1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsWebAssembly.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetOptions.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "wasm-lower" 44 45 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 46 const TargetMachine &TM, const WebAssemblySubtarget &STI) 47 : TargetLowering(TM), Subtarget(&STI) { 48 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 49 50 // Booleans always contain 0 or 1. 51 setBooleanContents(ZeroOrOneBooleanContent); 52 // Except in SIMD vectors 53 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 54 // We don't know the microarchitecture here, so just reduce register pressure. 55 setSchedulingPreference(Sched::RegPressure); 56 // Tell ISel that we have a stack pointer. 57 setStackPointerRegisterToSaveRestore( 58 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 59 // Set up the register classes. 60 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 61 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 62 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 63 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 64 if (Subtarget->hasSIMD128()) { 65 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 71 } 72 if (Subtarget->hasReferenceTypes()) { 73 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 74 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 75 } 76 // Compute derived properties from the register classes. 77 computeRegisterProperties(Subtarget->getRegisterInfo()); 78 79 // Transform loads and stores to pointers in address space 1 to loads and 80 // stores to WebAssembly global variables, outside linear memory. 81 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 82 setOperationAction(ISD::LOAD, T, Custom); 83 setOperationAction(ISD::STORE, T, Custom); 84 } 85 if (Subtarget->hasSIMD128()) { 86 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 87 MVT::v2f64}) { 88 setOperationAction(ISD::LOAD, T, Custom); 89 setOperationAction(ISD::STORE, T, Custom); 90 } 91 } 92 if (Subtarget->hasReferenceTypes()) { 93 // We need custom load and store lowering for both externref, funcref and 94 // Other. The MVT::Other here represents tables of reference types. 95 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 96 setOperationAction(ISD::LOAD, T, Custom); 97 setOperationAction(ISD::STORE, T, Custom); 98 } 99 } 100 101 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 102 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 103 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 104 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 105 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 106 setOperationAction(ISD::BRIND, MVT::Other, Custom); 107 108 // Take the default expansion for va_arg, va_copy, and va_end. There is no 109 // default action for va_start, so we do that custom. 110 setOperationAction(ISD::VASTART, MVT::Other, Custom); 111 setOperationAction(ISD::VAARG, MVT::Other, Expand); 112 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 113 setOperationAction(ISD::VAEND, MVT::Other, Expand); 114 115 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 116 // Don't expand the floating-point types to constant pools. 117 setOperationAction(ISD::ConstantFP, T, Legal); 118 // Expand floating-point comparisons. 119 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 120 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 121 setCondCodeAction(CC, T, Expand); 122 // Expand floating-point library function operators. 123 for (auto Op : 124 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 125 setOperationAction(Op, T, Expand); 126 // Note supported floating-point library function operators that otherwise 127 // default to expand. 128 for (auto Op : 129 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 130 setOperationAction(Op, T, Legal); 131 // Support minimum and maximum, which otherwise default to expand. 132 setOperationAction(ISD::FMINIMUM, T, Legal); 133 setOperationAction(ISD::FMAXIMUM, T, Legal); 134 // WebAssembly currently has no builtin f16 support. 135 setOperationAction(ISD::FP16_TO_FP, T, Expand); 136 setOperationAction(ISD::FP_TO_FP16, T, Expand); 137 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 138 setTruncStoreAction(T, MVT::f16, Expand); 139 } 140 141 // Expand unavailable integer operations. 142 for (auto Op : 143 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 144 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 145 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 146 for (auto T : {MVT::i32, MVT::i64}) 147 setOperationAction(Op, T, Expand); 148 if (Subtarget->hasSIMD128()) 149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 150 setOperationAction(Op, T, Expand); 151 } 152 153 if (Subtarget->hasNontrappingFPToInt()) 154 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 155 for (auto T : {MVT::i32, MVT::i64}) 156 setOperationAction(Op, T, Custom); 157 158 // SIMD-specific configuration 159 if (Subtarget->hasSIMD128()) { 160 // Hoist bitcasts out of shuffles 161 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 162 163 // Combine extends of extract_subvectors into widening ops 164 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}); 165 166 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 167 // conversions ops 168 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND, 169 ISD::EXTRACT_SUBVECTOR}); 170 171 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 172 // into conversion ops 173 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 174 ISD::FP_ROUND, ISD::CONCAT_VECTORS}); 175 176 setTargetDAGCombine(ISD::TRUNCATE); 177 178 // Support saturating add for i8x16 and i16x8 179 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 180 for (auto T : {MVT::v16i8, MVT::v8i16}) 181 setOperationAction(Op, T, Legal); 182 183 // Support integer abs 184 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 185 setOperationAction(ISD::ABS, T, Legal); 186 187 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 188 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 189 MVT::v2f64}) 190 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 191 192 // We have custom shuffle lowering to expose the shuffle mask 193 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 194 MVT::v2f64}) 195 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 196 197 // Custom lowering since wasm shifts must have a scalar shift amount 198 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 199 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 200 setOperationAction(Op, T, Custom); 201 202 // Custom lower lane accesses to expand out variable indices 203 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 204 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 205 MVT::v2f64}) 206 setOperationAction(Op, T, Custom); 207 208 // There is no i8x16.mul instruction 209 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 210 211 // There is no vector conditional select instruction 212 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 213 MVT::v2f64}) 214 setOperationAction(ISD::SELECT_CC, T, Expand); 215 216 // Expand integer operations supported for scalars but not SIMD 217 for (auto Op : 218 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 219 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 220 setOperationAction(Op, T, Expand); 221 222 // But we do have integer min and max operations 223 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 224 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 225 setOperationAction(Op, T, Legal); 226 227 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 228 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 229 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 230 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 231 232 // Custom lower bit counting operations for other types to scalarize them. 233 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 234 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 235 setOperationAction(Op, T, Custom); 236 237 // Expand float operations supported for scalars but not SIMD 238 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 239 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 240 for (auto T : {MVT::v4f32, MVT::v2f64}) 241 setOperationAction(Op, T, Expand); 242 243 // Unsigned comparison operations are unavailable for i64x2 vectors. 244 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 245 setCondCodeAction(CC, MVT::v2i64, Custom); 246 247 // 64x2 conversions are not in the spec 248 for (auto Op : 249 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 250 for (auto T : {MVT::v2i64, MVT::v2f64}) 251 setOperationAction(Op, T, Expand); 252 253 // But saturating fp_to_int converstions are 254 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 255 setOperationAction(Op, MVT::v4i32, Custom); 256 } 257 258 // As a special case, these operators use the type to mean the type to 259 // sign-extend from. 260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 261 if (!Subtarget->hasSignExt()) { 262 // Sign extends are legal only when extending a vector extract 263 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 264 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 265 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 266 } 267 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 268 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 269 270 // Dynamic stack allocation: use the default expansion. 271 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 272 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 273 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 274 275 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 276 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 277 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 278 279 // Expand these forms; we pattern-match the forms that we can handle in isel. 280 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 281 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 282 setOperationAction(Op, T, Expand); 283 284 // We have custom switch handling. 285 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 286 287 // WebAssembly doesn't have: 288 // - Floating-point extending loads. 289 // - Floating-point truncating stores. 290 // - i1 extending loads. 291 // - truncating SIMD stores and most extending loads 292 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 293 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 294 for (auto T : MVT::integer_valuetypes()) 295 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 296 setLoadExtAction(Ext, T, MVT::i1, Promote); 297 if (Subtarget->hasSIMD128()) { 298 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 299 MVT::v2f64}) { 300 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 301 if (MVT(T) != MemT) { 302 setTruncStoreAction(T, MemT, Expand); 303 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 304 setLoadExtAction(Ext, T, MemT, Expand); 305 } 306 } 307 } 308 // But some vector extending loads are legal 309 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 310 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 311 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 312 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 313 } 314 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 315 } 316 317 // Don't do anything clever with build_pairs 318 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 319 320 // Trap lowers to wasm unreachable 321 setOperationAction(ISD::TRAP, MVT::Other, Legal); 322 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 323 324 // Exception handling intrinsics 325 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 326 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 327 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 328 329 setMaxAtomicSizeInBitsSupported(64); 330 331 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 332 // consistent with the f64 and f128 names. 333 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 334 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 335 336 // Define the emscripten name for return address helper. 337 // TODO: when implementing other Wasm backends, make this generic or only do 338 // this on emscripten depending on what they end up doing. 