1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsWebAssembly.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetOptions.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-lower" 39 40 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 41 const TargetMachine &TM, const WebAssemblySubtarget &STI) 42 : TargetLowering(TM), Subtarget(&STI) { 43 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 44 45 // Booleans always contain 0 or 1. 46 setBooleanContents(ZeroOrOneBooleanContent); 47 // Except in SIMD vectors 48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 49 // We don't know the microarchitecture here, so just reduce register pressure. 50 setSchedulingPreference(Sched::RegPressure); 51 // Tell ISel that we have a stack pointer. 52 setStackPointerRegisterToSaveRestore( 53 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 54 // Set up the register classes. 55 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 56 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 57 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 58 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 59 if (Subtarget->hasSIMD128()) { 60 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 64 } 65 if (Subtarget->hasUnimplementedSIMD128()) { 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 74 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 75 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 76 setOperationAction(ISD::BRIND, MVT::Other, Custom); 77 78 // Take the default expansion for va_arg, va_copy, and va_end. There is no 79 // default action for va_start, so we do that custom. 80 setOperationAction(ISD::VASTART, MVT::Other, Custom); 81 setOperationAction(ISD::VAARG, MVT::Other, Expand); 82 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 83 setOperationAction(ISD::VAEND, MVT::Other, Expand); 84 85 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 86 // Don't expand the floating-point types to constant pools. 87 setOperationAction(ISD::ConstantFP, T, Legal); 88 // Expand floating-point comparisons. 89 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 90 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 91 setCondCodeAction(CC, T, Expand); 92 // Expand floating-point library function operators. 93 for (auto Op : 94 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 95 setOperationAction(Op, T, Expand); 96 // Note supported floating-point library function operators that otherwise 97 // default to expand. 98 for (auto Op : 99 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 100 setOperationAction(Op, T, Legal); 101 // Support minimum and maximum, which otherwise default to expand. 102 setOperationAction(ISD::FMINIMUM, T, Legal); 103 setOperationAction(ISD::FMAXIMUM, T, Legal); 104 // WebAssembly currently has no builtin f16 support. 105 setOperationAction(ISD::FP16_TO_FP, T, Expand); 106 setOperationAction(ISD::FP_TO_FP16, T, Expand); 107 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 108 setTruncStoreAction(T, MVT::f16, Expand); 109 } 110 111 // Expand unavailable integer operations. 112 for (auto Op : 113 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 114 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 115 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 116 for (auto T : {MVT::i32, MVT::i64}) 117 setOperationAction(Op, T, Expand); 118 if (Subtarget->hasSIMD128()) 119 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 120 setOperationAction(Op, T, Expand); 121 if (Subtarget->hasUnimplementedSIMD128()) 122 setOperationAction(Op, MVT::v2i64, Expand); 123 } 124 125 // SIMD-specific configuration 126 if (Subtarget->hasSIMD128()) { 127 // Support saturating add for i8x16 and i16x8 128 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 129 for (auto T : {MVT::v16i8, MVT::v8i16}) 130 setOperationAction(Op, T, Legal); 131 132 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 133 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 134 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 135 if (Subtarget->hasUnimplementedSIMD128()) 136 for (auto T : {MVT::v2i64, MVT::v2f64}) 137 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 138 139 // We have custom shuffle lowering to expose the shuffle mask 140 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 141 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 142 if (Subtarget->hasUnimplementedSIMD128()) 143 for (auto T: {MVT::v2i64, MVT::v2f64}) 144 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 145 146 // Custom lowering since wasm shifts must have a scalar shift amount 147 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 149 setOperationAction(Op, T, Custom); 150 if (Subtarget->hasUnimplementedSIMD128()) 151 setOperationAction(Op, MVT::v2i64, Custom); 152 } 153 154 // Custom lower lane accesses to expand out variable indices 155 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 156 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 157 setOperationAction(Op, T, Custom); 158 if (Subtarget->hasUnimplementedSIMD128()) 159 for (auto T : {MVT::v2i64, MVT::v2f64}) 160 setOperationAction(Op, T, Custom); 161 } 162 163 // There is no i64x2.mul instruction 164 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 165 166 // There are no vector select instructions 167 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 168 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 169 setOperationAction(Op, T, Expand); 170 if (Subtarget->hasUnimplementedSIMD128()) 171 for (auto T : {MVT::v2i64, MVT::v2f64}) 172 setOperationAction(Op, T, Expand); 173 } 174 175 // Expand integer operations supported for scalars but not SIMD 176 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 177 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 178 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 179 setOperationAction(Op, T, Expand); 180 if (Subtarget->hasUnimplementedSIMD128()) 181 setOperationAction(Op, MVT::v2i64, Expand); 182 } 183 184 // But we do have integer min and max operations 185 if (Subtarget->hasUnimplementedSIMD128()) { 186 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 188 setOperationAction(Op, T, Legal); 189 } 190 191 // Expand float operations supported for scalars but not SIMD 192 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 193 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 194 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) { 195 setOperationAction(Op, MVT::v4f32, Expand); 196 if (Subtarget->hasUnimplementedSIMD128()) 197 setOperationAction(Op, MVT::v2f64, Expand); 198 } 199 200 // Expand operations not supported for i64x2 vectors 201 if (Subtarget->hasUnimplementedSIMD128()) 202 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 203 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 204 205 // Expand additional SIMD ops that V8 hasn't implemented yet 206 if (!Subtarget->hasUnimplementedSIMD128()) { 207 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 208 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 209 } 210 } 211 212 // As a special case, these operators use the type to mean the type to 213 // sign-extend from. 