xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsWebAssembly.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "wasm-lower"
39 
40 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
41     const TargetMachine &TM, const WebAssemblySubtarget &STI)
42     : TargetLowering(TM), Subtarget(&STI) {
43   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
44 
45   // Booleans always contain 0 or 1.
46   setBooleanContents(ZeroOrOneBooleanContent);
47   // Except in SIMD vectors
48   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
49   // We don't know the microarchitecture here, so just reduce register pressure.
50   setSchedulingPreference(Sched::RegPressure);
51   // Tell ISel that we have a stack pointer.
52   setStackPointerRegisterToSaveRestore(
53       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
54   // Set up the register classes.
55   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
56   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
57   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
58   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
59   if (Subtarget->hasSIMD128()) {
60     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
61     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
62     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
66   }
67   // Compute derived properties from the register classes.
68   computeRegisterProperties(Subtarget->getRegisterInfo());
69 
70   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
71   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
72   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
73   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
74   setOperationAction(ISD::BRIND, MVT::Other, Custom);
75 
76   // Take the default expansion for va_arg, va_copy, and va_end. There is no
77   // default action for va_start, so we do that custom.
78   setOperationAction(ISD::VASTART, MVT::Other, Custom);
79   setOperationAction(ISD::VAARG, MVT::Other, Expand);
80   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
81   setOperationAction(ISD::VAEND, MVT::Other, Expand);
82 
83   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
84     // Don't expand the floating-point types to constant pools.
85     setOperationAction(ISD::ConstantFP, T, Legal);
86     // Expand floating-point comparisons.
87     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
88                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
89       setCondCodeAction(CC, T, Expand);
90     // Expand floating-point library function operators.
91     for (auto Op :
92          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
93       setOperationAction(Op, T, Expand);
94     // Note supported floating-point library function operators that otherwise
95     // default to expand.
96     for (auto Op :
97          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
98       setOperationAction(Op, T, Legal);
99     // Support minimum and maximum, which otherwise default to expand.
100     setOperationAction(ISD::FMINIMUM, T, Legal);
101     setOperationAction(ISD::FMAXIMUM, T, Legal);
102     // WebAssembly currently has no builtin f16 support.
103     setOperationAction(ISD::FP16_TO_FP, T, Expand);
104     setOperationAction(ISD::FP_TO_FP16, T, Expand);
105     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
106     setTruncStoreAction(T, MVT::f16, Expand);
107   }
108 
109   // Expand unavailable integer operations.
110   for (auto Op :
111        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
112         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
113         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
114     for (auto T : {MVT::i32, MVT::i64})
115       setOperationAction(Op, T, Expand);
116     if (Subtarget->hasSIMD128())
117       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
118         setOperationAction(Op, T, Expand);
119   }
120 
121   // SIMD-specific configuration
122   if (Subtarget->hasSIMD128()) {
123     // Hoist bitcasts out of shuffles
124     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
125 
126     // Support saturating add for i8x16 and i16x8
127     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
128       for (auto T : {MVT::v16i8, MVT::v8i16})
129         setOperationAction(Op, T, Legal);
130 
131     // Support integer abs
132     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
133       setOperationAction(ISD::ABS, T, Legal);
134 
135     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
136     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
137                    MVT::v2f64})
138       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
139 
140     // We have custom shuffle lowering to expose the shuffle mask
141     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
142                    MVT::v2f64})
143       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144 
145     // Custom lowering since wasm shifts must have a scalar shift amount
146     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
147       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
148         setOperationAction(Op, T, Custom);
149 
150     // Custom lower lane accesses to expand out variable indices
151     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
152       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
153                      MVT::v2f64})
154         setOperationAction(Op, T, Custom);
155 
156     // There is no i8x16.mul instruction
157     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
158 
159     // There are no vector select instructions
160     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT})
161       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
162                      MVT::v2f64})
163         setOperationAction(Op, T, Expand);
164 
165     // Expand integer operations supported for scalars but not SIMD
166     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
167                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
168       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
169         setOperationAction(Op, T, Expand);
170 
171     // But we do have integer min and max operations
172     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
173       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
174         setOperationAction(Op, T, Legal);
175 
176     // Expand float operations supported for scalars but not SIMD
177     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
178                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
179                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
180       for (auto T : {MVT::v4f32, MVT::v2f64})
181         setOperationAction(Op, T, Expand);
182 
183     // Expand operations not supported for i64x2 vectors
184     for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC)
185       setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom);
186 
187     // 64x2 conversions are not in the spec
188     for (auto Op :
189          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
190       for (auto T : {MVT::v2i64, MVT::v2f64})
191         setOperationAction(Op, T, Expand);
192   }
193 
194   // As a special case, these operators use the type to mean the type to
195   // sign-extend from.
196   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
197   if (!Subtarget->hasSignExt()) {
198     // Sign extends are legal only when extending a vector extract
199     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
200     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
201       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
202   }
203   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
204     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
205 
206   // Dynamic stack allocation: use the default expansion.
207   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
208   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
209   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
210 
211   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
212   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
213   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
214 
215   // Expand these forms; we pattern-match the forms that we can handle in isel.
216   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
217     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
218       setOperationAction(Op, T, Expand);
219 
220   // We have custom switch handling.
221   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
222 
223   // WebAssembly doesn't have:
224   //  - Floating-point extending loads.
225   //  - Floating-point truncating stores.
226   //  - i1 extending loads.
227   //  - truncating SIMD stores and most extending loads
228   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
229   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
230   for (auto T : MVT::integer_valuetypes())
231     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
232       setLoadExtAction(Ext, T, MVT::i1, Promote);
233   if (Subtarget->hasSIMD128()) {
234     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
235                    MVT::v2f64}) {
236       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
237         if (MVT(T) != MemT) {
238           setTruncStoreAction(T, MemT, Expand);
239           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
240             setLoadExtAction(Ext, T, MemT, Expand);
241         }
242       }
243     }
244     // But some vector extending loads are legal
245     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
246       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
247       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
248       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
249     }
250   }
251 
252   // Don't do anything clever with build_pairs
253   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
254 
255   // Trap lowers to wasm unreachable
256   setOperationAction(ISD::TRAP, MVT::Other, Legal);
257   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
258 
259   // Exception handling intrinsics
260   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
261   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
262 
263   setMaxAtomicSizeInBitsSupported(64);
264 
265   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
266   // consistent with the f64 and f128 names.
267   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
268   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
269 
270   // Define the emscripten name for return address helper.
271   // TODO: when implementing other WASM backends, make this generic or only do
272   // this on emscripten depending on what they end up doing.
273   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
274 
275   // Always convert switches to br_tables unless there is only one case, which
276   // is equivalent to a simple branch. This reduces code size for wasm, and we
277   // defer possible jump table optimizations to the VM.