339 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 340 341 // Always convert switches to br_tables unless there is only one case, which 342 // is equivalent to a simple branch. This reduces code size for wasm, and we 343 // defer possible jump table optimizations to the VM. 344 setMinimumJumpTableEntries(2); 345 } 346 347 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 348 uint32_t AS) const { 349 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 350 return MVT::externref; 351 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 352 return MVT::funcref; 353 return TargetLowering::getPointerTy(DL, AS); 354 } 355 356 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 357 uint32_t AS) const { 358 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 359 return MVT::externref; 360 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 361 return MVT::funcref; 362 return TargetLowering::getPointerMemTy(DL, AS); 363 } 364 365 TargetLowering::AtomicExpansionKind 366 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 367 // We have wasm instructions for these 368 switch (AI->getOperation()) { 369 case AtomicRMWInst::Add: 370 case AtomicRMWInst::Sub: 371 case AtomicRMWInst::And: 372 case AtomicRMWInst::Or: 373 case AtomicRMWInst::Xor: 374 case AtomicRMWInst::Xchg: 375 return AtomicExpansionKind::None; 376 default: 377 break; 378 } 379 return AtomicExpansionKind::CmpXChg; 380 } 381 382 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 383 // Implementation copied from X86TargetLowering. 384 unsigned Opc = VecOp.getOpcode(); 385 386 // Assume target opcodes can't be scalarized. 387 // TODO - do we have any exceptions? 388 if (Opc >= ISD::BUILTIN_OP_END) 389 return false; 390 391 // If the vector op is not supported, try to convert to scalar. 392 EVT VecVT = VecOp.getValueType(); 393 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 394 return true; 395 396 // If the vector op is supported, but the scalar op is not, the transform may 397 // not be worthwhile. 398 EVT ScalarVT = VecVT.getScalarType(); 399 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 400 } 401 402 FastISel *WebAssemblyTargetLowering::createFastISel( 403 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 404 return WebAssembly::createFastISel(FuncInfo, LibInfo); 405 } 406 407 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 408 EVT VT) const { 409 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 410 if (BitWidth > 1 && BitWidth < 8) 411 BitWidth = 8; 412 413 if (BitWidth > 64) { 414 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 415 // the count to be an i32. 416 BitWidth = 32; 417 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 418 "32-bit shift counts ought to be enough for anyone"); 419 } 420 421 MVT Result = MVT::getIntegerVT(BitWidth); 422 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 423 "Unable to represent scalar shift amount type"); 424 return Result; 425 } 426 427 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 428 // undefined result on invalid/overflow, to the WebAssembly opcode, which 429 // traps on invalid/overflow. 430 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 431 MachineBasicBlock *BB, 432 const TargetInstrInfo &TII, 433 bool IsUnsigned, bool Int64, 434 bool Float64, unsigned LoweredOpcode) { 435 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 436 437 Register OutReg = MI.getOperand(0).getReg(); 438 Register InReg = MI.getOperand(1).getReg(); 439 440 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 441 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 442 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 443 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 444 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 445 unsigned Eqz = WebAssembly::EQZ_I32; 446 unsigned And = WebAssembly::AND_I32; 447 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 448 int64_t Substitute = IsUnsigned ? 0 : Limit; 449 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 450 auto &Context = BB->getParent()->getFunction().getContext(); 451 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 452 453 const BasicBlock *LLVMBB = BB->getBasicBlock(); 454 MachineFunction *F = BB->getParent(); 455 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 456 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 457 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 458 459 MachineFunction::iterator It = ++BB->getIterator(); 460 F->insert(It, FalseMBB); 461 F->insert(It, TrueMBB); 462 F->insert(It, DoneMBB); 463 464 // Transfer the remainder of BB and its successor edges to DoneMBB. 465 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 466 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 467 468 BB->addSuccessor(TrueMBB); 469 BB->addSuccessor(FalseMBB); 470 TrueMBB->addSuccessor(DoneMBB); 471 FalseMBB->addSuccessor(DoneMBB); 472 473 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 474 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 475 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 476 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 477 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 478 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 479 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 480 481 MI.eraseFromParent(); 482 // For signed numbers, we can do a single comparison to determine whether 483 // fabs(x) is within range. 484 if (IsUnsigned) { 485 Tmp0 = InReg; 486 } else { 487 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 488 } 489 BuildMI(BB, DL, TII.get(FConst), Tmp1) 490 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 491 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 492 493 // For unsigned numbers, we have to do a separate comparison with zero. 494 if (IsUnsigned) { 495 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 496 Register SecondCmpReg = 497 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 498 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 499 BuildMI(BB, DL, TII.get(FConst), Tmp1) 500 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 501 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 502 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 503 CmpReg = AndReg; 504 } 505 506 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 507 508 // Create the CFG diamond to select between doing the conversion or using 509 // the substitute value. 510 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 511 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 512 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 513 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 514 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 515 .addReg(FalseReg) 516 .addMBB(FalseMBB) 517 .addReg(TrueReg) 518 .addMBB(TrueMBB); 519 520 return DoneMBB; 521 } 522 523 static MachineBasicBlock * 524 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 525 const WebAssemblySubtarget *Subtarget, 526 const TargetInstrInfo &TII) { 527 MachineInstr &CallParams = *CallResults.getPrevNode(); 528 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 529 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 530 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 531 532 bool IsIndirect = CallParams.getOperand(0).isReg(); 533 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 534 535 bool IsFuncrefCall = false; 536 if (IsIndirect) { 537 Register Reg = CallParams.getOperand(0).getReg(); 538 const MachineFunction *MF = BB->getParent(); 539 const MachineRegisterInfo &MRI = MF->getRegInfo(); 540 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 541 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 542 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 543 } 544 545 unsigned CallOp; 546 if (IsIndirect && IsRetCall) { 547 CallOp = WebAssembly::RET_CALL_INDIRECT; 548 } else if (IsIndirect) { 549 CallOp = WebAssembly::CALL_INDIRECT; 550 } else if (IsRetCall) { 551 CallOp = WebAssembly::RET_CALL; 552 } else { 553 CallOp = WebAssembly::CALL; 554 } 555 556 MachineFunction &MF = *BB->getParent(); 557 const MCInstrDesc &MCID = TII.get(CallOp); 558 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 559 560 // See if we must truncate the function pointer. 561 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 562 // as 64-bit for uniformity with other pointer types. 563 // See also: WebAssemblyFastISel::selectCall 564 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 565 Register Reg32 = 566 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 567 auto &FnPtr = CallParams.getOperand(0); 568 BuildMI(*BB, CallResults.getIterator(), DL, 569 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 570 .addReg(FnPtr.getReg()); 571 FnPtr.setReg(Reg32); 572 } 573 574 // Move the function pointer to the end of the arguments for indirect calls 575 if (IsIndirect) { 576 auto FnPtr = CallParams.getOperand(0); 577 CallParams.removeOperand(0); 578 579 // For funcrefs, call_indirect is done through __funcref_call_table and the 580 // funcref is always installed in slot 0 of the table, therefore instead of 581 // having the function pointer added at the end of the params list, a zero 582 // (the index in 583 // __funcref_call_table is added). 584 if (IsFuncrefCall) { 585 Register RegZero = 586 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 587 MachineInstrBuilder MIBC0 = 588 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 589 590 BB->insert(CallResults.getIterator(), MIBC0); 591 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 592 } else 593 CallParams.addOperand(FnPtr); 594 } 595 596 for (auto Def : CallResults.defs()) 597 MIB.add(Def); 598 599 if (IsIndirect) { 600 // Placeholder for the type index. 601 MIB.addImm(0); 602 // The table into which this call_indirect indexes. 603 MCSymbolWasm *Table = IsFuncrefCall 604 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 605 MF.getContext(), Subtarget) 606 : WebAssembly::getOrCreateFunctionTableSymbol( 607 MF.getContext(), Subtarget); 608 if (Subtarget->hasReferenceTypes()) { 609 MIB.addSym(Table); 610 } else { 611 // For the MVP there is at most one table whose number is 0, but we can't 612 // write a table symbol or issue relocations. Instead we just ensure the 613 // table is live and write a zero. 614 Table->setNoStrip(); 615 MIB.addImm(0); 616 } 617 } 618 619 for (auto Use : CallParams.uses()) 620 MIB.add(Use); 621 622 BB->insert(CallResults.getIterator(), MIB); 623 CallParams.eraseFromParent(); 624 CallResults.eraseFromParent(); 625 626 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 627 // table slot with ref.null upon call_indirect return. 628 // 629 // This generates the following code, which comes right after a call_indirect 630 // of a funcref: 631 // 632 // i32.const 0 633 // ref.null func 634 // table.set __funcref_call_table 635 if (IsIndirect && IsFuncrefCall) { 636 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 637 MF.getContext(), Subtarget); 638 Register RegZero = 639 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 640 MachineInstr *Const0 = 641 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 642 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 643 644 Register RegFuncref = 645 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 646 MachineInstr *RefNull = 647 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 648 BB->insertAfter(Const0->getIterator(), RefNull); 649 650 MachineInstr *TableSet = 651 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 652 .addSym(Table) 653 .addReg(RegZero) 654 .addReg(RegFuncref); 655 BB->insertAfter(RefNull->getIterator(), TableSet); 656 } 657 658 return BB; 659 } 660 661 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 662 MachineInstr &MI, MachineBasicBlock *BB) const { 663 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 664 DebugLoc DL = MI.getDebugLoc(); 665 666 switch (MI.getOpcode()) { 667 default: 668 llvm_unreachable("Unexpected instr type to insert"); 669 case WebAssembly::FP_TO_SINT_I32_F32: 670 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 671 WebAssembly::I32_TRUNC_S_F32); 672 case WebAssembly::FP_TO_UINT_I32_F32: 673 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 674 WebAssembly::I32_TRUNC_U_F32); 675 case WebAssembly::FP_TO_SINT_I64_F32: 676 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 677 WebAssembly::I64_TRUNC_S_F32); 678 case WebAssembly::FP_TO_UINT_I64_F32: 679 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 680 WebAssembly::I64_TRUNC_U_F32); 681 case WebAssembly::FP_TO_SINT_I32_F64: 682 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 683 WebAssembly::I32_TRUNC_S_F64); 684 case WebAssembly::FP_TO_UINT_I32_F64: 685 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 686 WebAssembly::I32_TRUNC_U_F64); 687 case WebAssembly::FP_TO_SINT_I64_F64: 688 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 689 WebAssembly::I64_TRUNC_S_F64); 690 case WebAssembly::FP_TO_UINT_I64_F64: 691 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 692 WebAssembly::I64_TRUNC_U_F64); 693 case WebAssembly::CALL_RESULTS: 694 case WebAssembly::RET_CALL_RESULTS: 695 return LowerCallResults(MI, DL, BB, Subtarget, TII); 696 } 697 } 698 699 const char * 700 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 701 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 702 case WebAssemblyISD::FIRST_NUMBER: 703 case WebAssemblyISD::FIRST_MEM_OPCODE: 704 break; 705 #define HANDLE_NODETYPE(NODE) \ 706 case WebAssemblyISD::NODE: \ 707 return "WebAssemblyISD::" #NODE; 708 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 709 #include "WebAssemblyISD.def" 710 #undef HANDLE_MEM_NODETYPE 711 #undef HANDLE_NODETYPE 712 } 713 return nullptr; 714 } 715 716 std::pair<unsigned, const TargetRegisterClass *> 717 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 718 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 719 // First, see if this is a constraint that directly corresponds to a 720 // WebAssembly register class. 