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 215 if (!Subtarget->hasSignExt()) { 216 // Sign extends are legal only when extending a vector extract 217 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 218 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 219 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 220 } 221 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 222 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 223 224 // Dynamic stack allocation: use the default expansion. 225 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 226 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 227 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 228 229 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 230 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 231 232 // Expand these forms; we pattern-match the forms that we can handle in isel. 233 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 234 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 235 setOperationAction(Op, T, Expand); 236 237 // We have custom switch handling. 238 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 239 240 // WebAssembly doesn't have: 241 // - Floating-point extending loads. 242 // - Floating-point truncating stores. 243 // - i1 extending loads. 244 // - truncating SIMD stores and most extending loads 245 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 246 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 247 for (auto T : MVT::integer_valuetypes()) 248 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 249 setLoadExtAction(Ext, T, MVT::i1, Promote); 250 if (Subtarget->hasSIMD128()) { 251 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 252 MVT::v2f64}) { 253 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 254 if (MVT(T) != MemT) { 255 setTruncStoreAction(T, MemT, Expand); 256 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 257 setLoadExtAction(Ext, T, MemT, Expand); 258 } 259 } 260 } 261 // But some vector extending loads are legal 262 if (Subtarget->hasUnimplementedSIMD128()) { 263 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 264 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 265 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 266 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 267 } 268 } 269 } 270 271 // Don't do anything clever with build_pairs 272 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 273 274 // Trap lowers to wasm unreachable 275 setOperationAction(ISD::TRAP, MVT::Other, Legal); 276 277 // Exception handling intrinsics 278 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 279 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 280 281 setMaxAtomicSizeInBitsSupported(64); 282 283 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 284 // consistent with the f64 and f128 names. 285 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 286 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 287 288 // Define the emscripten name for return address helper. 289 // TODO: when implementing other WASM backends, make this generic or only do 290 // this on emscripten depending on what they end up doing. 291 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 292 293 // Always convert switches to br_tables unless there is only one case, which 294 // is equivalent to a simple branch. This reduces code size for wasm, and we 295 // defer possible jump table optimizations to the VM. 296 setMinimumJumpTableEntries(2); 297 } 298 299 TargetLowering::AtomicExpansionKind 300 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 301 // We have wasm instructions for these 302 switch (AI->getOperation()) { 303 case AtomicRMWInst::Add: 304 case AtomicRMWInst::Sub: 305 case AtomicRMWInst::And: 306 case AtomicRMWInst::Or: 307 case AtomicRMWInst::Xor: 308 case AtomicRMWInst::Xchg: 309 return AtomicExpansionKind::None; 310 default: 311 break; 312 } 313 return AtomicExpansionKind::CmpXChg; 314 } 315 316 FastISel *WebAssemblyTargetLowering::createFastISel( 317 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 318 return WebAssembly::createFastISel(FuncInfo, LibInfo); 319 } 320 321 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 322 EVT VT) const { 323 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 324 if (BitWidth > 1 && BitWidth < 8) 325 BitWidth = 8; 326 327 if (BitWidth > 64) { 328 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 329 // the count to be an i32. 330 BitWidth = 32; 331 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 332 "32-bit shift counts ought to be enough for anyone"); 333 } 334 335 MVT Result = MVT::getIntegerVT(BitWidth); 336 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 337 "Unable to represent scalar shift amount type"); 338 return Result; 339 } 340 341 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 342 // undefined result on invalid/overflow, to the WebAssembly opcode, which 343 // traps on invalid/overflow. 344 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 345 MachineBasicBlock *BB, 346 const TargetInstrInfo &TII, 347 bool IsUnsigned, bool Int64, 348 bool Float64, unsigned LoweredOpcode) { 349 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 350 351 Register OutReg = MI.getOperand(0).getReg(); 352 Register InReg = MI.getOperand(1).getReg(); 353 354 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 355 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 356 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 357 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 358 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 359 unsigned Eqz = WebAssembly::EQZ_I32; 360 unsigned And = WebAssembly::AND_I32; 361 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 362 int64_t Substitute = IsUnsigned ? 0 : Limit; 363 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 364 auto &Context = BB->getParent()->getFunction().getContext(); 365 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 366 367 const BasicBlock *LLVMBB = BB->getBasicBlock(); 368 MachineFunction *F = BB->getParent(); 369 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 370 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 371 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 372 373 MachineFunction::iterator It = ++BB->getIterator(); 374 F->insert(It, FalseMBB); 375 F->insert(It, TrueMBB); 376 F->insert(It, DoneMBB); 377 378 // Transfer the remainder of BB and its successor edges to DoneMBB. 379 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 380 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 381 382 BB->addSuccessor(TrueMBB); 383 BB->addSuccessor(FalseMBB); 384 TrueMBB->addSuccessor(DoneMBB); 385 FalseMBB->addSuccessor(DoneMBB); 386 387 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 388 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 389 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 390 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 391 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 392 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 393 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 394 395 MI.eraseFromParent(); 396 // For signed numbers, we can do a single comparison to determine whether 397 // fabs(x) is within range. 