1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 66 } 67 // Compute derived properties from the register classes. 68 computeRegisterProperties(Subtarget->getRegisterInfo()); 69 70 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 71 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 72 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 73 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 74 setOperationAction(ISD::BRIND, MVT::Other, Custom); 75 76 // Take the default expansion for va_arg, va_copy, and va_end. There is no 77 // default action for va_start, so we do that custom. 78 setOperationAction(ISD::VASTART, MVT::Other, Custom); 79 setOperationAction(ISD::VAARG, MVT::Other, Expand); 80 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 81 setOperationAction(ISD::VAEND, MVT::Other, Expand); 82 83 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 84 // Don't expand the floating-point types to constant pools. 85 setOperationAction(ISD::ConstantFP, T, Legal); 86 // Expand floating-point comparisons. 87 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 88 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 89 setCondCodeAction(CC, T, Expand); 90 // Expand floating-point library function operators. 91 for (auto Op : 92 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 93 setOperationAction(Op, T, Expand); 94 // Note supported floating-point library function operators that otherwise 95 // default to expand. 96 for (auto Op : 97 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 98 setOperationAction(Op, T, Legal); 99 // Support minimum and maximum, which otherwise default to expand. 100 setOperationAction(ISD::FMINIMUM, T, Legal); 101 setOperationAction(ISD::FMAXIMUM, T, Legal); 102 // WebAssembly currently has no builtin f16 support. 103 setOperationAction(ISD::FP16_TO_FP, T, Expand); 104 setOperationAction(ISD::FP_TO_FP16, T, Expand); 105 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 106 setTruncStoreAction(T, MVT::f16, Expand); 107 } 108 109 // Expand unavailable integer operations. 110 for (auto Op : 111 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 112 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 113 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 114 for (auto T : {MVT::i32, MVT::i64}) 115 setOperationAction(Op, T, Expand); 116 if (Subtarget->hasSIMD128()) 117 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 118 setOperationAction(Op, T, Expand); 119 } 120 121 // SIMD-specific configuration 122 if (Subtarget->hasSIMD128()) { 123 // Hoist bitcasts out of shuffles 124 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 125 126 // Support saturating add for i8x16 and i16x8 127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 128 for (auto T : {MVT::v16i8, MVT::v8i16}) 129 setOperationAction(Op, T, Legal); 130 131 // Support integer abs 132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 133 setOperationAction(ISD::ABS, T, Legal); 134 135 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 136 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 137 MVT::v2f64}) 138 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 139 140 // We have custom shuffle lowering to expose the shuffle mask 141 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 142 MVT::v2f64}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 145 // Custom lowering since wasm shifts must have a scalar shift amount 146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 148 setOperationAction(Op, T, Custom); 149 150 // Custom lower lane accesses to expand out variable indices 151 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 152 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 153 MVT::v2f64}) 154 setOperationAction(Op, T, Custom); 155 156 // There is no i8x16.mul instruction 157 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 158 159 // There are no vector select instructions 160 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) 161 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 162 MVT::v2f64}) 163 setOperationAction(Op, T, Expand); 164 165 // Expand integer operations supported for scalars but not SIMD 166 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 167 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 168 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 169 setOperationAction(Op, T, Expand); 170 171 // But we do have integer min and max operations 172 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 173 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 174 setOperationAction(Op, T, Legal); 175 176 // Expand float operations supported for scalars but not SIMD 177 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 178 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 179 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 180 for (auto T : {MVT::v4f32, MVT::v2f64}) 181 setOperationAction(Op, T, Expand); 182 183 // Expand operations not supported for i64x2 vectors 184 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 185 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 186 187 // 64x2 conversions are not in the spec 188 for (auto Op : 189 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 190 for (auto T : {MVT::v2i64, MVT::v2f64}) 191 setOperationAction(Op, T, Expand); 192 } 193 194 // As a special case, these operators use the type to mean the type to 195 // sign-extend from. 196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 197 if (!Subtarget->hasSignExt()) { 198 // Sign extends are legal only when extending a vector extract 199 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 200 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 201 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 202 } 203 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 204 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 205 206 // Dynamic stack allocation: use the default expansion. 207 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 208 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 209 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 210 211 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 212 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 213 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 214 215 // Expand these forms; we pattern-match the forms that we can handle in isel. 216 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 217 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 218 setOperationAction(Op, T, Expand); 219 220 // We have custom switch handling. 221 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 222 223 // WebAssembly doesn't have: 224 // - Floating-point extending loads. 225 // - Floating-point truncating stores. 226 // - i1 extending loads. 227 // - truncating SIMD stores and most extending loads 228 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 229 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 230 for (auto T : MVT::integer_valuetypes()) 231 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 232 setLoadExtAction(Ext, T, MVT::i1, Promote); 233 if (Subtarget->hasSIMD128()) { 234 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 235 MVT::v2f64}) { 236 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 237 if (MVT(T) != MemT) { 238 setTruncStoreAction(T, MemT, Expand); 239 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 240 setLoadExtAction(Ext, T, MemT, Expand); 241 } 242 } 243 } 244 // But some vector extending loads are legal 245 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 246 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 247 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 248 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 249 } 250 } 251 252 // Don't do anything clever with build_pairs 253 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 254 255 // Trap lowers to wasm unreachable 256 setOperationAction(ISD::TRAP, MVT::Other, Legal); 257 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 258 259 // Exception handling intrinsics 260 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 261 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 262 263 setMaxAtomicSizeInBitsSupported(64); 264 265 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 266 // consistent with the f64 and f128 names. 