xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision 38a52bd3b5cac3da6f7f6eef3dd050e6aa08ebb3)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "wasm-lower"
42 
43 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
44     const TargetMachine &TM, const WebAssemblySubtarget &STI)
45     : TargetLowering(TM), Subtarget(&STI) {
46   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
47 
48   // Booleans always contain 0 or 1.
49   setBooleanContents(ZeroOrOneBooleanContent);
50   // Except in SIMD vectors
51   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
52   // We don't know the microarchitecture here, so just reduce register pressure.
53   setSchedulingPreference(Sched::RegPressure);
54   // Tell ISel that we have a stack pointer.
55   setStackPointerRegisterToSaveRestore(
56       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
57   // Set up the register classes.
58   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
59   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
60   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
61   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
62   if (Subtarget->hasSIMD128()) {
63     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
69   }
70   if (Subtarget->hasReferenceTypes()) {
71     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
72     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
73   }
74   // Compute derived properties from the register classes.
75   computeRegisterProperties(Subtarget->getRegisterInfo());
76 
77   // Transform loads and stores to pointers in address space 1 to loads and
78   // stores to WebAssembly global variables, outside linear memory.
79   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
80     setOperationAction(ISD::LOAD, T, Custom);
81     setOperationAction(ISD::STORE, T, Custom);
82   }
83   if (Subtarget->hasSIMD128()) {
84     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
85                    MVT::v2f64}) {
86       setOperationAction(ISD::LOAD, T, Custom);
87       setOperationAction(ISD::STORE, T, Custom);
88     }
89   }
90   if (Subtarget->hasReferenceTypes()) {
91     // We need custom load and store lowering for both externref, funcref and
92     // Other. The MVT::Other here represents tables of reference types.
93     for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
94       setOperationAction(ISD::LOAD, T, Custom);
95       setOperationAction(ISD::STORE, T, Custom);
96     }
97   }
98 
99   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
100   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
101   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
102   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
103   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
104   setOperationAction(ISD::BRIND, MVT::Other, Custom);
105 
106   // Take the default expansion for va_arg, va_copy, and va_end. There is no
107   // default action for va_start, so we do that custom.
108   setOperationAction(ISD::VASTART, MVT::Other, Custom);
109   setOperationAction(ISD::VAARG, MVT::Other, Expand);
110   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
111   setOperationAction(ISD::VAEND, MVT::Other, Expand);
112 
113   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
114     // Don't expand the floating-point types to constant pools.
115     setOperationAction(ISD::ConstantFP, T, Legal);
116     // Expand floating-point comparisons.
117     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
118                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
119       setCondCodeAction(CC, T, Expand);
120     // Expand floating-point library function operators.
121     for (auto Op :
122          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
123       setOperationAction(Op, T, Expand);
124     // Note supported floating-point library function operators that otherwise
125     // default to expand.
126     for (auto Op :
127          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
128       setOperationAction(Op, T, Legal);
129     // Support minimum and maximum, which otherwise default to expand.
130     setOperationAction(ISD::FMINIMUM, T, Legal);
131     setOperationAction(ISD::FMAXIMUM, T, Legal);
132     // WebAssembly currently has no builtin f16 support.
133     setOperationAction(ISD::FP16_TO_FP, T, Expand);
134     setOperationAction(ISD::FP_TO_FP16, T, Expand);
135     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
136     setTruncStoreAction(T, MVT::f16, Expand);
137   }
138 
139   // Expand unavailable integer operations.