398 if (IsUnsigned) { 399 Tmp0 = InReg; 400 } else { 401 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 402 } 403 BuildMI(BB, DL, TII.get(FConst), Tmp1) 404 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 405 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 406 407 // For unsigned numbers, we have to do a separate comparison with zero. 408 if (IsUnsigned) { 409 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 410 Register SecondCmpReg = 411 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 412 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 413 BuildMI(BB, DL, TII.get(FConst), Tmp1) 414 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 415 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 416 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 417 CmpReg = AndReg; 418 } 419 420 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 421 422 // Create the CFG diamond to select between doing the conversion or using 423 // the substitute value. 424 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 425 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 426 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 427 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 428 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 429 .addReg(FalseReg) 430 .addMBB(FalseMBB) 431 .addReg(TrueReg) 432 .addMBB(TrueMBB); 433 434 return DoneMBB; 435 } 436 437 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 438 MachineInstr &MI, MachineBasicBlock *BB) const { 439 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 440 DebugLoc DL = MI.getDebugLoc(); 441 442 switch (MI.getOpcode()) { 443 default: 444 llvm_unreachable("Unexpected instr type to insert"); 445 case WebAssembly::FP_TO_SINT_I32_F32: 446 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 447 WebAssembly::I32_TRUNC_S_F32); 448 case WebAssembly::FP_TO_UINT_I32_F32: 449 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 450 WebAssembly::I32_TRUNC_U_F32); 451 case WebAssembly::FP_TO_SINT_I64_F32: 452 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 453 WebAssembly::I64_TRUNC_S_F32); 454 case WebAssembly::FP_TO_UINT_I64_F32: 455 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 456 WebAssembly::I64_TRUNC_U_F32); 457 case WebAssembly::FP_TO_SINT_I32_F64: 458 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 459 WebAssembly::I32_TRUNC_S_F64); 460 case WebAssembly::FP_TO_UINT_I32_F64: 461 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 462 WebAssembly::I32_TRUNC_U_F64); 463 case WebAssembly::FP_TO_SINT_I64_F64: 464 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 465 WebAssembly::I64_TRUNC_S_F64); 466 case WebAssembly::FP_TO_UINT_I64_F64: 467 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 468 WebAssembly::I64_TRUNC_U_F64); 469 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 470 } 471 } 472 473 const char * 474 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 475 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 476 case WebAssemblyISD::FIRST_NUMBER: 477 case WebAssemblyISD::FIRST_MEM_OPCODE: 478 break; 479 #define HANDLE_NODETYPE(NODE) \ 480 case WebAssemblyISD::NODE: \ 481 return "WebAssemblyISD::" #NODE; 482 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 483 #include "WebAssemblyISD.def" 484 #undef HANDLE_MEM_NODETYPE 485 #undef HANDLE_NODETYPE 486 } 487 return nullptr; 488 } 489 490 std::pair<unsigned, const TargetRegisterClass *> 491 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 492 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 493 // First, see if this is a constraint that directly corresponds to a 494 // WebAssembly register class. 495 if (Constraint.size() == 1) { 496 switch (Constraint[0]) { 497 case 'r': 498 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 499 if (Subtarget->hasSIMD128() && VT.isVector()) { 500 if (VT.getSizeInBits() == 128) 501 return std::make_pair(0U, &WebAssembly::V128RegClass); 502 } 503 if (VT.isInteger() && !VT.isVector()) { 504 if (VT.getSizeInBits() <= 32) 505 return std::make_pair(0U, &WebAssembly::I32RegClass); 506 if (VT.getSizeInBits() <= 64) 507 return std::make_pair(0U, &WebAssembly::I64RegClass); 508 } 509 break; 510 default: 511 break; 512 } 513 } 514 515 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 516 } 517 518 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 519 // Assume ctz is a relatively cheap operation. 520 return true; 521 } 522 523 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 524 // Assume clz is a relatively cheap operation. 525 return true; 526 } 527 528 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 529 const AddrMode &AM, 530 Type *Ty, unsigned AS, 531 Instruction *I) const { 532 // WebAssembly offsets are added as unsigned without wrapping. The 533 // isLegalAddressingMode gives us no way to determine if wrapping could be 534 // happening, so we approximate this by accepting only non-negative offsets. 535 if (AM.BaseOffs < 0) 536 return false; 537 538 // WebAssembly has no scale register operands. 539 if (AM.Scale != 0) 540 return false; 541 542 // Everything else is legal. 543 return true; 544 } 545 546 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 547 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 548 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 549 // WebAssembly supports unaligned accesses, though it should be declared 550 // with the p2align attribute on loads and stores which do so, and there 551 // may be a performance impact. We tell LLVM they're "fast" because 552 // for the kinds of things that LLVM uses this for (merging adjacent stores 553 // of constants, etc.), WebAssembly implementations will either want the 554 // unaligned access or they'll split anyway. 555 if (Fast) 556 *Fast = true; 557 return true; 558 } 559 560 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 561 AttributeList Attr) const { 562 // The current thinking is that wasm engines will perform this optimization, 563 // so we can save on code size. 564 return true; 565 } 566 567 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 568 if (!Subtarget->hasUnimplementedSIMD128()) 569 return false; 570 MVT ExtT = ExtVal.getSimpleValueType(); 571 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 572 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 573 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 574 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 575 } 576 577 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 578 LLVMContext &C, 579 EVT VT) const { 580 if (VT.isVector()) 581 return VT.changeVectorElementTypeToInteger(); 582 583 return TargetLowering::getSetCCResultType(DL, C, VT); 584 } 585 586 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 587 const CallInst &I, 588 MachineFunction &MF, 589 unsigned Intrinsic) const { 590 switch (Intrinsic) { 591 case Intrinsic::wasm_atomic_notify: 592 Info.opc = ISD::INTRINSIC_W_CHAIN; 593 Info.memVT = MVT::i32; 594 Info.ptrVal = I.getArgOperand(0); 595 Info.offset = 0; 596 Info.align = Align(4); 597 // atomic.notify instruction does not really load the memory specified with 598 // this argument, but MachineMemOperand should either be load or store, so 599 // we set this to a load. 600 // FIXME Volatile isn't really correct, but currently all LLVM atomic 601 // instructions are treated as volatiles in the backend, so we should be 602 // consistent. The same applies for wasm_atomic_wait intrinsics too. 603 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 604 return true; 605 case Intrinsic::wasm_atomic_wait_i32: 606 Info.opc = ISD::INTRINSIC_W_CHAIN; 607 Info.memVT = MVT::i32; 608 Info.ptrVal = I.getArgOperand(0); 609 Info.offset = 0; 610 Info.align = Align(4); 611 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 612 return true; 613 case Intrinsic::wasm_atomic_wait_i64: 614 Info.opc = ISD::INTRINSIC_W_CHAIN; 615 Info.memVT = MVT::i64; 616 Info.ptrVal = I.getArgOperand(0); 617 Info.offset = 0; 618 Info.align = Align(8); 619 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 620 return true; 621 default: 622 return false; 623 } 624 } 625 626 //===----------------------------------------------------------------------===// 627 // WebAssembly Lowering private implementation. 