721 if (Constraint.size() == 1) { 722 switch (Constraint[0]) { 723 case 'r': 724 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 725 if (Subtarget->hasSIMD128() && VT.isVector()) { 726 if (VT.getSizeInBits() == 128) 727 return std::make_pair(0U, &WebAssembly::V128RegClass); 728 } 729 if (VT.isInteger() && !VT.isVector()) { 730 if (VT.getSizeInBits() <= 32) 731 return std::make_pair(0U, &WebAssembly::I32RegClass); 732 if (VT.getSizeInBits() <= 64) 733 return std::make_pair(0U, &WebAssembly::I64RegClass); 734 } 735 if (VT.isFloatingPoint() && !VT.isVector()) { 736 switch (VT.getSizeInBits()) { 737 case 32: 738 return std::make_pair(0U, &WebAssembly::F32RegClass); 739 case 64: 740 return std::make_pair(0U, &WebAssembly::F64RegClass); 741 default: 742 break; 743 } 744 } 745 break; 746 default: 747 break; 748 } 749 } 750 751 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 752 } 753 754 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 755 // Assume ctz is a relatively cheap operation. 756 return true; 757 } 758 759 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 760 // Assume clz is a relatively cheap operation. 761 return true; 762 } 763 764 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 765 const AddrMode &AM, 766 Type *Ty, unsigned AS, 767 Instruction *I) const { 768 // WebAssembly offsets are added as unsigned without wrapping. The 769 // isLegalAddressingMode gives us no way to determine if wrapping could be 770 // happening, so we approximate this by accepting only non-negative offsets. 771 if (AM.BaseOffs < 0) 772 return false; 773 774 // WebAssembly has no scale register operands. 775 if (AM.Scale != 0) 776 return false; 777 778 // Everything else is legal. 779 return true; 780 } 781 782 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 783 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 784 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 785 // WebAssembly supports unaligned accesses, though it should be declared 786 // with the p2align attribute on loads and stores which do so, and there 787 // may be a performance impact. We tell LLVM they're "fast" because 788 // for the kinds of things that LLVM uses this for (merging adjacent stores 789 // of constants, etc.), WebAssembly implementations will either want the 790 // unaligned access or they'll split anyway. 791 if (Fast) 792 *Fast = true; 793 return true; 794 } 795 796 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 797 AttributeList Attr) const { 798 // The current thinking is that wasm engines will perform this optimization, 799 // so we can save on code size. 800 return true; 801 } 802 803 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 804 EVT ExtT = ExtVal.getValueType(); 805 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 806 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 807 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 808 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 809 } 810 811 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 812 const GlobalAddressSDNode *GA) const { 813 // Wasm doesn't support function addresses with offsets 814 const GlobalValue *GV = GA->getGlobal(); 815 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 816 } 817 818 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 819 LLVMContext &C, 820 EVT VT) const { 821 if (VT.isVector()) 822 return VT.changeVectorElementTypeToInteger(); 823 824 // So far, all branch instructions in Wasm take an I32 condition. 825 // The default TargetLowering::getSetCCResultType returns the pointer size, 826 // which would be useful to reduce instruction counts when testing 827 // against 64-bit pointers/values if at some point Wasm supports that. 828 return EVT::getIntegerVT(C, 32); 829 } 830 831 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 832 const CallInst &I, 833 MachineFunction &MF, 834 unsigned Intrinsic) const { 835 switch (Intrinsic) { 836 case Intrinsic::wasm_memory_atomic_notify: 837 Info.opc = ISD::INTRINSIC_W_CHAIN; 838 Info.memVT = MVT::i32; 839 Info.ptrVal = I.getArgOperand(0); 840 Info.offset = 0; 841 Info.align = Align(4); 842 // atomic.notify instruction does not really load the memory specified with 843 // this argument, but MachineMemOperand should either be load or store, so 844 // we set this to a load. 845 // FIXME Volatile isn't really correct, but currently all LLVM atomic 846 // instructions are treated as volatiles in the backend, so we should be 847 // consistent. The same applies for wasm_atomic_wait intrinsics too. 848 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 849 return true; 850 case Intrinsic::wasm_memory_atomic_wait32: 851 Info.opc = ISD::INTRINSIC_W_CHAIN; 852 Info.memVT = MVT::i32; 853 Info.ptrVal = I.getArgOperand(0); 854 Info.offset = 0; 855 Info.align = Align(4); 856 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 857 return true; 858 case Intrinsic::wasm_memory_atomic_wait64: 859 Info.opc = ISD::INTRINSIC_W_CHAIN; 860 Info.memVT = MVT::i64; 861 Info.ptrVal = I.getArgOperand(0); 862 Info.offset = 0; 863 Info.align = Align(8); 864 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 865 return true; 866 default: 867 return false; 868 } 869 } 870 871 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 872 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 873 const SelectionDAG &DAG, unsigned Depth) const { 874 switch (Op.getOpcode()) { 875 default: 876 break; 877 case ISD::INTRINSIC_WO_CHAIN: { 878 unsigned IntNo = Op.getConstantOperandVal(0); 879 switch (IntNo) { 880 default: 881 break; 882 case Intrinsic::wasm_bitmask: { 883 unsigned BitWidth = Known.getBitWidth(); 884 EVT VT = Op.getOperand(1).getSimpleValueType(); 885 unsigned PossibleBits = VT.getVectorNumElements(); 886 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 887 Known.Zero |= ZeroMask; 888 break; 889 } 890 } 891 } 892 } 893 } 894 895 TargetLoweringBase::LegalizeTypeAction 896 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 897 if (VT.isFixedLengthVector()) { 898 MVT EltVT = VT.getVectorElementType(); 899 // We have legal vector types with these lane types, so widening the 900 // vector would let us use some of the lanes directly without having to 901 // extend or truncate values. 902 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 903 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 904 return TypeWidenVector; 905 } 906 907 return TargetLoweringBase::getPreferredVectorAction(VT); 908 } 909 910 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( 911 SDValue Op, const TargetLoweringOpt &TLO) const { 912 // ISel process runs DAGCombiner after legalization; this step is called 913 // SelectionDAG optimization phase. This post-legalization combining process 914 // runs DAGCombiner on each node, and if there was a change to be made, 915 // re-runs legalization again on it and its user nodes to make sure 916 // everythiing is in a legalized state. 917 // 918 // The legalization calls lowering routines, and we do our custom lowering for 919 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements 920 // into zeros. But there is a set of routines in DAGCombiner that turns unused 921 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts 922 // turns unused vector elements into undefs. But this routine does not work 923 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This 924 // combination can result in a infinite loop, in which undefs are converted to 925 // zeros in legalization and back to undefs in combining. 926 // 927 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from 928 // running for build_vectors. 929 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) 930 return false; 931 return true; 932 } 933 934 //===----------------------------------------------------------------------===// 935 // WebAssembly Lowering private implementation. 936 //===----------------------------------------------------------------------===// 937 938 //===----------------------------------------------------------------------===// 939 // Lowering Code 940 //===----------------------------------------------------------------------===// 941 942 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 943 MachineFunction &MF = DAG.getMachineFunction(); 944 DAG.getContext()->diagnose( 945 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 946 } 947 948 // Test whether the given calling convention is supported. 949 static bool callingConvSupported(CallingConv::ID CallConv) { 950 // We currently support the language-independent target-independent 951 // conventions. We don't yet have a way to annotate calls with properties like 952 // "cold", and we don't have any call-clobbered registers, so these are mostly 953 // all handled the same. 954 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 955 CallConv == CallingConv::Cold || 956 CallConv == CallingConv::PreserveMost || 957 CallConv == CallingConv::PreserveAll || 958 CallConv == CallingConv::CXX_FAST_TLS || 959 CallConv == CallingConv::WASM_EmscriptenInvoke || 960 CallConv == CallingConv::Swift; 961 } 962 963 SDValue 964 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 965 SmallVectorImpl<SDValue> &InVals) const { 966 SelectionDAG &DAG = CLI.DAG; 967 SDLoc DL = CLI.DL; 968 SDValue Chain = CLI.Chain; 969 SDValue Callee = CLI.Callee; 970 MachineFunction &MF = DAG.getMachineFunction(); 971 auto Layout = MF.getDataLayout(); 972 973 CallingConv::ID CallConv = CLI.CallConv; 974 if (!callingConvSupported(CallConv)) 975 fail(DL, DAG, 976 "WebAssembly doesn't support language-specific or target-specific " 977 "calling conventions yet"); 978 if (CLI.IsPatchPoint) 979 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 980 981 if (CLI.IsTailCall) { 982 auto NoTail = [&](const char *Msg) { 983 if (CLI.CB && CLI.CB->isMustTailCall()) 984 fail(DL, DAG, Msg); 985 CLI.IsTailCall = false; 986 }; 987 988 if (!Subtarget->hasTailCall()) 989 NoTail("WebAssembly 'tail-call' feature not enabled"); 990 991 // Varargs calls cannot be tail calls because the buffer is on the stack 992 if (CLI.IsVarArg) 993 NoTail("WebAssembly does not support varargs tail calls"); 994 995 // Do not tail call unless caller and callee return types match 996 const Function &F = MF.getFunction(); 997 const TargetMachine &TM = getTargetMachine(); 998 Type *RetTy = F.getReturnType(); 999 SmallVector<MVT, 4> CallerRetTys; 1000 SmallVector<MVT, 4> CalleeRetTys; 1001 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 1002 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 1003 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 1004 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 1005 CalleeRetTys.begin()); 1006 if (!TypesMatch) 1007 NoTail("WebAssembly tail call requires caller and callee return types to " 1008 "match"); 1009 1010 // If pointers to local stack values are passed, we cannot tail call 1011 if (CLI.CB) { 1012 for (auto &Arg : CLI.CB->args()) { 1013 Value *Val = Arg.get(); 1014 // Trace the value back through pointer operations 1015 while (true) { 1016 Value *Src = Val->stripPointerCastsAndAliases(); 1017 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 1018 Src = GEP->getPointerOperand(); 1019 if (Val == Src) 1020 break; 1021 Val = Src; 1022 } 1023 if (isa<AllocaInst>(Val)) { 1024 NoTail( 1025 "WebAssembly does not support tail calling with stack arguments"); 1026 break; 1027 } 1028 } 1029 } 1030 } 1031 1032 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1033 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1034 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1035 1036 // The generic code may have added an sret argument. If we're lowering an 1037 // invoke function, the ABI requires that the function pointer be the first 1038 // argument, so we may have to swap the arguments. 