xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsWebAssembly.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetOptions.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "wasm-lower"
44 
45 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
46     const TargetMachine &TM, const WebAssemblySubtarget &STI)
47     : TargetLowering(TM), Subtarget(&STI) {
48   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
49 
50   // Booleans always contain 0 or 1.
51   setBooleanContents(ZeroOrOneBooleanContent);
52   // Except in SIMD vectors
53   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
54   // We don't know the microarchitecture here, so just reduce register pressure.
55   setSchedulingPreference(Sched::RegPressure);
56   // Tell ISel that we have a stack pointer.
57   setStackPointerRegisterToSaveRestore(
58       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
59   // Set up the register classes.
60   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
61   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
62   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
63   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
64   if (Subtarget->hasSIMD128()) {
65     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
70     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
71   }
72   if (Subtarget->hasReferenceTypes()) {
73     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
74     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
75   }
76   // Compute derived properties from the register classes.
77   computeRegisterProperties(Subtarget->getRegisterInfo());
78 
79   // Transform loads and stores to pointers in address space 1 to loads and
80   // stores to WebAssembly global variables, outside linear memory.
81   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
82     setOperationAction(ISD::LOAD, T, Custom);
83     setOperationAction(ISD::STORE, T, Custom);
84   }
85   if (Subtarget->hasSIMD128()) {
86     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
87                    MVT::v2f64}) {
88       setOperationAction(ISD::LOAD, T, Custom);
89       setOperationAction(ISD::STORE, T, Custom);
90     }
91   }
92   if (Subtarget->hasReferenceTypes()) {
93     // We need custom load and store lowering for both externref, funcref and
94     // Other. The MVT::Other here represents tables of reference types.
95     for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
96       setOperationAction(ISD::LOAD, T, Custom);
97       setOperationAction(ISD::STORE, T, Custom);
98     }
99   }
100 
101   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
102   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
103   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
104   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
105   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
106   setOperationAction(ISD::BRIND, MVT::Other, Custom);
107 
108   // Take the default expansion for va_arg, va_copy, and va_end. There is no
109   // default action for va_start, so we do that custom.
110   setOperationAction(ISD::VASTART, MVT::Other, Custom);
111   setOperationAction(ISD::VAARG, MVT::Other, Expand);
112   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
113   setOperationAction(ISD::VAEND, MVT::Other, Expand);
114 
115   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
116     // Don't expand the floating-point types to constant pools.
117     setOperationAction(ISD::ConstantFP, T, Legal);
118     // Expand floating-point comparisons.
119     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
120                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
121       setCondCodeAction(CC, T, Expand);
122     // Expand floating-point library function operators.
123     for (auto Op :
124          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
125       setOperationAction(Op, T, Expand);
126     // Note supported floating-point library function operators that otherwise
127     // default to expand.
128     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
129                     ISD::FRINT, ISD::FROUNDEVEN})
130       setOperationAction(Op, T, Legal);
131     // Support minimum and maximum, which otherwise default to expand.
132     setOperationAction(ISD::FMINIMUM, T, Legal);
133     setOperationAction(ISD::FMAXIMUM, T, Legal);
134     // WebAssembly currently has no builtin f16 support.
135     setOperationAction(ISD::FP16_TO_FP, T, Expand);
136     setOperationAction(ISD::FP_TO_FP16, T, Expand);
137     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
138     setTruncStoreAction(T, MVT::f16, Expand);
139   }
140 
141   // Expand unavailable integer operations.
142   for (auto Op :
143        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
144         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
145         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
146     for (auto T : {MVT::i32, MVT::i64})
147       setOperationAction(Op, T, Expand);
148     if (Subtarget->hasSIMD128())
149       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
150         setOperationAction(Op, T, Expand);
151   }
152 
153   if (Subtarget->hasNontrappingFPToInt())
154     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
155       for (auto T : {MVT::i32, MVT::i64})
156         setOperationAction(Op, T, Custom);
157 
158   // SIMD-specific configuration
159   if (Subtarget->hasSIMD128()) {
160     // Combine vector mask reductions into alltrue/anytrue
161     setTargetDAGCombine(ISD::SETCC);
162 
163     // Convert vector to integer bitcasts to bitmask
164     setTargetDAGCombine(ISD::BITCAST);
165 
166     // Hoist bitcasts out of shuffles
167     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
168 
169     // Combine extends of extract_subvectors into widening ops
170     setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
171 
172     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
173     // conversions ops
174     setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
175                          ISD::EXTRACT_SUBVECTOR});
176 
177     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
178     // into conversion ops
179     setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
180                          ISD::FP_ROUND, ISD::CONCAT_VECTORS});
181 
182     setTargetDAGCombine(ISD::TRUNCATE);
183 
184     // Support saturating add for i8x16 and i16x8
185     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
186       for (auto T : {MVT::v16i8, MVT::v8i16})
187         setOperationAction(Op, T, Legal);
188 
189     // Support integer abs
190     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
191       setOperationAction(ISD::ABS, T, Legal);
192 
193     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
194     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
195                    MVT::v2f64})
196       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
197 
198     // We have custom shuffle lowering to expose the shuffle mask
199     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
200                    MVT::v2f64})
201       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
202 
203     // Support splatting
204     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
205                    MVT::v2f64})
206       setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
207 
208     // Custom lowering since wasm shifts must have a scalar shift amount
209     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
210       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
211         setOperationAction(Op, T, Custom);
212 
213     // Custom lower lane accesses to expand out variable indices
214     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
215       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
216                      MVT::v2f64})
217         setOperationAction(Op, T, Custom);
218 
219     // There is no i8x16.mul instruction
220     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
221 
222     // There is no vector conditional select instruction
223     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
224                    MVT::v2f64})
225       setOperationAction(ISD::SELECT_CC, T, Expand);
226 
227     // Expand integer operations supported for scalars but not SIMD
228     for (auto Op :
229          {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
230       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
231         setOperationAction(Op, T, Expand);
232 
233     // But we do have integer min and max operations
234     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
235       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
236         setOperationAction(Op, T, Legal);
237 
238     // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
239     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
240     setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
241     setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
242 
243     // Custom lower bit counting operations for other types to scalarize them.
244     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
245       for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
246         setOperationAction(Op, T, Custom);
247 
248     // Expand float operations supported for scalars but not SIMD
249     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
250                     ISD::FEXP, ISD::FEXP2})
251       for (auto T : {MVT::v4f32, MVT::v2f64})
252         setOperationAction(Op, T, Expand);
253 
254     // Unsigned comparison operations are unavailable for i64x2 vectors.
255     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
256       setCondCodeAction(CC, MVT::v2i64, Custom);
257 
258     // 64x2 conversions are not in the spec
259     for (auto Op :
260          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
261       for (auto T : {MVT::v2i64, MVT::v2f64})
262         setOperationAction(Op, T, Expand);
263 
264     // But saturating fp_to_int converstions are
265     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
266       setOperationAction(Op, MVT::v4i32, Custom);
267 
268     // Support vector extending
269     for (auto T : MVT::integer_fixedlen_vector_valuetypes()) {
270       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom);
271       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom);
272     }
273   }
274 
275   // As a special case, these operators use the type to mean the type to
276   // sign-extend from.
277   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
278   if (!Subtarget->hasSignExt()) {
279     // Sign extends are legal only when extending a vector extract
280     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
281     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
282       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
283   }
284   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
285     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
286 
287   // Dynamic stack allocation: use the default expansion.
288   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
289   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
290   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
291 
292   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
293   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
294   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
295 
296   // Expand these forms; we pattern-match the forms that we can handle in isel.
297   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
298     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
299       setOperationAction(Op, T, Expand);
300 
301   // We have custom switch handling.
302   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
303 
304   // WebAssembly doesn't have:
305   //  - Floating-point extending loads.
306   //  - Floating-point truncating stores.
307   //  - i1 extending loads.
308   //  - truncating SIMD stores and most extending loads
309   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
310   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
311   for (auto T : MVT::integer_valuetypes())
312     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
313       setLoadExtAction(Ext, T, MVT::i1, Promote);
314   if (Subtarget->hasSIMD128()) {
315     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
316                    MVT::v2f64}) {
317       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
318         if (MVT(T) != MemT) {
319           setTruncStoreAction(T, MemT, Expand);
320           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
321             setLoadExtAction(Ext, T, MemT, Expand);
322         }
323       }
324     }
325     // But some vector extending loads are legal
326     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
327       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
328       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
329       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
330     }
331     setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
332   }
333 
334   // Don't do anything clever with build_pairs
335   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
336 
337   // Trap lowers to wasm unreachable
338   setOperationAction(ISD::TRAP, MVT::Other, Legal);
339   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
340 
341   // Exception handling intrinsics
342   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
343   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
344   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
345 
346   setMaxAtomicSizeInBitsSupported(64);
347 
348   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
349   // consistent with the f64 and f128 names.
350   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
351   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
352 
353   // Define the emscripten name for return address helper.
354   // TODO: when implementing other Wasm backends, make this generic or only do
355   // this on emscripten depending on what they end up doing.
356   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
357 
358   // Always convert switches to br_tables unless there is only one case, which
359   // is equivalent to a simple branch. This reduces code size for wasm, and we
360   // defer possible jump table optimizations to the VM.
361   setMinimumJumpTableEntries(2);
362 }
363 
364 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
365                                             uint32_t AS) const {
366   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
367     return MVT::externref;
368   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
369     return MVT::funcref;
370   return TargetLowering::getPointerTy(DL, AS);
371 }
372 
373 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
374                                                uint32_t AS) const {
375   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
376     return MVT::externref;
377   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
378     return MVT::funcref;
379   return TargetLowering::getPointerMemTy(DL, AS);
380 }
381 
382 TargetLowering::AtomicExpansionKind
383 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
384   // We have wasm instructions for these
385   switch (AI->getOperation()) {
386   case AtomicRMWInst::Add:
387   case AtomicRMWInst::Sub:
388   case AtomicRMWInst::And:
389   case AtomicRMWInst::Or:
390   case AtomicRMWInst::Xor:
391   case AtomicRMWInst::Xchg:
392     return AtomicExpansionKind::None;
393   default:
394     break;
395   }
396   return AtomicExpansionKind::CmpXChg;
397 }
398 
399 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
400   // Implementation copied from X86TargetLowering.
401   unsigned Opc = VecOp.getOpcode();
402 
403   // Assume target opcodes can't be scalarized.
404   // TODO - do we have any exceptions?
405   if (Opc >= ISD::BUILTIN_OP_END)
406     return false;
407 
408   // If the vector op is not supported, try to convert to scalar.
409   EVT VecVT = VecOp.getValueType();
410   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
411     return true;
412 
413   // If the vector op is supported, but the scalar op is not, the transform may
414   // not be worthwhile.
415   EVT ScalarVT = VecVT.getScalarType();
416   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
417 }
418 
419 FastISel *WebAssemblyTargetLowering::createFastISel(
420     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
421   return WebAssembly::createFastISel(FuncInfo, LibInfo);
422 }
423 
424 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
425                                                       EVT VT) const {
426   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
427   if (BitWidth > 1 && BitWidth < 8)
428     BitWidth = 8;
429 
430   if (BitWidth > 64) {
431     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
432     // the count to be an i32.
433     BitWidth = 32;
434     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
435            "32-bit shift counts ought to be enough for anyone");
436   }
437 
438   MVT Result = MVT::getIntegerVT(BitWidth);
439   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
440          "Unable to represent scalar shift amount type");
441   return Result;
442 }
443 
444 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
445 // undefined result on invalid/overflow, to the WebAssembly opcode, which
446 // traps on invalid/overflow.