628 //===----------------------------------------------------------------------===// 629 630 //===----------------------------------------------------------------------===// 631 // Lowering Code 632 //===----------------------------------------------------------------------===// 633 634 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 635 MachineFunction &MF = DAG.getMachineFunction(); 636 DAG.getContext()->diagnose( 637 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 638 } 639 640 // Test whether the given calling convention is supported. 641 static bool callingConvSupported(CallingConv::ID CallConv) { 642 // We currently support the language-independent target-independent 643 // conventions. We don't yet have a way to annotate calls with properties like 644 // "cold", and we don't have any call-clobbered registers, so these are mostly 645 // all handled the same. 646 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 647 CallConv == CallingConv::Cold || 648 CallConv == CallingConv::PreserveMost || 649 CallConv == CallingConv::PreserveAll || 650 CallConv == CallingConv::CXX_FAST_TLS || 651 CallConv == CallingConv::WASM_EmscriptenInvoke; 652 } 653 654 SDValue 655 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 656 SmallVectorImpl<SDValue> &InVals) const { 657 SelectionDAG &DAG = CLI.DAG; 658 SDLoc DL = CLI.DL; 659 SDValue Chain = CLI.Chain; 660 SDValue Callee = CLI.Callee; 661 MachineFunction &MF = DAG.getMachineFunction(); 662 auto Layout = MF.getDataLayout(); 663 664 CallingConv::ID CallConv = CLI.CallConv; 665 if (!callingConvSupported(CallConv)) 666 fail(DL, DAG, 667 "WebAssembly doesn't support language-specific or target-specific " 668 "calling conventions yet"); 669 if (CLI.IsPatchPoint) 670 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 671 672 if (CLI.IsTailCall) { 673 bool MustTail = CLI.CS && CLI.CS.isMustTailCall(); 674 if (Subtarget->hasTailCall() && !CLI.IsVarArg) { 675 // Do not tail call unless caller and callee return types match 676 const Function &F = MF.getFunction(); 677 const TargetMachine &TM = getTargetMachine(); 678 Type *RetTy = F.getReturnType(); 679 SmallVector<MVT, 4> CallerRetTys; 680 SmallVector<MVT, 4> CalleeRetTys; 681 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 682 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 683 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 684 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 685 CalleeRetTys.begin()); 686 if (!TypesMatch) { 687 // musttail in this case would be an LLVM IR validation failure 688 assert(!MustTail); 689 CLI.IsTailCall = false; 690 } 691 } else { 692 CLI.IsTailCall = false; 693 if (MustTail) { 694 if (CLI.IsVarArg) { 695 // The return would pop the argument buffer 696 fail(DL, DAG, "WebAssembly does not support varargs tail calls"); 697 } else { 698 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled"); 699 } 700 } 701 } 702 } 703 704 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 705 if (Ins.size() > 1) 706 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 707 708 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 709 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 710 711 // The generic code may have added an sret argument. If we're lowering an 712 // invoke function, the ABI requires that the function pointer be the first 713 // argument, so we may have to swap the arguments. 714 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 715 Outs[0].Flags.isSRet()) { 716 std::swap(Outs[0], Outs[1]); 717 std::swap(OutVals[0], OutVals[1]); 718 } 719 720 unsigned NumFixedArgs = 0; 721 for (unsigned I = 0; I < Outs.size(); ++I) { 722 const ISD::OutputArg &Out = Outs[I]; 723 SDValue &OutVal = OutVals[I]; 724 if (Out.Flags.isNest()) 725 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 726 if (Out.Flags.isInAlloca()) 727 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 728 if (Out.Flags.isInConsecutiveRegs()) 729 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 730 if (Out.Flags.isInConsecutiveRegsLast()) 731 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 732 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 733 auto &MFI = MF.getFrameInfo(); 734 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 735 Out.Flags.getByValAlign(), 736 /*isSS=*/false); 737 SDValue SizeNode = 738 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 739 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 740 Chain = DAG.getMemcpy( 741 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 742 /*isVolatile*/ false, /*AlwaysInline=*/false, 743 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 744 OutVal = FINode; 745 } 746 // Count the number of fixed args *after* legalization. 747 NumFixedArgs += Out.IsFixed; 748 } 749 750 bool IsVarArg = CLI.IsVarArg; 751 auto PtrVT = getPointerTy(Layout); 752 753 // Analyze operands of the call, assigning locations to each operand. 754 SmallVector<CCValAssign, 16> ArgLocs; 755 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 756 757 if (IsVarArg) { 758 // Outgoing non-fixed arguments are placed in a buffer. First 759 // compute their offsets and the total amount of buffer space needed. 760 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 761 const ISD::OutputArg &Out = Outs[I]; 762 SDValue &Arg = OutVals[I]; 763 EVT VT = Arg.getValueType(); 764 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 765 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 766 unsigned Align = std::max(Out.Flags.getOrigAlign(), 767 Layout.getABITypeAlignment(Ty)); 768 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 769 Align); 770 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 771 Offset, VT.getSimpleVT(), 772 CCValAssign::Full)); 773 } 774 } 775 776 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 777 778 SDValue FINode; 779 if (IsVarArg && NumBytes) { 780 // For non-fixed arguments, next emit stores to store the argument values 781 // to the stack buffer at the offsets computed above. 782 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 783 Layout.getStackAlignment(), 784 /*isSS=*/false); 785 unsigned ValNo = 0; 786 SmallVector<SDValue, 8> Chains; 787 for (SDValue Arg : 788 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 789 assert(ArgLocs[ValNo].getValNo() == ValNo && 790 "ArgLocs should remain in order and only hold varargs args"); 791 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 792 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 793 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 794 DAG.getConstant(Offset, DL, PtrVT)); 795 Chains.push_back( 796 DAG.getStore(Chain, DL, Arg, Add, 797 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 798 } 799 if (!Chains.empty()) 800 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 801 } else if (IsVarArg) { 802 FINode = DAG.getIntPtrConstant(0, DL); 803 } 804 805 if (Callee->getOpcode() == ISD::GlobalAddress) { 806 // If the callee is a GlobalAddress node (quite common, every direct call 807 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 808 // doesn't at MO_GOT which is not needed for direct calls. 