278   setMinimumJumpTableEntries(2);
279 }
280 
281 TargetLowering::AtomicExpansionKind
282 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
283   // We have wasm instructions for these
284   switch (AI->getOperation()) {
285   case AtomicRMWInst::Add:
286   case AtomicRMWInst::Sub:
287   case AtomicRMWInst::And:
288   case AtomicRMWInst::Or:
289   case AtomicRMWInst::Xor:
290   case AtomicRMWInst::Xchg:
291     return AtomicExpansionKind::None;
292   default:
293     break;
294   }
295   return AtomicExpansionKind::CmpXChg;
296 }
297 
298 FastISel *WebAssemblyTargetLowering::createFastISel(
299     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
300   return WebAssembly::createFastISel(FuncInfo, LibInfo);
301 }
302 
303 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
304                                                       EVT VT) const {
305   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
306   if (BitWidth > 1 && BitWidth < 8)
307     BitWidth = 8;
308 
309   if (BitWidth > 64) {
310     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
311     // the count to be an i32.
312     BitWidth = 32;
313     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
314            "32-bit shift counts ought to be enough for anyone");
315   }
316 
317   MVT Result = MVT::getIntegerVT(BitWidth);
318   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
319          "Unable to represent scalar shift amount type");
320   return Result;
321 }
322 
323 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
324 // undefined result on invalid/overflow, to the WebAssembly opcode, which
325 // traps on invalid/overflow.
326 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
327                                        MachineBasicBlock *BB,
328                                        const TargetInstrInfo &TII,
329                                        bool IsUnsigned, bool Int64,
330                                        bool Float64, unsigned LoweredOpcode) {
331   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
332 
333   Register OutReg = MI.getOperand(0).getReg();
334   Register InReg = MI.getOperand(1).getReg();
335 
336   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
337   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
338   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
339   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
340   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
341   unsigned Eqz = WebAssembly::EQZ_I32;
342   unsigned And = WebAssembly::AND_I32;
343   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
344   int64_t Substitute = IsUnsigned ? 0 : Limit;
345   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
346   auto &Context = BB->getParent()->getFunction().getContext();
347   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
348 
349   const BasicBlock *LLVMBB = BB->getBasicBlock();
350   MachineFunction *F = BB->getParent();
351   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
352   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
353   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
354 
355   MachineFunction::iterator It = ++BB->getIterator();
356   F->insert(It, FalseMBB);
357   F->insert(It, TrueMBB);
358   F->insert(It, DoneMBB);
359 
360   // Transfer the remainder of BB and its successor edges to DoneMBB.
361   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
362   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
363 
364   BB->addSuccessor(TrueMBB);
365   BB->addSuccessor(FalseMBB);
366   TrueMBB->addSuccessor(DoneMBB);
367   FalseMBB->addSuccessor(DoneMBB);
368 
369   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
370   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
371   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
372   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
373   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
374   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
375   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
376 
377   MI.eraseFromParent();
378   // For signed numbers, we can do a single comparison to determine whether
379   // fabs(x) is within range.
380   if (IsUnsigned) {
381     Tmp0 = InReg;
382   } else {
383     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
384   }
385   BuildMI(BB, DL, TII.get(FConst), Tmp1)
386       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
387   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
388 
389   // For unsigned numbers, we have to do a separate comparison with zero.
390   if (IsUnsigned) {
391     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
392     Register SecondCmpReg =
393         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
394     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
395     BuildMI(BB, DL, TII.get(FConst), Tmp1)
396         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
397     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
398     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
399     CmpReg = AndReg;
400   }
401 
402   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
403 
404   // Create the CFG diamond to select between doing the conversion or using
405   // the substitute value.
406   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
407   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
408   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
409   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
410   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
411       .addReg(FalseReg)
412       .addMBB(FalseMBB)
413       .addReg(TrueReg)
414       .addMBB(TrueMBB);
415 
416   return DoneMBB;
417 }
418 
419 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults,
420                                            DebugLoc DL, MachineBasicBlock *BB,
421                                            const TargetInstrInfo &TII) {
422   MachineInstr &CallParams = *CallResults.getPrevNode();
423   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
424   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
425          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
426 
427   bool IsIndirect = CallParams.getOperand(0).isReg();
428   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
429 
430   unsigned CallOp;
431   if (IsIndirect && IsRetCall) {
432     CallOp = WebAssembly::RET_CALL_INDIRECT;
433   } else if (IsIndirect) {
434     CallOp = WebAssembly::CALL_INDIRECT;
435   } else if (IsRetCall) {
436     CallOp = WebAssembly::RET_CALL;
437   } else {
438     CallOp = WebAssembly::CALL;
439   }
440 
441   MachineFunction &MF = *BB->getParent();
442   const MCInstrDesc &MCID = TII.get(CallOp);
443   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
444 
445   // Move the function pointer to the end of the arguments for indirect calls
446   if (IsIndirect) {
447     auto FnPtr = CallParams.getOperand(0);
448     CallParams.RemoveOperand(0);
449     CallParams.addOperand(FnPtr);
450   }
451 
452   for (auto Def : CallResults.defs())
453     MIB.add(Def);
454 
455   // Add placeholders for the type index and immediate flags
456   if (IsIndirect) {
457     MIB.addImm(0);
458     MIB.addImm(0);
459   }
460 
461   for (auto Use : CallParams.uses())
462     MIB.add(Use);
463 
464   BB->insert(CallResults.getIterator(), MIB);
465   CallParams.eraseFromParent();
466   CallResults.eraseFromParent();
467 
468   return BB;
469 }
470 
471 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
472     MachineInstr &MI, MachineBasicBlock *BB) const {
473   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
474   DebugLoc DL = MI.getDebugLoc();
475 
476   switch (MI.getOpcode()) {
477   default:
478     llvm_unreachable("Unexpected instr type to insert");
479   case WebAssembly::FP_TO_SINT_I32_F32:
480     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
481                         WebAssembly::I32_TRUNC_S_F32);
482   case WebAssembly::FP_TO_UINT_I32_F32:
483     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
484                         WebAssembly::I32_TRUNC_U_F32);
485   case WebAssembly::FP_TO_SINT_I64_F32:
486     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
487                         WebAssembly::I64_TRUNC_S_F32);
488   case WebAssembly::FP_TO_UINT_I64_F32:
489     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
490                         WebAssembly::I64_TRUNC_U_F32);
491   case WebAssembly::FP_TO_SINT_I32_F64:
492     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
493                         WebAssembly::I32_TRUNC_S_F64);
494   case WebAssembly::FP_TO_UINT_I32_F64:
495     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
496                         WebAssembly::I32_TRUNC_U_F64);
497   case WebAssembly::FP_TO_SINT_I64_F64:
498     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
499                         WebAssembly::I64_TRUNC_S_F64);
500   case WebAssembly::FP_TO_UINT_I64_F64:
501     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
502                         WebAssembly::I64_TRUNC_U_F64);
503   case WebAssembly::CALL_RESULTS:
504   case WebAssembly::RET_CALL_RESULTS:
505     return LowerCallResults(MI, DL, BB, TII);
506   }
507 }
508 
509 const char *
510 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
511   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
512   case WebAssemblyISD::FIRST_NUMBER:
513   case WebAssemblyISD::FIRST_MEM_OPCODE:
514     break;
515 #define HANDLE_NODETYPE(NODE)                                                  \
516   case WebAssemblyISD::NODE:                                                   \
517     return "WebAssemblyISD::" #NODE;
518 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
519 #include "WebAssemblyISD.def"
520 #undef HANDLE_MEM_NODETYPE
521 #undef HANDLE_NODETYPE
522   }
523   return nullptr;
524 }
525 
526 std::pair<unsigned, const TargetRegisterClass *>
527 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
528     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
529   // First, see if this is a constraint that directly corresponds to a
530   // WebAssembly register class.
