThenBB2);
610   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
611   IRB.CreateUnreachable();
612 
613   // setTempRet0(%__threwValue.val);
614   IRB.SetInsertPoint(EndBB2);
615   IRB.CreateCall(SetTempRet0Func, ThrewValue);
616   IRB.CreateBr(EndBB1);
617 
618   IRB.SetInsertPoint(ElseBB1);
619   IRB.CreateBr(EndBB1);
620 
621   // longjmp_result = getTempRet0();
622   IRB.SetInsertPoint(EndBB1);
623   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
624   LabelPHI->addIncoming(ThenLabel, EndBB2);
625 
626   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
627 
628   // Output parameter assignment
629   Label = LabelPHI;
630   EndBB = EndBB1;
631   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
632 }
633 
634 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
635   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
636   DT.recalculate(F); // CFG has been changed
637   SSAUpdater SSA;
638   for (BasicBlock &BB : F) {
639     for (Instruction &I : BB) {
640       SSA.Initialize(I.getType(), I.getName());
641       SSA.AddAvailableValue(&BB, &I);
642       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
643         Use &U = *UI;
644         ++UI;
645         auto *User = cast<Instruction>(U.getUser());
646         if (auto *UserPN = dyn_cast<PHINode>(User))
647           if (UserPN->getIncomingBlock(U) == &BB)
648             continue;
649 
650         if (DT.dominates(&I, User))
651           continue;
652         SSA.RewriteUseAfterInsertions(U);
653       }
654     }
655   }
656 }
657 
658 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
659 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes
660 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type
661 // match. jmp_buf* will eventually be lowered to i32 in the wasm backend.
662 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
663                                                 Function *EmLongjmpF) {
664   Module *M = LongjmpF->getParent();
665   SmallVector<CallInst *, 8> ToErase;
666   LLVMContext &C = LongjmpF->getParent()->getContext();
667   IRBuilder<> IRB(C);
668 
669   // For calls to longjmp, replace it with emscripten_longjmp and cast its first
670   // argument (jmp_buf*) to int
671   for (User *U : LongjmpF->users()) {
672     auto *CI = dyn_cast<CallInst>(U);
673     if (CI && CI->getCalledFunction() == LongjmpF) {
674       IRB.SetInsertPoint(CI);
675       Value *Jmpbuf =
676           IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf");
677       IRB.CreateCall(EmLongjmpF, {Jmpbuf, CI->getArgOperand(1)});
678       ToErase.push_back(CI);
679     }
680   }
681   for (auto *I : ToErase)
682     I->eraseFromParent();
683 
684   // If we have any remaining uses of longjmp's function pointer, replace it
685   // with (int(*)(jmp_buf*, int))emscripten_longjmp.
686   if (!LongjmpF->uses().empty()) {
687     Value *EmLongjmp =
688         IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
689     LongjmpF->replaceAllUsesWith(EmLongjmp);
690   }
691 }
692 
693 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
694   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
695 
696   LLVMContext &C = M.getContext();
697   IRBuilder<> IRB(C);
698 
699   Function *SetjmpF = M.getFunction("setjmp");
700   Function *LongjmpF = M.getFunction("longjmp");
701   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
702   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
703   DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
704 
705   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
706   assert(TPC && "Expected a TargetPassConfig");
707   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
708 
709   if (EnableEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm)
710     report_fatal_error("-exception-model=wasm not allowed with "
711                        "-enable-emscripten-cxx-exceptions");
712 
713   // Declare (or get) global variables __THREW__, __threwValue, and
714   // getTempRet0/setTempRet0 function which are used in common for both
715   // exception handling and setjmp/longjmp handling
716   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
717   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
718   GetTempRet0Func = getEmscriptenFunction(
719       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
720   SetTempRet0Func = getEmscriptenFunction(
721       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
722       "setTempRet0", &M);
723   GetTempRet0Func->setDoesNotThrow();
724   SetTempRet0Func->setDoesNotThrow();
725 
726   bool Changed = false;
727 
728   // Function registration for exception handling
729   if (EnableEH) {
730     // Register __resumeException function