809 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 810 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 811 getPointerTy(DAG.getDataLayout()), 812 GA->getOffset()); 813 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 814 getPointerTy(DAG.getDataLayout()), Callee); 815 } 816 817 // Compute the operands for the CALLn node. 818 SmallVector<SDValue, 16> Ops; 819 Ops.push_back(Chain); 820 Ops.push_back(Callee); 821 822 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 823 // isn't reliable. 824 Ops.append(OutVals.begin(), 825 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 826 // Add a pointer to the vararg buffer. 827 if (IsVarArg) 828 Ops.push_back(FINode); 829 830 SmallVector<EVT, 8> InTys; 831 for (const auto &In : Ins) { 832 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 833 assert(!In.Flags.isNest() && "nest is not valid for return values"); 834 if (In.Flags.isInAlloca()) 835 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 836 if (In.Flags.isInConsecutiveRegs()) 837 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 838 if (In.Flags.isInConsecutiveRegsLast()) 839 fail(DL, DAG, 840 "WebAssembly hasn't implemented cons regs last return values"); 841 // Ignore In.getOrigAlign() because all our arguments are passed in 842 // registers. 843 InTys.push_back(In.VT); 844 } 845 846 if (CLI.IsTailCall) { 847 // ret_calls do not return values to the current frame 848 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 849 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 850 } 851 852 InTys.push_back(MVT::Other); 853 SDVTList InTyList = DAG.getVTList(InTys); 854 SDValue Res = 855 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 856 DL, InTyList, Ops); 857 if (Ins.empty()) { 858 Chain = Res; 859 } else { 860 InVals.push_back(Res); 861 Chain = Res.getValue(1); 862 } 863 864 return Chain; 865 } 866 867 bool WebAssemblyTargetLowering::CanLowerReturn( 868 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 869 const SmallVectorImpl<ISD::OutputArg> &Outs, 870 LLVMContext & /*Context*/) const { 871 // WebAssembly can only handle returning tuples with multivalue enabled 872 return Subtarget->hasMultivalue() || Outs.size() <= 1; 873 } 874 875 SDValue WebAssemblyTargetLowering::LowerReturn( 876 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 877 const SmallVectorImpl<ISD::OutputArg> &Outs, 878 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 879 SelectionDAG &DAG) const { 880 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 881 "MVP WebAssembly can only return up to one value"); 882 if (!callingConvSupported(CallConv)) 883 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 884 885 SmallVector<SDValue, 4> RetOps(1, Chain); 886 RetOps.append(OutVals.begin(), OutVals.end()); 887 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 888 889 // Record the number and types of the return values. 890 for (const ISD::OutputArg &Out : Outs) { 891 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 892 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 893 assert(Out.IsFixed && "non-fixed return value is not valid"); 894 if (Out.Flags.isInAlloca()) 895 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 896 if (Out.Flags.isInConsecutiveRegs()) 897 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 898 if (Out.Flags.isInConsecutiveRegsLast()) 899 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 900 } 901 902 return Chain; 903 } 904 905 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 906 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 907 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 908 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 909 if (!callingConvSupported(CallConv)) 910 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 911 912 MachineFunction &MF = DAG.getMachineFunction(); 913 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 914 915 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 916 // of the incoming values before they're represented by virtual registers. 917 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 918 919 for (const ISD::InputArg &In : Ins) { 920 if (In.Flags.isInAlloca()) 921 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 922 if (In.Flags.isNest()) 923 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 924 if (In.Flags.isInConsecutiveRegs()) 925 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 926 if (In.Flags.isInConsecutiveRegsLast()) 927 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 928 // Ignore In.getOrigAlign() because all our arguments are passed in 929 // registers. 930 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 931 DAG.getTargetConstant(InVals.size(), 932 DL, MVT::i32)) 933 : DAG.getUNDEF(In.VT)); 934 935 // Record the number and types of arguments. 936 MFI->addParam(In.VT); 937 } 938 939 // Varargs are copied into a buffer allocated by the caller, and a pointer to 940 // the buffer is passed as an argument. 941 if (IsVarArg) { 942 MVT PtrVT = getPointerTy(MF.getDataLayout()); 943 Register VarargVreg = 944 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 945 MFI->setVarargBufferVreg(VarargVreg); 946 Chain = DAG.getCopyToReg( 947 Chain, DL, VarargVreg, 948 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 949 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 950 MFI->addParam(PtrVT); 951 } 952 953 // Record the number and types of arguments and results. 954 SmallVector<MVT, 4> Params; 955 SmallVector<MVT, 4> Results; 956 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 957 DAG.getTarget(), Params, Results); 958 for (MVT VT : Results) 959 MFI->addResult(VT); 960 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 961 // the param logic here with ComputeSignatureVTs 962 assert(MFI->getParams().size() == Params.size() && 963 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 964 Params.begin())); 965 966 return Chain; 967 } 968 969 void WebAssemblyTargetLowering::ReplaceNodeResults( 970 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 971 switch (N->getOpcode()) { 972 case ISD::SIGN_EXTEND_INREG: 973 // Do not add any results, signifying that N should not be custom lowered 974 // after all. This happens because simd128 turns on custom lowering for 975 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 976 // illegal type. 977 break; 978 default: 979 llvm_unreachable( 980 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 981 } 982 } 983 984 //===----------------------------------------------------------------------===// 985 // Custom lowering hooks. 