1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. This is similar 17 /// to the current Emscripten asm.js exception handling in fastcomp. For 18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 19 /// (Location: https://github.com/kripken/emscripten-fastcomp) 20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 22 /// lib/Target/JSBackend/JSBackend.cpp 23 /// lib/Target/JSBackend/CallHandlers.h 24 /// 25 /// * Exception handling 26 /// This pass lowers invokes and landingpads into library functions in JS glue 27 /// code. Invokes are lowered into function wrappers called invoke wrappers that 28 /// exist in JS side, which wraps the original function call with JS try-catch. 29 /// If an exception occurred, cxa_throw() function in JS side sets some 30 /// variables (see below) so we can check whether an exception occurred from 31 /// wasm code and handle it appropriately. 32 /// 33 /// * Setjmp-longjmp handling 34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 35 /// The idea is that each block with a setjmp is broken up into two parts: the 36 /// part containing setjmp and the part right after the setjmp. The latter part 37 /// is either reached from the setjmp, or later from a longjmp. To handle the 38 /// longjmp, all calls that might longjmp are also called using invoke wrappers 39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 40 /// we can check / whether a longjmp occurred from wasm code. Each block with a 41 /// function call that might longjmp is also split up after the longjmp call. 42 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 43 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 44 /// We assume setjmp-longjmp handling always run after EH handling, which means 45 /// we don't expect any exception-related instructions when SjLj runs. 46 /// FIXME Currently this scheme does not support indirect call of setjmp, 47 /// because of the limitation of the scheme itself. fastcomp does not support it 48 /// either. 49 /// 50 /// In detail, this pass does following things: 51 /// 52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 53 /// __THREW__ and __threwValue will be set in invoke wrappers 54 /// in JS glue code. For what invoke wrappers are, refer to 3). These 55 /// variables are used for both exceptions and setjmp/longjmps. 56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 57 /// means nothing occurred, 1 means an exception occurred, and other numbers 58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 59 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 60 /// 61 /// * Exception handling 62 /// 63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 64 /// at link time. 65 /// The global variables in 1) will exist in wasm address space, 66 /// but their values should be set in JS code, so these functions 67 /// as interfaces to JS glue code. These functions are equivalent to the 68 /// following JS functions, which actually exist in asm.js version of JS 69 /// library. 70 /// 71 /// function setThrew(threw, value) { 72 /// if (__THREW__ == 0) { 73 /// __THREW__ = threw; 74 /// __threwValue = value; 75 /// } 76 /// } 77 // 78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 79 /// 80 /// In exception handling, getTempRet0 indicates the type of an exception 81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 82 /// function. 83 /// 84 /// 3) Lower 85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 86 /// into 87 /// __THREW__ = 0; 88 /// call @__invoke_SIG(func, arg1, arg2) 89 /// %__THREW__.val = __THREW__; 90 /// __THREW__ = 0; 91 /// if (%__THREW__.val == 1) 92 /// goto %lpad 93 /// else 94 /// goto %invoke.cont 95 /// SIG is a mangled string generated based on the LLVM IR-level function 96 /// signature. After LLVM IR types are lowered to the target wasm types, 97 /// the names for these wrappers will change based on wasm types as well, 98 /// as in invoke_vi (function takes an int and returns void). The bodies of 99 /// these wrappers will be generated in JS glue code, and inside those 100 /// wrappers we use JS try-catch to generate actual exception effects. It 101 /// also calls the original callee function. An example wrapper in JS code 102 /// would look like this: 103 /// function invoke_vi(index,a1) { 104 /// try { 105 /// Module["dynCall_vi"](index,a1); // This calls original callee 106 /// } catch(e) { 107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 108 /// asm["setThrew"](1, 0); // setThrew is called here 109 /// } 110 /// } 111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 112 /// so we can jump to the right BB based on this value. 113 /// 114 /// 4) Lower 115 /// %val = landingpad catch c1 catch c2 catch c3 ... 116 /// ... use %val ... 117 /// into 118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 119 /// %val = {%fmc, getTempRet0()} 120 /// ... use %val ... 121 /// Here N is a number calculated based on the number of clauses. 