731     FunctionType *ResumeFTy =
732         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
733     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
734 
735     // Register llvm_eh_typeid_for function
736     FunctionType *EHTypeIDTy =
737         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
738     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
739   }
740 
741   // Function registration and data pre-gathering for setjmp/longjmp handling
742   if (DoSjLj) {
743     // Register emscripten_longjmp function
744     FunctionType *FTy = FunctionType::get(
745         IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
746     EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
747 
748     if (SetjmpF) {
749       // Register saveSetjmp function
750       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
751       FTy = FunctionType::get(Type::getInt32PtrTy(C),
752                               {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
753                                Type::getInt32PtrTy(C), IRB.getInt32Ty()},
754                               false);
755       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
756 
757       // Register testSetjmp function
758       FTy = FunctionType::get(
759           IRB.getInt32Ty(),
760           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
761           false);
762       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
763 
764       // Precompute setjmp users
765       for (User *U : SetjmpF->users()) {
766         auto *UI = cast<Instruction>(U);
767         SetjmpUsers.insert(UI->getFunction());
768       }
769     }
770   }
771 
772   // Exception handling transformation
773   if (EnableEH) {
774     for (Function &F : M) {
775       if (F.isDeclaration())
776         continue;
777       Changed |= runEHOnFunction(F);
778     }
779   }
780 
781   // Setjmp/longjmp handling transformation
782   if (DoSjLj) {
783     Changed = true; // We have setjmp or longjmp somewhere
784     if (LongjmpF)
785       replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
786     // Only traverse functions that uses setjmp in order not to insert
787     // unnecessary prep / cleanup code in every function
788     if (SetjmpF)
789       for (Function *F : SetjmpUsers)
790         runSjLjOnFunction(*F);
791   }
792 
793   if (!Changed) {
794     // Delete unused global variables and functions
795     if (ResumeF)
796       ResumeF->eraseFromParent();
797     if (EHTypeIDF)
798       EHTypeIDF->eraseFromParent();
799     if (EmLongjmpF)
800       EmLongjmpF->eraseFromParent();
801     if (SaveSetjmpF)
802       SaveSetjmpF->eraseFromParent();
803     if (TestSetjmpF)
804       TestSetjmpF->eraseFromParent();
805     return false;
806   }
807 
808   return true;
809 }
810 
811 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
812   Module &M = *F.getParent();
813   LLVMContext &C = F.getContext();
814   IRBuilder<> IRB(C);
815   bool Changed = false;
816   SmallVector<Instruction *, 64> ToErase;
817   SmallPtrSet<LandingPadInst *, 32> LandingPads;
818 
819   for (BasicBlock &BB : F) {
820     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
821     if (!II)
822       continue;
823     Changed = true;
824     LandingPads.insert(II->getLandingPadInst());
825     IRB.SetInsertPoint(II);
826 
827     const Value *Callee = II->getCalledOperand();
828     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
829     if (NeedInvoke) {
830       // Wrap invoke with invoke wrapper and generate preamble/postamble
831       Value *Threw = wrapInvoke(II);
832       ToErase.push_back(II);
833 
834       // If setjmp/longjmp handling is enabled, the thrown value can be not an
835       // exception but a longjmp. If the current function contains calls to
836       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
837       // if the function does not contain setjmp calls, we shouldn't silently
838       // ignore longjmps; we should rethrow them so they can be correctly
839       // handled in somewhere up the call chain where setjmp is.
840       // __THREW__'s value is 0 when nothing happened, 1 when an exception is
841       // thrown, other values when longjmp is thrown.
842       //
843       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
844       //   goto %tail
845       // else
846       //   goto %longjmp.rethrow
847       //
848       // longjmp.rethrow: ;; This is longjmp. Rethrow it
849       //   %__threwValue.val = __threwValue
850       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
851       //
852       // tail: ;; Nothing happened or an exception is thrown
853       //   ... Continue exception handling ...