986 //===----------------------------------------------------------------------===// 987 988 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 989 SelectionDAG &DAG) const { 990 SDLoc DL(Op); 991 switch (Op.getOpcode()) { 992 default: 993 llvm_unreachable("unimplemented operation lowering"); 994 return SDValue(); 995 case ISD::FrameIndex: 996 return LowerFrameIndex(Op, DAG); 997 case ISD::GlobalAddress: 998 return LowerGlobalAddress(Op, DAG); 999 case ISD::ExternalSymbol: 1000 return LowerExternalSymbol(Op, DAG); 1001 case ISD::JumpTable: 1002 return LowerJumpTable(Op, DAG); 1003 case ISD::BR_JT: 1004 return LowerBR_JT(Op, DAG); 1005 case ISD::VASTART: 1006 return LowerVASTART(Op, DAG); 1007 case ISD::BlockAddress: 1008 case ISD::BRIND: 1009 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1010 return SDValue(); 1011 case ISD::RETURNADDR: 1012 return LowerRETURNADDR(Op, DAG); 1013 case ISD::FRAMEADDR: 1014 return LowerFRAMEADDR(Op, DAG); 1015 case ISD::CopyToReg: 1016 return LowerCopyToReg(Op, DAG); 1017 case ISD::EXTRACT_VECTOR_ELT: 1018 case ISD::INSERT_VECTOR_ELT: 1019 return LowerAccessVectorElement(Op, DAG); 1020 case ISD::INTRINSIC_VOID: 1021 case ISD::INTRINSIC_WO_CHAIN: 1022 case ISD::INTRINSIC_W_CHAIN: 1023 return LowerIntrinsic(Op, DAG); 1024 case ISD::SIGN_EXTEND_INREG: 1025 return LowerSIGN_EXTEND_INREG(Op, DAG); 1026 case ISD::BUILD_VECTOR: 1027 return LowerBUILD_VECTOR(Op, DAG); 1028 case ISD::VECTOR_SHUFFLE: 1029 return LowerVECTOR_SHUFFLE(Op, DAG); 1030 case ISD::SETCC: 1031 return LowerSETCC(Op, DAG); 1032 case ISD::SHL: 1033 case ISD::SRA: 1034 case ISD::SRL: 1035 return LowerShift(Op, DAG); 1036 } 1037 } 1038 1039 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1040 SelectionDAG &DAG) const { 1041 SDValue Src = Op.getOperand(2); 1042 if (isa<FrameIndexSDNode>(Src.getNode())) { 1043 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1044 // the FI to some LEA-like instruction, but since we don't have that, we 1045 // need to insert some kind of instruction that can take an FI operand and 1046 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1047 // local.copy between Op and its FI operand. 1048 SDValue Chain = Op.getOperand(0); 1049 SDLoc DL(Op); 1050 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1051 EVT VT = Src.getValueType(); 1052 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1053 : WebAssembly::COPY_I64, 1054 DL, VT, Src), 1055 0); 1056 return Op.getNode()->getNumValues() == 1 1057 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1058 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1059 Op.getNumOperands() == 4 ? Op.getOperand(3) 1060 : SDValue()); 1061 } 1062 return SDValue(); 1063 } 1064 1065 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1066 SelectionDAG &DAG) const { 1067 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1068 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1069 } 1070 1071 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1072 SelectionDAG &DAG) const { 1073 SDLoc DL(Op); 1074 1075 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1076 fail(DL, DAG, 1077 "Non-Emscripten WebAssembly hasn't implemented " 1078 "__builtin_return_address"); 1079 return SDValue(); 1080 } 1081 1082 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1083 return SDValue(); 1084 1085 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1086 MakeLibCallOptions CallOptions; 1087 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1088 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1089 .first; 1090 } 1091 1092 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1093 SelectionDAG &DAG) const { 1094 // Non-zero depths are not supported by WebAssembly currently. Use the 1095 // legalizer's default expansion, which is to return 0 (what this function is 1096 // documented to do). 1097 if (Op.getConstantOperandVal(0) > 0) 1098 return SDValue(); 1099 1100 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1101 EVT VT = Op.getValueType(); 1102 Register FP = 1103 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1104 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1105 } 1106 1107 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1108 SelectionDAG &DAG) const { 1109 SDLoc DL(Op); 1110 const auto *GA = cast<GlobalAddressSDNode>(Op); 1111 EVT VT = Op.getValueType(); 1112 assert(GA->getTargetFlags() == 0 && 1113 "Unexpected target flags on generic GlobalAddressSDNode"); 1114 if (GA->getAddressSpace() != 0) 1115 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1116 1117 unsigned OperandFlags = 0; 1118 if (isPositionIndependent()) { 1119 const GlobalValue *GV = GA->getGlobal(); 1120 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1121 MachineFunction &MF = DAG.getMachineFunction(); 1122 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1123 const char *BaseName; 1124 if (GV->getValueType()->isFunctionTy()) { 1125 BaseName = MF.createExternalSymbolName("__table_base"); 1126 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1127 } 1128 else { 1129 BaseName = MF.createExternalSymbolName("__memory_base"); 1130 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1131 } 1132 SDValue BaseAddr = 1133 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1134 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1135 1136 SDValue SymAddr = DAG.getNode( 1137 WebAssemblyISD::WrapperPIC, DL, VT, 1138 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1139 OperandFlags)); 1140 1141 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1142 } else { 1143 OperandFlags = WebAssemblyII::MO_GOT; 1144 } 1145 } 1146 1147 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1148 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1149 GA->getOffset(), OperandFlags)); 1150 } 1151 1152 SDValue 1153 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1154 SelectionDAG &DAG) const { 1155 SDLoc DL(Op); 1156 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1157 EVT VT = Op.getValueType(); 1158 assert(ES->getTargetFlags() == 0 && 1159 "Unexpected target flags on generic ExternalSymbolSDNode"); 1160 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1161 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1162 } 1163 1164 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1165 SelectionDAG &DAG) const { 1166 // There's no need for a Wrapper node because we always incorporate a jump 1167 // table operand into a BR_TABLE instruction, rather than ever 1168 // materializing it in a register. 1169 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1170 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1171 JT->getTargetFlags()); 1172 } 1173 1174 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1175 SelectionDAG &DAG) const { 1176 SDLoc DL(Op); 1177 SDValue Chain = Op.getOperand(0); 1178 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1179 SDValue Index = Op.getOperand(2); 1180 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1181 1182 SmallVector<SDValue, 8> Ops; 1183 Ops.push_back(Chain); 1184 Ops.push_back(Index); 1185 1186 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1187 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1188 1189 // Add an operand for each case. 1190 for (auto MBB : MBBs) 1191 Ops.push_back(DAG.getBasicBlock(MBB)); 1192 1193 // TODO: For now, we just pick something arbitrary for a default case for now. 1194 // We really want to sniff out the guard and put in the real default case (and 1195 // delete the guard). 