531   if (Constraint.size() == 1) {
532     switch (Constraint[0]) {
533     case 'r':
534       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
535       if (Subtarget->hasSIMD128() && VT.isVector()) {
536         if (VT.getSizeInBits() == 128)
537           return std::make_pair(0U, &WebAssembly::V128RegClass);
538       }
539       if (VT.isInteger() && !VT.isVector()) {
540         if (VT.getSizeInBits() <= 32)
541           return std::make_pair(0U, &WebAssembly::I32RegClass);
542         if (VT.getSizeInBits() <= 64)
543           return std::make_pair(0U, &WebAssembly::I64RegClass);
544       }
545       break;
546     default:
547       break;
548     }
549   }
550 
551   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
552 }
553 
554 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
555   // Assume ctz is a relatively cheap operation.
556   return true;
557 }
558 
559 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
560   // Assume clz is a relatively cheap operation.
561   return true;
562 }
563 
564 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
565                                                       const AddrMode &AM,
566                                                       Type *Ty, unsigned AS,
567                                                       Instruction *I) const {
568   // WebAssembly offsets are added as unsigned without wrapping. The
569   // isLegalAddressingMode gives us no way to determine if wrapping could be
570   // happening, so we approximate this by accepting only non-negative offsets.
571   if (AM.BaseOffs < 0)
572     return false;
573 
574   // WebAssembly has no scale register operands.
575   if (AM.Scale != 0)
576     return false;
577 
578   // Everything else is legal.
579   return true;
580 }
581 
582 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
583     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
584     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
585   // WebAssembly supports unaligned accesses, though it should be declared
586   // with the p2align attribute on loads and stores which do so, and there
587   // may be a performance impact. We tell LLVM they're "fast" because
588   // for the kinds of things that LLVM uses this for (merging adjacent stores
589   // of constants, etc.), WebAssembly implementations will either want the
590   // unaligned access or they'll split anyway.
591   if (Fast)
592     *Fast = true;
593   return true;
594 }
595 
596 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
597                                               AttributeList Attr) const {
598   // The current thinking is that wasm engines will perform this optimization,
599   // so we can save on code size.
600   return true;
601 }
602 
603 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
604   EVT ExtT = ExtVal.getValueType();
605   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
606   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
607          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
608          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
609 }
610 
611 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
612                                                   LLVMContext &C,
613                                                   EVT VT) const {
614   if (VT.isVector())
615     return VT.changeVectorElementTypeToInteger();
616 
617   // So far, all branch instructions in Wasm take an I32 condition.
618   // The default TargetLowering::getSetCCResultType returns the pointer size,
619   // which would be useful to reduce instruction counts when testing
620   // against 64-bit pointers/values if at some point Wasm supports that.
621   return EVT::getIntegerVT(C, 32);
622 }
623 
624 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
625                                                    const CallInst &I,
626                                                    MachineFunction &MF,
627                                                    unsigned Intrinsic) const {
628   switch (Intrinsic) {
629   case Intrinsic::wasm_atomic_notify:
630     Info.opc = ISD::INTRINSIC_W_CHAIN;
631     Info.memVT = MVT::i32;
632     Info.ptrVal = I.getArgOperand(0);
633     Info.offset = 0;
634     Info.align = Align(4);
635     // atomic.notify instruction does not really load the memory specified with
636     // this argument, but MachineMemOperand should either be load or store, so
637     // we set this to a load.
638     // FIXME Volatile isn't really correct, but currently all LLVM atomic
639     // instructions are treated as volatiles in the backend, so we should be
640     // consistent. The same applies for wasm_atomic_wait intrinsics too.
641     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
642     return true;
643   case Intrinsic::wasm_atomic_wait_i32:
644     Info.opc = ISD::INTRINSIC_W_CHAIN;
645     Info.memVT = MVT::i32;
646     Info.ptrVal = I.getArgOperand(0);
647     Info.offset = 0;
648     Info.align = Align(4);
649     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
650     return true;
651   case Intrinsic::wasm_atomic_wait_i64:
652     Info.opc = ISD::INTRINSIC_W_CHAIN;
653     Info.memVT = MVT::i64;
654     Info.ptrVal = I.getArgOperand(0);
655     Info.offset = 0;
656     Info.align = Align(8);
657     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
658     return true;
659   default:
660     return false;
661   }
662 }
663 
664 //===----------------------------------------------------------------------===//
665 // WebAssembly Lowering private implementation.
666 //===----------------------------------------------------------------------===//
667 
668 //===----------------------------------------------------------------------===//
669 // Lowering Code
670 //===----------------------------------------------------------------------===//
671 
672 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
673   MachineFunction &MF = DAG.getMachineFunction();
674   DAG.getContext()->diagnose(
675       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
676 }
677 
678 // Test whether the given calling convention is supported.
679 static bool callingConvSupported(CallingConv::ID CallConv) {
680   // We currently support the language-independent target-independent
681   // conventions. We don't yet have a way to annotate calls with properties like
682   // "cold", and we don't have any call-clobbered registers, so these are mostly
683   // all handled the same.