854       if (DoSjLj && !SetjmpUsers.count(&F) && canLongjmp(M, Callee)) {
855         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
856         BasicBlock *RethrowBB = BasicBlock::Create(C, "longjmp.rethrow", &F);
857         Value *CmpEqOne =
858             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
859         Value *CmpEqZero =
860             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
861         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
862         IRB.CreateCondBr(Or, Tail, RethrowBB);
863         IRB.SetInsertPoint(RethrowBB);
864         Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
865                                            ThrewValueGV->getName() + ".val");
866         IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
867 
868         IRB.CreateUnreachable();
869         IRB.SetInsertPoint(Tail);
870       }
871 
872       // Insert a branch based on __THREW__ variable
873       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
874       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
875 
876     } else {
877       // This can't throw, and we don't need this invoke, just replace it with a
878       // call+branch
879       SmallVector<Value *, 16> Args(II->args());
880       CallInst *NewCall =
881           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
882       NewCall->takeName(II);
883       NewCall->setCallingConv(II->getCallingConv());
884       NewCall->setDebugLoc(II->getDebugLoc());
885       NewCall->setAttributes(II->getAttributes());
886       II->replaceAllUsesWith(NewCall);
887       ToErase.push_back(II);
888 
889       IRB.CreateBr(II->getNormalDest());
890 
891       // Remove any PHI node entries from the exception destination
892       II->getUnwindDest()->removePredecessor(&BB);
893     }
894   }
895 
896   // Process resume instructions
897   for (BasicBlock &BB : F) {
898     // Scan the body of the basic block for resumes
899     for (Instruction &I : BB) {
900       auto *RI = dyn_cast<ResumeInst>(&I);
901       if (!RI)
902         continue;
903       Changed = true;
904 
905       // Split the input into legal values
906       Value *Input = RI->getValue();
907       IRB.SetInsertPoint(RI);
908       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
909       // Create a call to __resumeException function
910       IRB.CreateCall(ResumeF, {Low});
911       // Add a terminator to the block
912       IRB.CreateUnreachable();
913       ToErase.push_back(RI);
914     }
915   }
916 
917   // Process llvm.eh.typeid.for intrinsics
918   for (BasicBlock &BB : F) {
919     for (Instruction &I : BB) {
920       auto *CI = dyn_cast<CallInst>(&I);
921       if (!CI)
922         continue;
923       const Function *Callee = CI->getCalledFunction();
924       if (!Callee)
925         continue;
926       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
927         continue;
928       Changed = true;
929 
930       IRB.SetInsertPoint(CI);
931       CallInst *NewCI =
932           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
933       CI->replaceAllUsesWith(NewCI);
934       ToErase.push_back(CI);
935     }
936   }
937 
938   // Look for orphan landingpads, can occur in blocks with no predecessors
939   for (BasicBlock &BB : F) {
940     Instruction *I = BB.getFirstNonPHI();
941     if (auto *LPI = dyn_cast<LandingPadInst>(I))
942       LandingPads.insert(LPI);
943   }
944   Changed |= !LandingPads.empty();
945 
946   // Handle all the landingpad for this function together, as multiple invokes
947   // may share a single lp
948   for (LandingPadInst *LPI : LandingPads) {
949     IRB.SetInsertPoint(LPI);
950     SmallVector<Value *, 16> FMCArgs;
951     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
952       Constant *Clause = LPI->getClause(I);
953       // TODO Handle filters (= exception specifications).
954       // https://bugs.llvm.org/show_bug.cgi?id=50396
955       if (LPI->isCatch(I))
956         FMCArgs.push_back(Clause);
957     }
958 
959     // Create a call to __cxa_find_matching_catch_N function
960     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
961     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
962     Value *Undef = UndefValue::get(LPI->getType());
963     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
964     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
965     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
966 
967     LPI->replaceAllUsesWith(Pair1);
968     ToErase.push_back(LPI);
969   }
970 
971   // Erase everything we no longer need in this function
972   for (Instruction *I : ToErase)
973     I->eraseFromParent();
974 
975   return Changed;
976 }
977 
978 // This tries to get debug info from the instruction before which a new
979 // instruction will be inserted, and if there's no debug info in that
980 // instruction, tries to get the info instead from the previous instruction (if
981 // any). If none of these has debug info and a DISubprogram is provided, it
982 // creates a dummy debug info with the first line of the function, because IR
983 // verifier requires all inlinable callsites should have debug info when both a
984 // caller and callee have DISubprogram. If none of these conditions are met,
985 // returns empty info.