122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 123 /// 124 /// 5) Lower 125 /// resume {%a, %b} 126 /// into 127 /// call @__resumeException(%a) 128 /// where __resumeException() is a function in JS glue code. 129 /// 130 /// 6) Lower 131 /// call @llvm.eh.typeid.for(type) (intrinsic) 132 /// into 133 /// call @llvm_eh_typeid_for(type) 134 /// llvm_eh_typeid_for function will be generated in JS glue code. 135 /// 136 /// * Setjmp / Longjmp handling 137 /// 138 /// In case calls to longjmp() exists 139 /// 140 /// 1) Lower 141 /// longjmp(buf, value) 142 /// into 143 /// emscripten_longjmp_jmpbuf(buf, value) 144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 145 /// 146 /// In case calls to setjmp() exists 147 /// 148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 149 /// sejmpTableSize as follows: 150 /// setjmpTableSize = 4; 151 /// setjmpTable = (int *) malloc(40); 152 /// setjmpTable[0] = 0; 153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 154 /// code. 155 /// 156 /// 3) Lower 157 /// setjmp(buf) 158 /// into 159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 160 /// setjmpTableSize = getTempRet0(); 161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 162 /// is incrementally assigned from 0) and its label (a unique number that 163 /// represents each callsite of setjmp). When we need more entries in 164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 165 /// return the new table address, and assign the new table size in 166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer 167 /// buf. A BB with setjmp is split into two after setjmp call in order to 168 /// make the post-setjmp BB the possible destination of longjmp BB. 169 /// 170 /// 171 /// 4) Lower every call that might longjmp into 172 /// __THREW__ = 0; 173 /// call @__invoke_SIG(func, arg1, arg2) 174 /// %__THREW__.val = __THREW__; 175 /// __THREW__ = 0; 176 /// if (%__THREW__.val != 0 & __threwValue != 0) { 177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 178 /// setjmpTableSize); 179 /// if (%label == 0) 180 /// emscripten_longjmp(%__THREW__.val, __threwValue); 181 /// setTempRet0(__threwValue); 182 /// } else { 183 /// %label = -1; 184 /// } 185 /// longjmp_result = getTempRet0(); 186 /// switch label { 187 /// label 1: goto post-setjmp BB 1 188 /// label 2: goto post-setjmp BB 2 189 /// ... 190 /// default: goto splitted next BB 191 /// } 192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 194 /// will be the address of matching jmp_buf buffer and __threwValue be the 195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 197 /// each setjmp callsite. Label 0 means this longjmp buffer does not 198 /// correspond to one of the setjmp callsites in this function, so in this 199 /// case we just chain the longjmp to the caller. (Here we call 200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 204 /// can't translate an int value to a jmp_buf.) 205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 206 /// post-setjmp BB based on the label. 207 /// 208 ///===----------------------------------------------------------------------===// 209 210 #include "WebAssembly.h" 211 #include "llvm/IR/CallSite.h" 212 #include "llvm/IR/Dominators.h" 213 #include "llvm/IR/IRBuilder.h" 214 #include "llvm/Support/CommandLine.h" 215 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 216 #include "llvm/Transforms/Utils/SSAUpdater.h" 217 218 using namespace llvm; 219 220 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 221 222 static cl::list<std::string> 223 EHWhitelist("emscripten-cxx-exceptions-whitelist", 224 cl::desc("The list of function names in which Emscripten-style " 225 "exception handling is enabled (see emscripten " 226 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 227 cl::CommaSeparated); 228 229 namespace { 230 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 231 bool EnableEH; // Enable exception handling 232 bool EnableSjLj; // Enable setjmp/longjmp handling 233 234 GlobalVariable *ThrewGV = nullptr; 235 GlobalVariable *ThrewValueGV = nullptr; 236 Function *GetTempRet0Func = nullptr; 237 Function *SetTempRet0Func = nullptr; 238 Function *ResumeF = nullptr; 239 Function *EHTypeIDF = nullptr; 240 Function *EmLongjmpF = nullptr; 241 Function *EmLongjmpJmpbufF = nullptr; 242 Function *SaveSetjmpF = nullptr; 243 Function *TestSetjmpF = nullptr; 244 245 // __cxa_find_matching_catch_N functions. 246 // Indexed by the number of clauses in an original landingpad instruction. 247 DenseMap<int, Function *> FindMatchingCatches; 248 // Map of <function signature string, invoke_ wrappers> 249 StringMap<Function *> InvokeWrappers; 250 // Set of whitelisted function names for exception handling 251 std::set<std::string> EHWhitelistSet; 252 253 StringRef getPassName() const override { 254 return "WebAssembly Lower Emscripten Exceptions"; 255 } 256 257 bool runEHOnFunction(Function &F); 258 bool runSjLjOnFunction(Function &F); 259 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 260 261 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 262 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 263 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 264 Value *&LongjmpResult, BasicBlock *&EndBB); 265 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 266 267 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 268 bool canLongjmp(Module &M, const