447 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
448                                        MachineBasicBlock *BB,
449                                        const TargetInstrInfo &TII,
450                                        bool IsUnsigned, bool Int64,
451                                        bool Float64, unsigned LoweredOpcode) {
452   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
453 
454   Register OutReg = MI.getOperand(0).getReg();
455   Register InReg = MI.getOperand(1).getReg();
456 
457   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
458   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
459   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
460   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
461   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
462   unsigned Eqz = WebAssembly::EQZ_I32;
463   unsigned And = WebAssembly::AND_I32;
464   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
465   int64_t Substitute = IsUnsigned ? 0 : Limit;
466   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
467   auto &Context = BB->getParent()->getFunction().getContext();
468   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
469 
470   const BasicBlock *LLVMBB = BB->getBasicBlock();
471   MachineFunction *F = BB->getParent();
472   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
473   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
474   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
475 
476   MachineFunction::iterator It = ++BB->getIterator();
477   F->insert(It, FalseMBB);
478   F->insert(It, TrueMBB);
479   F->insert(It, DoneMBB);
480 
481   // Transfer the remainder of BB and its successor edges to DoneMBB.
482   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
483   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
484 
485   BB->addSuccessor(TrueMBB);
486   BB->addSuccessor(FalseMBB);
487   TrueMBB->addSuccessor(DoneMBB);
488   FalseMBB->addSuccessor(DoneMBB);
489 
490   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
491   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
492   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
493   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
494   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
495   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
496   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
497 
498   MI.eraseFromParent();
499   // For signed numbers, we can do a single comparison to determine whether
500   // fabs(x) is within range.
501   if (IsUnsigned) {
502     Tmp0 = InReg;
503   } else {
504     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
505   }
506   BuildMI(BB, DL, TII.get(FConst), Tmp1)
507       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
508   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
509 
510   // For unsigned numbers, we have to do a separate comparison with zero.
511   if (IsUnsigned) {
512     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
513     Register SecondCmpReg =
514         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
515     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
516     BuildMI(BB, DL, TII.get(FConst), Tmp1)
517         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
518     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
519     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
520     CmpReg = AndReg;
521   }
522 
523   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
524 
525   // Create the CFG diamond to select between doing the conversion or using
526   // the substitute value.
527   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
528   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
529   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
530   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
531   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
532       .addReg(FalseReg)
533       .addMBB(FalseMBB)
534       .addReg(TrueReg)
535       .addMBB(TrueMBB);
536 
537   return DoneMBB;
538 }
539 
540 static MachineBasicBlock *
541 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
542                  const WebAssemblySubtarget *Subtarget,
543                  const TargetInstrInfo &TII) {
544   MachineInstr &CallParams = *CallResults.getPrevNode();
545   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
546   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
547          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
548 
549   bool IsIndirect =
550       CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI();
551   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
552 
553   bool IsFuncrefCall = false;
554   if (IsIndirect && CallParams.getOperand(0).isReg()) {
555     Register Reg = CallParams.getOperand(0).getReg();
556     const MachineFunction *MF = BB->getParent();
557     const MachineRegisterInfo &MRI = MF->getRegInfo();
558     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
559     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
560     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
561   }
562 
563   unsigned CallOp;
564   if (IsIndirect && IsRetCall) {
565     CallOp = WebAssembly::RET_CALL_INDIRECT;
566   } else if (IsIndirect) {
567     CallOp = WebAssembly::CALL_INDIRECT;
568   } else if (IsRetCall) {
569     CallOp = WebAssembly::RET_CALL;
570   } else {
571     CallOp = WebAssembly::CALL;
572   }
573 
574   MachineFunction &MF = *BB->getParent();
575   const MCInstrDesc &MCID = TII.get(CallOp);
576   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
577 
578   // See if we must truncate the function pointer.
579   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
580   // as 64-bit for uniformity with other pointer types.
581   // See also: WebAssemblyFastISel::selectCall
582   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
583     Register Reg32 =
584         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
585     auto &FnPtr = CallParams.getOperand(0);
586     BuildMI(*BB, CallResults.getIterator(), DL,
587             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
588         .addReg(FnPtr.getReg());
589     FnPtr.setReg(Reg32);
590   }
591 
592   // Move the function pointer to the end of the arguments for indirect calls
593   if (IsIndirect) {
594     auto FnPtr = CallParams.getOperand(0);
595     CallParams.removeOperand(0);
596 
597     // For funcrefs, call_indirect is done through __funcref_call_table and the
598     // funcref is always installed in slot 0 of the table, therefore instead of
599     // having the function pointer added at the end of the params list, a zero
600     // (the index in
601     // __funcref_call_table is added).
602     if (IsFuncrefCall) {
603       Register RegZero =
604           MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
605       MachineInstrBuilder MIBC0 =
606           BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
607 
608       BB->insert(CallResults.getIterator(), MIBC0);
609       MachineInstrBuilder(MF, CallParams).addReg(RegZero);
610     } else
611       CallParams.addOperand(FnPtr);
612   }
613 
614   for (auto Def : CallResults.defs())
615     MIB.add(Def);
616 
617   if (IsIndirect) {
618     // Placeholder for the type index.
619     MIB.addImm(0);
620     // The table into which this call_indirect indexes.
621     MCSymbolWasm *Table = IsFuncrefCall
622                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
623                                     MF.getContext(), Subtarget)
624                               : WebAssembly::getOrCreateFunctionTableSymbol(
625                                     MF.getContext(), Subtarget);
626     if (Subtarget->hasReferenceTypes()) {
627       MIB.addSym(Table);
628     } else {
629       // For the MVP there is at most one table whose number is 0, but we can't
630       // write a table symbol or issue relocations.  Instead we just ensure the
631       // table is live and write a zero.
632       Table->setNoStrip();
633       MIB.addImm(0);
634     }
635   }
636 
637   for (auto Use : CallParams.uses())
638     MIB.add(Use);
639 
640   BB->insert(CallResults.getIterator(), MIB);
641   CallParams.eraseFromParent();
642   CallResults.eraseFromParent();
643 
644   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
645   // table slot with ref.null upon call_indirect return.
646   //
647   // This generates the following code, which comes right after a call_indirect
648   // of a funcref:
649   //
650   //    i32.const 0
651   //    ref.null func
652   //    table.set __funcref_call_table
653   if (IsIndirect && IsFuncrefCall) {
654     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
655         MF.getContext(), Subtarget);
656     Register RegZero =
657         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
658     MachineInstr *Const0 =
659         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
660     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
661 
662     Register RegFuncref =
663         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
664     MachineInstr *RefNull =
665         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
666     BB->insertAfter(Const0->getIterator(), RefNull);
667 
668     MachineInstr *TableSet =
669         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
670             .addSym(Table)
671             .addReg(RegZero)
672             .addReg(RegFuncref);
673     BB->insertAfter(RefNull->getIterator(), TableSet);
674   }
675 
676   return BB;
677 }
678 
679 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
680     MachineInstr &MI, MachineBasicBlock *BB) const {
681   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
682   DebugLoc DL = MI.getDebugLoc();
683 
684   switch (MI.getOpcode()) {
685   default:
686     llvm_unreachable("Unexpected instr type to insert");
687   case WebAssembly::FP_TO_SINT_I32_F32:
688     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
689                         WebAssembly::I32_TRUNC_S_F32);
690   case WebAssembly::FP_TO_UINT_I32_F32:
691     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
692                         WebAssembly::I32_TRUNC_U_F32);
693   case WebAssembly::FP_TO_SINT_I64_F32:
694     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
695                         WebAssembly::I64_TRUNC_S_F32);
696   case WebAssembly::FP_TO_UINT_I64_F32:
697     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
698                         WebAssembly::I64_TRUNC_U_F32);
699   case WebAssembly::FP_TO_SINT_I32_F64:
700     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
701                         WebAssembly::I32_TRUNC_S_F64);
702   case WebAssembly::FP_TO_UINT_I32_F64:
703     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
704                         WebAssembly::I32_TRUNC_U_F64);
705   case WebAssembly::FP_TO_SINT_I64_F64:
706     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
707                         WebAssembly::I64_TRUNC_S_F64);
708   case WebAssembly::FP_TO_UINT_I64_F64:
709     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
710                         WebAssembly::I64_TRUNC_U_F64);
711   case WebAssembly::CALL_RESULTS:
712   case WebAssembly::RET_CALL_RESULTS:
713     return LowerCallResults(MI, DL, BB, Subtarget, TII);
714   }
715 }
716 
717 const char *
718 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
719   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
720   case WebAssemblyISD::FIRST_NUMBER:
721   case WebAssemblyISD::FIRST_MEM_OPCODE:
722     break;
723 #define HANDLE_NODETYPE(NODE)                                                  \
724   case WebAssemblyISD::NODE:                                                   \
725     return "WebAssemblyISD::" #NODE;
726 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
727 #include "WebAssemblyISD.def"
728 #undef HANDLE_MEM_NODETYPE
729 #undef HANDLE_NODETYPE
730   }
731   return nullptr;
732 }
733 
734 std::pair<unsigned, const TargetRegisterClass *>
735 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
736     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
737   // First, see if this is a constraint that directly corresponds to a
738   // WebAssembly register class.
739   if (Constraint.size() == 1) {
740     switch (Constraint[0]) {
741     case 'r':
742       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
743       if (Subtarget->hasSIMD128() && VT.isVector()) {
744         if (VT.getSizeInBits() == 128)
745           return std::make_pair(0U, &WebAssembly::V128RegClass);
746       }
747       if (VT.isInteger() && !VT.isVector()) {
748         if (VT.getSizeInBits() <= 32)
749           return std::make_pair(0U, &WebAssembly::I32RegClass);
750         if (VT.getSizeInBits() <= 64)
751           return std::make_pair(0U, &WebAssembly::I64RegClass);
752       }
753       if (VT.isFloatingPoint() && !VT.isVector()) {
754         switch (VT.getSizeInBits()) {
755         case 32:
756           return std::make_pair(0U, &WebAssembly::F32RegClass);
757         case 64:
758           return std::make_pair(0U, &WebAssembly::F64RegClass);
759         default:
760           break;
761         }
762       }
763       break;
764     default:
765       break;
766     }
767   }
768 
769   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
770 }
771 
772 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
773   // Assume ctz is a relatively cheap operation.
774   return true;
775 }
776 
777 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
778   // Assume clz is a relatively cheap operation.
779   return true;
780 }
781 
782 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
783                                                       const AddrMode &AM,
784                                                       Type *Ty, unsigned AS,
785                                                       Instruction *I) const {
786   // WebAssembly offsets are added as unsigned without wrapping. The
787   // isLegalAddressingMode gives us no way to determine if wrapping could be
788   // happening, so we approximate this by accepting only non-negative offsets.
789   if (AM.BaseOffs < 0)
790     return false;
791 
792   // WebAssembly has no scale register operands.
793   if (AM.Scale != 0)
794     return false;
795 
796   // Everything else is legal.
797   return true;
798 }
799 
800 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
801     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
802     MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const {
803   // WebAssembly supports unaligned accesses, though it should be declared
804   // with the p2align attribute on loads and stores which do so, and there
805   // may be a performance impact. We tell LLVM they're "fast" because
806   // for the kinds of things that LLVM uses this for (merging adjacent stores
807   // of constants, etc.), WebAssembly implementations will either want the
808   // unaligned access or they'll split anyway.