140   for (auto Op :
141        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
142         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
143         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
144     for (auto T : {MVT::i32, MVT::i64})
145       setOperationAction(Op, T, Expand);
146     if (Subtarget->hasSIMD128())
147       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
148         setOperationAction(Op, T, Expand);
149   }
150 
151   if (Subtarget->hasNontrappingFPToInt())
152     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
153       for (auto T : {MVT::i32, MVT::i64})
154         setOperationAction(Op, T, Custom);
155 
156   // SIMD-specific configuration
157   if (Subtarget->hasSIMD128()) {
158     // Hoist bitcasts out of shuffles
159     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
160 
161     // Combine extends of extract_subvectors into widening ops
162     setTargetDAGCombine(ISD::SIGN_EXTEND);
163     setTargetDAGCombine(ISD::ZERO_EXTEND);
164 
165     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
166     // conversions ops
167     setTargetDAGCombine(ISD::SINT_TO_FP);
168     setTargetDAGCombine(ISD::UINT_TO_FP);
169     setTargetDAGCombine(ISD::FP_EXTEND);
170     setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
171 
172     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
173     // into conversion ops
174     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
175     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
176     setTargetDAGCombine(ISD::FP_ROUND);
177     setTargetDAGCombine(ISD::CONCAT_VECTORS);
178 
179     setTargetDAGCombine(ISD::TRUNCATE);
180 
181     // Support saturating add for i8x16 and i16x8
182     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
183       for (auto T : {MVT::v16i8, MVT::v8i16})
184         setOperationAction(Op, T, Legal);
185 
186     // Support integer abs
187     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
188       setOperationAction(ISD::ABS, T, Legal);
189 
190     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
191     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
192                    MVT::v2f64})
193       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
194 
195     // We have custom shuffle lowering to expose the shuffle mask
196     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
197                    MVT::v2f64})
198       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
199 
200     // Custom lowering since wasm shifts must have a scalar shift amount
201     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
202       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
203         setOperationAction(Op, T, Custom);
204 
205     // Custom lower lane accesses to expand out variable indices
206     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
207       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
208                      MVT::v2f64})
209         setOperationAction(Op, T, Custom);
210 
211     // There is no i8x16.mul instruction
212     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
213 
214     // There is no vector conditional select instruction
215     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
216                    MVT::v2f64})
217       setOperationAction(ISD::SELECT_CC, T, Expand);
218 
219     // Expand integer operations supported for scalars but not SIMD
220     for (auto Op :
221          {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
222       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
223         setOperationAction(Op, T, Expand);
224 
225     // But we do have integer min and max operations
226     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
227       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
228         setOperationAction(Op, T, Legal);
229 
230     // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
231     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
232     setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
233     setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
234 
235     // Custom lower bit counting operations for other types to scalarize them.
236     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
237       for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
238         setOperationAction(Op, T, Custom);
239 
240     // Expand float operations supported for scalars but not SIMD
241     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
242                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
243       for (auto T : {MVT::v4f32, MVT::v2f64})
244         setOperationAction(Op, T, Expand);
245 
246     // Unsigned comparison operations are unavailable for i64x2 vectors.
247     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
248       setCondCodeAction(CC, MVT::v2i64, Custom);
249 
250     // 64x2 conversions are not in the spec
251     for (auto Op :
252          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
253       for (auto T : {MVT::v2i64, MVT::v2f64})
254         setOperationAction(Op, T, Expand);
255 
256     // But saturating fp_to_int converstions are
257     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
258       setOperationAction(Op, MVT::v4i32, Custom);
259   }
260 
261   // As a special case, these operators use the type to mean the type to
262   // sign-extend from.
263   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
264   if (!Subtarget->hasSignExt()) {
265     // Sign extends are legal only when extending a vector extract
266     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
267     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
268       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
269   }
270   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
271     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
272 
273   // Dynamic stack allocation: use the default expansion.
274   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
275   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
276   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
277 
278   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
279   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
280   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
281 
282   // Expand these forms; we pattern-match the forms that we can handle in isel.
283   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
284     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
285       setOperationAction(Op, T, Expand);
286 
287   // We have custom switch handling.
288   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
289 
290   // WebAssembly doesn't have:
291   //  - Floating-point extending loads.
292   //  - Floating-point truncating stores.
293   //  - i1 extending loads.