1039 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1040 Outs[0].Flags.isSRet()) { 1041 std::swap(Outs[0], Outs[1]); 1042 std::swap(OutVals[0], OutVals[1]); 1043 } 1044 1045 bool HasSwiftSelfArg = false; 1046 bool HasSwiftErrorArg = false; 1047 unsigned NumFixedArgs = 0; 1048 for (unsigned I = 0; I < Outs.size(); ++I) { 1049 const ISD::OutputArg &Out = Outs[I]; 1050 SDValue &OutVal = OutVals[I]; 1051 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1052 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1053 if (Out.Flags.isNest()) 1054 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1055 if (Out.Flags.isInAlloca()) 1056 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1057 if (Out.Flags.isInConsecutiveRegs()) 1058 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1059 if (Out.Flags.isInConsecutiveRegsLast()) 1060 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1061 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1062 auto &MFI = MF.getFrameInfo(); 1063 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1064 Out.Flags.getNonZeroByValAlign(), 1065 /*isSS=*/false); 1066 SDValue SizeNode = 1067 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1068 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1069 Chain = DAG.getMemcpy( 1070 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1071 /*isVolatile*/ false, /*AlwaysInline=*/false, 1072 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1073 OutVal = FINode; 1074 } 1075 // Count the number of fixed args *after* legalization. 1076 NumFixedArgs += Out.IsFixed; 1077 } 1078 1079 bool IsVarArg = CLI.IsVarArg; 1080 auto PtrVT = getPointerTy(Layout); 1081 1082 // For swiftcc, emit additional swiftself and swifterror arguments 1083 // if there aren't. These additional arguments are also added for callee 1084 // signature They are necessary to match callee and caller signature for 1085 // indirect call. 1086 if (CallConv == CallingConv::Swift) { 1087 if (!HasSwiftSelfArg) { 1088 NumFixedArgs++; 1089 ISD::OutputArg Arg; 1090 Arg.Flags.setSwiftSelf(); 1091 CLI.Outs.push_back(Arg); 1092 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1093 CLI.OutVals.push_back(ArgVal); 1094 } 1095 if (!HasSwiftErrorArg) { 1096 NumFixedArgs++; 1097 ISD::OutputArg Arg; 1098 Arg.Flags.setSwiftError(); 1099 CLI.Outs.push_back(Arg); 1100 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1101 CLI.OutVals.push_back(ArgVal); 1102 } 1103 } 1104 1105 // Analyze operands of the call, assigning locations to each operand. 1106 SmallVector<CCValAssign, 16> ArgLocs; 1107 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1108 1109 if (IsVarArg) { 1110 // Outgoing non-fixed arguments are placed in a buffer. First 1111 // compute their offsets and the total amount of buffer space needed. 1112 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1113 const ISD::OutputArg &Out = Outs[I]; 1114 SDValue &Arg = OutVals[I]; 1115 EVT VT = Arg.getValueType(); 1116 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1117 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1118 Align Alignment = 1119 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1120 unsigned Offset = 1121 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1122 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1123 Offset, VT.getSimpleVT(), 1124 CCValAssign::Full)); 1125 } 1126 } 1127 1128 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1129 1130 SDValue FINode; 1131 if (IsVarArg && NumBytes) { 1132 // For non-fixed arguments, next emit stores to store the argument values 1133 // to the stack buffer at the offsets computed above. 1134 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1135 Layout.getStackAlignment(), 1136 /*isSS=*/false); 1137 unsigned ValNo = 0; 1138 SmallVector<SDValue, 8> Chains; 1139 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1140 assert(ArgLocs[ValNo].getValNo() == ValNo && 1141 "ArgLocs should remain in order and only hold varargs args"); 1142 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1143 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1144 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1145 DAG.getConstant(Offset, DL, PtrVT)); 1146 Chains.push_back( 1147 DAG.getStore(Chain, DL, Arg, Add, 1148 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1149 } 1150 if (!Chains.empty()) 1151 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1152 } else if (IsVarArg) { 1153 FINode = DAG.getIntPtrConstant(0, DL); 1154 } 1155 1156 if (Callee->getOpcode() == ISD::GlobalAddress) { 1157 // If the callee is a GlobalAddress node (quite common, every direct call 1158 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1159 // doesn't at MO_GOT which is not needed for direct calls. 1160 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee); 1161 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1162 getPointerTy(DAG.getDataLayout()), 1163 GA->getOffset()); 1164 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1165 getPointerTy(DAG.getDataLayout()), Callee); 1166 } 1167 1168 // Compute the operands for the CALLn node. 1169 SmallVector<SDValue, 16> Ops; 1170 Ops.push_back(Chain); 1171 Ops.push_back(Callee); 1172 1173 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1174 // isn't reliable. 1175 Ops.append(OutVals.begin(), 1176 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1177 // Add a pointer to the vararg buffer. 1178 if (IsVarArg) 1179 Ops.push_back(FINode); 1180 1181 SmallVector<EVT, 8> InTys; 1182 for (const auto &In : Ins) { 1183 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1184 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1185 if (In.Flags.isInAlloca()) 1186 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1187 if (In.Flags.isInConsecutiveRegs()) 1188 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1189 if (In.Flags.isInConsecutiveRegsLast()) 1190 fail(DL, DAG, 1191 "WebAssembly hasn't implemented cons regs last return values"); 1192 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1193 // registers. 1194 InTys.push_back(In.VT); 1195 } 1196 1197 // Lastly, if this is a call to a funcref we need to add an instruction 1198 // table.set to the chain and transform the call. 1199 if (CLI.CB && 1200 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1201 // In the absence of function references proposal where a funcref call is 1202 // lowered to call_ref, using reference types we generate a table.set to set 1203 // the funcref to a special table used solely for this purpose, followed by 1204 // a call_indirect. Here we just generate the table set, and return the 1205 // SDValue of the table.set so that LowerCall can finalize the lowering by 1206 // generating the call_indirect. 1207 SDValue Chain = Ops[0]; 1208 1209 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1210 MF.getContext(), Subtarget); 1211 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1212 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1213 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1214 SDValue TableSet = DAG.getMemIntrinsicNode( 1215 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1216 MVT::funcref, 1217 // Machine Mem Operand args 1218 MachinePointerInfo( 1219 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1220 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1221 MachineMemOperand::MOStore); 1222 1223 Ops[0] = TableSet; // The new chain is the TableSet itself 1224 } 1225 1226 if (CLI.IsTailCall) { 1227 // ret_calls do not return values to the current frame 1228 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1229 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1230 } 1231 1232 InTys.push_back(MVT::Other); 1233 SDVTList InTyList = DAG.getVTList(InTys); 1234 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1235 1236 for (size_t I = 0; I < Ins.size(); ++I) 1237 InVals.push_back(Res.getValue(I)); 1238 1239 // Return the chain 1240 return Res.getValue(Ins.size()); 1241 } 1242 1243 bool WebAssemblyTargetLowering::CanLowerReturn( 1244 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1245 const SmallVectorImpl<ISD::OutputArg> &Outs, 1246 LLVMContext & /*Context*/) const { 1247 // WebAssembly can only handle returning tuples with multivalue enabled 1248 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1249 } 1250 1251 SDValue WebAssemblyTargetLowering::LowerReturn( 1252 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1253 const SmallVectorImpl<ISD::OutputArg> &Outs, 1254 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1255 SelectionDAG &DAG) const { 1256 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1257 "MVP WebAssembly can only return up to one value"); 1258 if (!callingConvSupported(CallConv)) 1259 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1260 1261 SmallVector<SDValue, 4> RetOps(1, Chain); 1262 RetOps.append(OutVals.begin(), OutVals.end()); 1263 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1264 1265 // Record the number and types of the return values. 1266 for (const ISD::OutputArg &Out : Outs) { 1267 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1268 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1269 assert(Out.IsFixed && "non-fixed return value is not valid"); 1270 if (Out.Flags.isInAlloca()) 1271 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1272 if (Out.Flags.isInConsecutiveRegs()) 1273 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1274 if (Out.Flags.isInConsecutiveRegsLast()) 1275 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1276 } 1277 1278 return Chain; 1279 } 1280 1281 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1282 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1283 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1284 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1285 if (!callingConvSupported(CallConv)) 1286 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1287 1288 MachineFunction &MF = DAG.getMachineFunction(); 1289 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1290 1291 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1292 // of the incoming values before they're represented by virtual registers. 1293 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1294 1295 bool HasSwiftErrorArg = false; 1296 bool HasSwiftSelfArg = false; 1297 for (const ISD::InputArg &In : Ins) { 1298 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1299 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1300 if (In.Flags.isInAlloca()) 1301 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1302 if (In.Flags.isNest()) 1303 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1304 if (In.Flags.isInConsecutiveRegs()) 1305 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1306 if (In.Flags.isInConsecutiveRegsLast()) 1307 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1308 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1309 // registers. 1310 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1311 DAG.getTargetConstant(InVals.size(), 1312 DL, MVT::i32)) 1313 : DAG.getUNDEF(In.VT)); 1314 1315 // Record the number and types of arguments. 1316 MFI->addParam(In.VT); 1317 } 1318 1319 // For swiftcc, emit additional swiftself and swifterror arguments 1320 // if there aren't. These additional arguments are also added for callee 1321 // signature They are necessary to match callee and caller signature for 1322 // indirect call. 1323 auto PtrVT = getPointerTy(MF.getDataLayout()); 1324 if (CallConv == CallingConv::Swift) { 1325 if (!HasSwiftSelfArg) { 1326 MFI->addParam(PtrVT); 1327 } 1328 if (!HasSwiftErrorArg) { 1329 MFI->addParam(PtrVT); 1330 } 1331 } 1332 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1333 // the buffer is passed as an argument. 