986 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
987                                     DISubprogram *SP) {
988   assert(InsertBefore);
989   if (InsertBefore->getDebugLoc())
990     return InsertBefore->getDebugLoc();
991   const Instruction *Prev = InsertBefore->getPrevNode();
992   if (Prev && Prev->getDebugLoc())
993     return Prev->getDebugLoc();
994   if (SP)
995     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
996   return DebugLoc();
997 }
998 
999 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1000   Module &M = *F.getParent();
1001   LLVMContext &C = F.getContext();
1002   IRBuilder<> IRB(C);
1003   SmallVector<Instruction *, 64> ToErase;
1004   // Vector of %setjmpTable values
1005   std::vector<Instruction *> SetjmpTableInsts;
1006   // Vector of %setjmpTableSize values
1007   std::vector<Instruction *> SetjmpTableSizeInsts;
1008 
1009   // Setjmp preparation
1010 
1011   // This instruction effectively means %setjmpTableSize = 4.
1012   // We create this as an instruction intentionally, and we don't want to fold
1013   // this instruction to a constant 4, because this value will be used in
1014   // SSAUpdater.AddAvailableValue(...) later.
1015   BasicBlock &EntryBB = F.getEntryBlock();
1016   DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram());
1017   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
1018       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
1019       &*EntryBB.getFirstInsertionPt());
1020   SetjmpTableSize->setDebugLoc(FirstDL);
1021   // setjmpTable = (int *) malloc(40);
1022   Instruction *SetjmpTable = CallInst::CreateMalloc(
1023       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1024       nullptr, nullptr, "setjmpTable");
1025   SetjmpTable->setDebugLoc(FirstDL);
1026   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1027   // mismatch. We need to set the debug loc for the original call too.
1028   auto *MallocCall = SetjmpTable->stripPointerCasts();
1029   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1030     MallocCallI->setDebugLoc(FirstDL);
1031   }
1032   // setjmpTable[0] = 0;
1033   IRB.SetInsertPoint(SetjmpTableSize);
1034   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1035   SetjmpTableInsts.push_back(SetjmpTable);
1036   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1037 
1038   // Setjmp transformation
1039   std::vector<PHINode *> SetjmpRetPHIs;
1040   Function *SetjmpF = M.getFunction("setjmp");
1041   for (User *U : SetjmpF->users()) {
1042     auto *CI = dyn_cast<CallInst>(U);
1043     if (!CI)
1044       report_fatal_error("Does not support indirect calls to setjmp");
1045 
1046     BasicBlock *BB = CI->getParent();
1047     if (BB->getParent() != &F) // in other function
1048       continue;
1049 
1050     // The tail is everything right after the call, and will be reached once
1051     // when setjmp is called, and later when longjmp returns to the setjmp
1052     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1053     // Add a phi to the tail, which will be the output of setjmp, which
1054     // indicates if this is the first call or a longjmp back. The phi directly
1055     // uses the right value based on where we arrive from
1056     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1057     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1058 
1059     // setjmp initial call returns 0
1060     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1061     // The proper output is now this, not the setjmp call itself
1062     CI->replaceAllUsesWith(SetjmpRet);
1063     // longjmp returns to the setjmp will add themselves to this phi
1064     SetjmpRetPHIs.push_back(SetjmpRet);
1065 
1066     // Fix call target
1067     // Our index in the function is our place in the array + 1 to avoid index
1068     // 0, because index 0 means the longjmp is not ours to handle.
1069     IRB.SetInsertPoint(CI);
1070     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1071                      SetjmpTable, SetjmpTableSize};
1072     Instruction *NewSetjmpTable =
1073         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1074     Instruction *NewSetjmpTableSize =
1075         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
1076     SetjmpTableInsts.push_back(NewSetjmpTable);
1077     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1078     ToErase.push_back(CI);
1079   }
1080 
1081   // Update each call that can longjmp so it can return to a setjmp where
1082   // relevant.