1196 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1197 1198 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1199 } 1200 1201 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1202 SelectionDAG &DAG) const { 1203 SDLoc DL(Op); 1204 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1205 1206 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1207 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1208 1209 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1210 MFI->getVarargBufferVreg(), PtrVT); 1211 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1212 MachinePointerInfo(SV), 0); 1213 } 1214 1215 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1216 SelectionDAG &DAG) const { 1217 MachineFunction &MF = DAG.getMachineFunction(); 1218 unsigned IntNo; 1219 switch (Op.getOpcode()) { 1220 case ISD::INTRINSIC_VOID: 1221 case ISD::INTRINSIC_W_CHAIN: 1222 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1223 break; 1224 case ISD::INTRINSIC_WO_CHAIN: 1225 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1226 break; 1227 default: 1228 llvm_unreachable("Invalid intrinsic"); 1229 } 1230 SDLoc DL(Op); 1231 1232 switch (IntNo) { 1233 default: 1234 return SDValue(); // Don't custom lower most intrinsics. 1235 1236 case Intrinsic::wasm_lsda: { 1237 EVT VT = Op.getValueType(); 1238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1239 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1240 auto &Context = MF.getMMI().getContext(); 1241 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1242 Twine(MF.getFunctionNumber())); 1243 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1244 DAG.getMCSymbol(S, PtrVT)); 1245 } 1246 1247 case Intrinsic::wasm_throw: { 1248 // We only support C++ exceptions for now 1249 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1250 if (Tag != CPP_EXCEPTION) 1251 llvm_unreachable("Invalid tag!"); 1252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1253 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1254 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1255 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1256 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1257 return DAG.getNode(WebAssemblyISD::THROW, DL, 1258 MVT::Other, // outchain type 1259 { 1260 Op.getOperand(0), // inchain 1261 SymNode, // exception symbol 1262 Op.getOperand(3) // thrown value 1263 }); 1264 } 1265 } 1266 } 1267 1268 SDValue 1269 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1270 SelectionDAG &DAG) const { 1271 SDLoc DL(Op); 1272 // If sign extension operations are disabled, allow sext_inreg only if operand 1273 // is a vector extract. SIMD does not depend on sign extension operations, but 1274 // allowing sext_inreg in this context lets us have simple patterns to select 1275 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1276 // simpler in this file, but would necessitate large and brittle patterns to 1277 // undo the expansion and select extract_lane_s instructions. 1278 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1279 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1280 const SDValue &Extract = Op.getOperand(0); 1281 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1282 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1283 ->getVT() 1284 .getSimpleVT(); 1285 MVT ExtractedVecT = 1286 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1287 if (ExtractedVecT == VecT) 1288 return Op; 1289 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1290 const SDValue &Index = Extract.getOperand(1); 1291 unsigned IndexVal = 1292 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1293 unsigned Scale = 1294 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1295 assert(Scale > 1); 1296 SDValue NewIndex = 1297 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1298 SDValue NewExtract = DAG.getNode( 1299 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1300 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1301 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1302 NewExtract, Op.getOperand(1)); 1303 } 1304 // Otherwise expand 1305 return SDValue(); 1306 } 1307 1308 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1309 SelectionDAG &DAG) const { 1310 SDLoc DL(Op); 1311 const EVT VecT = Op.getValueType(); 1312 const EVT LaneT = Op.getOperand(0).getValueType(); 1313 const size_t Lanes = Op.getNumOperands(); 1314 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1315 1316 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1317 // possible number of lanes at once followed by a sequence of replace_lane 1318 // instructions to individually initialize any remaining lanes. 1319 1320 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1321 // swizzled lanes should be given greater weight. 1322 1323 // TODO: Investigate building vectors by shuffling together vectors built by 1324 // separately specialized means. 1325 1326 auto IsConstant = [](const SDValue &V) { 1327 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1328 }; 1329 1330 // Returns the source vector and index vector pair if they exist. Checks for: 1331 // (extract_vector_elt 1332 // $src, 1333 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1334 // ) 1335 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1336 auto Bail = std::make_pair(SDValue(), SDValue()); 1337 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1338 return Bail; 1339 const SDValue &SwizzleSrc = Lane->getOperand(0); 1340 const SDValue &IndexExt = Lane->getOperand(1); 1341 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1342 return Bail; 1343 const SDValue &Index = IndexExt->getOperand(0); 1344 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1345 return Bail; 1346 const SDValue &SwizzleIndices = Index->getOperand(0); 1347 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1348 SwizzleIndices.getValueType() != MVT::v16i8 || 1349 Index->getOperand(1)->getOpcode() != ISD::Constant || 1350 Index->getConstantOperandVal(1) != I) 1351 return Bail; 1352 return std::make_pair(SwizzleSrc, SwizzleIndices); 1353 }; 1354 1355 using ValueEntry = std::pair<SDValue, size_t>; 1356 SmallVector<ValueEntry, 16> SplatValueCounts; 1357 1358 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1359 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1360 1361 auto AddCount = [](auto &Counts, const auto &Val) { 1362 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1363 [&Val](auto E) { return E.first == Val; }); 1364 if (CountIt == Counts.end()) { 1365 Counts.emplace_back(Val, 1); 1366 } else { 1367 CountIt->second++; 1368 } 1369 }; 1370 1371 auto GetMostCommon = [](auto &Counts) { 1372 auto CommonIt = 1373 std::max_element(Counts.begin(), Counts.end(), 1374 [](auto A, auto B) { return A.second < B.second; }); 1375 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1376 return *CommonIt; 1377 }; 1378 1379 size_t NumConstantLanes = 0; 1380 1381 // Count eligible lanes for each type of vector creation op 1382 for (size_t I = 0; I < Lanes; ++I) { 1383 const SDValue &Lane = Op->getOperand(I); 1384 if (Lane.isUndef()) 1385 continue; 1386 1387 AddCount(SplatValueCounts, Lane); 1388 1389 if (IsConstant(Lane)) { 1390 NumConstantLanes++; 1391 } else if (CanSwizzle) { 1392 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1393 if (SwizzleSrcs.first) 1394 AddCount(SwizzleCounts, SwizzleSrcs); 1395 } 1396 } 1397 1398 SDValue SplatValue; 1399 size_t NumSplatLanes; 1400 