1334 if (IsVarArg) { 1335 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1336 Register VarargVreg = 1337 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1338 MFI->setVarargBufferVreg(VarargVreg); 1339 Chain = DAG.getCopyToReg( 1340 Chain, DL, VarargVreg, 1341 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1342 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1343 MFI->addParam(PtrVT); 1344 } 1345 1346 // Record the number and types of arguments and results. 1347 SmallVector<MVT, 4> Params; 1348 SmallVector<MVT, 4> Results; 1349 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1350 MF.getFunction(), DAG.getTarget(), Params, Results); 1351 for (MVT VT : Results) 1352 MFI->addResult(VT); 1353 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1354 // the param logic here with ComputeSignatureVTs 1355 assert(MFI->getParams().size() == Params.size() && 1356 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1357 Params.begin())); 1358 1359 return Chain; 1360 } 1361 1362 void WebAssemblyTargetLowering::ReplaceNodeResults( 1363 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1364 switch (N->getOpcode()) { 1365 case ISD::SIGN_EXTEND_INREG: 1366 // Do not add any results, signifying that N should not be custom lowered 1367 // after all. This happens because simd128 turns on custom lowering for 1368 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1369 // illegal type. 1370 break; 1371 default: 1372 llvm_unreachable( 1373 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1374 } 1375 } 1376 1377 //===----------------------------------------------------------------------===// 1378 // Custom lowering hooks. 1379 //===----------------------------------------------------------------------===// 1380 1381 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1382 SelectionDAG &DAG) const { 1383 SDLoc DL(Op); 1384 switch (Op.getOpcode()) { 1385 default: 1386 llvm_unreachable("unimplemented operation lowering"); 1387 return SDValue(); 1388 case ISD::FrameIndex: 1389 return LowerFrameIndex(Op, DAG); 1390 case ISD::GlobalAddress: 1391 return LowerGlobalAddress(Op, DAG); 1392 case ISD::GlobalTLSAddress: 1393 return LowerGlobalTLSAddress(Op, DAG); 1394 case ISD::ExternalSymbol: 1395 return LowerExternalSymbol(Op, DAG); 1396 case ISD::JumpTable: 1397 return LowerJumpTable(Op, DAG); 1398 case ISD::BR_JT: 1399 return LowerBR_JT(Op, DAG); 1400 case ISD::VASTART: 1401 return LowerVASTART(Op, DAG); 1402 case ISD::BlockAddress: 1403 case ISD::BRIND: 1404 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1405 return SDValue(); 1406 case ISD::RETURNADDR: 1407 return LowerRETURNADDR(Op, DAG); 1408 case ISD::FRAMEADDR: 1409 return LowerFRAMEADDR(Op, DAG); 1410 case ISD::CopyToReg: 1411 return LowerCopyToReg(Op, DAG); 1412 case ISD::EXTRACT_VECTOR_ELT: 1413 case ISD::INSERT_VECTOR_ELT: 1414 return LowerAccessVectorElement(Op, DAG); 1415 case ISD::INTRINSIC_VOID: 1416 case ISD::INTRINSIC_WO_CHAIN: 1417 case ISD::INTRINSIC_W_CHAIN: 1418 return LowerIntrinsic(Op, DAG); 1419 case ISD::SIGN_EXTEND_INREG: 1420 return LowerSIGN_EXTEND_INREG(Op, DAG); 1421 case ISD::BUILD_VECTOR: 1422 return LowerBUILD_VECTOR(Op, DAG); 1423 case ISD::VECTOR_SHUFFLE: 1424 return LowerVECTOR_SHUFFLE(Op, DAG); 1425 case ISD::SETCC: 1426 return LowerSETCC(Op, DAG); 1427 case ISD::SHL: 1428 case ISD::SRA: 1429 case ISD::SRL: 1430 return LowerShift(Op, DAG); 1431 case ISD::FP_TO_SINT_SAT: 1432 case ISD::FP_TO_UINT_SAT: 1433 return LowerFP_TO_INT_SAT(Op, DAG); 1434 case ISD::LOAD: 1435 return LowerLoad(Op, DAG); 1436 case ISD::STORE: 1437 return LowerStore(Op, DAG); 1438 case ISD::CTPOP: 1439 case ISD::CTLZ: 1440 case ISD::CTTZ: 1441 return DAG.UnrollVectorOp(Op.getNode()); 1442 } 1443 } 1444 1445 static bool IsWebAssemblyGlobal(SDValue Op) { 1446 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1447 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1448 1449 return false; 1450 } 1451 1452 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1453 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1454 if (!FI) 1455 return None; 1456 1457 auto &MF = DAG.getMachineFunction(); 1458 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1459 } 1460 1461 static bool IsWebAssemblyTable(SDValue Op) { 1462 const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 1463 if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) { 1464 const GlobalValue *Value = GA->getGlobal(); 1465 const Type *Ty = Value->getValueType(); 1466 1467 if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType())) 1468 return true; 1469 } 1470 return false; 1471 } 1472 1473 // This function will accept as Op any access to a table, so Op can 1474 // be the actual table or an offset into the table. 1475 static bool IsWebAssemblyTableWithOffset(SDValue Op) { 1476 if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2) 1477 return (Op->getOperand(1).getSimpleValueType() == MVT::i32 && 1478 IsWebAssemblyTableWithOffset(Op->getOperand(0))) || 1479 (Op->getOperand(0).getSimpleValueType() == MVT::i32 && 1480 IsWebAssemblyTableWithOffset(Op->getOperand(1))); 1481 1482 return IsWebAssemblyTable(Op); 1483 } 1484 1485 // Helper for table pattern matching used in LowerStore and LowerLoad 1486 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG, 1487 const SDLoc &DL, 1488 const SDValue &Base, 1489 GlobalAddressSDNode *&GA, 1490 SDValue &Idx) const { 1491 // We expect the following graph for a load of the form: 1492 // table[<var> + <constant offset>] 1493 // 1494 // Case 1: 1495 // externref = load t1 1496 // t1: i32 = add t2, i32:<constant offset> 1497 // t2: i32 = add tX, table 1498 // 1499 // This is in some cases simplified to just: 1500 // Case 2: 1501 // externref = load t1 1502 // t1: i32 = add t2, i32:tX 1503 // 1504 // So, unfortunately we need to check for both cases and if we are in the 1505 // first case extract the table GlobalAddressNode and build a new node tY 1506 // that's tY: i32 = add i32:<constant offset>, i32:tX 1507 // 1508 if (IsWebAssemblyTable(Base)) { 1509 GA = cast<GlobalAddressSDNode>(Base); 1510 Idx = DAG.getConstant(0, DL, MVT::i32); 1511 } else { 1512 GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0)); 1513 if (GA) { 1514 // We are in Case 2 above. 1515 Idx = Base->getOperand(1); 1516 assert(GA->getNumValues() == 1); 1517 } else { 1518 // This might be Case 1 above (or an error) 1519 SDValue V = Base->getOperand(0); 1520 GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1)); 1521 1522 if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA) 1523 return false; 1524 1525 SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1), 1526 V->getOperand(0)); 1527 Idx = IdxV; 1528 } 1529 } 1530 1531 return true; 1532 } 1533 1534 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1535 SelectionDAG &DAG) const { 1536 SDLoc DL(Op); 1537 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1538 const SDValue &Value = SN->getValue(); 1539 const SDValue &Base = SN->getBasePtr(); 1540 const SDValue &Offset = SN->getOffset(); 1541 1542 if (IsWebAssemblyTableWithOffset(Base)) { 1543 if (!Offset->isUndef()) 1544 report_fatal_error( 1545 "unexpected offset when loading from webassembly table", false); 1546 1547 SDValue Idx; 1548 GlobalAddressSDNode *GA; 1549 1550 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1551 report_fatal_error("failed pattern matching for lowering table store", 1552 false); 1553 1554 SDVTList Tys = DAG.getVTList(MVT::Other); 1555 SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value}; 1556 SDValue TableSet = 1557 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps, 1558 SN->getMemoryVT(), SN->getMemOperand()); 1559 return TableSet; 1560 } 1561 1562 if (IsWebAssemblyGlobal(Base)) { 1563 if (!Offset->isUndef()) 1564 report_fatal_error("unexpected offset when storing to webassembly global", 1565 false); 1566 1567 SDVTList Tys = DAG.getVTList(MVT::Other); 1568 SDValue Ops[] = {SN->getChain(), Value, Base}; 1569 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1570 SN->getMemoryVT(), SN->getMemOperand()); 1571 } 1572 1573 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1574 if (!Offset->isUndef()) 1575 report_fatal_error("unexpected offset when storing to webassembly local", 1576 false); 1577 1578 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1579 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1580 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1581 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1582 } 1583 1584 return Op; 1585 } 1586 1587 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1588 SelectionDAG &DAG) const { 1589 SDLoc DL(Op); 1590 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1591 const SDValue &Base = LN->getBasePtr(); 1592 const SDValue &Offset = LN->getOffset(); 1593 1594 if (IsWebAssemblyTableWithOffset(Base)) { 1595 if (!Offset->isUndef()) 1596 report_fatal_error( 1597 "unexpected offset when loading from webassembly table", false); 1598 1599 GlobalAddressSDNode *GA; 1600 SDValue Idx; 1601 1602 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1603 report_fatal_error("failed pattern matching for lowering table load", 1604 false); 1605 1606 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1607 SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx}; 1608 SDValue TableGet = 1609 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps, 1610 LN->getMemoryVT(), LN->getMemOperand()); 1611 return TableGet; 1612 } 1613 1614 if (IsWebAssemblyGlobal(Base)) { 1615 if (!Offset->isUndef()) 1616 report_fatal_error( 1617 "unexpected offset when loading from webassembly global", false); 1618 1619 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1620 SDValue Ops[] = {LN->getChain(), Base}; 1621 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1622 LN->getMemoryVT(), LN->getMemOperand()); 1623 } 1624 1625 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1626 if (!Offset->isUndef()) 1627 report_fatal_error( 1628 "unexpected offset when loading from webassembly local", false); 1629 1630 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1631 EVT LocalVT = LN->getValueType(0); 1632 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1633 {LN->getChain(), Idx}); 1634 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1635 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1636 return Result; 1637 } 1638 1639 return Op; 1640 } 1641 1642 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1643 SelectionDAG &DAG) const { 1644 SDValue Src = Op.getOperand(2); 1645 if (isa<FrameIndexSDNode>(Src.getNode())) { 1646 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1647 // the FI to some LEA-like instruction, but since we don't have that, we 1648 // need to insert some kind of instruction that can take an FI operand and 1649 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1650 // local.copy between Op and its FI operand. 1651 SDValue Chain = Op.getOperand(0); 1652 SDLoc DL(Op); 1653 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1654 EVT VT = Src.getValueType(); 1655 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1656 : WebAssembly::COPY_I64, 1657 DL, VT, Src), 1658 0); 1659 return Op.getNode()->getNumValues() == 1 1660 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1661 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1662 Op.getNumOperands() == 4 ? Op.getOperand(3) 1663 : SDValue()); 1664 } 1665 return SDValue(); 1666 } 1667 1668 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1669 SelectionDAG &DAG) const { 1670 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1671 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1672 } 1673 1674 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1675 SelectionDAG &DAG) const { 1676 SDLoc DL(Op); 1677 1678 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1679 fail(DL, DAG, 1680 "Non-Emscripten WebAssembly hasn't implemented " 1681 "__builtin_return_address"); 1682 return SDValue(); 1683 } 1684 1685 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1686 return SDValue(); 1687 1688 unsigned Depth = Op.getConstantOperandVal(0); 1689 MakeLibCallOptions CallOptions; 1690 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1691 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1692 .first; 1693 } 1694 1695 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1696 SelectionDAG &DAG) const { 1697 // Non-zero depths are not supported by WebAssembly currently. Use the 1698 // legalizer's default expansion, which is to return 0 (what this function is 1699 // documented to do). 