Value *Callee) const; 269 bool isEmAsmCall(Module &M, const Value *Callee) const; 270 271 void rebuildSSA(Function &F); 272 273 public: 274 static char ID; 275 276 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 277 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) { 278 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 279 } 280 bool runOnModule(Module &M) override; 281 282 void getAnalysisUsage(AnalysisUsage &AU) const override { 283 AU.addRequired<DominatorTreeWrapperPass>(); 284 } 285 }; 286 } // End anonymous namespace 287 288 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 289 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 290 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 291 false, false) 292 293 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 294 bool EnableSjLj) { 295 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 296 } 297 298 static bool canThrow(const Value *V) { 299 if (const auto *F = dyn_cast<const Function>(V)) { 300 // Intrinsics cannot throw 301 if (F->isIntrinsic()) 302 return false; 303 StringRef Name = F->getName(); 304 // leave setjmp and longjmp (mostly) alone, we process them properly later 305 if (Name == "setjmp" || Name == "longjmp") 306 return false; 307 return !F->doesNotThrow(); 308 } 309 // not a function, so an indirect call - can throw, we can't tell 310 return true; 311 } 312 313 // Get a global variable with the given name. If it doesn't exist declare it, 314 // which will generate an import and asssumes that it will exist at link time. 315 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 316 const char *Name) { 317 318 auto *GV = 319 dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty())); 320 if (!GV) 321 report_fatal_error(Twine("unable to create global: ") + Name); 322 323 return GV; 324 } 325 326 // Simple function name mangler. 327 // This function simply takes LLVM's string representation of parameter types 328 // and concatenate them with '_'. There are non-alphanumeric characters but llc 329 // is ok with it, and we need to postprocess these names after the lowering 330 // phase anyway. 331 static std::string getSignature(FunctionType *FTy) { 332 std::string Sig; 333 raw_string_ostream OS(Sig); 334 OS << *FTy->getReturnType(); 335 for (Type *ParamTy : FTy->params()) 336 OS << "_" << *ParamTy; 337 if (FTy->isVarArg()) 338 OS << "_..."; 339 Sig = OS.str(); 340 Sig.erase(remove_if(Sig, isspace), Sig.end()); 341 // When s2wasm parses .s file, a comma means the end of an argument. So a 342 // mangled function name can contain any character but a comma. 343 std::replace(Sig.begin(), Sig.end(), ',', '.'); 344 return Sig; 345 } 346 347 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 348 // This is because a landingpad instruction contains two more arguments, a 349 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 350 // functions are named after the number of arguments in the original landingpad 351 // instruction. 352 Function * 353 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 354 unsigned NumClauses) { 355 if (FindMatchingCatches.count(NumClauses)) 356 return FindMatchingCatches[NumClauses]; 357 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 358 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 359 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 360 Function *F = Function::Create( 361 FTy, GlobalValue::ExternalLinkage, 362 "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 363 FindMatchingCatches[NumClauses] = F; 364 return F; 365 } 366 367 // Generate invoke wrapper seqence with preamble and postamble 368 // Preamble: 369 // __THREW__ = 0; 370 // Postamble: 371 // %__THREW__.val = __THREW__; __THREW__ = 0; 372 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 373 // whether longjmp occurred), for future use. 374 template <typename CallOrInvoke> 375 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 376 LLVMContext &C = CI->getModule()->getContext(); 377 378 // If we are calling a function that is noreturn, we must remove that 379 // attribute. The code we insert here does expect it to return, after we 380 // catch the exception. 381 if (CI->doesNotReturn()) { 382 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 383 F->removeFnAttr(Attribute::NoReturn); 384 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 385 } 386 387 IRBuilder<> IRB(C); 388 IRB.SetInsertPoint(CI); 389 390 // Pre-invoke 391 // __THREW__ = 0; 392 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 393 394 // Invoke function wrapper in JavaScript 395 SmallVector<Value *, 16> Args; 396 // Put the pointer to the callee as first argument, so it can be called 397 // within the invoke wrapper later 398 Args.push_back(CI->getCalledValue()); 399 Args.append(CI->arg_begin(), CI->arg_end()); 400 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 401 NewCall->takeName(CI); 402 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 403 NewCall->setDebugLoc(CI->getDebugLoc()); 404 405 // Because we added the pointer to the callee as first argument, all 406 // argument attribute indices have to be incremented by one. 407 SmallVector<AttributeSet, 8> ArgAttributes; 408 const AttributeList &InvokeAL = CI->getAttributes(); 409 410 // No attributes for the callee pointer. 