809   if (Fast)
810     *Fast = 1;
811   return true;
812 }
813 
814 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
815                                               AttributeList Attr) const {
816   // The current thinking is that wasm engines will perform this optimization,
817   // so we can save on code size.
818   return true;
819 }
820 
821 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
822   EVT ExtT = ExtVal.getValueType();
823   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
824   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
825          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
826          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
827 }
828 
829 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
830     const GlobalAddressSDNode *GA) const {
831   // Wasm doesn't support function addresses with offsets
832   const GlobalValue *GV = GA->getGlobal();
833   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
834 }
835 
836 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
837                                                   LLVMContext &C,
838                                                   EVT VT) const {
839   if (VT.isVector())
840     return VT.changeVectorElementTypeToInteger();
841 
842   // So far, all branch instructions in Wasm take an I32 condition.
843   // The default TargetLowering::getSetCCResultType returns the pointer size,
844   // which would be useful to reduce instruction counts when testing
845   // against 64-bit pointers/values if at some point Wasm supports that.
846   return EVT::getIntegerVT(C, 32);
847 }
848 
849 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
850                                                    const CallInst &I,
851                                                    MachineFunction &MF,
852                                                    unsigned Intrinsic) const {
853   switch (Intrinsic) {
854   case Intrinsic::wasm_memory_atomic_notify:
855     Info.opc = ISD::INTRINSIC_W_CHAIN;
856     Info.memVT = MVT::i32;
857     Info.ptrVal = I.getArgOperand(0);
858     Info.offset = 0;
859     Info.align = Align(4);
860     // atomic.notify instruction does not really load the memory specified with
861     // this argument, but MachineMemOperand should either be load or store, so
862     // we set this to a load.
863     // FIXME Volatile isn't really correct, but currently all LLVM atomic
864     // instructions are treated as volatiles in the backend, so we should be
865     // consistent. The same applies for wasm_atomic_wait intrinsics too.
866     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
867     return true;
868   case Intrinsic::wasm_memory_atomic_wait32:
869     Info.opc = ISD::INTRINSIC_W_CHAIN;
870     Info.memVT = MVT::i32;
871     Info.ptrVal = I.getArgOperand(0);
872     Info.offset = 0;
873     Info.align = Align(4);
874     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
875     return true;
876   case Intrinsic::wasm_memory_atomic_wait64:
877     Info.opc = ISD::INTRINSIC_W_CHAIN;
878     Info.memVT = MVT::i64;
879     Info.ptrVal = I.getArgOperand(0);
880     Info.offset = 0;
881     Info.align = Align(8);
882     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
883     return true;
884   default:
885     return false;
886   }
887 }
888 
889 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
890     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
891     const SelectionDAG &DAG, unsigned Depth) const {
892   switch (Op.getOpcode()) {
893   default:
894     break;
895   case ISD::INTRINSIC_WO_CHAIN: {
896     unsigned IntNo = Op.getConstantOperandVal(0);
897     switch (IntNo) {
898     default:
899       break;
900     case Intrinsic::wasm_bitmask: {
901       unsigned BitWidth = Known.getBitWidth();
902       EVT VT = Op.getOperand(1).getSimpleValueType();
903       unsigned PossibleBits = VT.getVectorNumElements();
904       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
905       Known.Zero |= ZeroMask;
906       break;
907     }
908     }
909   }
910   }
911 }
912 
913 TargetLoweringBase::LegalizeTypeAction
914 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
915   if (VT.isFixedLengthVector()) {
916     MVT EltVT = VT.getVectorElementType();
917     // We have legal vector types with these lane types, so widening the
918     // vector would let us use some of the lanes directly without having to
919     // extend or truncate values.
920     if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
921         EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
922       return TypeWidenVector;
923   }
924 
925   return TargetLoweringBase::getPreferredVectorAction(VT);
926 }
927 
928 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
929     SDValue Op, const TargetLoweringOpt &TLO) const {
930   // ISel process runs DAGCombiner after legalization; this step is called
931   // SelectionDAG optimization phase. This post-legalization combining process
932   // runs DAGCombiner on each node, and if there was a change to be made,
933   // re-runs legalization again on it and its user nodes to make sure
934   // everythiing is in a legalized state.
935   //
936   // The legalization calls lowering routines, and we do our custom lowering for
937   // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
938   // into zeros. But there is a set of routines in DAGCombiner that turns unused
939   // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
940   // turns unused vector elements into undefs. But this routine does not work
941   // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
942   // combination can result in a infinite loop, in which undefs are converted to
943   // zeros in legalization and back to undefs in combining.
944   //
945   // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
946   // running for build_vectors.
947   if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
948     return false;
949   return true;
950 }
951 
952 //===----------------------------------------------------------------------===//
953 // WebAssembly Lowering private implementation.
954 //===----------------------------------------------------------------------===//
955 
956 //===----------------------------------------------------------------------===//
957 // Lowering Code
958 //===----------------------------------------------------------------------===//
959 
960 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
961   MachineFunction &MF = DAG.getMachineFunction();
962   DAG.getContext()->diagnose(
963       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
964 }
965 
966 // Test whether the given calling convention is supported.
967 static bool callingConvSupported(CallingConv::ID CallConv) {
968   // We currently support the language-independent target-independent
969   // conventions. We don't yet have a way to annotate calls with properties like
970   // "cold", and we don't have any call-clobbered registers, so these are mostly
971   // all handled the same.
972   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
973          CallConv == CallingConv::Cold ||
974          CallConv == CallingConv::PreserveMost ||
975          CallConv == CallingConv::PreserveAll ||
976          CallConv == CallingConv::CXX_FAST_TLS ||
977          CallConv == CallingConv::WASM_EmscriptenInvoke ||
978          CallConv == CallingConv::Swift;
979 }
980 
981 SDValue
982 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
983                                      SmallVectorImpl<SDValue> &InVals) const {
984   SelectionDAG &DAG = CLI.DAG;
985   SDLoc DL = CLI.DL;
986   SDValue Chain = CLI.Chain;
987   SDValue Callee = CLI.Callee;
988   MachineFunction &MF = DAG.getMachineFunction();
989   auto Layout = MF.getDataLayout();
990 
991   CallingConv::ID CallConv = CLI.CallConv;
992   if (!callingConvSupported(CallConv))
993     fail(DL, DAG,
994          "WebAssembly doesn't support language-specific or target-specific "
995          "calling conventions yet");
996   if (CLI.IsPatchPoint)
997     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
998 
999   if (CLI.IsTailCall) {
1000     auto NoTail = [&](const char *Msg) {
1001       if (CLI.CB && CLI.CB->isMustTailCall())
1002         fail(DL, DAG, Msg);
1003       CLI.IsTailCall = false;
1004     };
1005 
1006     if (!Subtarget->hasTailCall())
1007       NoTail("WebAssembly 'tail-call' feature not enabled");
1008 
1009     // Varargs calls cannot be tail calls because the buffer is on the stack
1010     if (CLI.IsVarArg)
1011       NoTail("WebAssembly does not support varargs tail calls");
1012 
1013     // Do not tail call unless caller and callee return types match
1014     const Function &F = MF.getFunction();
1015     const TargetMachine &TM = getTargetMachine();
1016     Type *RetTy = F.getReturnType();
1017     SmallVector<MVT, 4> CallerRetTys;
1018     SmallVector<MVT, 4> CalleeRetTys;
1019     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1020     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1021     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1022                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1023                                  CalleeRetTys.begin());
1024     if (!TypesMatch)
1025       NoTail("WebAssembly tail call requires caller and callee return types to "
1026              "match");
1027 
1028     // If pointers to local stack values are passed, we cannot tail call
1029     if (CLI.CB) {
1030       for (auto &Arg : CLI.CB->args()) {
1031         Value *Val = Arg.get();
1032         // Trace the value back through pointer operations
1033         while (true) {
1034           Value *Src = Val->stripPointerCastsAndAliases();
1035           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1036             Src = GEP->getPointerOperand();
1037           if (Val == Src)
1038             break;
1039           Val = Src;
1040         }
1041         if (isa<AllocaInst>(Val)) {
1042           NoTail(
1043               "WebAssembly does not support tail calling with stack arguments");
1044           break;
1045         }
1046       }
1047     }
1048   }
1049 
1050   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1051   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1052   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1053 
1054   // The generic code may have added an sret argument. If we're lowering an
1055   // invoke function, the ABI requires that the function pointer be the first
1056   // argument, so we may have to swap the arguments.
1057   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1058       Outs[0].Flags.isSRet()) {
1059     std::swap(Outs[0], Outs[1]);
1060     std::swap(OutVals[0], OutVals[1]);
1061   }
1062 
1063   bool HasSwiftSelfArg = false;
1064   bool HasSwiftErrorArg = false;
1065   unsigned NumFixedArgs = 0;
1066   for (unsigned I = 0; I < Outs.size(); ++I) {
1067     const ISD::OutputArg &Out = Outs[I];
1068     SDValue &OutVal = OutVals[I];
1069     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1070     HasSwiftErrorArg |= Out.Flags.isSwiftError();
1071     if (Out.Flags.isNest())
1072       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1073     if (Out.Flags.isInAlloca())
1074       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1075     if (Out.Flags.isInConsecutiveRegs())
1076       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1077     if (Out.Flags.isInConsecutiveRegsLast())
1078       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1079     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1080       auto &MFI = MF.getFrameInfo();
1081       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1082                                      Out.Flags.getNonZeroByValAlign(),
1083                                      /*isSS=*/false);
1084       SDValue SizeNode =
1085           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1086       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1087       Chain = DAG.getMemcpy(
1088           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1089           /*isVolatile*/ false, /*AlwaysInline=*/false,
1090           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1091       OutVal = FINode;
1092     }
1093     // Count the number of fixed args *after* legalization.
1094     NumFixedArgs += Out.IsFixed;
1095   }
1096 
1097   bool IsVarArg = CLI.IsVarArg;
1098   auto PtrVT = getPointerTy(Layout);
1099 
1100   // For swiftcc, emit additional swiftself and swifterror arguments
1101   // if there aren't. These additional arguments are also added for callee
1102   // signature They are necessary to match callee and caller signature for
1103   // indirect call.
1104   if (CallConv == CallingConv::Swift) {
1105     if (!HasSwiftSelfArg) {
1106       NumFixedArgs++;
1107       ISD::OutputArg Arg;
1108       Arg.Flags.setSwiftSelf();
1109       CLI.Outs.push_back(Arg);
1110       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1111       CLI.OutVals.push_back(ArgVal);
1112     }
1113     if (!HasSwiftErrorArg) {
1114       NumFixedArgs++;
1115       ISD::OutputArg Arg;
1116       Arg.Flags.setSwiftError();
1117       CLI.Outs.push_back(Arg);
1118       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1119       CLI.OutVals.push_back(ArgVal);
1120     }
1121   }
1122 
1123   // Analyze operands of the call, assigning locations to each operand.
1124   SmallVector<CCValAssign, 16> ArgLocs;
1125   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1126 
1127   if (IsVarArg) {
1128     // Outgoing non-fixed arguments are placed in a buffer. First
1129     // compute their offsets and the total amount of buffer space needed.