1700 if (Op.getConstantOperandVal(0) > 0) 1701 return SDValue(); 1702 1703 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1704 EVT VT = Op.getValueType(); 1705 Register FP = 1706 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1707 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1708 } 1709 1710 SDValue 1711 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1712 SelectionDAG &DAG) const { 1713 SDLoc DL(Op); 1714 const auto *GA = cast<GlobalAddressSDNode>(Op); 1715 1716 MachineFunction &MF = DAG.getMachineFunction(); 1717 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1718 report_fatal_error("cannot use thread-local storage without bulk memory", 1719 false); 1720 1721 const GlobalValue *GV = GA->getGlobal(); 1722 1723 // Currently only Emscripten supports dynamic linking with threads. Therefore, 1724 // on other targets, if we have thread-local storage, only the local-exec 1725 // model is possible. 1726 auto model = Subtarget->getTargetTriple().isOSEmscripten() 1727 ? GV->getThreadLocalMode() 1728 : GlobalValue::LocalExecTLSModel; 1729 1730 // Unsupported TLS modes 1731 assert(model != GlobalValue::NotThreadLocal); 1732 assert(model != GlobalValue::InitialExecTLSModel); 1733 1734 if (model == GlobalValue::LocalExecTLSModel || 1735 model == GlobalValue::LocalDynamicTLSModel || 1736 (model == GlobalValue::GeneralDynamicTLSModel && 1737 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1738 // For DSO-local TLS variables we use offset from __tls_base 1739 1740 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1741 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1742 : WebAssembly::GLOBAL_GET_I32; 1743 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1744 1745 SDValue BaseAddr( 1746 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1747 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1748 0); 1749 1750 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1751 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1752 SDValue SymOffset = 1753 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1754 1755 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1756 } 1757 1758 assert(model == GlobalValue::GeneralDynamicTLSModel); 1759 1760 EVT VT = Op.getValueType(); 1761 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1762 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1763 GA->getOffset(), 1764 WebAssemblyII::MO_GOT_TLS)); 1765 } 1766 1767 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1768 SelectionDAG &DAG) const { 1769 SDLoc DL(Op); 1770 const auto *GA = cast<GlobalAddressSDNode>(Op); 1771 EVT VT = Op.getValueType(); 1772 assert(GA->getTargetFlags() == 0 && 1773 "Unexpected target flags on generic GlobalAddressSDNode"); 1774 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1775 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1776 1777 unsigned OperandFlags = 0; 1778 if (isPositionIndependent()) { 1779 const GlobalValue *GV = GA->getGlobal(); 1780 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1781 MachineFunction &MF = DAG.getMachineFunction(); 1782 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1783 const char *BaseName; 1784 if (GV->getValueType()->isFunctionTy()) { 1785 BaseName = MF.createExternalSymbolName("__table_base"); 1786 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1787 } else { 1788 BaseName = MF.createExternalSymbolName("__memory_base"); 1789 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1790 } 1791 SDValue BaseAddr = 1792 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1793 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1794 1795 SDValue SymAddr = DAG.getNode( 1796 WebAssemblyISD::WrapperREL, DL, VT, 1797 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1798 OperandFlags)); 1799 1800 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1801 } 1802 OperandFlags = WebAssemblyII::MO_GOT; 1803 } 1804 1805 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1806 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1807 GA->getOffset(), OperandFlags)); 1808 } 1809 1810 SDValue 1811 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1812 SelectionDAG &DAG) const { 1813 SDLoc DL(Op); 1814 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1815 EVT VT = Op.getValueType(); 1816 assert(ES->getTargetFlags() == 0 && 1817 "Unexpected target flags on generic ExternalSymbolSDNode"); 1818 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1819 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1820 } 1821 1822 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1823 SelectionDAG &DAG) const { 1824 // There's no need for a Wrapper node because we always incorporate a jump 1825 // table operand into a BR_TABLE instruction, rather than ever 1826 // materializing it in a register. 1827 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1828 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1829 JT->getTargetFlags()); 1830 } 1831 1832 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1833 SelectionDAG &DAG) const { 1834 SDLoc DL(Op); 1835 SDValue Chain = Op.getOperand(0); 1836 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1837 SDValue Index = Op.getOperand(2); 1838 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1839 1840 SmallVector<SDValue, 8> Ops; 1841 Ops.push_back(Chain); 1842 Ops.push_back(Index); 1843 1844 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1845 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1846 1847 // Add an operand for each case. 1848 for (auto MBB : MBBs) 1849 Ops.push_back(DAG.getBasicBlock(MBB)); 1850 1851 // Add the first MBB as a dummy default target for now. This will be replaced 1852 // with the proper default target (and the preceding range check eliminated) 1853 // if possible by WebAssemblyFixBrTableDefaults. 1854 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1855 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1856 } 1857 1858 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1859 SelectionDAG &DAG) const { 1860 SDLoc DL(Op); 1861 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1862 1863 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1864 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1865 1866 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1867 MFI->getVarargBufferVreg(), PtrVT); 1868 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1869 MachinePointerInfo(SV)); 1870 } 1871 1872 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1873 SelectionDAG &DAG) const { 1874 MachineFunction &MF = DAG.getMachineFunction(); 1875 unsigned IntNo; 1876 switch (Op.getOpcode()) { 1877 case ISD::INTRINSIC_VOID: 1878 case ISD::INTRINSIC_W_CHAIN: 1879 IntNo = Op.getConstantOperandVal(1); 1880 break; 1881 case ISD::INTRINSIC_WO_CHAIN: 1882 IntNo = Op.getConstantOperandVal(0); 1883 break; 1884 default: 1885 llvm_unreachable("Invalid intrinsic"); 1886 } 1887 SDLoc DL(Op); 1888 1889 switch (IntNo) { 1890 default: 1891 return SDValue(); // Don't custom lower most intrinsics. 1892 1893 case Intrinsic::wasm_lsda: { 1894 auto PtrVT = getPointerTy(MF.getDataLayout()); 1895 const char *SymName = MF.createExternalSymbolName( 1896 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1897 if (isPositionIndependent()) { 1898 SDValue Node = DAG.getTargetExternalSymbol( 1899 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1900 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1901 SDValue BaseAddr = 1902 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1903 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1904 SDValue SymAddr = 1905 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1906 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1907 } 1908 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1909 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1910 } 1911 1912 case Intrinsic::wasm_shuffle: { 1913 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1914 SDValue Ops[18]; 1915 size_t OpIdx = 0; 1916 Ops[OpIdx++] = Op.getOperand(1); 1917 Ops[OpIdx++] = Op.getOperand(2); 1918 while (OpIdx < 18) { 1919 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1920 if (MaskIdx.isUndef() || 1921 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1922 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1923 } else { 1924 Ops[OpIdx++] = MaskIdx; 1925 } 1926 } 1927 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1928 } 1929 } 1930 } 1931 1932 SDValue 1933 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1934 SelectionDAG &DAG) const { 1935 SDLoc DL(Op); 1936 // If sign extension operations are disabled, allow sext_inreg only if operand 1937 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1938 // extension operations, but allowing sext_inreg in this context lets us have 1939 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1940 // everywhere would be simpler in this file, but would necessitate large and 1941 // brittle patterns to undo the expansion and select extract_lane_s 1942 // instructions. 1943 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1944 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1945 return SDValue(); 1946 1947 const SDValue &Extract = Op.getOperand(0); 1948 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1949 if (VecT.getVectorElementType().getSizeInBits() > 32) 1950 return SDValue(); 1951 MVT ExtractedLaneT = 1952 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1953 MVT ExtractedVecT = 1954 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1955 if (ExtractedVecT == VecT) 1956 return Op; 1957 1958 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1959 const SDNode *Index = Extract.getOperand(1).getNode(); 1960 if (!isa<ConstantSDNode>(Index)) 1961 return SDValue(); 1962 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1963 unsigned Scale = 1964 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1965 assert(Scale > 1); 1966 SDValue NewIndex = 1967 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1968 SDValue NewExtract = DAG.getNode( 1969 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1970 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1971 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1972 Op.getOperand(1)); 1973 } 1974 1975 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1976 SDLoc DL(Op); 1977 if (Op.getValueType() != MVT::v2f64) 1978 return SDValue(); 1979 1980 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1981 unsigned &Index) -> bool { 1982 switch (Op.getOpcode()) { 1983 case ISD::SINT_TO_FP: 1984 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1985 break; 1986 case ISD::UINT_TO_FP: 1987 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1988 break; 1989 case ISD::FP_EXTEND: 1990 Opcode = WebAssemblyISD::PROMOTE_LOW; 1991 break; 1992 default: 1993 return false; 1994 } 1995 1996 auto ExtractVector = Op.getOperand(0); 1997 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1998 return false; 1999 2000 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 2001 return false; 2002 2003 SrcVec = ExtractVector.getOperand(0); 2004 Index = ExtractVector.getConstantOperandVal(1); 2005 return true; 2006 }; 2007 2008 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 2009 SDValue LHSSrcVec, RHSSrcVec; 2010 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 2011 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 2012 return SDValue(); 2013 2014 if (LHSOpcode != RHSOpcode) 2015 return SDValue(); 2016 2017 MVT ExpectedSrcVT; 2018 switch (LHSOpcode) { 2019 case WebAssemblyISD::CONVERT_LOW_S: 2020 case WebAssemblyISD::CONVERT_LOW_U: 2021 ExpectedSrcVT = MVT::v4i32; 2022 break; 2023 case WebAssemblyISD::PROMOTE_LOW: 2024 ExpectedSrcVT = MVT::v4f32; 2025 break; 2026 } 2027 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2028 return SDValue(); 2029 2030 auto Src = LHSSrcVec; 2031 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2032 // Shuffle the source vector so that the converted lanes are the low lanes. 2033 Src = DAG.getVectorShuffle( 2034 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2035 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2036 } 2037 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2038 } 2039 2040 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2041 SelectionDAG &DAG) const { 2042 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2043 return ConvertLow; 2044 2045 SDLoc DL(Op); 2046 const EVT VecT = Op.getValueType(); 2047 const EVT LaneT = Op.getOperand(0).getValueType(); 2048 const size_t Lanes = Op.getNumOperands(); 2049 bool CanSwizzle = VecT == MVT::v16i8; 2050 2051 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2052 // possible number of lanes at once followed by a sequence of replace_lane 2053 // instructions to individually initialize any remaining lanes. 