411 ArgAttributes.push_back(AttributeSet()); 412 // Copy the argument attributes from the original 413 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 414 ArgAttributes.push_back(InvokeAL.getParamAttributes(I)); 415 416 AttrBuilder FnAttrs(InvokeAL.getFnAttributes()); 417 if (FnAttrs.contains(Attribute::AllocSize)) { 418 // The allocsize attribute (if any) referes to parameters by index and needs 419 // to be adjusted. 420 unsigned SizeArg; 421 Optional<unsigned> NEltArg; 422 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 423 SizeArg += 1; 424 if (NEltArg.hasValue()) 425 NEltArg = NEltArg.getValue() + 1; 426 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 427 } 428 429 // Reconstruct the AttributesList based on the vector we constructed. 430 AttributeList NewCallAL = 431 AttributeList::get(C, AttributeSet::get(C, FnAttrs), 432 InvokeAL.getRetAttributes(), ArgAttributes); 433 NewCall->setAttributes(NewCallAL); 434 435 CI->replaceAllUsesWith(NewCall); 436 437 // Post-invoke 438 // %__THREW__.val = __THREW__; __THREW__ = 0; 439 Value *Threw = 440 IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val"); 441 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 442 return Threw; 443 } 444 445 // Get matching invoke wrapper based on callee signature 446 template <typename CallOrInvoke> 447 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 448 Module *M = CI->getModule(); 449 SmallVector<Type *, 16> ArgTys; 450 Value *Callee = CI->getCalledValue(); 451 FunctionType *CalleeFTy; 452 if (auto *F = dyn_cast<Function>(Callee)) 453 CalleeFTy = F->getFunctionType(); 454 else { 455 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 456 CalleeFTy = cast<FunctionType>(CalleeTy); 457 } 458 459 std::string Sig = getSignature(CalleeFTy); 460 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 461 return InvokeWrappers[Sig]; 462 463 // Put the pointer to the callee as first argument 464 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 465 // Add argument types 466 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 467 468 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 469 CalleeFTy->isVarArg()); 470 Function *F = 471 Function::Create(FTy, GlobalValue::ExternalLinkage, "__invoke_" + Sig, M); 472 InvokeWrappers[Sig] = F; 473 return F; 474 } 475 476 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 477 const Value *Callee) const { 478 if (auto *CalleeF = dyn_cast<Function>(Callee)) 479 if (CalleeF->isIntrinsic()) 480 return false; 481 482 // Attempting to transform inline assembly will result in something like: 483 // call void @__invoke_void(void ()* asm ...) 484 // which is invalid because inline assembly blocks do not have addresses 485 // and can't be passed by pointer. The result is a crash with illegal IR. 486 if (isa<InlineAsm>(Callee)) 487 return false; 488 StringRef CalleeName = Callee->getName(); 489 490 // The reason we include malloc/free here is to exclude the malloc/free 491 // calls generated in setjmp prep / cleanup routines. 492 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 493 return false; 494 495 // There are functions in JS glue code 496 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 497 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 498 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 499 return false; 500 501 // __cxa_find_matching_catch_N functions cannot longjmp 502 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 503 return false; 504 505 // Exception-catching related functions 506 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 507 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 508 CalleeName == "__clang_call_terminate") 509 return false; 510 511 // Otherwise we don't know 512 return true; 513 } 514 515 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M, 516 const Value *Callee) const { 517 StringRef CalleeName = Callee->getName(); 518 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 519 return CalleeName == "emscripten_asm_const_int" || 520 CalleeName == "emscripten_asm_const_double" || 521 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 522 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 523 CalleeName == "emscripten_asm_const_async_on_main_thread"; 524 } 525 526 // Generate testSetjmp function call seqence with preamble and postamble. 