684   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
685          CallConv == CallingConv::Cold ||
686          CallConv == CallingConv::PreserveMost ||
687          CallConv == CallingConv::PreserveAll ||
688          CallConv == CallingConv::CXX_FAST_TLS ||
689          CallConv == CallingConv::WASM_EmscriptenInvoke ||
690          CallConv == CallingConv::Swift;
691 }
692 
693 SDValue
694 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
695                                      SmallVectorImpl<SDValue> &InVals) const {
696   SelectionDAG &DAG = CLI.DAG;
697   SDLoc DL = CLI.DL;
698   SDValue Chain = CLI.Chain;
699   SDValue Callee = CLI.Callee;
700   MachineFunction &MF = DAG.getMachineFunction();
701   auto Layout = MF.getDataLayout();
702 
703   CallingConv::ID CallConv = CLI.CallConv;
704   if (!callingConvSupported(CallConv))
705     fail(DL, DAG,
706          "WebAssembly doesn't support language-specific or target-specific "
707          "calling conventions yet");
708   if (CLI.IsPatchPoint)
709     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
710 
711   if (CLI.IsTailCall) {
712     auto NoTail = [&](const char *Msg) {
713       if (CLI.CB && CLI.CB->isMustTailCall())
714         fail(DL, DAG, Msg);
715       CLI.IsTailCall = false;
716     };
717 
718     if (!Subtarget->hasTailCall())
719       NoTail("WebAssembly 'tail-call' feature not enabled");
720 
721     // Varargs calls cannot be tail calls because the buffer is on the stack
722     if (CLI.IsVarArg)
723       NoTail("WebAssembly does not support varargs tail calls");
724 
725     // Do not tail call unless caller and callee return types match
726     const Function &F = MF.getFunction();
727     const TargetMachine &TM = getTargetMachine();
728     Type *RetTy = F.getReturnType();
729     SmallVector<MVT, 4> CallerRetTys;
730     SmallVector<MVT, 4> CalleeRetTys;
731     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
732     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
733     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
734                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
735                                  CalleeRetTys.begin());
736     if (!TypesMatch)
737       NoTail("WebAssembly tail call requires caller and callee return types to "
738              "match");
739 
740     // If pointers to local stack values are passed, we cannot tail call
741     if (CLI.CB) {
742       for (auto &Arg : CLI.CB->args()) {
743         Value *Val = Arg.get();
744         // Trace the value back through pointer operations
745         while (true) {
746           Value *Src = Val->stripPointerCastsAndAliases();
747           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
748             Src = GEP->getPointerOperand();
749           if (Val == Src)
750             break;
751           Val = Src;
752         }
753         if (isa<AllocaInst>(Val)) {
754           NoTail(
755               "WebAssembly does not support tail calling with stack arguments");
756           break;
757         }
758       }
759     }
760   }
761 
762   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
763   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
764   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
765 
766   // The generic code may have added an sret argument. If we're lowering an
767   // invoke function, the ABI requires that the function pointer be the first
768   // argument, so we may have to swap the arguments.
769   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
770       Outs[0].Flags.isSRet()) {
771     std::swap(Outs[0], Outs[1]);
772     std::swap(OutVals[0], OutVals[1]);
773   }
774 
775   bool HasSwiftSelfArg = false;
776   bool HasSwiftErrorArg = false;
777   unsigned NumFixedArgs = 0;
778   for (unsigned I = 0; I < Outs.size(); ++I) {
779     const ISD::OutputArg &Out = Outs[I];
780     SDValue &OutVal = OutVals[I];
781     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
782     HasSwiftErrorArg |= Out.Flags.isSwiftError();
783     if (Out.Flags.isNest())
784       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
785     if (Out.Flags.isInAlloca())
786       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
787     if (Out.Flags.isInConsecutiveRegs())
788       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
789     if (Out.Flags.isInConsecutiveRegsLast())
790       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
791     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
792       auto &MFI = MF.getFrameInfo();
793       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
794                                      Out.Flags.getNonZeroByValAlign(),
795                                      /*isSS=*/false);
796       SDValue SizeNode =
797           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
798       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
799       Chain = DAG.getMemcpy(
800           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
801           /*isVolatile*/ false, /*AlwaysInline=*/false,
802           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
803       OutVal = FINode;
804     }
805     // Count the number of fixed args *after* legalization.
806     NumFixedArgs += Out.IsFixed;
807   }
808 
809   bool IsVarArg = CLI.IsVarArg;
810   auto PtrVT = getPointerTy(Layout);
811 
812   // For swiftcc, emit additional swiftself and swifterror arguments
813   // if there aren't. These additional arguments are also added for callee
814   // signature They are necessary to match callee and caller signature for
815   // indirect call.
816   if (CallConv == CallingConv::Swift) {
817     if (!HasSwiftSelfArg) {
818       NumFixedArgs++;
819       ISD::OutputArg Arg;
820       Arg.Flags.setSwiftSelf();
821       CLI.Outs.push_back(Arg);
822       SDValue ArgVal = DAG.getUNDEF(PtrVT);
823       CLI.OutVals.push_back(ArgVal);
824     }
825     if (!HasSwiftErrorArg) {
826       NumFixedArgs++;
827       ISD::OutputArg Arg;
828       Arg.Flags.setSwiftError();
829       CLI.Outs.push_back(Arg);
830       SDValue ArgVal = DAG.getUNDEF(PtrVT);
831       CLI.OutVals.push_back(ArgVal);
832     }
833   }
834 
835   // Analyze operands of the call, assigning locations to each operand.
836   SmallVector<CCValAssign, 16> ArgLocs;
837   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
838 
839   if (IsVarArg) {
840     // Outgoing non-fixed arguments are placed in a buffer. First
841     // compute their offsets and the total amount of buffer space needed.
842     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
843       const ISD::OutputArg &Out = Outs[I];
844       SDValue &Arg = OutVals[I];
845       EVT VT = Arg.getValueType();
846       assert(VT != MVT::iPTR && "Legalized args should be concrete");
847       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
848       Align Alignment =
849           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
850       unsigned Offset =
851           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
852       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
853                                         Offset, VT.getSimpleVT(),
854                                         CCValAssign::Full));
855     }
856   }
857 
858   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
859 
860   SDValue FINode;
861   if (IsVarArg && NumBytes) {
862     // For non-fixed arguments, next emit stores to store the argument values
863     // to the stack buffer at the offsets computed above.
864     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
865                                                  Layout.getStackAlignment(),
866                                                  /*isSS=*/false);
867     unsigned ValNo = 0;
868     SmallVector<SDValue, 8> Chains;
869     for (SDValue Arg :
870          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
871       assert(ArgLocs[ValNo].getValNo() == ValNo &&
872              "ArgLocs should remain in order and only hold varargs args");
873       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
874       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
875       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
876                                 DAG.getConstant(Offset, DL, PtrVT));
877       Chains.push_back(
878           DAG.getStore(Chain, DL, Arg, Add,
879                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
880     }
881     if (!Chains.empty())
882       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
883   } else if (IsVarArg) {
884     FINode = DAG.getIntPtrConstant(0, DL);
885   }
886 
887   if (Callee->getOpcode() == ISD::GlobalAddress) {
888     // If the callee is a GlobalAddress node (quite common, every direct call
889     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
890     // doesn't at MO_GOT which is not needed for direct calls.
891     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
892     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
893                                         getPointerTy(DAG.getDataLayout()),
894                                         GA->getOffset());
895     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
896                          getPointerTy(DAG.getDataLayout()), Callee);
897   }
898 
899   // Compute the operands for the CALLn node.