294   //  - truncating SIMD stores and most extending loads
295   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
296   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
297   for (auto T : MVT::integer_valuetypes())
298     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
299       setLoadExtAction(Ext, T, MVT::i1, Promote);
300   if (Subtarget->hasSIMD128()) {
301     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
302                    MVT::v2f64}) {
303       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
304         if (MVT(T) != MemT) {
305           setTruncStoreAction(T, MemT, Expand);
306           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
307             setLoadExtAction(Ext, T, MemT, Expand);
308         }
309       }
310     }
311     // But some vector extending loads are legal
312     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
313       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
314       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
315       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
316     }
317     setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
318   }
319 
320   // Don't do anything clever with build_pairs
321   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
322 
323   // Trap lowers to wasm unreachable
324   setOperationAction(ISD::TRAP, MVT::Other, Legal);
325   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
326 
327   // Exception handling intrinsics
328   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
329   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
330   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
331 
332   setMaxAtomicSizeInBitsSupported(64);
333 
334   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
335   // consistent with the f64 and f128 names.
336   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
337   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
338 
339   // Define the emscripten name for return address helper.
340   // TODO: when implementing other Wasm backends, make this generic or only do
341   // this on emscripten depending on what they end up doing.
342   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
343 
344   // Always convert switches to br_tables unless there is only one case, which
345   // is equivalent to a simple branch. This reduces code size for wasm, and we
346   // defer possible jump table optimizations to the VM.
347   setMinimumJumpTableEntries(2);
348 }
349 
350 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
351                                             uint32_t AS) const {
352   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
353     return MVT::externref;
354   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
355     return MVT::funcref;
356   return TargetLowering::getPointerTy(DL, AS);
357 }
358 
359 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
360                                                uint32_t AS) const {
361   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
362     return MVT::externref;
363   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
364     return MVT::funcref;
365   return TargetLowering::getPointerMemTy(DL, AS);
366 }
367 
368 TargetLowering::AtomicExpansionKind
369 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
370   // We have wasm instructions for these
371   switch (AI->getOperation()) {
372   case AtomicRMWInst::Add:
373   case AtomicRMWInst::Sub:
374   case AtomicRMWInst::And:
375   case AtomicRMWInst::Or:
376   case AtomicRMWInst::Xor:
377   case AtomicRMWInst::Xchg:
378     return AtomicExpansionKind::None;
379   default:
380     break;
381   }
382   return AtomicExpansionKind::CmpXChg;
383 }
384 
385 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
386   // Implementation copied from X86TargetLowering.
387   unsigned Opc = VecOp.getOpcode();
388 
389   // Assume target opcodes can't be scalarized.
390   // TODO - do we have any exceptions?
391   if (Opc >= ISD::BUILTIN_OP_END)
392     return false;
393 
394   // If the vector op is not supported, try to convert to scalar.
395   EVT VecVT = VecOp.getValueType();
396   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
397     return true;
398 
399   // If the vector op is supported, but the scalar op is not, the transform may
400   // not be worthwhile.
401   EVT ScalarVT = VecVT.getScalarType();
402   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
403 }
404 
405 FastISel *WebAssemblyTargetLowering::createFastISel(
406     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
407   return WebAssembly::createFastISel(FuncInfo, LibInfo);
408 }
409 
410 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
411                                                       EVT VT) const {
412   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
413   if (BitWidth > 1 && BitWidth < 8)
414     BitWidth = 8;
415 
416   if (BitWidth > 64) {
417     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
418     // the count to be an i32.
419     BitWidth = 32;
420     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
421            "32-bit shift counts ought to be enough for anyone");
422   }
423 
424   MVT Result = MVT::getIntegerVT(BitWidth);
425   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
426          "Unable to represent scalar shift amount type");
427   return Result;
428 }
429 
430 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
431 // undefined result on invalid/overflow, to the WebAssembly opcode, which
432 // traps on invalid/overflow.
433 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
434                                        MachineBasicBlock *BB,
435                                        const TargetInstrInfo &TII,
436                                        bool IsUnsigned, bool Int64,
437                                        bool Float64, unsigned LoweredOpcode) {
438   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
439 
440   Register OutReg = MI.getOperand(0).getReg();
441   Register InReg = MI.getOperand(1).getReg();
442 
443   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
444   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
445   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
446   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
447   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
448   unsigned Eqz = WebAssembly::EQZ_I32;
449   unsigned And = WebAssembly::AND_I32;
450   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
451   int64_t Substitute = IsUnsigned ? 0 : Limit;
452   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
453   auto &Context = BB->getParent()->getFunction().getContext();
454   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
455 
456   const BasicBlock *LLVMBB = BB->getBasicBlock();
457   MachineFunction *F = BB->getParent();
458   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
459   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
460   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
461 
462   MachineFunction::iterator It = ++BB->getIterator();
463   F->insert(It, FalseMBB);
464   F->insert(It, TrueMBB);
465   F->insert(It, DoneMBB);
466 
467   // Transfer the remainder of BB and its successor edges to DoneMBB.