1130     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1131       const ISD::OutputArg &Out = Outs[I];
1132       SDValue &Arg = OutVals[I];
1133       EVT VT = Arg.getValueType();
1134       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1135       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1136       Align Alignment =
1137           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1138       unsigned Offset =
1139           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1140       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1141                                         Offset, VT.getSimpleVT(),
1142                                         CCValAssign::Full));
1143     }
1144   }
1145 
1146   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1147 
1148   SDValue FINode;
1149   if (IsVarArg && NumBytes) {
1150     // For non-fixed arguments, next emit stores to store the argument values
1151     // to the stack buffer at the offsets computed above.
1152     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1153                                                  Layout.getStackAlignment(),
1154                                                  /*isSS=*/false);
1155     unsigned ValNo = 0;
1156     SmallVector<SDValue, 8> Chains;
1157     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1158       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1159              "ArgLocs should remain in order and only hold varargs args");
1160       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1161       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1162       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1163                                 DAG.getConstant(Offset, DL, PtrVT));
1164       Chains.push_back(
1165           DAG.getStore(Chain, DL, Arg, Add,
1166                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1167     }
1168     if (!Chains.empty())
1169       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1170   } else if (IsVarArg) {
1171     FINode = DAG.getIntPtrConstant(0, DL);
1172   }
1173 
1174   if (Callee->getOpcode() == ISD::GlobalAddress) {
1175     // If the callee is a GlobalAddress node (quite common, every direct call
1176     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1177     // doesn't at MO_GOT which is not needed for direct calls.
1178     GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
1179     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1180                                         getPointerTy(DAG.getDataLayout()),
1181                                         GA->getOffset());
1182     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1183                          getPointerTy(DAG.getDataLayout()), Callee);
1184   }
1185 
1186   // Compute the operands for the CALLn node.
1187   SmallVector<SDValue, 16> Ops;
1188   Ops.push_back(Chain);
1189   Ops.push_back(Callee);
1190 
1191   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1192   // isn't reliable.
1193   Ops.append(OutVals.begin(),
1194              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1195   // Add a pointer to the vararg buffer.
1196   if (IsVarArg)
1197     Ops.push_back(FINode);
1198 
1199   SmallVector<EVT, 8> InTys;
1200   for (const auto &In : Ins) {
1201     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1202     assert(!In.Flags.isNest() && "nest is not valid for return values");
1203     if (In.Flags.isInAlloca())
1204       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1205     if (In.Flags.isInConsecutiveRegs())
1206       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1207     if (In.Flags.isInConsecutiveRegsLast())
1208       fail(DL, DAG,
1209            "WebAssembly hasn't implemented cons regs last return values");
1210     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1211     // registers.
1212     InTys.push_back(In.VT);
1213   }
1214 
1215   // Lastly, if this is a call to a funcref we need to add an instruction
1216   // table.set to the chain and transform the call.
1217   if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType(
1218                     CLI.CB->getCalledOperand()->getType())) {
1219     // In the absence of function references proposal where a funcref call is
1220     // lowered to call_ref, using reference types we generate a table.set to set
1221     // the funcref to a special table used solely for this purpose, followed by
1222     // a call_indirect. Here we just generate the table set, and return the
1223     // SDValue of the table.set so that LowerCall can finalize the lowering by
1224     // generating the call_indirect.
1225     SDValue Chain = Ops[0];
1226 
1227     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1228         MF.getContext(), Subtarget);
1229     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1230     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1231     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1232     SDValue TableSet = DAG.getMemIntrinsicNode(
1233         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1234         MVT::funcref,
1235         // Machine Mem Operand args
1236         MachinePointerInfo(
1237             WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1238         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1239         MachineMemOperand::MOStore);
1240 
1241     Ops[0] = TableSet; // The new chain is the TableSet itself
1242   }
1243 
1244   if (CLI.IsTailCall) {
1245     // ret_calls do not return values to the current frame
1246     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1247     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1248   }
1249 
1250   InTys.push_back(MVT::Other);
1251   SDVTList InTyList = DAG.getVTList(InTys);
1252   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1253 
1254   for (size_t I = 0; I < Ins.size(); ++I)
1255     InVals.push_back(Res.getValue(I));
1256 
1257   // Return the chain
1258   return Res.getValue(Ins.size());
1259 }
1260 
1261 bool WebAssemblyTargetLowering::CanLowerReturn(
1262     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1263     const SmallVectorImpl<ISD::OutputArg> &Outs,
1264     LLVMContext & /*Context*/) const {
1265   // WebAssembly can only handle returning tuples with multivalue enabled
1266   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1267 }
1268 
1269 SDValue WebAssemblyTargetLowering::LowerReturn(
1270     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1271     const SmallVectorImpl<ISD::OutputArg> &Outs,
1272     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1273     SelectionDAG &DAG) const {
1274   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1275          "MVP WebAssembly can only return up to one value");
1276   if (!callingConvSupported(CallConv))
1277     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1278 
1279   SmallVector<SDValue, 4> RetOps(1, Chain);
1280   RetOps.append(OutVals.begin(), OutVals.end());
1281   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1282 
1283   // Record the number and types of the return values.
1284   for (const ISD::OutputArg &Out : Outs) {
1285     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1286     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1287     assert(Out.IsFixed && "non-fixed return value is not valid");
1288     if (Out.Flags.isInAlloca())
1289       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1290     if (Out.Flags.isInConsecutiveRegs())
1291       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1292     if (Out.Flags.isInConsecutiveRegsLast())
1293       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1294   }
1295 
1296   return Chain;
1297 }
1298 
1299 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1300     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1301     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1302     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1303   if (!callingConvSupported(CallConv))
1304     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1305 
1306   MachineFunction &MF = DAG.getMachineFunction();
1307   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1308 
1309   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1310   // of the incoming values before they're represented by virtual registers.
1311   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1312 
1313   bool HasSwiftErrorArg = false;
1314   bool HasSwiftSelfArg = false;
1315   for (const ISD::InputArg &In : Ins) {
1316     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1317     HasSwiftErrorArg |= In.Flags.isSwiftError();
1318     if (In.Flags.isInAlloca())
1319       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1320     if (In.Flags.isNest())
1321       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1322     if (In.Flags.isInConsecutiveRegs())
1323       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1324     if (In.Flags.isInConsecutiveRegsLast())
1325       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1326     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1327     // registers.
1328     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1329                                            DAG.getTargetConstant(InVals.size(),
1330                                                                  DL, MVT::i32))
1331                              : DAG.getUNDEF(In.VT));
1332 
1333     // Record the number and types of arguments.
1334     MFI->addParam(In.VT);
1335   }
1336 
1337   // For swiftcc, emit additional swiftself and swifterror arguments
1338   // if there aren't. These additional arguments are also added for callee
1339   // signature They are necessary to match callee and caller signature for
1340   // indirect call.
1341   auto PtrVT = getPointerTy(MF.getDataLayout());
1342   if (CallConv == CallingConv::Swift) {
1343     if (!HasSwiftSelfArg) {
1344       MFI->addParam(PtrVT);
1345     }
1346     if (!HasSwiftErrorArg) {
1347       MFI->addParam(PtrVT);
1348     }
1349   }
1350   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1351   // the buffer is passed as an argument.
1352   if (IsVarArg) {
1353     MVT PtrVT = getPointerTy(MF.getDataLayout());
1354     Register VarargVreg =
1355         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1356     MFI->setVarargBufferVreg(VarargVreg);
1357     Chain = DAG.getCopyToReg(
1358         Chain, DL, VarargVreg,
1359         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1360                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1361     MFI->addParam(PtrVT);
1362   }
1363 
1364   // Record the number and types of arguments and results.
1365   SmallVector<MVT, 4> Params;
1366   SmallVector<MVT, 4> Results;
1367   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1368                       MF.getFunction(), DAG.getTarget(), Params, Results);
1369   for (MVT VT : Results)
1370     MFI->addResult(VT);
1371   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1372   // the param logic here with ComputeSignatureVTs
1373   assert(MFI->getParams().size() == Params.size() &&
1374          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1375                     Params.begin()));
1376 
1377   return Chain;
1378 }
1379 
1380 void WebAssemblyTargetLowering::ReplaceNodeResults(
1381     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1382   switch (N->getOpcode()) {
1383   case ISD::SIGN_EXTEND_INREG:
1384     // Do not add any results, signifying that N should not be custom lowered
1385     // after all. This happens because simd128 turns on custom lowering for
1386     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1387     // illegal type.
1388     break;
1389   case ISD::SIGN_EXTEND_VECTOR_INREG:
1390   case ISD::ZERO_EXTEND_VECTOR_INREG:
1391     // Do not add any results, signifying that N should not be custom lowered.
1392     // EXTEND_VECTOR_INREG is implemented for some vectors, but not all.
1393     break;
1394   default:
1395     llvm_unreachable(
1396         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1397   }
1398 }
1399 
1400 //===----------------------------------------------------------------------===//
1401 //  Custom lowering hooks.