900   SmallVector<SDValue, 16> Ops;
901   Ops.push_back(Chain);
902   Ops.push_back(Callee);
903 
904   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
905   // isn't reliable.
906   Ops.append(OutVals.begin(),
907              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
908   // Add a pointer to the vararg buffer.
909   if (IsVarArg)
910     Ops.push_back(FINode);
911 
912   SmallVector<EVT, 8> InTys;
913   for (const auto &In : Ins) {
914     assert(!In.Flags.isByVal() && "byval is not valid for return values");
915     assert(!In.Flags.isNest() && "nest is not valid for return values");
916     if (In.Flags.isInAlloca())
917       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
918     if (In.Flags.isInConsecutiveRegs())
919       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
920     if (In.Flags.isInConsecutiveRegsLast())
921       fail(DL, DAG,
922            "WebAssembly hasn't implemented cons regs last return values");
923     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
924     // registers.
925     InTys.push_back(In.VT);
926   }
927 
928   if (CLI.IsTailCall) {
929     // ret_calls do not return values to the current frame
930     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
931     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
932   }
933 
934   InTys.push_back(MVT::Other);
935   SDVTList InTyList = DAG.getVTList(InTys);
936   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
937 
938   for (size_t I = 0; I < Ins.size(); ++I)
939     InVals.push_back(Res.getValue(I));
940 
941   // Return the chain
942   return Res.getValue(Ins.size());
943 }
944 
945 bool WebAssemblyTargetLowering::CanLowerReturn(
946     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
947     const SmallVectorImpl<ISD::OutputArg> &Outs,
948     LLVMContext & /*Context*/) const {
949   // WebAssembly can only handle returning tuples with multivalue enabled
950   return Subtarget->hasMultivalue() || Outs.size() <= 1;
951 }
952 
953 SDValue WebAssemblyTargetLowering::LowerReturn(
954     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
955     const SmallVectorImpl<ISD::OutputArg> &Outs,
956     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
957     SelectionDAG &DAG) const {
958   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
959          "MVP WebAssembly can only return up to one value");
960   if (!callingConvSupported(CallConv))
961     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
962 
963   SmallVector<SDValue, 4> RetOps(1, Chain);
964   RetOps.append(OutVals.begin(), OutVals.end());
965   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
966 
967   // Record the number and types of the return values.
968   for (const ISD::OutputArg &Out : Outs) {
969     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
970     assert(!Out.Flags.isNest() && "nest is not valid for return values");
971     assert(Out.IsFixed && "non-fixed return value is not valid");
972     if (Out.Flags.isInAlloca())
973       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
974     if (Out.Flags.isInConsecutiveRegs())
975       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
976     if (Out.Flags.isInConsecutiveRegsLast())
977       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
978   }
979 
980   return Chain;
981 }
982 
983 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
984     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
985     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
986     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
987   if (!callingConvSupported(CallConv))
988     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
989 
990   MachineFunction &MF = DAG.getMachineFunction();
991   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
992 
993   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
994   // of the incoming values before they're represented by virtual registers.
995   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
996 
997   bool HasSwiftErrorArg = false;
998   bool HasSwiftSelfArg = false;
999   for (const ISD::InputArg &In : Ins) {
1000     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1001     HasSwiftErrorArg |= In.Flags.isSwiftError();
1002     if (In.Flags.isInAlloca())
1003       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1004     if (In.Flags.isNest())
1005       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1006     if (In.Flags.isInConsecutiveRegs())
1007       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1008     if (In.Flags.isInConsecutiveRegsLast())
1009       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1010     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1011     // registers.
1012     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1013                                            DAG.getTargetConstant(InVals.size(),
1014                                                                  DL, MVT::i32))
1015                              : DAG.getUNDEF(In.VT));
1016 
1017     // Record the number and types of arguments.
1018     MFI->addParam(In.VT);
1019   }
1020 
1021   // For swiftcc, emit additional swiftself and swifterror arguments
1022   // if there aren't. These additional arguments are also added for callee
1023   // signature They are necessary to match callee and caller signature for
1024   // indirect call.
1025   auto PtrVT = getPointerTy(MF.getDataLayout());
1026   if (CallConv == CallingConv::Swift) {
1027     if (!HasSwiftSelfArg) {
1028       MFI->addParam(PtrVT);
1029     }
1030     if (!HasSwiftErrorArg) {
1031       MFI->addParam(PtrVT);
1032     }
1033   }
1034   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1035   // the buffer is passed as an argument.
1036   if (IsVarArg) {
1037     MVT PtrVT = getPointerTy(MF.getDataLayout());
1038     Register VarargVreg =
1039         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1040     MFI->setVarargBufferVreg(VarargVreg);
1041     Chain = DAG.getCopyToReg(
1042         Chain, DL, VarargVreg,
1043         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1044                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1045     MFI->addParam(PtrVT);
1046   }
1047 
1048   // Record the number and types of arguments and results.
1049   SmallVector<MVT, 4> Params;
1050   SmallVector<MVT, 4> Results;
1051   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1052                       MF.getFunction(), DAG.getTarget(), Params, Results);
1053   for (MVT VT : Results)
1054     MFI->addResult(VT);
1055   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1056   // the param logic here with ComputeSignatureVTs
1057   assert(MFI->getParams().size() == Params.size() &&
1058          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1059                     Params.begin()));
1060 
1061   return Chain;
1062 }
1063 
1064 void WebAssemblyTargetLowering::ReplaceNodeResults(
1065     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1066   switch (N->getOpcode()) {
1067   case ISD::SIGN_EXTEND_INREG:
1068     // Do not add any results, signifying that N should not be custom lowered
1069     // after all. This happens because simd128 turns on custom lowering for
1070     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1071     // illegal type.
1072     break;
1073   default:
1074     llvm_unreachable(
1075         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1076   }
1077 }
1078 
1079 //===----------------------------------------------------------------------===//
1080 //  Custom lowering hooks.