468   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
469   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
470 
471   BB->addSuccessor(TrueMBB);
472   BB->addSuccessor(FalseMBB);
473   TrueMBB->addSuccessor(DoneMBB);
474   FalseMBB->addSuccessor(DoneMBB);
475 
476   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
477   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
478   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
479   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
480   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
481   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
482   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
483 
484   MI.eraseFromParent();
485   // For signed numbers, we can do a single comparison to determine whether
486   // fabs(x) is within range.
487   if (IsUnsigned) {
488     Tmp0 = InReg;
489   } else {
490     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
491   }
492   BuildMI(BB, DL, TII.get(FConst), Tmp1)
493       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
494   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
495 
496   // For unsigned numbers, we have to do a separate comparison with zero.
497   if (IsUnsigned) {
498     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
499     Register SecondCmpReg =
500         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
501     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
502     BuildMI(BB, DL, TII.get(FConst), Tmp1)
503         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
504     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
505     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
506     CmpReg = AndReg;
507   }
508 
509   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
510 
511   // Create the CFG diamond to select between doing the conversion or using
512   // the substitute value.
513   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
514   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
515   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
516   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
517   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
518       .addReg(FalseReg)
519       .addMBB(FalseMBB)
520       .addReg(TrueReg)
521       .addMBB(TrueMBB);
522 
523   return DoneMBB;
524 }
525 
526 static MachineBasicBlock *
527 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
528                  const WebAssemblySubtarget *Subtarget,
529                  const TargetInstrInfo &TII) {
530   MachineInstr &CallParams = *CallResults.getPrevNode();
531   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
532   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
533          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
534 
535   bool IsIndirect = CallParams.getOperand(0).isReg();
536   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
537 
538   bool IsFuncrefCall = false;
539   if (IsIndirect) {
540     Register Reg = CallParams.getOperand(0).getReg();
541     const MachineFunction *MF = BB->getParent();
542     const MachineRegisterInfo &MRI = MF->getRegInfo();
543     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
544     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
545     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
546   }
547 
548   unsigned CallOp;
549   if (IsIndirect && IsRetCall) {
550     CallOp = WebAssembly::RET_CALL_INDIRECT;
551   } else if (IsIndirect) {
552     CallOp = WebAssembly::CALL_INDIRECT;
553   } else if (IsRetCall) {
554     CallOp = WebAssembly::RET_CALL;
555   } else {
556     CallOp = WebAssembly::CALL;
557   }
558 
559   MachineFunction &MF = *BB->getParent();
560   const MCInstrDesc &MCID = TII.get(CallOp);
561   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
562 
563   // See if we must truncate the function pointer.
564   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
565   // as 64-bit for uniformity with other pointer types.
566   // See also: WebAssemblyFastISel::selectCall
567   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
568     Register Reg32 =
569         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
570     auto &FnPtr = CallParams.getOperand(0);
571     BuildMI(*BB, CallResults.getIterator(), DL,
572             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
573         .addReg(FnPtr.getReg());
574     FnPtr.setReg(Reg32);
575   }
576 
577   // Move the function pointer to the end of the arguments for indirect calls
578   if (IsIndirect) {
579     auto FnPtr = CallParams.getOperand(0);
580     CallParams.RemoveOperand(0);
581 
582     // For funcrefs, call_indirect is done through __funcref_call_table and the
583     // funcref is always installed in slot 0 of the table, therefore instead of having
584     // the function pointer added at the end of the params list, a zero (the index in
585     // __funcref_call_table is added).
586     if (IsFuncrefCall) {
587       Register RegZero =
588           MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
589       MachineInstrBuilder MIBC0 =
590           BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
591 
592       BB->insert(CallResults.getIterator(), MIBC0);
593       MachineInstrBuilder(MF, CallParams).addReg(RegZero);
594     } else
595       CallParams.addOperand(FnPtr);
596   }
597 
598   for (auto Def : CallResults.defs())
599     MIB.add(Def);
600 
601   if (IsIndirect) {
602     // Placeholder for the type index.