267 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 268 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 269 270 // Define the emscripten name for return address helper. 271 // TODO: when implementing other WASM backends, make this generic or only do 272 // this on emscripten depending on what they end up doing. 273 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 274 275 // Always convert switches to br_tables unless there is only one case, which 276 // is equivalent to a simple branch. This reduces code size for wasm, and we 277 // defer possible jump table optimizations to the VM. 278 setMinimumJumpTableEntries(2); 279 } 280 281 TargetLowering::AtomicExpansionKind 282 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 283 // We have wasm instructions for these 284 switch (AI->getOperation()) { 285 case AtomicRMWInst::Add: 286 case AtomicRMWInst::Sub: 287 case AtomicRMWInst::And: 288 case AtomicRMWInst::Or: 289 case AtomicRMWInst::Xor: 290 case AtomicRMWInst::Xchg: 291 return AtomicExpansionKind::None; 292 default: 293 break; 294 } 295 return AtomicExpansionKind::CmpXChg; 296 } 297 298 FastISel *WebAssemblyTargetLowering::createFastISel( 299 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 300 return WebAssembly::createFastISel(FuncInfo, LibInfo); 301 } 302 303 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 304 EVT VT) const { 305 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 306 if (BitWidth > 1 && BitWidth < 8) 307 BitWidth = 8; 308 309 if (BitWidth > 64) { 310 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 311 // the count to be an i32. 312 BitWidth = 32; 313 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 314 "32-bit shift counts ought to be enough for anyone"); 315 } 316 317 MVT Result = MVT::getIntegerVT(BitWidth); 318 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 319 "Unable to represent scalar shift amount type"); 320 return Result; 321 } 322 323 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 324 // undefined result on invalid/overflow, to the WebAssembly opcode, which 325 // traps on invalid/overflow. 326 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 327 MachineBasicBlock *BB, 328 const TargetInstrInfo &TII, 329 bool IsUnsigned, bool Int64, 330 bool Float64, unsigned LoweredOpcode) { 331 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 332 333 Register OutReg = MI.getOperand(0).getReg(); 334 Register InReg = MI.getOperand(1).getReg(); 335 336 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 337 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 338 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 339 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 340 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 341 unsigned Eqz = WebAssembly::EQZ_I32; 342 unsigned And = WebAssembly::AND_I32; 343 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 344 int64_t Substitute = IsUnsigned ? 0 : Limit; 345 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 346 auto &Context = BB->getParent()->getFunction().getContext(); 347 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 348 349 const BasicBlock *LLVMBB = BB->getBasicBlock(); 350 MachineFunction *F = BB->getParent(); 351 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 352 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 353 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 354 355 MachineFunction::iterator It = ++BB->getIterator(); 356 F->insert(It, FalseMBB); 357 F->insert(It, TrueMBB); 358 F->insert(It, DoneMBB); 359 360 // Transfer the remainder of BB and its successor edges to DoneMBB. 361 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 362 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 363 364 BB->addSuccessor(TrueMBB); 365 BB->addSuccessor(FalseMBB); 366 TrueMBB->addSuccessor(DoneMBB); 367 FalseMBB->addSuccessor(DoneMBB); 368 369 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 370 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 371 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 372 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 373 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 374 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 375 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 376 377 MI.eraseFromParent(); 378 // For signed numbers, we can do a single comparison to determine whether 379 // fabs(x) is within range. 380 if (IsUnsigned) { 381 Tmp0 = InReg; 382 } else { 383 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 384 } 385 BuildMI(BB, DL, TII.get(FConst), Tmp1) 386 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 387 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 388 389 // For unsigned numbers, we have to do a separate comparison with zero. 390 if (IsUnsigned) { 391 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 392 Register SecondCmpReg = 393 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 394 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 395 BuildMI(BB, DL, TII.get(FConst), Tmp1) 396 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 397 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 398 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 399 CmpReg = AndReg; 400 } 401 402 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 403 404 // Create the CFG diamond to select between doing the conversion or using 405 // the substitute value. 406 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 407 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 408 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 409 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 410 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 411 .addReg(FalseReg) 412 .addMBB(FalseMBB) 413 .addReg(TrueReg) 414 .addMBB(TrueMBB); 415 416 return DoneMBB; 417 } 418 419 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 420 DebugLoc DL, MachineBasicBlock *BB, 421 const TargetInstrInfo &TII) { 422 MachineInstr &CallParams = *CallResults.getPrevNode(); 423 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 424 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 425 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 426 427 bool IsIndirect = CallParams.getOperand(0).isReg(); 428 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 429 430 unsigned CallOp; 431 if (IsIndirect && IsRetCall) { 432 CallOp = WebAssembly::RET_CALL_INDIRECT; 433 } else if (IsIndirect) { 434 CallOp = WebAssembly::CALL_INDIRECT; 435 } else if (IsRetCall) { 436 CallOp = WebAssembly::RET_CALL; 437 } else { 438 CallOp = WebAssembly::CALL; 439 } 440 441 MachineFunction &MF = *BB->getParent(); 442 const MCInstrDesc &MCID = TII.get(CallOp); 443 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 444 445 // Move the function pointer to the end of the arguments for indirect calls 446 if (IsIndirect) { 447 auto FnPtr = CallParams.getOperand(0); 448 CallParams.RemoveOperand(0); 449 CallParams.addOperand(FnPtr); 450 } 451 452 for (auto Def : CallResults.defs()) 453 MIB.add(Def); 454 455 // Add placeholders for the type index and immediate flags 456 if (IsIndirect) { 457 MIB.addImm(0); 458 MIB.addImm(0); 459 } 460 461 for (auto Use : CallParams.uses()) 462 MIB.add(Use); 463 464 BB->insert(CallResults.getIterator(), MIB); 465 CallParams.eraseFromParent(); 466 