1081 //===----------------------------------------------------------------------===//
1082 
1083 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1084                                                   SelectionDAG &DAG) const {
1085   SDLoc DL(Op);
1086   switch (Op.getOpcode()) {
1087   default:
1088     llvm_unreachable("unimplemented operation lowering");
1089     return SDValue();
1090   case ISD::FrameIndex:
1091     return LowerFrameIndex(Op, DAG);
1092   case ISD::GlobalAddress:
1093     return LowerGlobalAddress(Op, DAG);
1094   case ISD::ExternalSymbol:
1095     return LowerExternalSymbol(Op, DAG);
1096   case ISD::JumpTable:
1097     return LowerJumpTable(Op, DAG);
1098   case ISD::BR_JT:
1099     return LowerBR_JT(Op, DAG);
1100   case ISD::VASTART:
1101     return LowerVASTART(Op, DAG);
1102   case ISD::BlockAddress:
1103   case ISD::BRIND:
1104     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1105     return SDValue();
1106   case ISD::RETURNADDR:
1107     return LowerRETURNADDR(Op, DAG);
1108   case ISD::FRAMEADDR:
1109     return LowerFRAMEADDR(Op, DAG);
1110   case ISD::CopyToReg:
1111     return LowerCopyToReg(Op, DAG);
1112   case ISD::EXTRACT_VECTOR_ELT:
1113   case ISD::INSERT_VECTOR_ELT:
1114     return LowerAccessVectorElement(Op, DAG);
1115   case ISD::INTRINSIC_VOID:
1116   case ISD::INTRINSIC_WO_CHAIN:
1117   case ISD::INTRINSIC_W_CHAIN:
1118     return LowerIntrinsic(Op, DAG);
1119   case ISD::SIGN_EXTEND_INREG:
1120     return LowerSIGN_EXTEND_INREG(Op, DAG);
1121   case ISD::BUILD_VECTOR:
1122     return LowerBUILD_VECTOR(Op, DAG);
1123   case ISD::VECTOR_SHUFFLE:
1124     return LowerVECTOR_SHUFFLE(Op, DAG);
1125   case ISD::SETCC:
1126     return LowerSETCC(Op, DAG);
1127   case ISD::SHL:
1128   case ISD::SRA:
1129   case ISD::SRL:
1130     return LowerShift(Op, DAG);
1131   }
1132 }
1133 
1134 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1135                                                   SelectionDAG &DAG) const {
1136   SDValue Src = Op.getOperand(2);
1137   if (isa<FrameIndexSDNode>(Src.getNode())) {
1138     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1139     // the FI to some LEA-like instruction, but since we don't have that, we
1140     // need to insert some kind of instruction that can take an FI operand and
1141     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1142     // local.copy between Op and its FI operand.
1143     SDValue Chain = Op.getOperand(0);
1144     SDLoc DL(Op);
1145     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1146     EVT VT = Src.getValueType();
1147     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1148                                                    : WebAssembly::COPY_I64,
1149                                     DL, VT, Src),
1150                  0);
1151     return Op.getNode()->getNumValues() == 1
1152                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1153                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1154                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1155                                                            : SDValue());
1156   }
1157   return SDValue();
1158 }
1159 
1160 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1161                                                    SelectionDAG &DAG) const {
1162   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1163   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1164 }
1165 
1166 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1167                                                    SelectionDAG &DAG) const {
1168   SDLoc DL(Op);
1169 
1170   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1171     fail(DL, DAG,
1172          "Non-Emscripten WebAssembly hasn't implemented "
1173          "__builtin_return_address");
1174     return SDValue();
1175   }
1176 
1177   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1178     return SDValue();
1179 
1180   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1181   MakeLibCallOptions CallOptions;
1182   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1183                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1184       .first;
1185 }
1186 
1187 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1188                                                   SelectionDAG &DAG) const {
1189   // Non-zero depths are not supported by WebAssembly currently. Use the
1190   // legalizer's default expansion, which is to return 0 (what this function is
1191   // documented to do).
1192   if (Op.getConstantOperandVal(0) > 0)
1193     return SDValue();
1194 
1195   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1196   EVT VT = Op.getValueType();
1197   Register FP =
1198       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1199   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1200 }
1201 
1202 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1203                                                       SelectionDAG &DAG) const {
1204   SDLoc DL(Op);
1205   const auto *GA = cast<GlobalAddressSDNode>(Op);
1206   EVT VT = Op.getValueType();
1207   assert(GA->getTargetFlags() == 0 &&
1208          "Unexpected target flags on generic GlobalAddressSDNode");
1209   if (GA->getAddressSpace() != 0)
1210     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1211 
1212   unsigned OperandFlags = 0;
1213   if (isPositionIndependent()) {
1214     const GlobalValue *GV = GA->getGlobal();
1215     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1216       MachineFunction &MF = DAG.getMachineFunction();
1217       MVT PtrVT = getPointerTy(MF.getDataLayout());
1218       const char *BaseName;
1219       if (GV->getValueType()->isFunctionTy()) {
1220         BaseName = MF.createExternalSymbolName("__table_base");
1221         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1222       }
1223       else {
1224         BaseName = MF.createExternalSymbolName("__memory_base");
1225         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1226       }
1227       SDValue BaseAddr =
1228           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1229                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1230 
1231       SDValue SymAddr = DAG.getNode(
1232           WebAssemblyISD::WrapperPIC, DL, VT,
1233           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1234                                      OperandFlags));
1235 
1236       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1237     } else {
1238       OperandFlags = WebAssemblyII::MO_GOT;
1239     }
1240   }
1241 
1242   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1243                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1244                                                 GA->getOffset(), OperandFlags));
1245 }
1246 
1247 SDValue
1248 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1249                                                SelectionDAG &DAG) const {
1250   SDLoc DL(Op);
1251   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1252   EVT VT = Op.getValueType();
1253   assert(ES->getTargetFlags() == 0 &&
1254          "Unexpected target flags on generic ExternalSymbolSDNode");
1255   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1256                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1257 }
1258 
1259 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1260                                                   SelectionDAG &DAG) const {
1261   // There's no need for a Wrapper node because we always incorporate a jump
1262   // table operand into a BR_TABLE instruction, rather than ever
1263   // materializing it in a register.
1264   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1265   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1266                                 JT->getTargetFlags());
1267 }
1268 
1269 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1270                                               SelectionDAG &DAG) const {
1271   SDLoc DL(Op);
1272   SDValue Chain = Op.getOperand(0);
1273   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1274   SDValue Index = Op.getOperand(2);
1275   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1276 
1277   SmallVector<SDValue, 8> Ops;
1278   Ops.push_back(Chain);
1279   Ops.push_back(Index);
1280 
1281   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1282   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1283 
1284   // Add an operand for each case.
1285   for (auto MBB : MBBs)
1286     Ops.push_back(DAG.getBasicBlock(MBB));
1287 
1288   // Add the first MBB as a dummy default target for now. This will be replaced
1289   // with the proper default target (and the preceding range check eliminated)
1290   // if possible by WebAssemblyFixBrTableDefaults.
1291   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1292   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1293 }
1294 
1295 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1296                                                 SelectionDAG &DAG) const {
1297   SDLoc DL(Op);
1298   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1299 
1300   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1301   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1302 
1303   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1304                                     MFI->getVarargBufferVreg(), PtrVT);
1305   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1306                       MachinePointerInfo(SV), 0);
1307 }
1308 
1309 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1310                                                   SelectionDAG &DAG) const {
1311   MachineFunction &MF = DAG.getMachineFunction();
1312   unsigned IntNo;
1313   switch (Op.getOpcode()) {
1314   case ISD::INTRINSIC_VOID:
1315   case ISD::INTRINSIC_W_CHAIN:
1316     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1317     break;
1318   case ISD::INTRINSIC_WO_CHAIN:
1319     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1320     break;
1321   default:
1322     llvm_unreachable("Invalid intrinsic");
1323   }
1324   SDLoc DL(Op);
1325 
1326   switch (IntNo) {
1327   default:
1328     return SDValue(); // Don't custom lower most intrinsics.