527 // The code this generates is equivalent to the following JavaScript code: 528 // if (%__THREW__.val != 0 & threwValue != 0) { 529 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 530 // if (%label == 0) 531 // emscripten_longjmp(%__THREW__.val, threwValue); 532 // setTempRet0(threwValue); 533 // } else { 534 // %label = -1; 535 // } 536 // %longjmp_result = getTempRet0(); 537 // 538 // As output parameters. returns %label, %longjmp_result, and the BB the last 539 // instruction (%longjmp_result = ...) is in. 540 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 541 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 542 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 543 BasicBlock *&EndBB) { 544 Function *F = BB->getParent(); 545 LLVMContext &C = BB->getModule()->getContext(); 546 IRBuilder<> IRB(C); 547 IRB.SetInsertPoint(InsertPt); 548 549 // if (%__THREW__.val != 0 & threwValue != 0) 550 IRB.SetInsertPoint(BB); 551 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 552 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 553 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 554 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 555 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 556 ThrewValueGV->getName() + ".val"); 557 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 558 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 559 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 560 561 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 562 // if (%label == 0) 563 IRB.SetInsertPoint(ThenBB1); 564 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 565 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 566 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 567 Threw->getName() + ".i32p"); 568 Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt, 569 ThrewInt->getName() + ".loaded"); 570 Value *ThenLabel = IRB.CreateCall( 571 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 572 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 573 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 574 575 // emscripten_longjmp(%__THREW__.val, threwValue); 576 IRB.SetInsertPoint(ThenBB2); 577 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 578 IRB.CreateUnreachable(); 579 580 // setTempRet0(threwValue); 581 IRB.SetInsertPoint(EndBB2); 582 IRB.CreateCall(SetTempRet0Func, ThrewValue); 583 IRB.CreateBr(EndBB1); 584 585 IRB.SetInsertPoint(ElseBB1); 586 IRB.CreateBr(EndBB1); 587 588 // longjmp_result = getTempRet0(); 589 IRB.SetInsertPoint(EndBB1); 590 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 591 LabelPHI->addIncoming(ThenLabel, EndBB2); 592 593 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 594 595 // Output parameter assignment 596 Label = LabelPHI; 597 EndBB = EndBB1; 598 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 599 } 600 601 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 602 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 603 DT.recalculate(F); // CFG has been changed 604 SSAUpdater SSA; 605 for (BasicBlock &BB : F) { 606 for (Instruction &I : BB) { 607 SSA.Initialize(I.getType(), I.getName()); 608 SSA.AddAvailableValue(&BB, &I); 609 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 610 Use &U = *UI; 611 ++UI; 612 auto *User = cast<Instruction>(U.getUser()); 613 if (auto *UserPN = dyn_cast<PHINode>(User)) 614 if (UserPN->getIncomingBlock(U) == &BB) 615 continue; 616 617 if (DT.dominates(&I, User)) 618 continue; 619 SSA.RewriteUseAfterInsertions(U); 620 } 621 } 622 } 623 } 624 625 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 626 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 627 628 LLVMContext &C = M.getContext(); 629 IRBuilder<> IRB(C); 630 631 Function *SetjmpF = M.getFunction("setjmp"); 632 Function *LongjmpF = M.getFunction("longjmp"); 633 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 634 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 635 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 636 637 // Declare (or get) global variables __THREW__, __threwValue, and 638 // getTempRet0/setTempRet0 function which are used in common for both 639 // exception handling and setjmp/longjmp handling 640 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 641 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 642 GetTempRet0Func = 643 Function::Create(FunctionType::get(IRB.getInt32Ty(), false), 644 GlobalValue::ExternalLinkage, "getTempRet0", &M); 645 SetTempRet0Func = Function::Create( 646 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 647 GlobalValue::ExternalLinkage, "setTempRet0", &M); 648 GetTempRet0Func->setDoesNotThrow(); 649 SetTempRet0Func->setDoesNotThrow(); 650 651 bool Changed = false; 652 653 // Exception handling 654 if (EnableEH) { 655 // Register __resumeException function 656 FunctionType *ResumeFTy = 657 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 658 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 659 "__resumeException", &M); 660 661 // Register llvm_eh_typeid_for function 662 FunctionType *EHTypeIDTy = 663 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 664 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 665 "llvm_eh_typeid_for", &M); 666 667 for (Function &F : M) { 668 if (F.isDeclaration()) 669 continue; 670 Changed |= runEHOnFunction(F); 671 } 672 } 673 674 // Setjmp/longjmp handling 675 if (DoSjLj) { 676 Changed = true; // We have setjmp or longjmp somewhere 677 678 if (LongjmpF) { 679 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 680 // defined in JS code 681 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 682 GlobalValue::ExternalLinkage, 683 "emscripten_longjmp_jmpbuf", &M); 684 685 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 686 } 687 688 if (SetjmpF) { 689 // Register saveSetjmp function 690 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 