CallResults.eraseFromParent(); 467 468 return BB; 469 } 470 471 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 472 MachineInstr &MI, MachineBasicBlock *BB) const { 473 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 474 DebugLoc DL = MI.getDebugLoc(); 475 476 switch (MI.getOpcode()) { 477 default: 478 llvm_unreachable("Unexpected instr type to insert"); 479 case WebAssembly::FP_TO_SINT_I32_F32: 480 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 481 WebAssembly::I32_TRUNC_S_F32); 482 case WebAssembly::FP_TO_UINT_I32_F32: 483 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 484 WebAssembly::I32_TRUNC_U_F32); 485 case WebAssembly::FP_TO_SINT_I64_F32: 486 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 487 WebAssembly::I64_TRUNC_S_F32); 488 case WebAssembly::FP_TO_UINT_I64_F32: 489 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 490 WebAssembly::I64_TRUNC_U_F32); 491 case WebAssembly::FP_TO_SINT_I32_F64: 492 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 493 WebAssembly::I32_TRUNC_S_F64); 494 case WebAssembly::FP_TO_UINT_I32_F64: 495 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 496 WebAssembly::I32_TRUNC_U_F64); 497 case WebAssembly::FP_TO_SINT_I64_F64: 498 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 499 WebAssembly::I64_TRUNC_S_F64); 500 case WebAssembly::FP_TO_UINT_I64_F64: 501 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 502 WebAssembly::I64_TRUNC_U_F64); 503 case WebAssembly::CALL_RESULTS: 504 case WebAssembly::RET_CALL_RESULTS: 505 return LowerCallResults(MI, DL, BB, TII); 506 } 507 } 508 509 const char * 510 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 511 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 512 case WebAssemblyISD::FIRST_NUMBER: 513 case WebAssemblyISD::FIRST_MEM_OPCODE: 514 break; 515 #define HANDLE_NODETYPE(NODE) \ 516 case WebAssemblyISD::NODE: \ 517 return "WebAssemblyISD::" #NODE; 518 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 519 #include "WebAssemblyISD.def" 520 #undef HANDLE_MEM_NODETYPE 521 #undef HANDLE_NODETYPE 522 } 523 return nullptr; 524 } 525 526 std::pair<unsigned, const TargetRegisterClass *> 527 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 528 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 529 // First, see if this is a constraint that directly corresponds to a 530 // WebAssembly register class. 531 if (Constraint.size() == 1) { 532 switch (Constraint[0]) { 533 case 'r': 534 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 535 if (Subtarget->hasSIMD128() && VT.isVector()) { 536 if (VT.getSizeInBits() == 128) 537 return std::make_pair(0U, &WebAssembly::V128RegClass); 538 } 539 if (VT.isInteger() && !VT.isVector()) { 540 if (VT.getSizeInBits() <= 32) 541 return std::make_pair(0U, &WebAssembly::I32RegClass); 542 if (VT.getSizeInBits() <= 64) 543 return std::make_pair(0U, &WebAssembly::I64RegClass); 544 } 545 break; 546 default: 547 break; 548 } 549 } 550 551 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 552 } 553 554 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 555 // Assume ctz is a relatively cheap operation. 556 return true; 557 } 558 559 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 560 // Assume clz is a relatively cheap operation. 561 return true; 562 } 563 564 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 565 const AddrMode &AM, 566 Type *Ty, unsigned AS, 567 Instruction *I) const { 568 // WebAssembly offsets are added as unsigned without wrapping. The 569 // isLegalAddressingMode gives us no way to determine if wrapping could be 570 // happening, so we approximate this by accepting only non-negative offsets. 571 if (AM.BaseOffs < 0) 572 return false; 573 574 // WebAssembly has no scale register operands. 575 if (AM.Scale != 0) 576 return false; 577 578 // Everything else is legal. 579 return true; 580 } 581 582 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 583 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 584 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 585 // WebAssembly supports unaligned accesses, though it should be declared 586 // with the p2align attribute on loads and stores which do so, and there 587 // may be a performance impact. We tell LLVM they're "fast" because 588 // for the kinds of things that LLVM uses this for (merging adjacent stores 589 // of constants, etc.), WebAssembly implementations will either want the 590 // unaligned access or they'll split anyway. 591 if (Fast) 592 *Fast = true; 593 return true; 594 } 595 596 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 597 AttributeList Attr) const { 598 // The current thinking is that wasm engines will perform this optimization, 599 // so we can save on code size. 600 return true; 601 } 602 603 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 604 MVT ExtT = ExtVal.getSimpleValueType(); 605 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 606 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 607 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 608 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 609 } 610 611 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 612 LLVMContext &C, 613 EVT VT) const { 614 if (VT.isVector()) 615 return VT.changeVectorElementTypeToInteger(); 616 617 // So far, all branch instructions in Wasm take an I32 condition. 618 // The default TargetLowering::getSetCCResultType returns the pointer size, 619 // which would be useful to reduce instruction counts when testing 620 // against 64-bit pointers/values if at some point Wasm supports that. 621 return EVT::getIntegerVT(C, 32); 622 } 623 624 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 625 const CallInst &I, 626 MachineFunction &MF, 627 unsigned Intrinsic) const { 628 switch (Intrinsic) { 629 case Intrinsic::wasm_atomic_notify: 630 Info.opc = ISD::INTRINSIC_W_CHAIN; 631 Info.memVT = MVT::i32; 632 Info.ptrVal = I.getArgOperand(0); 633 Info.offset = 0; 634 Info.align = Align(4); 635 // atomic.notify instruction does not really load the memory specified with 636 // this argument, but MachineMemOperand should either be load or store, so 637 // we set this to a load. 638 // FIXME Volatile isn't really correct, but currently all LLVM atomic 639 // instructions are treated as volatiles in the backend, so we should be 640 // consistent. The same applies for wasm_atomic_wait intrinsics too. 641 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 642 return true; 643 case Intrinsic::wasm_atomic_wait_i32: 644 Info.opc = ISD::INTRINSIC_W_CHAIN; 645 Info.memVT = MVT::i32; 646 Info.ptrVal = I.getArgOperand(0); 647 Info.offset = 0; 648 Info.align = Align(4); 649 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 650 return true; 651 case Intrinsic::wasm_atomic_wait_i64: 652 Info.opc = ISD::INTRINSIC_W_CHAIN; 653 Info.memVT = MVT::i64; 654 Info.ptrVal = I.getArgOperand(0); 655 Info.offset = 0; 656 Info.align = Align(8); 657 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 658 return true; 659 default: 660 return false; 661 } 662 } 663 664 //===----------------------------------------------------------------------===// 665 // WebAssembly Lowering private implementation. 666 //===----------------------------------------------------------------------===// 667 668 //===----------------------------------------------------------------------===// 669 // Lowering Code 670 //===----------------------------------------------------------------------===// 671 672 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 673 MachineFunction &MF = DAG.getMachineFunction(); 674 DAG.getContext()->diagnose( 675 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 676 } 677 678 // Test whether the given calling convention is supported. 