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1401 1402 SDValue SwizzleSrc; 1403 SDValue SwizzleIndices; 1404 size_t NumSwizzleLanes = 0; 1405 if (SwizzleCounts.size()) 1406 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1407 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1408 1409 // Predicate returning true if the lane is properly initialized by the 1410 // original instruction 1411 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1412 SDValue Result; 1413 if (Subtarget->hasUnimplementedSIMD128()) { 1414 // Prefer swizzles over vector consts over splats 1415 if (NumSwizzleLanes >= NumSplatLanes && 1416 NumSwizzleLanes >= NumConstantLanes) { 1417 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1418 SwizzleIndices); 1419 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1420 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1421 return Swizzled == GetSwizzleSrcs(I, Lane); 1422 }; 1423 } else if (NumConstantLanes >= NumSplatLanes) { 1424 SmallVector<SDValue, 16> ConstLanes; 1425 for (const SDValue &Lane : Op->op_values()) { 1426 if (IsConstant(Lane)) { 1427 ConstLanes.push_back(Lane); 1428 } else if (LaneT.isFloatingPoint()) { 1429 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1430 } else { 1431 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1432 } 1433 } 1434 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1435 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1436 return IsConstant(Lane); 1437 }; 1438 } 1439 } 1440 if (!Result) { 1441 // Use a splat, but possibly a load_splat 1442 LoadSDNode *SplattedLoad; 1443 if (Subtarget->hasUnimplementedSIMD128() && 1444 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1445 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1446 Result = DAG.getMemIntrinsicNode( 1447 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1448 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1449 SplattedLoad->getOffset()}, 1450 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1451 } else { 1452 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1453 } 1454 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1455 return Lane == SplatValue; 1456 }; 1457 } 1458 1459 // Add replace_lane instructions for any unhandled values 1460 for (size_t I = 0; I < Lanes; ++I) { 1461 const SDValue &Lane = Op->getOperand(I); 1462 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1463 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1464 DAG.getConstant(I, DL, MVT::i32)); 1465 } 1466 1467 return Result; 1468 } 1469 1470 SDValue 1471 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1472 SelectionDAG &DAG) const { 1473 SDLoc DL(Op); 1474 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1475 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1476 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1477 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1478 1479 // Space for two vector args and sixteen mask indices 1480 SDValue Ops[18]; 1481 size_t OpIdx = 0; 1482 Ops[OpIdx++] = Op.getOperand(0); 1483 Ops[OpIdx++] = Op.getOperand(1); 1484 1485 // Expand mask indices to byte indices and materialize them as operands 1486 for (int M : Mask) { 1487 for (size_t J = 0; J < LaneBytes; ++J) { 1488 // Lower undefs (represented by -1 in mask) to zero 1489 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1490 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1491 } 1492 } 1493 1494 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1495 } 1496 1497 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1498 SelectionDAG &DAG) const { 1499 SDLoc DL(Op); 1500 // The legalizer does not know how to expand the comparison modes of i64x2 1501 // vectors because no comparison modes are supported. We could solve this by 1502 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1503 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1504 // comparisons here. 1505 assert(Subtarget->hasUnimplementedSIMD128()); 1506 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1507 SmallVector<SDValue, 2> LHS, RHS; 1508 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1509 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1510 const SDValue &CC = Op->getOperand(2); 1511 auto MakeLane = [&](unsigned I) { 1512 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1513 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1514 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1515 }; 1516 return DAG.getBuildVector(Op->getValueType(0), DL, 1517 {MakeLane(0), MakeLane(1)}); 1518 } 1519 1520 SDValue 1521 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1522 SelectionDAG &DAG) const { 1523 // Allow constant lane indices, expand variable lane indices 1524 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1525 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1526 return Op; 1527 else 1528 // Perform default expansion 1529 return SDValue(); 1530 } 1531 1532 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1533 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1534 // 32-bit and 64-bit unrolled shifts will have proper semantics 1535 if (LaneT.bitsGE(MVT::i32)) 1536 return DAG.UnrollVectorOp(Op.getNode()); 1537 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1538 SDLoc DL(Op); 1539 SDValue ShiftVal = Op.getOperand(1); 1540 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1541 SDValue MaskedShiftVal = DAG.getNode( 1542 ISD::AND, // mask opcode 1543 DL, ShiftVal.getValueType(), // masked value type 1544 ShiftVal, // original shift value operand 1545 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1546 ); 1547 1548 return DAG.UnrollVectorOp( 1549 DAG.getNode(Op.getOpcode(), // original shift opcode 1550 DL, Op.getValueType(), // original return type 1551 Op.getOperand(0), // original vector operand, 1552 MaskedShiftVal // new masked shift value operand 1553 ) 1554 .getNode()); 1555 } 1556 1557 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1558 SelectionDAG &DAG) const { 1559 SDLoc DL(Op); 1560 1561 // Only manually lower vector shifts 1562 assert(Op.getSimpleValueType().isVector()); 1563 1564 // Unroll non-splat vector shifts 1565 BuildVectorSDNode *ShiftVec; 1566 SDValue SplatVal; 1567 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1568 !(SplatVal = ShiftVec->getSplatValue())) 1569 return unrollVectorShift(Op, DAG); 1570 1571 // All splats except i64x2 const splats are handled by patterns 1572 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1573 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1574 return Op; 1575 1576 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1577 unsigned Opcode; 1578 switch (Op.getOpcode()) { 1579 case ISD::SHL: 1580 Opcode = WebAssemblyISD::VEC_SHL; 1581 break; 1582 case ISD::SRA: 1583 Opcode = WebAssemblyISD::VEC_SHR_S; 1584 break; 1585 case ISD::SRL: 1586 Opcode = WebAssemblyISD::VEC_SHR_U; 1587 break; 1588 default: 1589 llvm_unreachable("unexpected opcode"); 1590 } 1591 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1592 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1593 DAG.getConstant(Shift, DL, MVT::i32)); 1594 } 1595 1596 //===----------------------------------------------------------------------===// 1597 // WebAssembly Optimization Hooks 1598 //===----------------------------------------------------------------------===// 1599