1083 
1084   // Because we are creating new BBs while processing and don't want to make
1085   // all these newly created BBs candidates again for longjmp processing, we
1086   // first make the vector of candidate BBs.
1087   std::vector<BasicBlock *> BBs;
1088   for (BasicBlock &BB : F)
1089     BBs.push_back(&BB);
1090 
1091   // BBs.size() will change within the loop, so we query it every time
1092   for (unsigned I = 0; I < BBs.size(); I++) {
1093     BasicBlock *BB = BBs[I];
1094     for (Instruction &I : *BB) {
1095       assert(!isa<InvokeInst>(&I));
1096       auto *CI = dyn_cast<CallInst>(&I);
1097       if (!CI)
1098         continue;
1099 
1100       const Value *Callee = CI->getCalledOperand();
1101       if (!canLongjmp(M, Callee))
1102         continue;
1103       if (isEmAsmCall(M, Callee))
1104         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1105                                F.getName() +
1106                                ". Please consider using EM_JS, or move the "
1107                                "EM_ASM into another function.",
1108                            false);
1109 
1110       Value *Threw = nullptr;
1111       BasicBlock *Tail;
1112       if (Callee->getName().startswith("__invoke_")) {
1113         // If invoke wrapper has already been generated for this call in
1114         // previous EH phase, search for the load instruction
1115         // %__THREW__.val = __THREW__;
1116         // in postamble after the invoke wrapper call
1117         LoadInst *ThrewLI = nullptr;
1118         StoreInst *ThrewResetSI = nullptr;
1119         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1120              I != IE; ++I) {
1121           if (auto *LI = dyn_cast<LoadInst>(I))
1122             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1123               if (GV == ThrewGV) {
1124                 Threw = ThrewLI = LI;
1125                 break;
1126               }
1127         }
1128         // Search for the store instruction after the load above
1129         // __THREW__ = 0;
1130         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1131              I != IE; ++I) {
1132           if (auto *SI = dyn_cast<StoreInst>(I)) {
1133             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1134               if (GV == ThrewGV &&
1135                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1136                 ThrewResetSI = SI;
1137                 break;
1138               }
1139             }
1140           }
1141         }
1142         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1143         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1144         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1145 
1146       } else {
1147         // Wrap call with invoke wrapper and generate preamble/postamble
1148         Threw = wrapInvoke(CI);
1149         ToErase.push_back(CI);
1150         Tail = SplitBlock(BB, CI->getNextNode());
1151 
1152         // If exception handling is enabled, the thrown value can be not a
1153         // longjmp but an exception, in which case we shouldn't silently ignore
1154         // exceptions; we should rethrow them.
1155         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1156         // thrown, other values when longjmp is thrown.
1157         //
1158         // if (%__THREW__.val == 1)
1159         //   goto %eh.rethrow
1160         // else
1161         //   goto %normal
1162         //
1163         // eh.rethrow: ;; Rethrow exception
1164         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1165         //   __resumeException(%exn)
1166         //
1167         // normal:
1168         //   <-- Insertion point. Will insert sjlj handling code from here
1169         //   goto %tail
1170         //
1171         // tail:
1172         //   ...