679 static bool callingConvSupported(CallingConv::ID CallConv) { 680 // We currently support the language-independent target-independent 681 // conventions. We don't yet have a way to annotate calls with properties like 682 // "cold", and we don't have any call-clobbered registers, so these are mostly 683 // all handled the same. 684 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 685 CallConv == CallingConv::Cold || 686 CallConv == CallingConv::PreserveMost || 687 CallConv == CallingConv::PreserveAll || 688 CallConv == CallingConv::CXX_FAST_TLS || 689 CallConv == CallingConv::WASM_EmscriptenInvoke || 690 CallConv == CallingConv::Swift; 691 } 692 693 SDValue 694 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 695 SmallVectorImpl<SDValue> &InVals) const { 696 SelectionDAG &DAG = CLI.DAG; 697 SDLoc DL = CLI.DL; 698 SDValue Chain = CLI.Chain; 699 SDValue Callee = CLI.Callee; 700 MachineFunction &MF = DAG.getMachineFunction(); 701 auto Layout = MF.getDataLayout(); 702 703 CallingConv::ID CallConv = CLI.CallConv; 704 if (!callingConvSupported(CallConv)) 705 fail(DL, DAG, 706 "WebAssembly doesn't support language-specific or target-specific " 707 "calling conventions yet"); 708 if (CLI.IsPatchPoint) 709 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 710 711 if (CLI.IsTailCall) { 712 auto NoTail = [&](const char *Msg) { 713 if (CLI.CB && CLI.CB->isMustTailCall()) 714 fail(DL, DAG, Msg); 715 CLI.IsTailCall = false; 716 }; 717 718 if (!Subtarget->hasTailCall()) 719 NoTail("WebAssembly 'tail-call' feature not enabled"); 720 721 // Varargs calls cannot be tail calls because the buffer is on the stack 722 if (CLI.IsVarArg) 723 NoTail("WebAssembly does not support varargs tail calls"); 724 725 // Do not tail call unless caller and callee return types match 726 const Function &F = MF.getFunction(); 727 const TargetMachine &TM = getTargetMachine(); 728 Type *RetTy = F.getReturnType(); 729 SmallVector<MVT, 4> CallerRetTys; 730 SmallVector<MVT, 4> CalleeRetTys; 731 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 732 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 733 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 734 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 735 CalleeRetTys.begin()); 736 if (!TypesMatch) 737 NoTail("WebAssembly tail call requires caller and callee return types to " 738 "match"); 739 740 // If pointers to local stack values are passed, we cannot tail call 741 if (CLI.CB) { 742 for (auto &Arg : CLI.CB->args()) { 743 Value *Val = Arg.get(); 744 // Trace the value back through pointer operations 745 while (true) { 746 Value *Src = Val->stripPointerCastsAndAliases(); 747 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 748 Src = GEP->getPointerOperand(); 749 if (Val == Src) 750 break; 751 Val = Src; 752 } 753 if (isa<AllocaInst>(Val)) { 754 NoTail( 755 "WebAssembly does not support tail calling with stack arguments"); 756 break; 757 } 758 } 759 } 760 } 761 762 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 763 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 764 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 765 766 // The generic code may have added an sret argument. If we're lowering an 767 // invoke function, the ABI requires that the function pointer be the first 768 // argument, so we may have to swap the arguments. 769 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 770 Outs[0].Flags.isSRet()) { 771 std::swap(Outs[0], Outs[1]); 772 std::swap(OutVals[0], OutVals[1]); 773 } 774 775 bool HasSwiftSelfArg = false; 776 bool HasSwiftErrorArg = false; 777 unsigned NumFixedArgs = 0; 778 for (unsigned I = 0; I < Outs.size(); ++I) { 779 const ISD::OutputArg &Out = Outs[I]; 780 SDValue &OutVal = OutVals[I]; 781 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 782 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 783 if (Out.Flags.isNest()) 784 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 785 if (Out.Flags.isInAlloca()) 786 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 787 if (Out.Flags.isInConsecutiveRegs()) 788 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 789 if (Out.Flags.isInConsecutiveRegsLast()) 790 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 791 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 792 auto &MFI = MF.getFrameInfo(); 793 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 794 Out.Flags.getNonZeroByValAlign(), 795 /*isSS=*/false); 796 SDValue SizeNode = 797 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 798 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 799 Chain = DAG.getMemcpy( 800 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 801 /*isVolatile*/ false, /*AlwaysInline=*/false, 802 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 803 OutVal = FINode; 804 } 805 // Count the number of fixed args *after* legalization. 806 NumFixedArgs += Out.IsFixed; 807 } 808 809 bool IsVarArg = CLI.IsVarArg; 810 auto PtrVT = getPointerTy(Layout); 811 812 // For swiftcc, emit additional swiftself and swifterror arguments 813 // if there aren't. These additional arguments are also added for callee 814 // signature They are necessary to match callee and caller signature for 815 // indirect call. 816 if (CallConv == CallingConv::Swift) { 817 if (!HasSwiftSelfArg) { 818 NumFixedArgs++; 819 ISD::OutputArg Arg; 820 Arg.Flags.setSwiftSelf(); 821 CLI.Outs.push_back(Arg); 822 SDValue ArgVal = DAG.getUNDEF(PtrVT); 823 CLI.OutVals.push_back(ArgVal); 824 } 825 if (!HasSwiftErrorArg) { 826 NumFixedArgs++; 827 ISD::OutputArg Arg; 828 Arg.Flags.setSwiftError(); 829 CLI.Outs.push_back(Arg); 830 SDValue ArgVal = DAG.getUNDEF(PtrVT); 831 CLI.OutVals.push_back(ArgVal); 832 } 833 } 834 835 // Analyze operands of the call, assigning locations to each operand. 836 SmallVector<CCValAssign, 16> ArgLocs; 837 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 838 839 if (IsVarArg) { 840 // Outgoing non-fixed arguments are placed in a buffer. First 841 // compute their offsets and the total amount of buffer space needed. 842 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 843 const ISD::OutputArg &Out = Outs[I]; 844 SDValue &Arg = OutVals[I]; 845 EVT VT = Arg.getValueType(); 846 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 847 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 848 Align Alignment = 849 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 850 unsigned Offset = 851 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 852 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 853 Offset, VT.getSimpleVT(), 854 CCValAssign::Full)); 855 } 856 } 857 858 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 859 860 SDValue FINode; 861 if (IsVarArg && NumBytes) { 862 // For non-fixed arguments, next emit stores to store the argument values 863 // to the stack buffer at the offsets computed above. 864 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 865 Layout.getStackAlignment(), 866 /*isSS=*/false); 867 unsigned ValNo = 0; 868 SmallVector<SDValue, 8> Chains; 869 for (SDValue Arg : 870 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 871 assert(ArgLocs[ValNo].getValNo() == ValNo && 872 "ArgLocs should remain in order and only hold varargs args"); 873 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 874 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 875 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 876 DAG.getConstant(Offset, DL, PtrVT)); 877 Chains.push_back( 878 DAG.getStore(Chain, DL, Arg, Add, 879 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 880 } 881 if (!Chains.empty()) 882 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 883 } else if (IsVarArg) { 884 FINode = DAG.getIntPtrConstant(0, DL); 885 } 886 887 if (Callee->getOpcode() == ISD::GlobalAddress) { 888 // If the callee is a GlobalAddress node (quite common, every direct call 889 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 890 // doesn't at MO_GOT which is not needed for direct calls. 