691 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 692 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 693 IRB.getInt32Ty()}; 694 FunctionType *FTy = 695 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 696 SaveSetjmpF = 697 Function::Create(FTy, GlobalValue::ExternalLinkage, "saveSetjmp", &M); 698 699 // Register testSetjmp function 700 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 701 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 702 TestSetjmpF = 703 Function::Create(FTy, GlobalValue::ExternalLinkage, "testSetjmp", &M); 704 705 FTy = FunctionType::get(IRB.getVoidTy(), 706 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 707 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 708 "emscripten_longjmp", &M); 709 710 // Only traverse functions that uses setjmp in order not to insert 711 // unnecessary prep / cleanup code in every function 712 SmallPtrSet<Function *, 8> SetjmpUsers; 713 for (User *U : SetjmpF->users()) { 714 auto *UI = cast<Instruction>(U); 715 SetjmpUsers.insert(UI->getFunction()); 716 } 717 for (Function *F : SetjmpUsers) 718 runSjLjOnFunction(*F); 719 } 720 } 721 722 if (!Changed) { 723 // Delete unused global variables and functions 724 if (ResumeF) 725 ResumeF->eraseFromParent(); 726 if (EHTypeIDF) 727 EHTypeIDF->eraseFromParent(); 728 if (EmLongjmpF) 729 EmLongjmpF->eraseFromParent(); 730 if (SaveSetjmpF) 731 SaveSetjmpF->eraseFromParent(); 732 if (TestSetjmpF) 733 TestSetjmpF->eraseFromParent(); 734 return false; 735 } 736 737 return true; 738 } 739 740 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 741 Module &M = *F.getParent(); 742 LLVMContext &C = F.getContext(); 743 IRBuilder<> IRB(C); 744 bool Changed = false; 745 SmallVector<Instruction *, 64> ToErase; 746 SmallPtrSet<LandingPadInst *, 32> LandingPads; 747 bool AllowExceptions = 748 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 749 750 for (BasicBlock &BB : F) { 751 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 752 if (!II) 753 continue; 754 LandingPads.insert(II->getLandingPadInst()); 755 IRB.SetInsertPoint(II); 756 757 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 758 if (NeedInvoke) { 759 // Wrap invoke with invoke wrapper and generate preamble/postamble 760 Value *Threw = wrapInvoke(II); 761 ToErase.push_back(II); 762 763 // Insert a branch based on __THREW__ variable 764 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 765 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 766 767 } else { 768 // This can't throw, and we don't need this invoke, just replace it with a 769 // call+branch 770 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 771 CallInst *NewCall = 772 IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args); 773 NewCall->takeName(II); 774 NewCall->setCallingConv(II->getCallingConv()); 775 NewCall->setDebugLoc(II->getDebugLoc()); 776 NewCall->setAttributes(II->getAttributes()); 777 II->replaceAllUsesWith(NewCall); 778 ToErase.push_back(II); 779 780 IRB.CreateBr(II->getNormalDest()); 781 782 // Remove any PHI node entries from the exception destination 783 II->getUnwindDest()->removePredecessor(&BB); 784 } 785 } 786 787 // Process resume instructions 788 for (BasicBlock &BB : F) { 789 // Scan the body of the basic block for resumes 790 for (Instruction &I : BB) { 791 auto *RI = dyn_cast<ResumeInst>(&I); 792 if (!RI) 793 continue; 794 795 // Split the input into legal values 796 Value *Input = RI->getValue(); 797 IRB.SetInsertPoint(RI); 798 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 799 // Create a call to __resumeException function 800 IRB.CreateCall(ResumeF, {Low}); 801 // Add a terminator to the block 802 IRB.CreateUnreachable(); 803 ToErase.push_back(RI); 804 } 805 } 806 807 // Process llvm.eh.typeid.for intrinsics 808 for (BasicBlock &BB : F) { 809 for (Instruction &I : BB) { 810 auto *CI = dyn_cast<CallInst>(&I); 811 if (!CI) 812 continue; 813 const Function *Callee = CI->getCalledFunction(); 814 if (!Callee) 815 continue; 816 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 817 continue; 818 819 IRB.SetInsertPoint(CI); 820 CallInst *NewCI = 821 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 822 CI->replaceAllUsesWith(NewCI); 823 ToErase.push_back(CI); 824 } 825 } 826 827 // Look for orphan landingpads, can occur in blocks with no predecessors 828 for (BasicBlock &BB : F) { 829 Instruction *I = BB.getFirstNonPHI(); 830 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 831 LandingPads.insert(LPI); 832 } 833 Changed = !LandingPads.empty(); 834 835 // Handle all the landingpad for this function together, as multiple invokes 836 // may share a single lp 837 for (LandingPadInst *LPI : LandingPads) { 838 IRB.SetInsertPoint(LPI); 839 SmallVector<Value *, 16> FMCArgs; 840 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 841 Constant *Clause = LPI->getClause(I); 842 // As a temporary workaround for the lack of aggregate varargs support 843 // in the interface between JS and wasm, break out filter operands into 844 // their component elements. 