1173         if (supportsException(&F) && canThrow(Callee)) {
1174           IRB.SetInsertPoint(CI);
1175           // We will add a new conditional branch. So remove the branch created
1176           // when we split the BB
1177           ToErase.push_back(BB->getTerminator());
1178           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1179           BasicBlock *RethrowBB = BasicBlock::Create(C, "eh.rethrow", &F);
1180           Value *CmpEqOne =
1181               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1182           IRB.CreateCondBr(CmpEqOne, RethrowBB, NormalBB);
1183           IRB.SetInsertPoint(RethrowBB);
1184           CallInst *Exn = IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1185           IRB.CreateCall(ResumeF, {Exn});
1186           IRB.CreateUnreachable();
1187           IRB.SetInsertPoint(NormalBB);
1188           IRB.CreateBr(Tail);
1189           BB = NormalBB; // New insertion point to insert testSetjmp()
1190         }
1191       }
1192 
1193       // We need to replace the terminator in Tail - SplitBlock makes BB go
1194       // straight to Tail, we need to check if a longjmp occurred, and go to the
1195       // right setjmp-tail if so
1196       ToErase.push_back(BB->getTerminator());
1197 
1198       // Generate a function call to testSetjmp function and preamble/postamble
1199       // code to figure out (1) whether longjmp occurred (2) if longjmp
1200       // occurred, which setjmp it corresponds to
1201       Value *Label = nullptr;
1202       Value *LongjmpResult = nullptr;
1203       BasicBlock *EndBB = nullptr;
1204       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1205                      Label, LongjmpResult, EndBB);
1206       assert(Label && LongjmpResult && EndBB);
1207 
1208       // Create switch instruction
1209       IRB.SetInsertPoint(EndBB);
1210       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1211       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1212       // -1 means no longjmp happened, continue normally (will hit the default
1213       // switch case). 0 means a longjmp that is not ours to handle, needs a
1214       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1215       // 0).
1216       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1217         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1218         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1219       }
1220 
1221       // We are splitting the block here, and must continue to find other calls
1222       // in the block - which is now split. so continue to traverse in the Tail
1223       BBs.push_back(Tail);
1224     }
1225   }
1226 
1227   // Erase everything we no longer need in this function
1228   for (Instruction *I : ToErase)
1229     I->eraseFromParent();
1230 
1231   // Free setjmpTable buffer before each return instruction
1232   for (BasicBlock &BB : F) {
1233     Instruction *TI = BB.getTerminator();
1234     if (isa<ReturnInst>(TI)) {
1235       DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
1236       auto *Free = CallInst::CreateFree(SetjmpTable, TI);
1237       Free->setDebugLoc(DL);
1238       // CallInst::CreateFree may create a bitcast instruction if its argument
1239       // types mismatch. We need to set the debug loc for the bitcast too.
1240       if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1241         if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1242           BitCastI->setDebugLoc(DL);
1243       }
1244     }
1245   }
1246 
1247   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1248   // (when buffer reallocation occurs)
1249   // entry:
1250   //   setjmpTableSize = 4;
1251   //   setjmpTable = (int *) malloc(40);
1252   //   setjmpTable[0] = 0;
1253   // ...
1254   // somebb:
1255   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1256   //   setjmpTableSize = getTempRet0();
1257   // So we need to make sure the SSA for these variables is valid so that every
1258   // saveSetjmp and testSetjmp calls have the correct arguments.
1259   SSAUpdater SetjmpTableSSA;
1260   SSAUpdater SetjmpTableSizeSSA;
1261   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1262   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1263   for (Instruction *I : SetjmpTableInsts)
1264     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1265   for (Instruction *I : SetjmpTableSizeInsts)
1266     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1267 
1268   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1269        UI != UE;) {
1270     // Grab the use before incrementing the iterator.
1271     Use &U = *UI;
1272     // Increment the iterator before removing the use from the list.
1273     ++UI;
1274     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1275       if (I->getParent() != &EntryBB)
1276         SetjmpTableSSA.RewriteUse(U);
1277   }
1278   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1279        UI != UE;) {
1280     Use &U = *UI;
1281     ++UI;
1282     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1283       if (I->getParent() != &EntryBB)
1284         SetjmpTableSizeSSA.RewriteUse(U);
1285   }
1286 
1287   // Finally, our modifications to the cfg can break dominance of SSA variables.
1288   // For example, in this code,
1289   // if (x()) { .. setjmp() .. }
1290   // if (y()) { .. longjmp() .. }
1291   // We must split the longjmp block, and it can jump into the block splitted
1292   // from setjmp one. But that means that when we split the setjmp block, it's
1293   // first part no longer dominates its second part - there is a theoretically
1294   // possible control flow path where x() is false, then y() is true and we
1295   // reach the second part of the setjmp block, without ever reaching the first
1296   // part. So, we rebuild SSA form here.
1297   rebuildSSA(F);
1298   return true;
1299 }
1300