1402 //===----------------------------------------------------------------------===//
1403 
1404 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1405                                                   SelectionDAG &DAG) const {
1406   SDLoc DL(Op);
1407   switch (Op.getOpcode()) {
1408   default:
1409     llvm_unreachable("unimplemented operation lowering");
1410     return SDValue();
1411   case ISD::FrameIndex:
1412     return LowerFrameIndex(Op, DAG);
1413   case ISD::GlobalAddress:
1414     return LowerGlobalAddress(Op, DAG);
1415   case ISD::GlobalTLSAddress:
1416     return LowerGlobalTLSAddress(Op, DAG);
1417   case ISD::ExternalSymbol:
1418     return LowerExternalSymbol(Op, DAG);
1419   case ISD::JumpTable:
1420     return LowerJumpTable(Op, DAG);
1421   case ISD::BR_JT:
1422     return LowerBR_JT(Op, DAG);
1423   case ISD::VASTART:
1424     return LowerVASTART(Op, DAG);
1425   case ISD::BlockAddress:
1426   case ISD::BRIND:
1427     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1428     return SDValue();
1429   case ISD::RETURNADDR:
1430     return LowerRETURNADDR(Op, DAG);
1431   case ISD::FRAMEADDR:
1432     return LowerFRAMEADDR(Op, DAG);
1433   case ISD::CopyToReg:
1434     return LowerCopyToReg(Op, DAG);
1435   case ISD::EXTRACT_VECTOR_ELT:
1436   case ISD::INSERT_VECTOR_ELT:
1437     return LowerAccessVectorElement(Op, DAG);
1438   case ISD::INTRINSIC_VOID:
1439   case ISD::INTRINSIC_WO_CHAIN:
1440   case ISD::INTRINSIC_W_CHAIN:
1441     return LowerIntrinsic(Op, DAG);
1442   case ISD::SIGN_EXTEND_INREG:
1443     return LowerSIGN_EXTEND_INREG(Op, DAG);
1444   case ISD::ZERO_EXTEND_VECTOR_INREG:
1445   case ISD::SIGN_EXTEND_VECTOR_INREG:
1446     return LowerEXTEND_VECTOR_INREG(Op, DAG);
1447   case ISD::BUILD_VECTOR:
1448     return LowerBUILD_VECTOR(Op, DAG);
1449   case ISD::VECTOR_SHUFFLE:
1450     return LowerVECTOR_SHUFFLE(Op, DAG);
1451   case ISD::SETCC:
1452     return LowerSETCC(Op, DAG);
1453   case ISD::SHL:
1454   case ISD::SRA:
1455   case ISD::SRL:
1456     return LowerShift(Op, DAG);
1457   case ISD::FP_TO_SINT_SAT:
1458   case ISD::FP_TO_UINT_SAT:
1459     return LowerFP_TO_INT_SAT(Op, DAG);
1460   case ISD::LOAD:
1461     return LowerLoad(Op, DAG);
1462   case ISD::STORE:
1463     return LowerStore(Op, DAG);
1464   case ISD::CTPOP:
1465   case ISD::CTLZ:
1466   case ISD::CTTZ:
1467     return DAG.UnrollVectorOp(Op.getNode());
1468   }
1469 }
1470 
1471 static bool IsWebAssemblyGlobal(SDValue Op) {
1472   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1473     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1474 
1475   return false;
1476 }
1477 
1478 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op,
1479                                                   SelectionDAG &DAG) {
1480   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1481   if (!FI)
1482     return std::nullopt;
1483 
1484   auto &MF = DAG.getMachineFunction();
1485   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1486 }
1487 
1488 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1489                                               SelectionDAG &DAG) const {
1490   SDLoc DL(Op);
1491   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1492   const SDValue &Value = SN->getValue();
1493   const SDValue &Base = SN->getBasePtr();
1494   const SDValue &Offset = SN->getOffset();
1495 
1496   if (IsWebAssemblyGlobal(Base)) {
1497     if (!Offset->isUndef())
1498       report_fatal_error("unexpected offset when storing to webassembly global",
1499                          false);
1500 
1501     SDVTList Tys = DAG.getVTList(MVT::Other);
1502     SDValue Ops[] = {SN->getChain(), Value, Base};
1503     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1504                                    SN->getMemoryVT(), SN->getMemOperand());
1505   }
1506 
1507   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1508     if (!Offset->isUndef())
1509       report_fatal_error("unexpected offset when storing to webassembly local",
1510                          false);
1511 
1512     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1513     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1514     SDValue Ops[] = {SN->getChain(), Idx, Value};
1515     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1516   }
1517 
1518   if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace()))
1519     report_fatal_error(
1520         "Encountered an unlowerable store to the wasm_var address space",
1521         false);
1522 
1523   return Op;
1524 }
1525 
1526 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1527                                              SelectionDAG &DAG) const {
1528   SDLoc DL(Op);
1529   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1530   const SDValue &Base = LN->getBasePtr();
1531   const SDValue &Offset = LN->getOffset();
1532 
1533   if (IsWebAssemblyGlobal(Base)) {
1534     if (!Offset->isUndef())
1535       report_fatal_error(
1536           "unexpected offset when loading from webassembly global", false);
1537 
1538     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1539     SDValue Ops[] = {LN->getChain(), Base};
1540     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1541                                    LN->getMemoryVT(), LN->getMemOperand());
1542   }
1543 
1544   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1545     if (!Offset->isUndef())
1546       report_fatal_error(
1547           "unexpected offset when loading from webassembly local", false);
1548 
1549     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1550     EVT LocalVT = LN->getValueType(0);
1551     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1552                                    {LN->getChain(), Idx});
1553     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1554     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1555     return Result;
1556   }
1557 
1558   if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace()))
1559     report_fatal_error(
1560         "Encountered an unlowerable load from the wasm_var address space",
1561         false);
1562 
1563   return Op;
1564 }
1565 
1566 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1567                                                   SelectionDAG &DAG) const {
1568   SDValue Src = Op.getOperand(2);
1569   if (isa<FrameIndexSDNode>(Src.getNode())) {
1570     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1571     // the FI to some LEA-like instruction, but since we don't have that, we
1572     // need to insert some kind of instruction that can take an FI operand and
1573     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1574     // local.copy between Op and its FI operand.
1575     SDValue Chain = Op.getOperand(0);
1576     SDLoc DL(Op);
1577     Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1578     EVT VT = Src.getValueType();
1579     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1580                                                    : WebAssembly::COPY_I64,
1581                                     DL, VT, Src),
1582                  0);
1583     return Op.getNode()->getNumValues() == 1
1584                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1585                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1586                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1587                                                            : SDValue());
1588   }
1589   return SDValue();
1590 }
1591 
1592 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1593                                                    SelectionDAG &DAG) const {
1594   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1595   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1596 }
1597 
1598 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1599                                                    SelectionDAG &DAG) const {
1600   SDLoc DL(Op);
1601 
1602   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1603     fail(DL, DAG,
1604          "Non-Emscripten WebAssembly hasn't implemented "
1605          "__builtin_return_address");
1606     return SDValue();
1607   }
1608 
1609   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1610     return SDValue();
1611 
1612   unsigned Depth = Op.getConstantOperandVal(0);
1613   MakeLibCallOptions CallOptions;
1614   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1615                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1616       .first;
1617 }
1618 
1619 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1620                                                   SelectionDAG &DAG) const {
1621   // Non-zero depths are not supported by WebAssembly currently. Use the
1622   // legalizer's default expansion, which is to return 0 (what this function is
1623   // documented to do).
1624   if (Op.getConstantOperandVal(0) > 0)
1625     return SDValue();
1626 
1627   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1628   EVT VT = Op.getValueType();
1629   Register FP =
1630       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1631   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1632 }
1633 
1634 SDValue
1635 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1636                                                  SelectionDAG &DAG) const {
1637   SDLoc DL(Op);
1638   const auto *GA = cast<GlobalAddressSDNode>(Op);
1639 
1640   MachineFunction &MF = DAG.getMachineFunction();
1641   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1642     report_fatal_error("cannot use thread-local storage without bulk memory",
1643                        false);
1644 
1645   const GlobalValue *GV = GA->getGlobal();
1646 
1647   // Currently only Emscripten supports dynamic linking with threads. Therefore,
1648   // on other targets, if we have thread-local storage, only the local-exec
1649   // model is possible.
1650   auto model = Subtarget->getTargetTriple().isOSEmscripten()
1651                    ? GV->getThreadLocalMode()
1652                    : GlobalValue::LocalExecTLSModel;
1653 
1654   // Unsupported TLS modes
1655   assert(model != GlobalValue::NotThreadLocal);
1656   assert(model != GlobalValue::InitialExecTLSModel);
1657 
1658   if (model == GlobalValue::LocalExecTLSModel ||
1659       model == GlobalValue::LocalDynamicTLSModel ||
1660       (model == GlobalValue::GeneralDynamicTLSModel &&
1661        getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1662     // For DSO-local TLS variables we use offset from __tls_base
1663 
1664     MVT PtrVT = getPointerTy(DAG.getDataLayout());
1665     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1666                                        : WebAssembly::GLOBAL_GET_I32;
1667     const char *BaseName = MF.createExternalSymbolName("__tls_base");
1668 
1669     SDValue BaseAddr(
1670         DAG.getMachineNode(GlobalGet, DL, PtrVT,
1671                            DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1672         0);
1673 
1674     SDValue TLSOffset = DAG.getTargetGlobalAddress(
1675         GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1676     SDValue SymOffset =
1677         DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1678 
1679     return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1680   }
1681 
1682   assert(model == GlobalValue::GeneralDynamicTLSModel);
1683 
1684   EVT VT = Op.getValueType();
1685   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1686                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1687                                                 GA->getOffset(),
1688                                                 WebAssemblyII::MO_GOT_TLS));
1689 }
1690 
1691 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1692                                                       SelectionDAG &DAG) const {
1693   SDLoc DL(Op);
1694   const auto *GA = cast<GlobalAddressSDNode>(Op);
1695   EVT VT = Op.getValueType();
1696   assert(GA->getTargetFlags() == 0 &&
1697          "Unexpected target flags on generic GlobalAddressSDNode");
1698   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1699     fail(DL, DAG, "Invalid address space for WebAssembly target");
1700 
1701   unsigned OperandFlags = 0;
1702   if (isPositionIndependent()) {
1703     const GlobalValue *GV = GA->getGlobal();
1704     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1705       MachineFunction &MF = DAG.getMachineFunction();
1706       MVT PtrVT = getPointerTy(MF.getDataLayout());
1707       const char *BaseName;
1708       if (GV->getValueType()->isFunctionTy()) {
1709         BaseName = MF.createExternalSymbolName("__table_base");
1710         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1711       } else {
1712         BaseName = MF.createExternalSymbolName("__memory_base");
1713         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1714       }
1715       SDValue BaseAddr =
1716           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1717                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1718 
1719       SDValue SymAddr = DAG.getNode(
1720           WebAssemblyISD::WrapperREL, DL, VT,
1721           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1722                                      OperandFlags));
1723 
1724       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1725     }
1726     OperandFlags = WebAssemblyII::MO_GOT;
1727   }
1728 
1729   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1730                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1731                                                 GA->getOffset(), OperandFlags));
1732 }
1733 
1734 SDValue
1735 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1736                                                SelectionDAG &DAG) const {
1737   SDLoc DL(Op);
1738   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1739   EVT VT = Op.getValueType();
1740   assert(ES->getTargetFlags() == 0 &&
1741          "Unexpected target flags on generic ExternalSymbolSDNode");
1742   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1743                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1744 }
1745 
1746 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1747                                                   SelectionDAG &DAG) const {
1748   // There's no need for a Wrapper node because we always incorporate a jump
1749   // table operand into a BR_TABLE instruction, rather than ever
1750   // materializing it in a register.
1751   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1752   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1753                                 JT->getTargetFlags());
1754 }
1755 
1756 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1757                                               SelectionDAG &DAG) const {
1758   SDLoc DL(Op);
1759   SDValue Chain = Op.getOperand(0);
1760   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1761   SDValue Index = Op.getOperand(2);
1762   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1763 
1764   SmallVector<SDValue, 8> Ops;
1765   Ops.push_back(Chain);
1766   Ops.push_back(Index);
1767 
1768   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1769   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1770 
1771   // Add an operand for each case.
1772   for (auto *MBB : MBBs)
1773     Ops.push_back(DAG.getBasicBlock(MBB));
1774 
1775   // Add the first MBB as a dummy default target for now. This will be replaced
1776   // with the proper default target (and the preceding range check eliminated)
1777   // if possible by WebAssemblyFixBrTableDefaults.
1778   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1779   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1780 }
1781 
1782 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1783                                                 SelectionDAG &DAG) const {
1784   SDLoc DL(Op);
1785   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1786 
1787   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1788   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1789 
1790   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1791                                     MFI->getVarargBufferVreg(), PtrVT);
1792   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1793                       MachinePointerInfo(SV));
1794 }
1795 
1796 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1797                                                   SelectionDAG &DAG) const {
1798   MachineFunction &MF = DAG.getMachineFunction();
1799   unsigned IntNo;
1800   switch (Op.getOpcode()) {
1801   case ISD::INTRINSIC_VOID:
1802   case ISD::INTRINSIC_W_CHAIN:
1803     IntNo = Op.getConstantOperandVal(1);
1804     break;
1805   case ISD::INTRINSIC_WO_CHAIN:
1806     IntNo = Op.getConstantOperandVal(0);
1807     break;
1808   default:
1809     llvm_unreachable("Invalid intrinsic");
1810   }
1811   SDLoc DL(Op);
1812 
1813   switch (IntNo) {
1814   default:
1815     return SDValue(); // Don't custom lower most intrinsics.