891 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 892 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 893 getPointerTy(DAG.getDataLayout()), 894 GA->getOffset()); 895 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 896 getPointerTy(DAG.getDataLayout()), Callee); 897 } 898 899 // Compute the operands for the CALLn node. 900 SmallVector<SDValue, 16> Ops; 901 Ops.push_back(Chain); 902 Ops.push_back(Callee); 903 904 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 905 // isn't reliable. 906 Ops.append(OutVals.begin(), 907 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 908 // Add a pointer to the vararg buffer. 909 if (IsVarArg) 910 Ops.push_back(FINode); 911 912 SmallVector<EVT, 8> InTys; 913 for (const auto &In : Ins) { 914 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 915 assert(!In.Flags.isNest() && "nest is not valid for return values"); 916 if (In.Flags.isInAlloca()) 917 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 918 if (In.Flags.isInConsecutiveRegs()) 919 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 920 if (In.Flags.isInConsecutiveRegsLast()) 921 fail(DL, DAG, 922 "WebAssembly hasn't implemented cons regs last return values"); 923 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 924 // registers. 925 InTys.push_back(In.VT); 926 } 927 928 if (CLI.IsTailCall) { 929 // ret_calls do not return values to the current frame 930 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 931 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 932 } 933 934 InTys.push_back(MVT::Other); 935 SDVTList InTyList = DAG.getVTList(InTys); 936 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 937 938 for (size_t I = 0; I < Ins.size(); ++I) 939 InVals.push_back(Res.getValue(I)); 940 941 // Return the chain 942 return Res.getValue(Ins.size()); 943 } 944 945 bool WebAssemblyTargetLowering::CanLowerReturn( 946 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 947 const SmallVectorImpl<ISD::OutputArg> &Outs, 948 LLVMContext & /*Context*/) const { 949 // WebAssembly can only handle returning tuples with multivalue enabled 950 return Subtarget->hasMultivalue() || Outs.size() <= 1; 951 } 952 953 SDValue WebAssemblyTargetLowering::LowerReturn( 954 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 955 const SmallVectorImpl<ISD::OutputArg> &Outs, 956 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 957 SelectionDAG &DAG) const { 958 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 959 "MVP WebAssembly can only return up to one value"); 960 if (!callingConvSupported(CallConv)) 961 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 962 963 SmallVector<SDValue, 4> RetOps(1, Chain); 964 RetOps.append(OutVals.begin(), OutVals.end()); 965 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 966 967 // Record the number and types of the return values. 968 for (const ISD::OutputArg &Out : Outs) { 969 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 970 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 971 assert(Out.IsFixed && "non-fixed return value is not valid"); 972 if (Out.Flags.isInAlloca()) 973 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 974 if (Out.Flags.isInConsecutiveRegs()) 975 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 976 if (Out.Flags.isInConsecutiveRegsLast()) 977 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 978 } 979 980 return Chain; 981 } 982 983 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 984 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 985 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 986 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 987 if (!callingConvSupported(CallConv)) 988 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 989 990 MachineFunction &MF = DAG.getMachineFunction(); 991 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 992 993 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 994 // of the incoming values before they're represented by virtual registers. 995 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 996 997 bool HasSwiftErrorArg = false; 998 bool HasSwiftSelfArg = false; 999 for (const ISD::InputArg &In : Ins) { 1000 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1001 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1002 if (In.Flags.isInAlloca()) 1003 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1004 if (In.Flags.isNest()) 1005 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1006 if (In.Flags.isInConsecutiveRegs()) 1007 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1008 if (In.Flags.isInConsecutiveRegsLast()) 1009 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1010 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1011 // registers. 1012 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1013 DAG.getTargetConstant(InVals.size(), 1014 DL, MVT::i32)) 1015 : DAG.getUNDEF(In.VT)); 1016 1017 // Record the number and types of arguments. 1018 MFI->addParam(In.VT); 1019 } 1020 1021 // For swiftcc, emit additional swiftself and swifterror arguments 1022 // if there aren't. These additional arguments are also added for callee 1023 // signature They are necessary to match callee and caller signature for 1024 // indirect call. 1025 auto PtrVT = getPointerTy(MF.getDataLayout()); 1026 if (CallConv == CallingConv::Swift) { 1027 if (!HasSwiftSelfArg) { 1028 MFI->addParam(PtrVT); 1029 } 1030 if (!HasSwiftErrorArg) { 1031 MFI->addParam(PtrVT); 1032 } 1033 } 1034 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1035 // the buffer is passed as an argument. 1036 if (IsVarArg) { 1037 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1038 Register VarargVreg = 1039 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1040 MFI->setVarargBufferVreg(VarargVreg); 1041 Chain = DAG.getCopyToReg( 1042 Chain, DL, VarargVreg, 1043 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1044 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1045 MFI->addParam(PtrVT); 1046 } 1047 1048 // Record the number and types of arguments and results. 1049 SmallVector<MVT, 4> Params; 1050 SmallVector<MVT, 4> Results; 1051 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1052 MF.getFunction(), DAG.getTarget(), Params, Results); 1053 for (MVT VT : Results) 1054 MFI->addResult(VT); 1055 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1056 // the param logic here with ComputeSignatureVTs 1057 assert(MFI->getParams().size() == Params.size() && 1058 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1059 Params.begin())); 1060 1061 return Chain; 1062 } 1063 1064 void WebAssemblyTargetLowering::ReplaceNodeResults( 1065 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1066 switch (N->getOpcode()) { 1067 case ISD::SIGN_EXTEND_INREG: 1068 // Do not add any results, signifying that N should not be custom lowered 1069 // after all. This happens because simd128 turns on custom lowering for 1070 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1071 // illegal type. 1072 break; 1073 default: 1074 llvm_unreachable( 1075 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1076 } 1077 } 1078 1079 //===----------------------------------------------------------------------===// 1080 // Custom lowering hooks. 