603     MIB.addImm(0);
604     // The table into which this call_indirect indexes.
605     MCSymbolWasm *Table = IsFuncrefCall
606                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
607                                     MF.getContext(), Subtarget)
608                               : WebAssembly::getOrCreateFunctionTableSymbol(
609                                     MF.getContext(), Subtarget);
610     if (Subtarget->hasReferenceTypes()) {
611       MIB.addSym(Table);
612     } else {
613       // For the MVP there is at most one table whose number is 0, but we can't
614       // write a table symbol or issue relocations.  Instead we just ensure the
615       // table is live and write a zero.
616       Table->setNoStrip();
617       MIB.addImm(0);
618     }
619   }
620 
621   for (auto Use : CallParams.uses())
622     MIB.add(Use);
623 
624   BB->insert(CallResults.getIterator(), MIB);
625   CallParams.eraseFromParent();
626   CallResults.eraseFromParent();
627 
628   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
629   // table slot with ref.null upon call_indirect return.
630   //
631   // This generates the following code, which comes right after a call_indirect
632   // of a funcref:
633   //
634   //    i32.const 0
635   //    ref.null func
636   //    table.set __funcref_call_table
637   if (IsIndirect && IsFuncrefCall) {
638     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
639         MF.getContext(), Subtarget);
640     Register RegZero =
641         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
642     MachineInstr *Const0 =
643         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
644     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
645 
646     Register RegFuncref =
647         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
648     MachineInstr *RefNull =
649         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
650     BB->insertAfter(Const0->getIterator(), RefNull);
651 
652     MachineInstr *TableSet =
653         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
654             .addSym(Table)
655             .addReg(RegZero)
656             .addReg(RegFuncref);
657     BB->insertAfter(RefNull->getIterator(), TableSet);
658   }
659 
660   return BB;
661 }
662 
663 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
664     MachineInstr &MI, MachineBasicBlock *BB) const {
665   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
666   DebugLoc DL = MI.getDebugLoc();
667 
668   switch (MI.getOpcode()) {
669   default:
670     llvm_unreachable("Unexpected instr type to insert");
671   case WebAssembly::FP_TO_SINT_I32_F32:
672     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
673                         WebAssembly::I32_TRUNC_S_F32);
674   case WebAssembly::FP_TO_UINT_I32_F32:
675     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
676                         WebAssembly::I32_TRUNC_U_F32);
677   case WebAssembly::FP_TO_SINT_I64_F32:
678     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
679                         WebAssembly::I64_TRUNC_S_F32);
680   case WebAssembly::FP_TO_UINT_I64_F32:
681     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
682                         WebAssembly::I64_TRUNC_U_F32);
683   case WebAssembly::FP_TO_SINT_I32_F64:
684     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
685                         WebAssembly::I32_TRUNC_S_F64);
686   case WebAssembly::FP_TO_UINT_I32_F64:
687     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
688                         WebAssembly::I32_TRUNC_U_F64);
689   case WebAssembly::FP_TO_SINT_I64_F64:
690     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
691                         WebAssembly::I64_TRUNC_S_F64);
692   case WebAssembly::FP_TO_UINT_I64_F64:
693     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
694                         WebAssembly::I64_TRUNC_U_F64);
695   case WebAssembly::CALL_RESULTS:
696   case WebAssembly::RET_CALL_RESULTS:
697     return LowerCallResults(MI, DL, BB, Subtarget, TII);
698   }
699 }
700 
701 const char *
702 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
703   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
704   case WebAssemblyISD::FIRST_NUMBER:
705   case WebAssemblyISD::FIRST_MEM_OPCODE:
706     break;
707 #define HANDLE_NODETYPE(NODE)                                                  \
708   case WebAssemblyISD::NODE:                                                   \
709     return "WebAssemblyISD::" #NODE;
710 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
711 #include "WebAssemblyISD.def"
712 #undef HANDLE_MEM_NODETYPE
713 #undef HANDLE_NODETYPE
714   }
715   return nullptr;
716 }
717 
718 std::pair<unsigned, const TargetRegisterClass *>
719 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
720     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
721   // First, see if this is a constraint that directly corresponds to a
722   // WebAssembly register class.