2054 2055 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2056 // swizzled lanes should be given greater weight. 2057 2058 // TODO: Investigate looping rather than always extracting/replacing specific 2059 // lanes to fill gaps. 2060 2061 auto IsConstant = [](const SDValue &V) { 2062 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2063 }; 2064 2065 // Returns the source vector and index vector pair if they exist. Checks for: 2066 // (extract_vector_elt 2067 // $src, 2068 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2069 // ) 2070 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2071 auto Bail = std::make_pair(SDValue(), SDValue()); 2072 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2073 return Bail; 2074 const SDValue &SwizzleSrc = Lane->getOperand(0); 2075 const SDValue &IndexExt = Lane->getOperand(1); 2076 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2077 return Bail; 2078 const SDValue &Index = IndexExt->getOperand(0); 2079 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2080 return Bail; 2081 const SDValue &SwizzleIndices = Index->getOperand(0); 2082 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2083 SwizzleIndices.getValueType() != MVT::v16i8 || 2084 Index->getOperand(1)->getOpcode() != ISD::Constant || 2085 Index->getConstantOperandVal(1) != I) 2086 return Bail; 2087 return std::make_pair(SwizzleSrc, SwizzleIndices); 2088 }; 2089 2090 // If the lane is extracted from another vector at a constant index, return 2091 // that vector. The source vector must not have more lanes than the dest 2092 // because the shufflevector indices are in terms of the destination lanes and 2093 // would not be able to address the smaller individual source lanes. 2094 auto GetShuffleSrc = [&](const SDValue &Lane) { 2095 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2096 return SDValue(); 2097 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2098 return SDValue(); 2099 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2100 VecT.getVectorNumElements()) 2101 return SDValue(); 2102 return Lane->getOperand(0); 2103 }; 2104 2105 using ValueEntry = std::pair<SDValue, size_t>; 2106 SmallVector<ValueEntry, 16> SplatValueCounts; 2107 2108 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2109 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2110 2111 using ShuffleEntry = std::pair<SDValue, size_t>; 2112 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2113 2114 auto AddCount = [](auto &Counts, const auto &Val) { 2115 auto CountIt = 2116 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2117 if (CountIt == Counts.end()) { 2118 Counts.emplace_back(Val, 1); 2119 } else { 2120 CountIt->second++; 2121 } 2122 }; 2123 2124 auto GetMostCommon = [](auto &Counts) { 2125 auto CommonIt = 2126 std::max_element(Counts.begin(), Counts.end(), llvm::less_second()); 2127 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2128 return *CommonIt; 2129 }; 2130 2131 size_t NumConstantLanes = 0; 2132 2133 // Count eligible lanes for each type of vector creation op 2134 for (size_t I = 0; I < Lanes; ++I) { 2135 const SDValue &Lane = Op->getOperand(I); 2136 if (Lane.isUndef()) 2137 continue; 2138 2139 AddCount(SplatValueCounts, Lane); 2140 2141 if (IsConstant(Lane)) 2142 NumConstantLanes++; 2143 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2144 AddCount(ShuffleCounts, ShuffleSrc); 2145 if (CanSwizzle) { 2146 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2147 if (SwizzleSrcs.first) 2148 AddCount(SwizzleCounts, SwizzleSrcs); 2149 } 2150 } 2151 2152 SDValue SplatValue; 2153 size_t NumSplatLanes; 2154 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2155 2156 SDValue SwizzleSrc; 2157 SDValue SwizzleIndices; 2158 size_t NumSwizzleLanes = 0; 2159 if (SwizzleCounts.size()) 2160 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2161 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2162 2163 // Shuffles can draw from up to two vectors, so find the two most common 2164 // sources. 2165 SDValue ShuffleSrc1, ShuffleSrc2; 2166 size_t NumShuffleLanes = 0; 2167 if (ShuffleCounts.size()) { 2168 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2169 llvm::erase_if(ShuffleCounts, 2170 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2171 } 2172 if (ShuffleCounts.size()) { 2173 size_t AdditionalShuffleLanes; 2174 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2175 GetMostCommon(ShuffleCounts); 2176 NumShuffleLanes += AdditionalShuffleLanes; 2177 } 2178 2179 // Predicate returning true if the lane is properly initialized by the 2180 // original instruction 2181 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2182 SDValue Result; 2183 // Prefer swizzles over shuffles over vector consts over splats 2184 if (NumSwizzleLanes >= NumShuffleLanes && 2185 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2186 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2187 SwizzleIndices); 2188 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2189 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2190 return Swizzled == GetSwizzleSrcs(I, Lane); 2191 }; 2192 } else if (NumShuffleLanes >= NumConstantLanes && 2193 NumShuffleLanes >= NumSplatLanes) { 2194 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2195 size_t DestLaneCount = VecT.getVectorNumElements(); 2196 size_t Scale1 = 1; 2197 size_t Scale2 = 1; 2198 SDValue Src1 = ShuffleSrc1; 2199 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2200 if (Src1.getValueType() != VecT) { 2201 size_t LaneSize = 2202 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2203 assert(LaneSize > DestLaneSize); 2204 Scale1 = LaneSize / DestLaneSize; 2205 Src1 = DAG.getBitcast(VecT, Src1); 2206 } 2207 if (Src2.getValueType() != VecT) { 2208 size_t LaneSize = 2209 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2210 assert(LaneSize > DestLaneSize); 2211 Scale2 = LaneSize / DestLaneSize; 2212 Src2 = DAG.getBitcast(VecT, Src2); 2213 } 2214 2215 int Mask[16]; 2216 assert(DestLaneCount <= 16); 2217 for (size_t I = 0; I < DestLaneCount; ++I) { 2218 const SDValue &Lane = Op->getOperand(I); 2219 SDValue Src = GetShuffleSrc(Lane); 2220 if (Src == ShuffleSrc1) { 2221 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2222 } else if (Src && Src == ShuffleSrc2) { 2223 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2224 } else { 2225 Mask[I] = -1; 2226 } 2227 } 2228 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2229 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2230 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2231 auto Src = GetShuffleSrc(Lane); 2232 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2233 }; 2234 } else if (NumConstantLanes >= NumSplatLanes) { 2235 SmallVector<SDValue, 16> ConstLanes; 2236 for (const SDValue &Lane : Op->op_values()) { 2237 if (IsConstant(Lane)) { 2238 // Values may need to be fixed so that they will sign extend to be 2239 // within the expected range during ISel. Check whether the value is in 2240 // bounds based on the lane bit width and if it is out of bounds, lop 2241 // off the extra bits and subtract 2^n to reflect giving the high bit 2242 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2243 // cannot possibly be out of range. 2244 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2245 int64_t Val = Const ? Const->getSExtValue() : 0; 2246 uint64_t LaneBits = 128 / Lanes; 2247 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2248 "Unexpected out of bounds negative value"); 2249 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2250 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2251 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2252 } else { 2253 ConstLanes.push_back(Lane); 2254 } 2255 } else if (LaneT.isFloatingPoint()) { 2256 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2257 } else { 2258 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2259 } 2260 } 2261 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2262 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2263 return IsConstant(Lane); 2264 }; 2265 } else { 2266 // Use a splat, but possibly a load_splat 2267 LoadSDNode *SplattedLoad; 2268 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2269 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2270 Result = DAG.getMemIntrinsicNode( 2271 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2272 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2273 SplattedLoad->getOffset()}, 2274 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2275 } else { 2276 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2277 } 2278 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2279 return Lane == SplatValue; 2280 }; 2281 } 2282 2283 assert(Result); 2284 assert(IsLaneConstructed); 2285 2286 // Add replace_lane instructions for any unhandled values 2287 for (size_t I = 0; I < Lanes; ++I) { 2288 const SDValue &Lane = Op->getOperand(I); 2289 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2290 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2291 DAG.getConstant(I, DL, MVT::i32)); 2292 } 2293 2294 return Result; 2295 } 2296 2297 SDValue 2298 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2299 SelectionDAG &DAG) const { 2300 SDLoc DL(Op); 2301 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2302 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2303 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2304 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2305 2306 // Space for two vector args and sixteen mask indices 2307 SDValue Ops[18]; 2308 size_t OpIdx = 0; 2309 Ops[OpIdx++] = Op.getOperand(0); 2310 Ops[OpIdx++] = Op.getOperand(1); 2311 2312 // Expand mask indices to byte indices and materialize them as operands 2313 for (int M : Mask) { 2314 for (size_t J = 0; J < LaneBytes; ++J) { 2315 // Lower undefs (represented by -1 in mask) to zero 2316 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2317 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2318 } 2319 } 2320 2321 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2322 } 2323 2324 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2325 SelectionDAG &DAG) const { 2326 SDLoc DL(Op); 2327 // The legalizer does not know how to expand the unsupported comparison modes 2328 // of i64x2 vectors, so we manually unroll them here. 2329 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2330 SmallVector<SDValue, 2> LHS, RHS; 2331 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2332 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2333 const SDValue &CC = Op->getOperand(2); 2334 auto MakeLane = [&](unsigned I) { 2335 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2336 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2337 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2338 }; 2339 return DAG.getBuildVector(Op->getValueType(0), DL, 2340 {MakeLane(0), MakeLane(1)}); 2341 } 2342 2343 SDValue 2344 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2345 SelectionDAG &DAG) const { 2346 // Allow constant lane indices, expand variable lane indices 2347 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2348 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2349 return Op; 2350 else 2351 // Perform default expansion 2352 return SDValue(); 2353 } 2354 2355 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2356 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2357 // 32-bit and 64-bit unrolled shifts will have proper semantics 2358 if (LaneT.bitsGE(MVT::i32)) 2359 return DAG.UnrollVectorOp(Op.getNode()); 2360 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2361 SDLoc DL(Op); 2362 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2363 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2364 unsigned ShiftOpcode = Op.getOpcode(); 2365 SmallVector<SDValue, 16> ShiftedElements; 2366 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2367 SmallVector<SDValue, 16> ShiftElements; 2368 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2369 SmallVector<SDValue, 16> UnrolledOps; 2370 for (size_t i = 0; i < NumLanes; ++i) { 2371 SDValue MaskedShiftValue = 2372 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2373 SDValue ShiftedValue = ShiftedElements[i]; 2374 if (ShiftOpcode == ISD::SRA) 2375 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2376 ShiftedValue, DAG.getValueType(LaneT)); 2377 UnrolledOps.push_back( 2378 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2379 } 2380 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2381 } 2382 2383 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2384 SelectionDAG &DAG) const { 2385 SDLoc DL(Op); 2386 2387 // Only manually lower vector shifts 2388 assert(Op.getSimpleValueType().isVector()); 2389 2390 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2391 if (!ShiftVal) 2392 return unrollVectorShift(Op, DAG); 2393 2394 // Use anyext because none of the high bits can affect the shift 2395 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2396 2397 unsigned Opcode; 2398 switch (Op.getOpcode()) { 2399 case ISD::SHL: 2400 Opcode = WebAssemblyISD::VEC_SHL; 2401 break; 2402 case ISD::SRA: 2403 Opcode = WebAssemblyISD::VEC_SHR_S; 2404 break; 2405 case ISD::SRL: 2406 Opcode = WebAssemblyISD::VEC_SHR_U; 2407 break; 2408 default: 2409 llvm_unreachable("unexpected opcode"); 2410 } 2411 2412 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2413 } 2414 2415 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2416 SelectionDAG &DAG) const { 2417 SDLoc DL(Op); 2418 EVT ResT = Op.getValueType(); 2419 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2420 2421 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2422 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2423 return Op; 2424 2425 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2426 return Op; 2427 2428 return SDValue(); 2429 } 2430 2431 //===----------------------------------------------------------------------===// 2432 // Custom DAG combine hooks 2433 //===----------------------------------------------------------------------===// 2434 static SDValue 2435 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2436 auto &DAG = DCI.DAG; 2437 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2438 2439 // Hoist vector bitcasts that don't change the number of lanes out of unary 2440 // shuffles, where they are less likely to get in the way of other combines. 2441 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2442 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2443 SDValue Bitcast = N->getOperand(0); 2444 if (Bitcast.getOpcode() != ISD::BITCAST) 2445 return SDValue(); 2446 if (!N->getOperand(1).isUndef()) 2447 return SDValue(); 2448 SDValue CastOp = Bitcast.getOperand(0); 2449 MVT SrcType = CastOp.getSimpleValueType(); 2450 MVT DstType = Bitcast.getSimpleValueType(); 2451 if (!SrcType.is128BitVector() || 2452 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2453 return SDValue(); 2454 SDValue NewShuffle = DAG.getVectorShuffle( 2455 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2456 return DAG.getBitcast(DstType, NewShuffle); 2457 } 2458 2459 static SDValue 2460 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2461 auto &DAG = DCI.DAG; 2462 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2463 N->getOpcode() == ISD::ZERO_EXTEND); 2464 2465 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2466 // possible before the extract_subvector can be expanded. 2467 auto Extract = N->getOperand(0); 2468 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2469 return SDValue(); 2470 auto Source = Extract.getOperand(0); 2471 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2472 if (IndexNode == nullptr) 2473 return SDValue(); 2474 auto Index = IndexNode->getZExtValue(); 2475 2476 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2477 // extracted subvector is the low or high half of its source. 2478 EVT ResVT = N->getValueType(0); 2479 if (ResVT == MVT::v8i16) { 2480 if (Extract.getValueType() != MVT::v8i8 || 2481 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2482 return SDValue(); 2483 } else if (ResVT == MVT::v4i32) { 2484 if (Extract.getValueType() != MVT::v4i16 || 2485 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2486 return SDValue(); 2487 } else if (ResVT == MVT::v2i64) { 2488 if (Extract.getValueType() != MVT::v2i32 || 2489 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2490 return SDValue(); 2491 } else { 2492 return SDValue(); 2493 } 2494 2495 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2496 bool IsLow = Index == 0; 2497 2498 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2499 : WebAssemblyISD::EXTEND_HIGH_S) 2500 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2501 : WebAssemblyISD::EXTEND_HIGH_U); 2502 2503 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2504 } 2505 2506 static SDValue 2507 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2508 auto &DAG = DCI.DAG; 2509 2510 auto GetWasmConversionOp = [](unsigned Op) { 2511 switch (Op) { 2512 case ISD::FP_TO_SINT_SAT: 2513 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2514 case ISD::FP_TO_UINT_SAT: 2515 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2516 case ISD::FP_ROUND: 2517 return WebAssemblyISD::DEMOTE_ZERO; 2518 } 2519 llvm_unreachable("unexpected op"); 2520 }; 2521 2522 auto IsZeroSplat = [](SDValue SplatVal) { 2523 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2524 APInt SplatValue, SplatUndef; 2525 unsigned SplatBitSize; 2526 bool HasAnyUndefs; 2527 return Splat && 2528 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2529 HasAnyUndefs) && 2530 SplatValue == 0; 2531 }; 2532 2533 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2534 // Combine this: 2535 // 2536 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2537 // 2538 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2539 // 2540 // Or this: 2541 // 2542 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2543 // 2544 // into (f32x4.demote_zero_f64x2 $x). 2545 EVT ResVT; 2546 EVT ExpectedConversionType; 2547 auto Conversion = N->getOperand(0); 2548 auto ConversionOp = Conversion.getOpcode(); 2549 switch (ConversionOp) { 2550 case ISD::FP_TO_SINT_SAT: 2551 case ISD::FP_TO_UINT_SAT: 2552 ResVT = MVT::v4i32; 2553 ExpectedConversionType = MVT::v2i32; 2554 break; 2555 case ISD::FP_ROUND: 2556 ResVT = MVT::v4f32; 2557 ExpectedConversionType = MVT::v2f32; 2558 break; 2559 default: 2560 return SDValue(); 2561 } 2562 2563 if (N->getValueType(0) != ResVT) 2564 return SDValue(); 2565 2566 if (Conversion.getValueType() != ExpectedConversionType) 2567 return SDValue(); 2568 2569 auto Source = Conversion.getOperand(0); 2570 if (Source.getValueType() != MVT::v2f64) 2571 return SDValue(); 2572 2573 if (!IsZeroSplat(N->getOperand(1)) || 2574 N->getOperand(1).getValueType() != ExpectedConversionType) 2575 return SDValue(); 2576 2577 unsigned Op = GetWasmConversionOp(ConversionOp); 2578 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2579 } 2580 2581 // Combine this: 2582 // 2583 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2584 // 2585 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2586 // 2587 // Or this: 2588 // 2589 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2590 // 2591 // into (f32x4.demote_zero_f64x2 $x). 2592 EVT ResVT; 2593 auto ConversionOp = N->getOpcode(); 2594 switch (ConversionOp) { 2595 case ISD::FP_TO_SINT_SAT: 2596 case ISD::FP_TO_UINT_SAT: 2597 ResVT = MVT::v4i32; 2598 break; 2599 case ISD::FP_ROUND: 2600 ResVT = MVT::v4f32; 2601 break; 2602 default: 2603 llvm_unreachable("unexpected op"); 2604 } 2605 2606 if (N->getValueType(0) != ResVT) 2607 return SDValue(); 2608 2609 auto Concat = N->getOperand(0); 2610 if (Concat.getValueType() != MVT::v4f64) 2611 return SDValue(); 2612 2613 auto Source = Concat.getOperand(0); 2614 if (Source.getValueType() != MVT::v2f64) 2615 return SDValue(); 2616 2617 if (!IsZeroSplat(Concat.getOperand(1)) || 2618 Concat.getOperand(1).getValueType() != MVT::v2f64) 2619 return SDValue(); 2620 2621 unsigned Op = GetWasmConversionOp(ConversionOp); 2622 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2623 } 2624 2625 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2626 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2627 const SDLoc &DL, unsigned VectorWidth) { 2628 EVT VT = Vec.getValueType(); 2629 EVT ElVT = VT.getVectorElementType(); 2630 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2631 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2632 VT.getVectorNumElements() / Factor); 2633 2634 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2635 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2636 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2637 2638 // This is the index of the first element of the VectorWidth-bit chunk 2639 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2640 IdxVal &= ~(ElemsPerChunk - 1); 2641 2642 // If the input is a buildvector just emit a smaller one. 2643 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2644 return DAG.getBuildVector(ResultVT, DL, 2645 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2646 2647 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2648 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2649 } 2650 2651 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2652 // is the expected destination value type after recursion. In is the initial 2653 // input. Note that the input should have enough leading zero bits to prevent 2654 // NARROW_U from saturating results. 2655 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2656 SelectionDAG &DAG) { 2657 EVT SrcVT = In.getValueType(); 2658 2659 // No truncation required, we might get here due to recursive calls. 2660 if (SrcVT == DstVT) 2661 return In; 2662 2663 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2664 unsigned NumElems = SrcVT.getVectorNumElements(); 2665 if (!isPowerOf2_32(NumElems)) 2666 return SDValue(); 2667 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2668 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2669 2670 LLVMContext &Ctx = *DAG.getContext(); 2671 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2672 2673 // Narrow to the largest type possible: 2674 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2675 EVT InVT = MVT::i16, OutVT = MVT::i8; 2676 if (SrcVT.getScalarSizeInBits() > 16) { 2677 InVT = MVT::i32; 2678 OutVT = MVT::i16; 2679 } 2680 unsigned SubSizeInBits = SrcSizeInBits / 2; 2681 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2682 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2683 2684 // Split lower/upper subvectors. 2685 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2686 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2687 2688 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2689 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2690 Lo = DAG.getBitcast(InVT, Lo); 2691 Hi = DAG.getBitcast(InVT, Hi); 2692 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2693 return DAG.getBitcast(DstVT, Res); 2694 } 2695 2696 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2697 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2698 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2699 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2700 2701 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2702 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2703 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2704 } 2705 2706 static SDValue performTruncateCombine(SDNode *N, 2707 TargetLowering::DAGCombinerInfo &DCI) { 2708 auto &DAG = DCI.DAG; 2709 2710 SDValue In = N->getOperand(0); 2711 EVT InVT = In.getValueType(); 2712 if (!InVT.isSimple()) 2713 return SDValue(); 2714 2715 EVT OutVT = N->getValueType(0); 2716 if (!OutVT.isVector()) 2717 return SDValue(); 2718 2719 EVT OutSVT = OutVT.getVectorElementType(); 2720 EVT InSVT = InVT.getVectorElementType(); 2721 // Currently only cover truncate to v16i8 or v8i16. 2722 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 2723 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 2724 return SDValue(); 2725 2726 SDLoc DL(N); 2727 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 2728 OutVT.getScalarSizeInBits()); 2729 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 2730 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 2731 } 2732 2733 SDValue 2734 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2735 DAGCombinerInfo &DCI) const { 2736 switch (N->getOpcode()) { 2737 default: 2738 return SDValue(); 2739 case ISD::VECTOR_SHUFFLE: 2740 return performVECTOR_SHUFFLECombine(N, DCI); 2741 case ISD::SIGN_EXTEND: 2742 case ISD::ZERO_EXTEND: 2743 return performVectorExtendCombine(N, DCI); 2744 case ISD::FP_TO_SINT_SAT: 2745 case ISD::FP_TO_UINT_SAT: 2746 case ISD::FP_ROUND: 2747 case ISD::CONCAT_VECTORS: 2748 return performVectorTruncZeroCombine(N, DCI); 2749 case ISD::TRUNCATE: 2750 return performTruncateCombine(N, DCI); 2751 } 2752 } 2753