1081 //===----------------------------------------------------------------------===// 1082 1083 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1084 SelectionDAG &DAG) const { 1085 SDLoc DL(Op); 1086 switch (Op.getOpcode()) { 1087 default: 1088 llvm_unreachable("unimplemented operation lowering"); 1089 return SDValue(); 1090 case ISD::FrameIndex: 1091 return LowerFrameIndex(Op, DAG); 1092 case ISD::GlobalAddress: 1093 return LowerGlobalAddress(Op, DAG); 1094 case ISD::ExternalSymbol: 1095 return LowerExternalSymbol(Op, DAG); 1096 case ISD::JumpTable: 1097 return LowerJumpTable(Op, DAG); 1098 case ISD::BR_JT: 1099 return LowerBR_JT(Op, DAG); 1100 case ISD::VASTART: 1101 return LowerVASTART(Op, DAG); 1102 case ISD::BlockAddress: 1103 case ISD::BRIND: 1104 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1105 return SDValue(); 1106 case ISD::RETURNADDR: 1107 return LowerRETURNADDR(Op, DAG); 1108 case ISD::FRAMEADDR: 1109 return LowerFRAMEADDR(Op, DAG); 1110 case ISD::CopyToReg: 1111 return LowerCopyToReg(Op, DAG); 1112 case ISD::EXTRACT_VECTOR_ELT: 1113 case ISD::INSERT_VECTOR_ELT: 1114 return LowerAccessVectorElement(Op, DAG); 1115 case ISD::INTRINSIC_VOID: 1116 case ISD::INTRINSIC_WO_CHAIN: 1117 case ISD::INTRINSIC_W_CHAIN: 1118 return LowerIntrinsic(Op, DAG); 1119 case ISD::SIGN_EXTEND_INREG: 1120 return LowerSIGN_EXTEND_INREG(Op, DAG); 1121 case ISD::BUILD_VECTOR: 1122 return LowerBUILD_VECTOR(Op, DAG); 1123 case ISD::VECTOR_SHUFFLE: 1124 return LowerVECTOR_SHUFFLE(Op, DAG); 1125 case ISD::SETCC: 1126 return LowerSETCC(Op, DAG); 1127 case ISD::SHL: 1128 case ISD::SRA: 1129 case ISD::SRL: 1130 return LowerShift(Op, DAG); 1131 } 1132 } 1133 1134 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1135 SelectionDAG &DAG) const { 1136 SDValue Src = Op.getOperand(2); 1137 if (isa<FrameIndexSDNode>(Src.getNode())) { 1138 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1139 // the FI to some LEA-like instruction, but since we don't have that, we 1140 // need to insert some kind of instruction that can take an FI operand and 1141 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1142 // local.copy between Op and its FI operand. 1143 SDValue Chain = Op.getOperand(0); 1144 SDLoc DL(Op); 1145 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1146 EVT VT = Src.getValueType(); 1147 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1148 : WebAssembly::COPY_I64, 1149 DL, VT, Src), 1150 0); 1151 return Op.getNode()->getNumValues() == 1 1152 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1153 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1154 Op.getNumOperands() == 4 ? Op.getOperand(3) 1155 : SDValue()); 1156 } 1157 return SDValue(); 1158 } 1159 1160 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1161 SelectionDAG &DAG) const { 1162 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1163 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1164 } 1165 1166 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1167 SelectionDAG &DAG) const { 1168 SDLoc DL(Op); 1169 1170 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1171 fail(DL, DAG, 1172 "Non-Emscripten WebAssembly hasn't implemented " 1173 "__builtin_return_address"); 1174 return SDValue(); 1175 } 1176 1177 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1178 return SDValue(); 1179 1180 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1181 MakeLibCallOptions CallOptions; 1182 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1183 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1184 .first; 1185 } 1186 1187 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1188 SelectionDAG &DAG) const { 1189 // Non-zero depths are not supported by WebAssembly currently. Use the 1190 // legalizer's default expansion, which is to return 0 (what this function is 1191 // documented to do). 1192 if (Op.getConstantOperandVal(0) > 0) 1193 return SDValue(); 1194 1195 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1196 EVT VT = Op.getValueType(); 1197 Register FP = 1198 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1199 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1200 } 1201 1202 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1203 SelectionDAG &DAG) const { 1204 SDLoc DL(Op); 1205 const auto *GA = cast<GlobalAddressSDNode>(Op); 1206 EVT VT = Op.getValueType(); 1207 assert(GA->getTargetFlags() == 0 && 1208 "Unexpected target flags on generic GlobalAddressSDNode"); 1209 if (GA->getAddressSpace() != 0) 1210 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1211 1212 unsigned OperandFlags = 0; 1213 if (isPositionIndependent()) { 1214 const GlobalValue *GV = GA->getGlobal(); 1215 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1216 MachineFunction &MF = DAG.getMachineFunction(); 1217 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1218 const char *BaseName; 1219 if (GV->getValueType()->isFunctionTy()) { 1220 BaseName = MF.createExternalSymbolName("__table_base"); 1221 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1222 } 1223 else { 1224 BaseName = MF.createExternalSymbolName("__memory_base"); 1225 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1226 } 1227 SDValue BaseAddr = 1228 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1229 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1230 1231 SDValue SymAddr = DAG.getNode( 1232 WebAssemblyISD::WrapperPIC, DL, VT, 1233 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1234 OperandFlags)); 1235 1236 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1237 } else { 1238 OperandFlags = WebAssemblyII::MO_GOT; 1239 } 1240 } 1241 1242 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1243 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1244 GA->getOffset(), OperandFlags)); 1245 } 1246 1247 SDValue 1248 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1249 SelectionDAG &DAG) const { 1250 SDLoc DL(Op); 1251 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1252 EVT VT = Op.getValueType(); 1253 assert(ES->getTargetFlags() == 0 && 1254 "Unexpected target flags on generic ExternalSymbolSDNode"); 1255 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1256 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1257 } 1258 1259 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1260 SelectionDAG &DAG) const { 1261 // There's no need for a Wrapper node because we always incorporate a jump 1262 // table operand into a BR_TABLE instruction, rather than ever 1263 // materializing it in a register. 1264 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1265 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1266 JT->getTargetFlags()); 1267 } 1268 1269 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1270 SelectionDAG &DAG) const { 1271 SDLoc DL(Op); 1272 SDValue Chain = Op.getOperand(0); 1273 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1274 SDValue Index = Op.getOperand(2); 1275 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1276 1277 SmallVector<SDValue, 8> Ops; 1278 Ops.push_back(Chain); 1279 Ops.push_back(Index); 1280 1281 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1282 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1283 1284 // Add an operand for each case. 1285 for (auto MBB : MBBs) 1286 Ops.push_back(DAG.getBasicBlock(MBB)); 1287 1288 // Add the first MBB as a dummy default target for now. This will be replaced 1289 // with the proper default target (and the preceding range check eliminated) 1290 // if possible by WebAssemblyFixBrTableDefaults. 1291 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1292 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1293 } 1294 1295 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1296 SelectionDAG &DAG) const { 1297 SDLoc DL(Op); 1298 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1299 1300 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1301 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1302 1303 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1304 MFI->getVarargBufferVreg(), PtrVT); 1305 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1306 MachinePointerInfo(SV), 0); 1307 } 1308 1309 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1310 SelectionDAG &DAG) const { 1311 MachineFunction &MF = DAG.getMachineFunction(); 1312 unsigned IntNo; 1313 switch (Op.getOpcode()) { 1314 case ISD::INTRINSIC_VOID: 1315 case ISD::INTRINSIC_W_CHAIN: 1316 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1317 break; 1318 case ISD::INTRINSIC_WO_CHAIN: 1319 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1320 break; 1321 default: 1322 llvm_unreachable("Invalid intrinsic"); 1323 } 1324 SDLoc DL(Op); 1325 1326 switch (IntNo) { 1327 default: 1328 return SDValue(); // Don't custom lower most intrinsics. 