723   if (Constraint.size() == 1) {
724     switch (Constraint[0]) {
725     case 'r':
726       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
727       if (Subtarget->hasSIMD128() && VT.isVector()) {
728         if (VT.getSizeInBits() == 128)
729           return std::make_pair(0U, &WebAssembly::V128RegClass);
730       }
731       if (VT.isInteger() && !VT.isVector()) {
732         if (VT.getSizeInBits() <= 32)
733           return std::make_pair(0U, &WebAssembly::I32RegClass);
734         if (VT.getSizeInBits() <= 64)
735           return std::make_pair(0U, &WebAssembly::I64RegClass);
736       }
737       if (VT.isFloatingPoint() && !VT.isVector()) {
738         switch (VT.getSizeInBits()) {
739         case 32:
740           return std::make_pair(0U, &WebAssembly::F32RegClass);
741         case 64:
742           return std::make_pair(0U, &WebAssembly::F64RegClass);
743         default:
744           break;
745         }
746       }
747       break;
748     default:
749       break;
750     }
751   }
752 
753   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
754 }
755 
756 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
757   // Assume ctz is a relatively cheap operation.
758   return true;
759 }
760 
761 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
762   // Assume clz is a relatively cheap operation.
763   return true;
764 }
765 
766 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
767                                                       const AddrMode &AM,
768                                                       Type *Ty, unsigned AS,
769                                                       Instruction *I) const {
770   // WebAssembly offsets are added as unsigned without wrapping. The
771   // isLegalAddressingMode gives us no way to determine if wrapping could be
772   // happening, so we approximate this by accepting only non-negative offsets.
773   if (AM.BaseOffs < 0)
774     return false;
775 
776   // WebAssembly has no scale register operands.
777   if (AM.Scale != 0)
778     return false;
779 
780   // Everything else is legal.
781   return true;
782 }
783 
784 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
785     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
786     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
787   // WebAssembly supports unaligned accesses, though it should be declared
788   // with the p2align attribute on loads and stores which do so, and there
789   // may be a performance impact. We tell LLVM they're "fast" because
790   // for the kinds of things that LLVM uses this for (merging adjacent stores
791   // of constants, etc.), WebAssembly implementations will either want the
792   // unaligned access or they'll split anyway.
793   if (Fast)
794     *Fast = true;
795   return true;
796 }
797 
798 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
799                                               AttributeList Attr) const {
800   // The current thinking is that wasm engines will perform this optimization,
801   // so we can save on code size.
802   return true;
803 }
804 
805 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
806   EVT ExtT = ExtVal.getValueType();
807   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
808   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
809          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
810          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
811 }
812 
813 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
814     const GlobalAddressSDNode *GA) const {
815   // Wasm doesn't support function addresses with offsets
816   const GlobalValue *GV = GA->getGlobal();
817   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
818 }
819 
820 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
821                                                   LLVMContext &C,
822                                                   EVT VT) const {
823   if (VT.isVector())
824     return VT.changeVectorElementTypeToInteger();
825 
826   // So far, all branch instructions in Wasm take an I32 condition.
827   // The default TargetLowering::getSetCCResultType returns the pointer size,
828   // which would be useful to reduce instruction counts when testing
829   // against 64-bit pointers/values if at some point Wasm supports that.
830   return EVT::getIntegerVT(C, 32);
831 }
832 
833 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
834                                                    const CallInst &I,
835                                                    MachineFunction &MF,
836                                                    unsigned Intrinsic) const {
837   switch (Intrinsic) {
838   case Intrinsic::wasm_memory_atomic_notify:
839     Info.opc = ISD::INTRINSIC_W_CHAIN;
840     Info.memVT = MVT::i32;
841     Info.ptrVal = I.getArgOperand(0);
842     Info.offset = 0;
843     Info.align = Align(4);
844     // atomic.notify instruction does not really load the memory specified with
845     // this argument, but MachineMemOperand should either be load or store, so
846     // we set this to a load.