1816 
1817   case Intrinsic::wasm_lsda: {
1818     auto PtrVT = getPointerTy(MF.getDataLayout());
1819     const char *SymName = MF.createExternalSymbolName(
1820         "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1821     if (isPositionIndependent()) {
1822       SDValue Node = DAG.getTargetExternalSymbol(
1823           SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1824       const char *BaseName = MF.createExternalSymbolName("__memory_base");
1825       SDValue BaseAddr =
1826           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1827                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1828       SDValue SymAddr =
1829           DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1830       return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1831     }
1832     SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1833     return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1834   }
1835 
1836   case Intrinsic::wasm_shuffle: {
1837     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1838     SDValue Ops[18];
1839     size_t OpIdx = 0;
1840     Ops[OpIdx++] = Op.getOperand(1);
1841     Ops[OpIdx++] = Op.getOperand(2);
1842     while (OpIdx < 18) {
1843       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1844       if (MaskIdx.isUndef() ||
1845           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1846         bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant;
1847         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget);
1848       } else {
1849         Ops[OpIdx++] = MaskIdx;
1850       }
1851     }
1852     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1853   }
1854   }
1855 }
1856 
1857 SDValue
1858 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1859                                                   SelectionDAG &DAG) const {
1860   SDLoc DL(Op);
1861   // If sign extension operations are disabled, allow sext_inreg only if operand
1862   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1863   // extension operations, but allowing sext_inreg in this context lets us have
1864   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1865   // everywhere would be simpler in this file, but would necessitate large and
1866   // brittle patterns to undo the expansion and select extract_lane_s
1867   // instructions.
1868   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1869   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1870     return SDValue();
1871 
1872   const SDValue &Extract = Op.getOperand(0);
1873   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1874   if (VecT.getVectorElementType().getSizeInBits() > 32)
1875     return SDValue();
1876   MVT ExtractedLaneT =
1877       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1878   MVT ExtractedVecT =
1879       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1880   if (ExtractedVecT == VecT)
1881     return Op;
1882 
1883   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1884   const SDNode *Index = Extract.getOperand(1).getNode();
1885   if (!isa<ConstantSDNode>(Index))
1886     return SDValue();
1887   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1888   unsigned Scale =
1889       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1890   assert(Scale > 1);
1891   SDValue NewIndex =
1892       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1893   SDValue NewExtract = DAG.getNode(
1894       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1895       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1896   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1897                      Op.getOperand(1));
1898 }
1899 
1900 SDValue
1901 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op,
1902                                                     SelectionDAG &DAG) const {
1903   SDLoc DL(Op);
1904   EVT VT = Op.getValueType();
1905   SDValue Src = Op.getOperand(0);
1906   EVT SrcVT = Src.getValueType();
1907 
1908   if (SrcVT.getVectorElementType() == MVT::i1 ||
1909       SrcVT.getVectorElementType() == MVT::i64)
1910     return SDValue();
1911 
1912   assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 &&
1913          "Unexpected extension factor.");
1914   unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits();
1915 
1916   if (Scale != 2 && Scale != 4 && Scale != 8)
1917     return SDValue();
1918 
1919   unsigned Ext;
1920   switch (Op.getOpcode()) {
1921   case ISD::ZERO_EXTEND_VECTOR_INREG:
1922     Ext = WebAssemblyISD::EXTEND_LOW_U;
1923     break;
1924   case ISD::SIGN_EXTEND_VECTOR_INREG:
1925     Ext = WebAssemblyISD::EXTEND_LOW_S;
1926     break;
1927   }
1928 
1929   SDValue Ret = Src;
1930   while (Scale != 1) {
1931     Ret = DAG.getNode(Ext, DL,
1932                       Ret.getValueType()
1933                           .widenIntegerVectorElementType(*DAG.getContext())
1934                           .getHalfNumVectorElementsVT(*DAG.getContext()),
1935                       Ret);
1936     Scale /= 2;
1937   }
1938   assert(Ret.getValueType() == VT);
1939   return Ret;
1940 }
1941 
1942 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1943   SDLoc DL(Op);
1944   if (Op.getValueType() != MVT::v2f64)
1945     return SDValue();
1946 
1947   auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1948                              unsigned &Index) -> bool {
1949     switch (Op.getOpcode()) {
1950     case ISD::SINT_TO_FP:
1951       Opcode = WebAssemblyISD::CONVERT_LOW_S;
1952       break;
1953     case ISD::UINT_TO_FP:
1954       Opcode = WebAssemblyISD::CONVERT_LOW_U;
1955       break;
1956     case ISD::FP_EXTEND:
1957       Opcode = WebAssemblyISD::PROMOTE_LOW;
1958       break;
1959     default:
1960       return false;
1961     }
1962 
1963     auto ExtractVector = Op.getOperand(0);
1964     if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1965       return false;
1966 
1967     if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
1968       return false;
1969 
1970     SrcVec = ExtractVector.getOperand(0);
1971     Index = ExtractVector.getConstantOperandVal(1);
1972     return true;
1973   };
1974 
1975   unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
1976   SDValue LHSSrcVec, RHSSrcVec;
1977   if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
1978       !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
1979     return SDValue();
1980 
1981   if (LHSOpcode != RHSOpcode)
1982     return SDValue();
1983 
1984   MVT ExpectedSrcVT;
1985   switch (LHSOpcode) {
1986   case WebAssemblyISD::CONVERT_LOW_S:
1987   case WebAssemblyISD::CONVERT_LOW_U:
1988     ExpectedSrcVT = MVT::v4i32;
1989     break;
1990   case WebAssemblyISD::PROMOTE_LOW:
1991     ExpectedSrcVT = MVT::v4f32;
1992     break;
1993   }
1994   if (LHSSrcVec.getValueType() != ExpectedSrcVT)
1995     return SDValue();
1996 
1997   auto Src = LHSSrcVec;
1998   if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
1999     // Shuffle the source vector so that the converted lanes are the low lanes.
2000     Src = DAG.getVectorShuffle(
2001         ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2002         {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2003   }
2004   return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2005 }
2006 
2007 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2008                                                      SelectionDAG &DAG) const {
2009   if (auto ConvertLow = LowerConvertLow(Op, DAG))
2010     return ConvertLow;
2011 
2012   SDLoc DL(Op);
2013   const EVT VecT = Op.getValueType();
2014   const EVT LaneT = Op.getOperand(0).getValueType();
2015   const size_t Lanes = Op.getNumOperands();
2016   bool CanSwizzle = VecT == MVT::v16i8;
2017 
2018   // BUILD_VECTORs are lowered to the instruction that initializes the highest
2019   // possible number of lanes at once followed by a sequence of replace_lane
2020   // instructions to individually initialize any remaining lanes.
2021 
2022   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2023   // swizzled lanes should be given greater weight.
2024 
2025   // TODO: Investigate looping rather than always extracting/replacing specific
2026   // lanes to fill gaps.
2027 
2028   auto IsConstant = [](const SDValue &V) {
2029     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2030   };
2031 
2032   // Returns the source vector and index vector pair if they exist. Checks for:
2033   //   (extract_vector_elt
2034   //     $src,
2035   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
2036   //   )
2037   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2038     auto Bail = std::make_pair(SDValue(), SDValue());
2039     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2040       return Bail;
2041     const SDValue &SwizzleSrc = Lane->getOperand(0);
2042     const SDValue &IndexExt = Lane->getOperand(1);
2043     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2044       return Bail;
2045     const SDValue &Index = IndexExt->getOperand(0);
2046     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2047       return Bail;
2048     const SDValue &SwizzleIndices = Index->getOperand(0);
2049     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2050         SwizzleIndices.getValueType() != MVT::v16i8 ||
2051         Index->getOperand(1)->getOpcode() != ISD::Constant ||
2052         Index->getConstantOperandVal(1) != I)
2053       return Bail;
2054     return std::make_pair(SwizzleSrc, SwizzleIndices);
2055   };
2056 
2057   // If the lane is extracted from another vector at a constant index, return
2058   // that vector. The source vector must not have more lanes than the dest
2059   // because the shufflevector indices are in terms of the destination lanes and
2060   // would not be able to address the smaller individual source lanes.
2061   auto GetShuffleSrc = [&](const SDValue &Lane) {
2062     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2063       return SDValue();
2064     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2065       return SDValue();
2066     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2067         VecT.getVectorNumElements())
2068       return SDValue();
2069     return Lane->getOperand(0);
2070   };
2071 
2072   using ValueEntry = std::pair<SDValue, size_t>;
2073   SmallVector<ValueEntry, 16> SplatValueCounts;
2074 
2075   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2076   SmallVector<SwizzleEntry, 16> SwizzleCounts;
2077 
2078   using ShuffleEntry = std::pair<SDValue, size_t>;
2079   SmallVector<ShuffleEntry, 16> ShuffleCounts;
2080 
2081   auto AddCount = [](auto &Counts, const auto &Val) {
2082     auto CountIt =
2083         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2084     if (CountIt == Counts.end()) {
2085       Counts.emplace_back(Val, 1);
2086     } else {
2087       CountIt->second++;
2088     }
2089   };
2090 
2091   auto GetMostCommon = [](auto &Counts) {
2092     auto CommonIt =
2093         std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2094     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2095     return *CommonIt;
2096   };
2097 
2098   size_t NumConstantLanes = 0;
2099 
2100   // Count eligible lanes for each type of vector creation op
2101   for (size_t I = 0; I < Lanes; ++I) {
2102     const SDValue &Lane = Op->getOperand(I);
2103     if (Lane.isUndef())
2104       continue;
2105 
2106     AddCount(SplatValueCounts, Lane);
2107 
2108     if (IsConstant(Lane))
2109       NumConstantLanes++;
2110     if (auto ShuffleSrc = GetShuffleSrc(Lane))
2111       AddCount(ShuffleCounts, ShuffleSrc);
2112     if (CanSwizzle) {
2113       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2114       if (SwizzleSrcs.first)
2115         AddCount(SwizzleCounts, SwizzleSrcs);
2116     }
2117   }
2118 
2119   SDValue SplatValue;
2120   size_t NumSplatLanes;
2121   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2122 
2123   SDValue SwizzleSrc;
2124   SDValue SwizzleIndices;
2125   size_t NumSwizzleLanes = 0;
2126   if (SwizzleCounts.size())
2127     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2128                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2129 
2130   // Shuffles can draw from up to two vectors, so find the two most common
2131   // sources.
2132   SDValue ShuffleSrc1, ShuffleSrc2;
2133   size_t NumShuffleLanes = 0;
2134   if (ShuffleCounts.size()) {
2135     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2136     llvm::erase_if(ShuffleCounts,
2137                    [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2138   }
2139   if (ShuffleCounts.size()) {
2140     size_t AdditionalShuffleLanes;
2141     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2142         GetMostCommon(ShuffleCounts);
2143     NumShuffleLanes += AdditionalShuffleLanes;
2144   }
2145 
2146   // Predicate returning true if the lane is properly initialized by the
2147   // original instruction
2148   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2149   SDValue Result;
2150   // Prefer swizzles over shuffles over vector consts over splats
2151   if (NumSwizzleLanes >= NumShuffleLanes &&
2152       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2153     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2154                          SwizzleIndices);
2155     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2156     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2157       return Swizzled == GetSwizzleSrcs(I, Lane);
2158     };
2159   } else if (NumShuffleLanes >= NumConstantLanes &&
2160              NumShuffleLanes >= NumSplatLanes) {
2161     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2162     size_t DestLaneCount = VecT.getVectorNumElements();
2163     size_t Scale1 = 1;
2164     size_t Scale2 = 1;
2165     SDValue Src1 = ShuffleSrc1;
2166     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2167     if (Src1.getValueType() != VecT) {
2168       size_t LaneSize =
2169           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2170       assert(LaneSize > DestLaneSize);
2171       Scale1 = LaneSize / DestLaneSize;
2172       Src1 = DAG.getBitcast(VecT, Src1);
2173     }
2174     if (Src2.getValueType() != VecT) {
2175       size_t LaneSize =
2176           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2177       assert(LaneSize > DestLaneSize);
2178       Scale2 = LaneSize / DestLaneSize;
2179       Src2 = DAG.getBitcast(VecT, Src2);
2180     }
2181 
2182     int Mask[16];
2183     assert(DestLaneCount <= 16);
2184     for (size_t I = 0; I < DestLaneCount; ++I) {
2185       const SDValue &Lane = Op->getOperand(I);
2186       SDValue Src = GetShuffleSrc(Lane);
2187       if (Src == ShuffleSrc1) {
2188         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2189       } else if (Src && Src == ShuffleSrc2) {
2190         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2191       } else {
2192         Mask[I] = -1;
2193       }
2194     }
2195     ArrayRef<int> MaskRef(Mask, DestLaneCount);
2196     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2197     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2198       auto Src = GetShuffleSrc(Lane);
2199       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2200     };
2201   } else if (NumConstantLanes >= NumSplatLanes) {
2202     SmallVector<SDValue, 16> ConstLanes;
2203     for (const SDValue &Lane : Op->op_values()) {
2204       if (IsConstant(Lane)) {
2205         // Values may need to be fixed so that they will sign extend to be
2206         // within the expected range during ISel. Check whether the value is in
2207         // bounds based on the lane bit width and if it is out of bounds, lop
2208         // off the extra bits and subtract 2^n to reflect giving the high bit
2209         // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2210         // cannot possibly be out of range.