845 if (LPI->isFilter(I)) { 846 auto *ATy = cast<ArrayType>(Clause->getType()); 847 for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) { 848 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter"); 849 FMCArgs.push_back(EV); 850 } 851 } else 852 FMCArgs.push_back(Clause); 853 } 854 855 // Create a call to __cxa_find_matching_catch_N function 856 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 857 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 858 Value *Undef = UndefValue::get(LPI->getType()); 859 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 860 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 861 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 862 863 LPI->replaceAllUsesWith(Pair1); 864 ToErase.push_back(LPI); 865 } 866 867 // Erase everything we no longer need in this function 868 for (Instruction *I : ToErase) 869 I->eraseFromParent(); 870 871 return Changed; 872 } 873 874 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 875 Module &M = *F.getParent(); 876 LLVMContext &C = F.getContext(); 877 IRBuilder<> IRB(C); 878 SmallVector<Instruction *, 64> ToErase; 879 // Vector of %setjmpTable values 880 std::vector<Instruction *> SetjmpTableInsts; 881 // Vector of %setjmpTableSize values 882 std::vector<Instruction *> SetjmpTableSizeInsts; 883 884 // Setjmp preparation 885 886 // This instruction effectively means %setjmpTableSize = 4. 887 // We create this as an instruction intentionally, and we don't want to fold 888 // this instruction to a constant 4, because this value will be used in 889 // SSAUpdater.AddAvailableValue(...) later. 890 BasicBlock &EntryBB = F.getEntryBlock(); 891 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 892 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 893 &*EntryBB.getFirstInsertionPt()); 894 // setjmpTable = (int *) malloc(40); 895 Instruction *SetjmpTable = CallInst::CreateMalloc( 896 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 897 nullptr, nullptr, "setjmpTable"); 898 // setjmpTable[0] = 0; 899 IRB.SetInsertPoint(SetjmpTableSize); 900 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 901 SetjmpTableInsts.push_back(SetjmpTable); 902 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 903 904 // Setjmp transformation 905 std::vector<PHINode *> SetjmpRetPHIs; 906 Function *SetjmpF = M.getFunction("setjmp"); 907 for (User *U : SetjmpF->users()) { 908 auto *CI = dyn_cast<CallInst>(U); 909 if (!CI) 910 report_fatal_error("Does not support indirect calls to setjmp"); 911 912 BasicBlock *BB = CI->getParent(); 913 if (BB->getParent() != &F) // in other function 914 continue; 915 916 // The tail is everything right after the call, and will be reached once 917 // when setjmp is called, and later when longjmp returns to the setjmp 918 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 919 // Add a phi to the tail, which will be the output of setjmp, which 920 // indicates if this is the first call or a longjmp back. The phi directly 921 // uses the right value based on where we arrive from 922 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 923 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 924 925 // setjmp initial call returns 0 926 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 927 // The proper output is now this, not the setjmp call itself 928 CI->replaceAllUsesWith(SetjmpRet); 929 // longjmp returns to the setjmp will add themselves to this phi 930 SetjmpRetPHIs.push_back(SetjmpRet); 931 932 // Fix call target 933 // Our index in the function is our place in the array + 1 to avoid index 934 // 0, because index 0 means the longjmp is not ours to handle. 935 IRB.SetInsertPoint(CI); 936 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 937 SetjmpTable, SetjmpTableSize}; 938 Instruction *NewSetjmpTable = 939 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 940 Instruction *NewSetjmpTableSize = 941 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 942 SetjmpTableInsts.push_back(NewSetjmpTable); 943 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 944 ToErase.push_back(CI); 945 } 946 947 // Update each call that can longjmp so it can return to a setjmp where 948 // relevant. 949 950 // Because we are creating new BBs while processing and don't want to make 951 // all these newly created BBs candidates again for longjmp processing, we 952 // first make the vector of candidate BBs. 953 std::vector<BasicBlock *> BBs; 954 for (BasicBlock &BB : F) 955 BBs.push_back(&BB); 956 957 // BBs.size() will change within the loop, so we query it every time 958 for (unsigned I = 0; I < BBs.size(); I++) { 959 BasicBlock *BB = BBs[I]; 960 for (Instruction &I : *BB) { 961 assert(!isa<InvokeInst>(&I)); 962 auto *CI = dyn_cast<CallInst>(&I); 963 if (!CI) 964 continue; 965 966 const Value *Callee = CI->getCalledValue(); 967 if (!canLongjmp(M, Callee)) 968 continue; 969 if (isEmAsmCall(M, Callee)) 970 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 971 F.getName() + 972 ". Please consider using EM_JS, or move the " 973 "EM_ASM into another function.", 974 false); 975 976 Value *Threw = nullptr; 977 BasicBlock *Tail; 978 if (Callee->getName().startswith("__invoke_")) { 979 // If invoke wrapper has already been generated for this call in 980 // previous EH