1329 
1330   case Intrinsic::wasm_lsda: {
1331     EVT VT = Op.getValueType();
1332     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1333     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1334     auto &Context = MF.getMMI().getContext();
1335     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1336                                             Twine(MF.getFunctionNumber()));
1337     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1338                        DAG.getMCSymbol(S, PtrVT));
1339   }
1340 
1341   case Intrinsic::wasm_throw: {
1342     // We only support C++ exceptions for now
1343     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1344     if (Tag != CPP_EXCEPTION)
1345       llvm_unreachable("Invalid tag!");
1346     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1347     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1348     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1349     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1350                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1351     return DAG.getNode(WebAssemblyISD::THROW, DL,
1352                        MVT::Other, // outchain type
1353                        {
1354                            Op.getOperand(0), // inchain
1355                            SymNode,          // exception symbol
1356                            Op.getOperand(3)  // thrown value
1357                        });
1358   }
1359 
1360   case Intrinsic::wasm_shuffle: {
1361     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1362     SDValue Ops[18];
1363     size_t OpIdx = 0;
1364     Ops[OpIdx++] = Op.getOperand(1);
1365     Ops[OpIdx++] = Op.getOperand(2);
1366     while (OpIdx < 18) {
1367       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1368       if (MaskIdx.isUndef() ||
1369           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1370         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1371       } else {
1372         Ops[OpIdx++] = MaskIdx;
1373       }
1374     }
1375     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1376   }
1377   }
1378 }
1379 
1380 SDValue
1381 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1382                                                   SelectionDAG &DAG) const {
1383   SDLoc DL(Op);
1384   // If sign extension operations are disabled, allow sext_inreg only if operand
1385   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1386   // extension operations, but allowing sext_inreg in this context lets us have
1387   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1388   // everywhere would be simpler in this file, but would necessitate large and
1389   // brittle patterns to undo the expansion and select extract_lane_s
1390   // instructions.
1391   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1392   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1393     return SDValue();
1394 
1395   const SDValue &Extract = Op.getOperand(0);
1396   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1397   if (VecT.getVectorElementType().getSizeInBits() > 32)
1398     return SDValue();
1399   MVT ExtractedLaneT =
1400       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1401   MVT ExtractedVecT =
1402       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1403   if (ExtractedVecT == VecT)
1404     return Op;
1405 
1406   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1407   const SDNode *Index = Extract.getOperand(1).getNode();
1408   if (!isa<ConstantSDNode>(Index))
1409     return SDValue();
1410   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1411   unsigned Scale =
1412       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1413   assert(Scale > 1);
1414   SDValue NewIndex =
1415       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1416   SDValue NewExtract = DAG.getNode(
1417       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1418       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1419   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1420                      Op.getOperand(1));
1421 }
1422 
1423 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1424                                                      SelectionDAG &DAG) const {
1425   SDLoc DL(Op);
1426   const EVT VecT = Op.getValueType();
1427   const EVT LaneT = Op.getOperand(0).getValueType();
1428   const size_t Lanes = Op.getNumOperands();
1429   bool CanSwizzle = VecT == MVT::v16i8;
1430 
1431   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1432   // possible number of lanes at once followed by a sequence of replace_lane
1433   // instructions to individually initialize any remaining lanes.
1434 
1435   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1436   // swizzled lanes should be given greater weight.
1437 
1438   // TODO: Investigate building vectors by shuffling together vectors built by
1439   // separately specialized means.
1440 
1441   auto IsConstant = [](const SDValue &V) {
1442     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1443   };
1444 
1445   // Returns the source vector and index vector pair if they exist. Checks for:
1446   //   (extract_vector_elt
1447   //     $src,
1448   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1449   //   )
1450   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1451     auto Bail = std::make_pair(SDValue(), SDValue());
1452     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1453       return Bail;
1454     const SDValue &SwizzleSrc = Lane->getOperand(0);
1455     const SDValue &IndexExt = Lane->getOperand(1);
1456     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1457       return Bail;
1458     const SDValue &Index = IndexExt->getOperand(0);
1459     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1460       return Bail;
1461     const SDValue &SwizzleIndices = Index->getOperand(0);
1462     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1463         SwizzleIndices.getValueType() != MVT::v16i8 ||
1464         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1465         Index->getConstantOperandVal(1) != I)
1466       return Bail;
1467     return std::make_pair(SwizzleSrc, SwizzleIndices);
1468   };
1469 
1470   using ValueEntry = std::pair<SDValue, size_t>;
1471   SmallVector<ValueEntry, 16> SplatValueCounts;
1472 
1473   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1474   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1475 
1476   auto AddCount = [](auto &Counts, const auto &Val) {
1477     auto CountIt = std::find_if(Counts.begin(), Counts.end(),
1478                                 [&Val](auto E) { return E.first == Val; });
1479     if (CountIt == Counts.end()) {
1480       Counts.emplace_back(Val, 1);
1481     } else {
1482       CountIt->second++;
1483     }
1484   };
1485 
1486   auto GetMostCommon = [](auto &Counts) {
1487     auto CommonIt =
1488         std::max_element(Counts.begin(), Counts.end(),
1489                          [](auto A, auto B) { return A.second < B.second; });
1490     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1491     return *CommonIt;
1492   };
1493 
1494   size_t NumConstantLanes = 0;
1495 
1496   // Count eligible lanes for each type of vector creation op
1497   for (size_t I = 0; I < Lanes; ++I) {
1498     const SDValue &Lane = Op->getOperand(I);
1499     if (Lane.isUndef())
1500       continue;
1501 
1502     AddCount(SplatValueCounts, Lane);
1503 
1504     if (IsConstant(Lane)) {
1505       NumConstantLanes++;
1506     } else if (CanSwizzle) {
1507       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1508       if (SwizzleSrcs.first)
1509         AddCount(SwizzleCounts, SwizzleSrcs);
1510     }
1511   }
1512 
1513   SDValue SplatValue;
1514   size_t NumSplatLanes;
1515   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1516 
1517   SDValue SwizzleSrc;
1518   SDValue SwizzleIndices;
1519   size_t NumSwizzleLanes = 0;
1520   if (SwizzleCounts.size())
1521     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1522                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1523 
1524   // Predicate returning true if the lane is properly initialized by the
1525   // original instruction
1526   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1527   SDValue Result;
1528   // Prefer swizzles over vector consts over splats
1529   if (NumSwizzleLanes >= NumSplatLanes &&
1530       (!Subtarget->hasUnimplementedSIMD128() ||
1531        NumSwizzleLanes >= NumConstantLanes)) {
1532     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1533                          SwizzleIndices);