2211         auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2212         int64_t Val = Const ? Const->getSExtValue() : 0;
2213         uint64_t LaneBits = 128 / Lanes;
2214         assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2215                "Unexpected out of bounds negative value");
2216         if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2217           uint64_t Mask = (1ll << LaneBits) - 1;
2218           auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask;
2219           ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2220         } else {
2221           ConstLanes.push_back(Lane);
2222         }
2223       } else if (LaneT.isFloatingPoint()) {
2224         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2225       } else {
2226         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2227       }
2228     }
2229     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2230     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2231       return IsConstant(Lane);
2232     };
2233   } else {
2234     // Use a splat (which might be selected as a load splat)
2235     Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2236     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2237       return Lane == SplatValue;
2238     };
2239   }
2240 
2241   assert(Result);
2242   assert(IsLaneConstructed);
2243 
2244   // Add replace_lane instructions for any unhandled values
2245   for (size_t I = 0; I < Lanes; ++I) {
2246     const SDValue &Lane = Op->getOperand(I);
2247     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2248       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2249                            DAG.getConstant(I, DL, MVT::i32));
2250   }
2251 
2252   return Result;
2253 }
2254 
2255 SDValue
2256 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2257                                                SelectionDAG &DAG) const {
2258   SDLoc DL(Op);
2259   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2260   MVT VecType = Op.getOperand(0).getSimpleValueType();
2261   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2262   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2263 
2264   // Space for two vector args and sixteen mask indices
2265   SDValue Ops[18];
2266   size_t OpIdx = 0;
2267   Ops[OpIdx++] = Op.getOperand(0);
2268   Ops[OpIdx++] = Op.getOperand(1);
2269 
2270   // Expand mask indices to byte indices and materialize them as operands
2271   for (int M : Mask) {
2272     for (size_t J = 0; J < LaneBytes; ++J) {
2273       // Lower undefs (represented by -1 in mask) to {0..J}, which use a
2274       // whole lane of vector input, to allow further reduction at VM. E.g.
2275       // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle.
2276       uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J;
2277       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2278     }
2279   }
2280 
2281   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2282 }
2283 
2284 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2285                                               SelectionDAG &DAG) const {
2286   SDLoc DL(Op);
2287   // The legalizer does not know how to expand the unsupported comparison modes
2288   // of i64x2 vectors, so we manually unroll them here.
2289   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2290   SmallVector<SDValue, 2> LHS, RHS;
2291   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2292   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2293   const SDValue &CC = Op->getOperand(2);
2294   auto MakeLane = [&](unsigned I) {
2295     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2296                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2297                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2298   };
2299   return DAG.getBuildVector(Op->getValueType(0), DL,
2300                             {MakeLane(0), MakeLane(1)});
2301 }
2302 
2303 SDValue
2304 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2305                                                     SelectionDAG &DAG) const {
2306   // Allow constant lane indices, expand variable lane indices
2307   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2308   if (isa<ConstantSDNode>(IdxNode)) {
2309     // Ensure the index type is i32 to match the tablegen patterns
2310     uint64_t Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue();
2311     SmallVector<SDValue, 3> Ops(Op.getNode()->ops());
2312     Ops[Op.getNumOperands() - 1] =
2313         DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32);
2314     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops);
2315   }
2316   // Perform default expansion
2317   return SDValue();
2318 }
2319 
2320 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2321   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2322   // 32-bit and 64-bit unrolled shifts will have proper semantics
2323   if (LaneT.bitsGE(MVT::i32))
2324     return DAG.UnrollVectorOp(Op.getNode());
2325   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2326   SDLoc DL(Op);
2327   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2328   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2329   unsigned ShiftOpcode = Op.getOpcode();
2330   SmallVector<SDValue, 16> ShiftedElements;
2331   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2332   SmallVector<SDValue, 16> ShiftElements;
2333   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2334   SmallVector<SDValue, 16> UnrolledOps;
2335   for (size_t i = 0; i < NumLanes; ++i) {
2336     SDValue MaskedShiftValue =
2337         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2338     SDValue ShiftedValue = ShiftedElements[i];
2339     if (ShiftOpcode == ISD::SRA)
2340       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2341                                  ShiftedValue, DAG.getValueType(LaneT));
2342     UnrolledOps.push_back(
2343         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2344   }
2345   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2346 }
2347 
2348 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2349                                               SelectionDAG &DAG) const {
2350   SDLoc DL(Op);
2351 
2352   // Only manually lower vector shifts
2353   assert(Op.getSimpleValueType().isVector());
2354 
2355   uint64_t LaneBits = Op.getValueType().getScalarSizeInBits();
2356   auto ShiftVal = Op.getOperand(1);
2357 
2358   // Try to skip bitmask operation since it is implied inside shift instruction
2359   auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) {
2360     if (MaskOp.getOpcode() != ISD::AND)
2361       return MaskOp;
2362     SDValue LHS = MaskOp.getOperand(0);
2363     SDValue RHS = MaskOp.getOperand(1);
2364     if (MaskOp.getValueType().isVector()) {
2365       APInt MaskVal;
2366       if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal))
2367         std::swap(LHS, RHS);
2368 
2369       if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) &&
2370           MaskVal == MaskBits)
2371         MaskOp = LHS;
2372     } else {
2373       if (!isa<ConstantSDNode>(RHS.getNode()))
2374         std::swap(LHS, RHS);
2375 
2376       auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode());
2377       if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2378         MaskOp = LHS;
2379     }
2380 
2381     return MaskOp;
2382   };
2383 
2384   // Skip vector and operation
2385   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2386   ShiftVal = DAG.getSplatValue(ShiftVal);
2387   if (!ShiftVal)
2388     return unrollVectorShift(Op, DAG);
2389 
2390   // Skip scalar and operation
2391   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2392   // Use anyext because none of the high bits can affect the shift
2393   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2394 
2395   unsigned Opcode;
2396   switch (Op.getOpcode()) {
2397   case ISD::SHL:
2398     Opcode = WebAssemblyISD::VEC_SHL;
2399     break;
2400   case ISD::SRA:
2401     Opcode = WebAssemblyISD::VEC_SHR_S;
2402     break;
2403   case ISD::SRL:
2404     Opcode = WebAssemblyISD::VEC_SHR_U;
2405     break;
2406   default:
2407     llvm_unreachable("unexpected opcode");
2408   }
2409 
2410   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2411 }
2412 
2413 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2414                                                       SelectionDAG &DAG) const {
2415   SDLoc DL(Op);
2416   EVT ResT = Op.getValueType();
2417   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2418 
2419   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2420       (SatVT == MVT::i32 || SatVT == MVT::i64))
2421     return Op;
2422 
2423   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2424     return Op;
2425 
2426   return SDValue();
2427 }
2428 
2429 //===----------------------------------------------------------------------===//
2430 //   Custom DAG combine hooks
2431 //===----------------------------------------------------------------------===//
2432 static SDValue
2433 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2434   auto &DAG = DCI.DAG;
2435   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2436 
2437   // Hoist vector bitcasts that don't change the number of lanes out of unary
2438   // shuffles, where they are less likely to get in the way of other combines.
2439   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2440   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2441   SDValue Bitcast = N->getOperand(0);
2442   if (Bitcast.getOpcode() != ISD::BITCAST)
2443     return SDValue();
2444   if (!N->getOperand(1).isUndef())
2445     return SDValue();
2446   SDValue CastOp = Bitcast.getOperand(0);
2447   MVT SrcType = CastOp.getSimpleValueType();
2448   MVT DstType = Bitcast.getSimpleValueType();
2449   if (!SrcType.is128BitVector() ||
2450       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2451     return SDValue();
2452   SDValue NewShuffle = DAG.getVectorShuffle(
2453       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2454   return DAG.getBitcast(DstType, NewShuffle);
2455 }
2456 
2457 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get
2458 /// split up into scalar instructions during legalization, and the vector
2459 /// extending instructions are selected in performVectorExtendCombine below.
2460 static SDValue
2461 performVectorExtendToFPCombine(SDNode *N,
2462                                TargetLowering::DAGCombinerInfo &DCI) {
2463   auto &DAG = DCI.DAG;
2464   assert(N->getOpcode() == ISD::UINT_TO_FP ||
2465          N->getOpcode() == ISD::SINT_TO_FP);
2466 
2467   EVT InVT = N->getOperand(0)->getValueType(0);
2468   EVT ResVT = N->getValueType(0);
2469   MVT ExtVT;
2470   if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2471     ExtVT = MVT::v4i32;
2472   else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2473     ExtVT = MVT::v2i32;
2474   else
2475     return SDValue();
2476 
2477   unsigned Op =
2478       N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
2479   SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0));
2480   return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv);
2481 }
2482 
2483 static SDValue
2484 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2485   auto &DAG = DCI.DAG;
2486   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2487          N->getOpcode() == ISD::ZERO_EXTEND);
2488 
2489   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2490   // possible before the extract_subvector can be expanded.
2491   auto Extract = N->getOperand(0);
2492   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2493     return SDValue();
2494   auto Source = Extract.getOperand(0);
2495   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2496   if (IndexNode == nullptr)
2497     return SDValue();
2498   auto Index = IndexNode->getZExtValue();
2499 
2500   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2501   // extracted subvector is the low or high half of its source.