phase, search for the load instruction 981 // %__THREW__.val = __THREW__; 982 // in postamble after the invoke wrapper call 983 LoadInst *ThrewLI = nullptr; 984 StoreInst *ThrewResetSI = nullptr; 985 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 986 I != IE; ++I) { 987 if (auto *LI = dyn_cast<LoadInst>(I)) 988 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 989 if (GV == ThrewGV) { 990 Threw = ThrewLI = LI; 991 break; 992 } 993 } 994 // Search for the store instruction after the load above 995 // __THREW__ = 0; 996 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 997 I != IE; ++I) { 998 if (auto *SI = dyn_cast<StoreInst>(I)) 999 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 1000 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 1001 ThrewResetSI = SI; 1002 break; 1003 } 1004 } 1005 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1006 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1007 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1008 1009 } else { 1010 // Wrap call with invoke wrapper and generate preamble/postamble 1011 Threw = wrapInvoke(CI); 1012 ToErase.push_back(CI); 1013 Tail = SplitBlock(BB, CI->getNextNode()); 1014 } 1015 1016 // We need to replace the terminator in Tail - SplitBlock makes BB go 1017 // straight to Tail, we need to check if a longjmp occurred, and go to the 1018 // right setjmp-tail if so 1019 ToErase.push_back(BB->getTerminator()); 1020 1021 // Generate a function call to testSetjmp function and preamble/postamble 1022 // code to figure out (1) whether longjmp occurred (2) if longjmp 1023 // occurred, which setjmp it corresponds to 1024 Value *Label = nullptr; 1025 Value *LongjmpResult = nullptr; 1026 BasicBlock *EndBB = nullptr; 1027 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1028 LongjmpResult, EndBB); 1029 assert(Label && LongjmpResult && EndBB); 1030 1031 // Create switch instruction 1032 IRB.SetInsertPoint(EndBB); 1033 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1034 // -1 means no longjmp happened, continue normally (will hit the default 1035 // switch case). 0 means a longjmp that is not ours to handle, needs a 1036 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1037 // 0). 1038 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1039 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1040 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1041 } 1042 1043 // We are splitting the block here, and must continue to find other calls 1044 // in the block - which is now split. so continue to traverse in the Tail 1045 BBs.push_back(Tail); 1046 } 1047 } 1048 1049 // Erase everything we no longer need in this function 1050 for (Instruction *I : ToErase) 1051 I->eraseFromParent(); 1052 1053 // Free setjmpTable buffer before each return instruction 1054 for (BasicBlock &BB : F) { 1055 Instruction *TI = BB.getTerminator(); 1056 if (isa<ReturnInst>(TI)) 1057 CallInst::CreateFree(SetjmpTable, TI); 1058 } 1059 1060 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1061 // (when buffer reallocation occurs) 1062 // entry: 1063 // setjmpTableSize = 4; 1064 // setjmpTable = (int *) malloc(40); 1065 // setjmpTable[0] = 0; 1066 // ... 1067 // somebb: 1068 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1069 // setjmpTableSize = getTempRet0(); 1070 // So we need to make sure the SSA for these variables is valid so that every 1071 // saveSetjmp and testSetjmp calls have the correct arguments. 1072 SSAUpdater SetjmpTableSSA; 1073 SSAUpdater SetjmpTableSizeSSA; 1074 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1075 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1076 for (Instruction *I : SetjmpTableInsts) 1077 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1078 for (Instruction *I : SetjmpTableSizeInsts) 1079 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1080 1081 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1082 UI != UE;) { 1083 // Grab the use before incrementing the iterator. 1084 Use &U = *UI; 1085 // Increment the iterator before removing the use from the list. 1086 ++UI; 1087 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1088 if (I->getParent() != &EntryBB) 1089 SetjmpTableSSA.RewriteUse(U); 1090 } 1091 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1092 UI != UE;) { 1093 Use &U = *UI; 1094 ++UI; 1095 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1096 if (I->getParent() != &EntryBB) 1097 SetjmpTableSizeSSA.RewriteUse(U); 1098 } 1099 1100 // Finally, our modifications to the cfg can break dominance of SSA variables. 1101 // For example, in this code, 1102 // if (x()) { .. setjmp() .. } 1103 // if (y()) { .. longjmp() .. } 1104 // We must split the longjmp block, and it can jump into the block splitted 1105 // from setjmp one. But that means that when we split the setjmp block, it's 1106 // first part no longer dominates its second part - there is a theoretically 1107 // possible control flow path where x() is false, then y() is true and we 1108 // reach the second part of the setjmp block, without ever reaching the first 1109 // part. So, we rebuild SSA form here. 1110 rebuildSSA(F); 1111 return true; 1112 } 1113