1534     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1535     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1536       return Swizzled == GetSwizzleSrcs(I, Lane);
1537     };
1538   } else if (NumConstantLanes >= NumSplatLanes &&
1539              Subtarget->hasUnimplementedSIMD128()) {
1540     SmallVector<SDValue, 16> ConstLanes;
1541     for (const SDValue &Lane : Op->op_values()) {
1542       if (IsConstant(Lane)) {
1543         ConstLanes.push_back(Lane);
1544       } else if (LaneT.isFloatingPoint()) {
1545         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1546       } else {
1547         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1548       }
1549     }
1550     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1551     IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1552       return IsConstant(Lane);
1553     };
1554   }
1555   if (!Result) {
1556     // Use a splat, but possibly a load_splat
1557     LoadSDNode *SplattedLoad;
1558     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1559         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1560       Result = DAG.getMemIntrinsicNode(
1561           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1562           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1563            SplattedLoad->getOffset()},
1564           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1565     } else {
1566       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1567     }
1568     IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1569       return Lane == SplatValue;
1570     };
1571   }
1572 
1573   // Add replace_lane instructions for any unhandled values
1574   for (size_t I = 0; I < Lanes; ++I) {
1575     const SDValue &Lane = Op->getOperand(I);
1576     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1577       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1578                            DAG.getConstant(I, DL, MVT::i32));
1579   }
1580 
1581   return Result;
1582 }
1583 
1584 SDValue
1585 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1586                                                SelectionDAG &DAG) const {
1587   SDLoc DL(Op);
1588   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1589   MVT VecType = Op.getOperand(0).getSimpleValueType();
1590   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1591   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1592 
1593   // Space for two vector args and sixteen mask indices
1594   SDValue Ops[18];
1595   size_t OpIdx = 0;
1596   Ops[OpIdx++] = Op.getOperand(0);
1597   Ops[OpIdx++] = Op.getOperand(1);
1598 
1599   // Expand mask indices to byte indices and materialize them as operands
1600   for (int M : Mask) {
1601     for (size_t J = 0; J < LaneBytes; ++J) {
1602       // Lower undefs (represented by -1 in mask) to zero
1603       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1604       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1605     }
1606   }
1607 
1608   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1609 }
1610 
1611 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
1612                                               SelectionDAG &DAG) const {
1613   SDLoc DL(Op);
1614   // The legalizer does not know how to expand the comparison modes of i64x2
1615   // vectors because no comparison modes are supported. We could solve this by
1616   // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes
1617   // (which return i64x2 results) as well. So instead we manually unroll i64x2
1618   // comparisons here.
1619   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
1620   SmallVector<SDValue, 2> LHS, RHS;
1621   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
1622   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
1623   const SDValue &CC = Op->getOperand(2);
1624   auto MakeLane = [&](unsigned I) {
1625     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
1626                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
1627                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
1628   };
1629   return DAG.getBuildVector(Op->getValueType(0), DL,
1630                             {MakeLane(0), MakeLane(1)});
1631 }
1632 
1633 SDValue
1634 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1635                                                     SelectionDAG &DAG) const {
1636   // Allow constant lane indices, expand variable lane indices
1637   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1638   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1639     return Op;
1640   else
1641     // Perform default expansion
1642     return SDValue();
1643 }
1644 
1645 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1646   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1647   // 32-bit and 64-bit unrolled shifts will have proper semantics
1648   if (LaneT.bitsGE(MVT::i32))
1649     return DAG.UnrollVectorOp(Op.getNode());
1650   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1651   SDLoc DL(Op);
1652   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
1653   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
1654   unsigned ShiftOpcode = Op.getOpcode();
1655   SmallVector<SDValue, 16> ShiftedElements;
1656   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
1657   SmallVector<SDValue, 16> ShiftElements;
1658   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
1659   SmallVector<SDValue, 16> UnrolledOps;
1660   for (size_t i = 0; i < NumLanes; ++i) {
1661     SDValue MaskedShiftValue =
1662         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
1663     SDValue ShiftedValue = ShiftedElements[i];
1664     if (ShiftOpcode == ISD::SRA)
1665       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
1666                                  ShiftedValue, DAG.getValueType(LaneT));
1667     UnrolledOps.push_back(
1668         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
1669   }
1670   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
1671 }
1672 
1673 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1674                                               SelectionDAG &DAG) const {
1675   SDLoc DL(Op);
1676 
1677   // Only manually lower vector shifts
1678   assert(Op.getSimpleValueType().isVector());
1679 
1680   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
1681   if (!ShiftVal)
1682     return unrollVectorShift(Op, DAG);
1683 
1684   // Use anyext because none of the high bits can affect the shift
1685   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
1686 
1687   unsigned Opcode;
1688   switch (Op.getOpcode()) {
1689   case ISD::SHL:
1690     Opcode = WebAssemblyISD::VEC_SHL;
1691     break;
1692   case ISD::SRA:
1693     Opcode = WebAssemblyISD::VEC_SHR_S;
1694     break;
1695   case ISD::SRL:
1696     Opcode = WebAssemblyISD::VEC_SHR_U;
1697     break;
1698   default:
1699     llvm_unreachable("unexpected opcode");
1700   }
1701 
1702   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
1703 }
1704 
1705 //===----------------------------------------------------------------------===//
1706 //   Custom DAG combine hooks
1707 //===----------------------------------------------------------------------===//
1708 static SDValue
1709 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
1710   auto &DAG = DCI.DAG;
1711   auto Shuffle = cast<ShuffleVectorSDNode>(N);
1712 
1713   // Hoist vector bitcasts that don't change the number of lanes out of unary
1714   // shuffles, where they are less likely to get in the way of other combines.
1715   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
1716   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
1717   SDValue Bitcast = N->getOperand(0);
1718   if (Bitcast.getOpcode() != ISD::BITCAST)
1719     return SDValue();
1720   if (!N->getOperand(1).isUndef())
1721     return SDValue();
1722   SDValue CastOp = Bitcast.getOperand(0);
1723   MVT SrcType = CastOp.getSimpleValueType();
1724   MVT DstType = Bitcast.getSimpleValueType();
1725   if (!SrcType.is128BitVector() ||
1726       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
1727     return SDValue();
1728   SDValue NewShuffle = DAG.getVectorShuffle(
1729       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
1730   return DAG.getBitcast(DstType, NewShuffle);
1731 }
1732 
1733 SDValue
1734 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
1735                                              DAGCombinerInfo &DCI) const {
1736   switch (N->getOpcode()) {
1737   default:
1738     return SDValue();
1739   case ISD::VECTOR_SHUFFLE:
1740     return performVECTOR_SHUFFLECombine(N, DCI);
1741   }
1742 }
1743