2502   EVT ResVT = N->getValueType(0);
2503   if (ResVT == MVT::v8i16) {
2504     if (Extract.getValueType() != MVT::v8i8 ||
2505         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2506       return SDValue();
2507   } else if (ResVT == MVT::v4i32) {
2508     if (Extract.getValueType() != MVT::v4i16 ||
2509         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2510       return SDValue();
2511   } else if (ResVT == MVT::v2i64) {
2512     if (Extract.getValueType() != MVT::v2i32 ||
2513         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2514       return SDValue();
2515   } else {
2516     return SDValue();
2517   }
2518 
2519   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2520   bool IsLow = Index == 0;
2521 
2522   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2523                                 : WebAssemblyISD::EXTEND_HIGH_S)
2524                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2525                                 : WebAssemblyISD::EXTEND_HIGH_U);
2526 
2527   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2528 }
2529 
2530 static SDValue
2531 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2532   auto &DAG = DCI.DAG;
2533 
2534   auto GetWasmConversionOp = [](unsigned Op) {
2535     switch (Op) {
2536     case ISD::FP_TO_SINT_SAT:
2537       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2538     case ISD::FP_TO_UINT_SAT:
2539       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2540     case ISD::FP_ROUND:
2541       return WebAssemblyISD::DEMOTE_ZERO;
2542     }
2543     llvm_unreachable("unexpected op");
2544   };
2545 
2546   auto IsZeroSplat = [](SDValue SplatVal) {
2547     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2548     APInt SplatValue, SplatUndef;
2549     unsigned SplatBitSize;
2550     bool HasAnyUndefs;
2551     return Splat &&
2552            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2553                                   HasAnyUndefs) &&
2554            SplatValue == 0;
2555   };
2556 
2557   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2558     // Combine this:
2559     //
2560     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2561     //
2562     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2563     //
2564     // Or this:
2565     //
2566     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2567     //
2568     // into (f32x4.demote_zero_f64x2 $x).
2569     EVT ResVT;
2570     EVT ExpectedConversionType;
2571     auto Conversion = N->getOperand(0);
2572     auto ConversionOp = Conversion.getOpcode();
2573     switch (ConversionOp) {
2574     case ISD::FP_TO_SINT_SAT:
2575     case ISD::FP_TO_UINT_SAT:
2576       ResVT = MVT::v4i32;
2577       ExpectedConversionType = MVT::v2i32;
2578       break;
2579     case ISD::FP_ROUND:
2580       ResVT = MVT::v4f32;
2581       ExpectedConversionType = MVT::v2f32;
2582       break;
2583     default:
2584       return SDValue();
2585     }
2586 
2587     if (N->getValueType(0) != ResVT)
2588       return SDValue();
2589 
2590     if (Conversion.getValueType() != ExpectedConversionType)
2591       return SDValue();
2592 
2593     auto Source = Conversion.getOperand(0);
2594     if (Source.getValueType() != MVT::v2f64)
2595       return SDValue();
2596 
2597     if (!IsZeroSplat(N->getOperand(1)) ||
2598         N->getOperand(1).getValueType() != ExpectedConversionType)
2599       return SDValue();
2600 
2601     unsigned Op = GetWasmConversionOp(ConversionOp);
2602     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2603   }
2604 
2605   // Combine this:
2606   //
2607   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2608   //
2609   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2610   //
2611   // Or this:
2612   //
2613   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2614   //
2615   // into (f32x4.demote_zero_f64x2 $x).
2616   EVT ResVT;
2617   auto ConversionOp = N->getOpcode();
2618   switch (ConversionOp) {
2619   case ISD::FP_TO_SINT_SAT:
2620   case ISD::FP_TO_UINT_SAT:
2621     ResVT = MVT::v4i32;
2622     break;
2623   case ISD::FP_ROUND:
2624     ResVT = MVT::v4f32;
2625     break;
2626   default:
2627     llvm_unreachable("unexpected op");
2628   }
2629 
2630   if (N->getValueType(0) != ResVT)
2631     return SDValue();
2632 
2633   auto Concat = N->getOperand(0);
2634   if (Concat.getValueType() != MVT::v4f64)
2635     return SDValue();
2636 
2637   auto Source = Concat.getOperand(0);
2638   if (Source.getValueType() != MVT::v2f64)
2639     return SDValue();
2640 
2641   if (!IsZeroSplat(Concat.getOperand(1)) ||
2642       Concat.getOperand(1).getValueType() != MVT::v2f64)
2643     return SDValue();
2644 
2645   unsigned Op = GetWasmConversionOp(ConversionOp);
2646   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2647 }
2648 
2649 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2650 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2651                                 const SDLoc &DL, unsigned VectorWidth) {
2652   EVT VT = Vec.getValueType();
2653   EVT ElVT = VT.getVectorElementType();
2654   unsigned Factor = VT.getSizeInBits() / VectorWidth;
2655   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2656                                   VT.getVectorNumElements() / Factor);
2657 
2658   // Extract the relevant VectorWidth bits.  Generate an EXTRACT_SUBVECTOR
2659   unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2660   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2661 
2662   // This is the index of the first element of the VectorWidth-bit chunk
2663   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2664   IdxVal &= ~(ElemsPerChunk - 1);
2665 
2666   // If the input is a buildvector just emit a smaller one.
2667   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2668     return DAG.getBuildVector(ResultVT, DL,
2669                               Vec->ops().slice(IdxVal, ElemsPerChunk));
2670 
2671   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2672   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2673 }
2674 
2675 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2676 // is the expected destination value type after recursion. In is the initial
2677 // input. Note that the input should have enough leading zero bits to prevent
2678 // NARROW_U from saturating results.
2679 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2680                                         SelectionDAG &DAG) {
2681   EVT SrcVT = In.getValueType();
2682 
2683   // No truncation required, we might get here due to recursive calls.
2684   if (SrcVT == DstVT)
2685     return In;
2686 
2687   unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2688   unsigned NumElems = SrcVT.getVectorNumElements();
2689   if (!isPowerOf2_32(NumElems))
2690     return SDValue();
2691   assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2692   assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2693 
2694   LLVMContext &Ctx = *DAG.getContext();
2695   EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2696 
2697   // Narrow to the largest type possible:
2698   // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2699   EVT InVT = MVT::i16, OutVT = MVT::i8;
2700   if (SrcVT.getScalarSizeInBits() > 16) {
2701     InVT = MVT::i32;
2702     OutVT = MVT::i16;
2703   }
2704   unsigned SubSizeInBits = SrcSizeInBits / 2;
2705   InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2706   OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2707 
2708   // Split lower/upper subvectors.
2709   SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2710   SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2711 
2712   // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2713   if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2714     Lo = DAG.getBitcast(InVT, Lo);
2715     Hi = DAG.getBitcast(InVT, Hi);
2716     SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2717     return DAG.getBitcast(DstVT, Res);
2718   }
2719 
2720   // Recursively narrow lower/upper subvectors, concat result and narrow again.
2721   EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2722   Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2723   Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2724 
2725   PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2726   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2727   return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2728 }
2729 
2730 static SDValue performTruncateCombine(SDNode *N,
2731                                       TargetLowering::DAGCombinerInfo &DCI) {
2732   auto &DAG = DCI.DAG;
2733 
2734   SDValue In = N->getOperand(0);
2735   EVT InVT = In.getValueType();
2736   if (!InVT.isSimple())
2737     return SDValue();
2738 
2739   EVT OutVT = N->getValueType(0);
2740   if (!OutVT.isVector())
2741     return SDValue();
2742 
2743   EVT OutSVT = OutVT.getVectorElementType();
2744   EVT InSVT = InVT.getVectorElementType();
2745   // Currently only cover truncate to v16i8 or v8i16.
2746   if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2747         (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2748     return SDValue();
2749 
2750   SDLoc DL(N);
2751   APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2752                                     OutVT.getScalarSizeInBits());
2753   In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2754   return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2755 }
2756 
2757 static SDValue performBitcastCombine(SDNode *N,
2758                                      TargetLowering::DAGCombinerInfo &DCI) {
2759   auto &DAG = DCI.DAG;
2760   SDLoc DL(N);
2761   SDValue Src = N->getOperand(0);
2762   EVT VT = N->getValueType(0);
2763   EVT SrcVT = Src.getValueType();
2764 
2765   // bitcast <N x i1> to iN
2766   //   ==> bitmask
2767   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
2768       SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) {
2769     unsigned NumElts = SrcVT.getVectorNumElements();
2770     if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2771       return SDValue();
2772     EVT Width = MVT::getIntegerVT(128 / NumElts);
2773     return DAG.getZExtOrTrunc(
2774         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
2775                     {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
2776                      DAG.getSExtOrTrunc(N->getOperand(0), DL,
2777                                         SrcVT.changeVectorElementType(Width))}),
2778         DL, VT);
2779   }
2780 
2781   return SDValue();
2782 }
2783 
2784 static SDValue performSETCCCombine(SDNode *N,
2785                                    TargetLowering::DAGCombinerInfo &DCI) {
2786   auto &DAG = DCI.DAG;
2787 
2788   SDValue LHS = N->getOperand(0);
2789   SDValue RHS = N->getOperand(1);
2790   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
2791   SDLoc DL(N);
2792   EVT VT = N->getValueType(0);
2793 
2794   // setcc (iN (bitcast (vNi1 X))), 0, ne
2795   //   ==> any_true (vNi1 X)
2796   // setcc (iN (bitcast (vNi1 X))), 0, eq
2797   //   ==> xor (any_true (vNi1 X)), -1
2798   // setcc (iN (bitcast (vNi1 X))), -1, eq
2799   //   ==> all_true (vNi1 X)
2800   // setcc (iN (bitcast (vNi1 X))), -1, ne
2801   //   ==> xor (all_true (vNi1 X)), -1
2802   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
2803       (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2804       (isNullConstant(RHS) || isAllOnesConstant(RHS)) &&
2805       LHS->getOpcode() == ISD::BITCAST) {
2806     EVT FromVT = LHS->getOperand(0).getValueType();
2807     if (FromVT.isFixedLengthVector() &&
2808         FromVT.getVectorElementType() == MVT::i1) {
2809       int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue
2810                                        : Intrinsic::wasm_alltrue;
2811       unsigned NumElts = FromVT.getVectorNumElements();
2812       if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2813         return SDValue();
2814       EVT Width = MVT::getIntegerVT(128 / NumElts);
2815       SDValue Ret = DAG.getZExtOrTrunc(
2816           DAG.getNode(
2817               ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
2818               {DAG.getConstant(Intrin, DL, MVT::i32),
2819                DAG.getSExtOrTrunc(LHS->getOperand(0), DL,
2820                                   FromVT.changeVectorElementType(Width))}),
2821           DL, MVT::i1);
2822       if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) ||
2823           (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) {
2824         Ret = DAG.getNOT(DL, Ret, MVT::i1);
2825       }
2826       return DAG.getZExtOrTrunc(Ret, DL, VT);
2827     }
2828   }
2829 
2830   return SDValue();
2831 }
2832 
2833 SDValue
2834 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2835                                              DAGCombinerInfo &DCI) const {
2836   switch (N->getOpcode()) {
2837   default:
2838     return SDValue();
2839   case ISD::BITCAST:
2840     return performBitcastCombine(N, DCI);
2841   case ISD::SETCC:
2842     return performSETCCCombine(N, DCI);
2843   case ISD::VECTOR_SHUFFLE:
2844     return performVECTOR_SHUFFLECombine(N, DCI);
2845   case ISD::SIGN_EXTEND:
2846   case ISD::ZERO_EXTEND:
2847     return performVectorExtendCombine(N, DCI);
2848   case ISD::UINT_TO_FP:
2849   case ISD::SINT_TO_FP:
2850     return performVectorExtendToFPCombine(N, DCI);
2851   case ISD::FP_TO_SINT_SAT:
2852   case ISD::FP_TO_UINT_SAT:
2853   case ISD::FP_ROUND:
2854   case ISD::CONCAT_VECTORS:
2855     return performVectorTruncZeroCombine(N, DCI);
2856   case ISD::TRUNCATE:
2857     return performTruncateCombine(N, DCI);
2858   }
2859 }
2860