1329 1330 case Intrinsic::wasm_lsda: { 1331 EVT VT = Op.getValueType(); 1332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1333 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1334 auto &Context = MF.getMMI().getContext(); 1335 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1336 Twine(MF.getFunctionNumber())); 1337 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1338 DAG.getMCSymbol(S, PtrVT)); 1339 } 1340 1341 case Intrinsic::wasm_throw: { 1342 // We only support C++ exceptions for now 1343 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1344 if (Tag != CPP_EXCEPTION) 1345 llvm_unreachable("Invalid tag!"); 1346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1347 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1348 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1349 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1350 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1351 return DAG.getNode(WebAssemblyISD::THROW, DL, 1352 MVT::Other, // outchain type 1353 { 1354 Op.getOperand(0), // inchain 1355 SymNode, // exception symbol 1356 Op.getOperand(3) // thrown value 1357 }); 1358 } 1359 1360 case Intrinsic::wasm_shuffle: { 1361 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1362 SDValue Ops[18]; 1363 size_t OpIdx = 0; 1364 Ops[OpIdx++] = Op.getOperand(1); 1365 Ops[OpIdx++] = Op.getOperand(2); 1366 while (OpIdx < 18) { 1367 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1368 if (MaskIdx.isUndef() || 1369 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1370 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1371 } else { 1372 Ops[OpIdx++] = MaskIdx; 1373 } 1374 } 1375 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1376 } 1377 } 1378 } 1379 1380 SDValue 1381 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1382 SelectionDAG &DAG) const { 1383 SDLoc DL(Op); 1384 // If sign extension operations are disabled, allow sext_inreg only if operand 1385 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1386 // extension operations, but allowing sext_inreg in this context lets us have 1387 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1388 // everywhere would be simpler in this file, but would necessitate large and 1389 // brittle patterns to undo the expansion and select extract_lane_s 1390 // instructions. 1391 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1392 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1393 return SDValue(); 1394 1395 const SDValue &Extract = Op.getOperand(0); 1396 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1397 if (VecT.getVectorElementType().getSizeInBits() > 32) 1398 return SDValue(); 1399 MVT ExtractedLaneT = 1400 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1401 MVT ExtractedVecT = 1402 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1403 if (ExtractedVecT == VecT) 1404 return Op; 1405 1406 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1407 const SDNode *Index = Extract.getOperand(1).getNode(); 1408 if (!isa<ConstantSDNode>(Index)) 1409 return SDValue(); 1410 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1411 unsigned Scale = 1412 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1413 assert(Scale > 1); 1414 SDValue NewIndex = 1415 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1416 SDValue NewExtract = DAG.getNode( 1417 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1418 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1419 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1420 Op.getOperand(1)); 1421 } 1422 1423 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1424 SelectionDAG &DAG) const { 1425 SDLoc DL(Op); 1426 const EVT VecT = Op.getValueType(); 1427 const EVT LaneT = Op.getOperand(0).getValueType(); 1428 const size_t Lanes = Op.getNumOperands(); 1429 bool CanSwizzle = VecT == MVT::v16i8; 1430 1431 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1432 // possible number of lanes at once followed by a sequence of replace_lane 1433 // instructions to individually initialize any remaining lanes. 1434 1435 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1436 // swizzled lanes should be given greater weight. 1437 1438 // TODO: Investigate building vectors by shuffling together vectors built by 1439 // separately specialized means. 1440 1441 auto IsConstant = [](const SDValue &V) { 1442 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1443 }; 1444 1445 // Returns the source vector and index vector pair if they exist. Checks for: 1446 // (extract_vector_elt 1447 // $src, 1448 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1449 // ) 1450 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1451 auto Bail = std::make_pair(SDValue(), SDValue()); 1452 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1453 return Bail; 1454 const SDValue &SwizzleSrc = Lane->getOperand(0); 1455 const SDValue &IndexExt = Lane->getOperand(1); 1456 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1457 return Bail; 1458 const SDValue &Index = IndexExt->getOperand(0); 1459 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1460 return Bail; 1461 const SDValue &SwizzleIndices = Index->getOperand(0); 1462 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1463 SwizzleIndices.getValueType() != MVT::v16i8 || 1464 Index->getOperand(1)->getOpcode() != ISD::Constant || 1465 Index->getConstantOperandVal(1) != I) 1466 return Bail; 1467 return std::make_pair(SwizzleSrc, SwizzleIndices); 1468 }; 1469 1470 using ValueEntry = std::pair<SDValue, size_t>; 1471 SmallVector<ValueEntry, 16> SplatValueCounts; 1472 1473 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1474 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1475 1476 auto AddCount = [](auto &Counts, const auto &Val) { 1477 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1478 [&Val](auto E) { return E.first == Val; }); 1479 if (CountIt == Counts.end()) { 1480 Counts.emplace_back(Val, 1); 1481 } else { 1482 CountIt->second++; 1483 } 1484 }; 1485 1486 auto GetMostCommon = [](auto &Counts) { 1487 auto CommonIt = 1488 std::max_element(Counts.begin(), Counts.end(), 1489 [](auto A, auto B) { return A.second < B.second; }); 1490 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1491 return *CommonIt; 1492 }; 1493 1494 size_t NumConstantLanes = 0; 1495 1496 // Count eligible lanes for each type of vector creation op 1497 for (size_t I = 0; I < Lanes; ++I) { 1498 const SDValue &Lane = Op->getOperand(I); 1499 if (Lane.isUndef()) 1500 continue; 1501 1502 AddCount(SplatValueCounts, Lane); 1503 1504 if (IsConstant(Lane)) { 1505 NumConstantLanes++; 1506 } else if (CanSwizzle) { 1507 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1508 if (SwizzleSrcs.first) 1509 AddCount(SwizzleCounts, SwizzleSrcs); 1510 } 1511 } 1512 1513 SDValue SplatValue; 1514 size_t NumSplatLanes; 1515 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1516 1517 SDValue SwizzleSrc; 1518 SDValue SwizzleIndices; 1519 size_t NumSwizzleLanes = 0; 1520 if (SwizzleCounts.size()) 1521 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1522 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1523 1524 // Predicate returning true if the lane is properly initialized by the 1525 // original instruction 1526 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1527 SDValue Result; 1528 // Prefer swizzles over vector consts over splats 1529 if (NumSwizzleLanes >= NumSplatLanes && 1530 (!Subtarget->hasUnimplementedSIMD128() || 1531 NumSwizzleLanes >= NumConstantLanes)) { 1532 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1533 SwizzleIndices); 1534 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1535 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1536 return Swizzled == GetSwizzleSrcs(I, Lane); 1537 }; 1538 } else if (NumConstantLanes >= NumSplatLanes && 1539 Subtarget->hasUnimplementedSIMD128()) { 1540 SmallVector<SDValue, 16> ConstLanes; 1541 for (const SDValue &Lane : Op->op_values()) { 1542 if (IsConstant(Lane)) { 1543 ConstLanes.push_back(Lane); 1544 } else if (LaneT.isFloatingPoint()) { 1545 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1546 } else { 1547 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1548 } 1549 } 1550 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1551 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1552 return IsConstant(Lane); 1553 }; 1554 } 1555 if (!Result) { 1556 // Use a splat, but possibly a load_splat 1557 LoadSDNode *SplattedLoad; 1558 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1559 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1560 Result = DAG.getMemIntrinsicNode( 1561 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1562 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1563 SplattedLoad->getOffset()}, 1564 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1565 } else { 1566 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1567 } 1568 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1569 return Lane == SplatValue; 1570 }; 1571 } 1572 1573 // Add replace_lane instructions for any unhandled values 1574 for (size_t I = 0; I < Lanes; ++I) { 1575 const SDValue &Lane = Op->getOperand(I); 1576 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1577 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1578 DAG.getConstant(I, DL, MVT::i32)); 1579 } 1580 1581 return Result; 1582 } 1583 1584 SDValue 1585 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1586 SelectionDAG &DAG) const { 1587 SDLoc DL(Op); 1588 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1589 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1590 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1591 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1592 1593 // Space for two vector args and sixteen mask indices 1594 SDValue Ops[18]; 1595 size_t OpIdx = 0; 1596 Ops[OpIdx++] = Op.getOperand(0); 1597 Ops[OpIdx++] = Op.getOperand(1); 1598 1599 // Expand mask indices to byte indices and materialize them as operands 1600 for (int M : Mask) { 1601 for (size_t J = 0; J < LaneBytes; ++J) { 1602 // Lower undefs (represented by -1 in mask) to zero 1603 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1604 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1605 } 1606 } 1607 1608 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1609 } 1610 1611 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1612 SelectionDAG &DAG) const { 1613 SDLoc DL(Op); 1614 // The legalizer does not know how to expand the comparison modes of i64x2 1615 // vectors because no comparison modes are supported. We could solve this by 1616 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1617 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1618 // comparisons here. 1619 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1620 SmallVector<SDValue, 2> LHS, RHS; 1621 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1622 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1623 const SDValue &CC = Op->getOperand(2); 1624 auto MakeLane = [&](unsigned I) { 1625 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1626 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1627 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1628 }; 1629 return DAG.getBuildVector(Op->getValueType(0), DL, 1630 {MakeLane(0), MakeLane(1)}); 1631 } 1632 1633 SDValue 1634 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1635 SelectionDAG &DAG) const { 1636 // Allow constant lane indices, expand variable lane indices 1637 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1638 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1639 return Op; 1640 else 1641 // Perform default expansion 1642 return SDValue(); 1643 } 1644 1645 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1646 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1647 // 32-bit and 64-bit unrolled shifts will have proper semantics 1648 if (LaneT.bitsGE(MVT::i32)) 1649 return DAG.UnrollVectorOp(Op.getNode()); 1650 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1651 SDLoc DL(Op); 1652 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1653 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1654 unsigned ShiftOpcode = Op.getOpcode(); 1655 SmallVector<SDValue, 16> ShiftedElements; 1656 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1657 SmallVector<SDValue, 16> ShiftElements; 1658 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1659 SmallVector<SDValue, 16> UnrolledOps; 1660 for (size_t i = 0; i < NumLanes; ++i) { 1661 SDValue MaskedShiftValue = 1662 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1663 SDValue ShiftedValue = ShiftedElements[i]; 1664 if (ShiftOpcode == ISD::SRA) 1665 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1666 ShiftedValue, DAG.getValueType(LaneT)); 1667 UnrolledOps.push_back( 1668 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1669 } 1670 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1671 } 1672 1673 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1674 SelectionDAG &DAG) const { 1675 SDLoc DL(Op); 1676 1677 // Only manually lower vector shifts 1678 assert(Op.getSimpleValueType().isVector()); 1679 1680 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1681 if (!ShiftVal) 1682 return unrollVectorShift(Op, DAG); 1683 1684 // Use anyext because none of the high bits can affect the shift 1685 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1686 1687 unsigned Opcode; 1688 switch (Op.getOpcode()) { 1689 case ISD::SHL: 1690 Opcode = WebAssemblyISD::VEC_SHL; 1691 break; 1692 case ISD::SRA: 1693 Opcode = WebAssemblyISD::VEC_SHR_S; 1694 break; 1695 case ISD::SRL: 1696 Opcode = WebAssemblyISD::VEC_SHR_U; 1697 break; 1698 default: 1699 llvm_unreachable("unexpected opcode"); 1700 } 1701 1702 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1703 } 1704 1705 //===----------------------------------------------------------------------===// 1706 // Custom DAG combine hooks 1707 //===----------------------------------------------------------------------===// 1708 static SDValue 1709 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1710 auto &DAG = DCI.DAG; 1711 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1712 1713 // Hoist vector bitcasts that don't change the number of lanes out of unary 1714 // shuffles, where they are less likely to get in the way of other combines. 1715 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1716 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1717 SDValue Bitcast = N->getOperand(0); 1718 if (Bitcast.getOpcode() != ISD::BITCAST) 1719 return SDValue(); 1720 if (!N->getOperand(1).isUndef()) 1721 return SDValue(); 1722 SDValue CastOp = Bitcast.getOperand(0); 1723 MVT SrcType = CastOp.getSimpleValueType(); 1724 MVT DstType = Bitcast.getSimpleValueType(); 1725 if (!SrcType.is128BitVector() || 1726 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1727 return SDValue(); 1728 SDValue NewShuffle = DAG.getVectorShuffle( 1729 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1730 return DAG.getBitcast(DstType, NewShuffle); 1731 } 1732 1733 SDValue 1734 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 1735 DAGCombinerInfo &DCI) const { 1736 switch (N->getOpcode()) { 1737 default: 1738 return SDValue(); 1739 case ISD::VECTOR_SHUFFLE: 1740 return performVECTOR_SHUFFLECombine(N, DCI); 1741 } 1742 } 1743