847     // FIXME Volatile isn't really correct, but currently all LLVM atomic
848     // instructions are treated as volatiles in the backend, so we should be
849     // consistent. The same applies for wasm_atomic_wait intrinsics too.
850     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
851     return true;
852   case Intrinsic::wasm_memory_atomic_wait32:
853     Info.opc = ISD::INTRINSIC_W_CHAIN;
854     Info.memVT = MVT::i32;
855     Info.ptrVal = I.getArgOperand(0);
856     Info.offset = 0;
857     Info.align = Align(4);
858     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
859     return true;
860   case Intrinsic::wasm_memory_atomic_wait64:
861     Info.opc = ISD::INTRINSIC_W_CHAIN;
862     Info.memVT = MVT::i64;
863     Info.ptrVal = I.getArgOperand(0);
864     Info.offset = 0;
865     Info.align = Align(8);
866     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
867     return true;
868   default:
869     return false;
870   }
871 }
872 
873 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
874     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
875     const SelectionDAG &DAG, unsigned Depth) const {
876   switch (Op.getOpcode()) {
877   default:
878     break;
879   case ISD::INTRINSIC_WO_CHAIN: {
880     unsigned IntNo = Op.getConstantOperandVal(0);
881     switch (IntNo) {
882     default:
883       break;
884     case Intrinsic::wasm_bitmask: {
885       unsigned BitWidth = Known.getBitWidth();
886       EVT VT = Op.getOperand(1).getSimpleValueType();
887       unsigned PossibleBits = VT.getVectorNumElements();
888       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
889       Known.Zero |= ZeroMask;
890       break;
891     }
892     }
893   }
894   }
895 }
896 
897 TargetLoweringBase::LegalizeTypeAction
898 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
899   if (VT.isFixedLengthVector()) {
900     MVT EltVT = VT.getVectorElementType();
901     // We have legal vector types with these lane types, so widening the
902     // vector would let us use some of the lanes directly without having to
903     // extend or truncate values.
904     if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
905         EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
906       return TypeWidenVector;
907   }
908 
909   return TargetLoweringBase::getPreferredVectorAction(VT);
910 }
911 
912 //===----------------------------------------------------------------------===//
913 // WebAssembly Lowering private implementation.
914 //===----------------------------------------------------------------------===//
915 
916 //===----------------------------------------------------------------------===//
917 // Lowering Code
918 //===----------------------------------------------------------------------===//
919 
920 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
921   MachineFunction &MF = DAG.getMachineFunction();
922   DAG.getContext()->diagnose(
923       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
924 }
925 
926 // Test whether the given calling convention is supported.
927 static bool callingConvSupported(CallingConv::ID CallConv) {
928   // We currently support the language-independent target-independent
929   // conventions. We don't yet have a way to annotate calls with properties like
930   // "cold", and we don't have any call-clobbered registers, so these are mostly
931   // all handled the same.
932   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
933          CallConv == CallingConv::Cold ||
934          CallConv == CallingConv::PreserveMost ||
935          CallConv == CallingConv::PreserveAll ||
936          CallConv == CallingConv::CXX_FAST_TLS ||
937          CallConv == CallingConv::WASM_EmscriptenInvoke ||
938          CallConv == CallingConv::Swift;
939 }
940 
941 SDValue
942 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
943                                      SmallVectorImpl<SDValue> &InVals) const {
944   SelectionDAG &DAG = CLI.DAG;
945   SDLoc DL = CLI.DL;
946   SDValue Chain = CLI.Chain;
947   SDValue Callee = CLI.Callee;
948   MachineFunction &MF = DAG.getMachineFunction();
949   auto Layout = MF.getDataLayout();
950 
951   CallingConv::ID CallConv = CLI.CallConv;
952   if (!callingConvSupported(CallConv))
953     fail(DL, DAG,
954          "WebAssembly doesn't support language-specific or target-specific "
955          "calling conventions yet");
956   if (CLI.IsPatchPoint)
957     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
958 
959   if (CLI.IsTailCall) {
960     auto NoTail = [&](const char *Msg) {
961       if (CLI.CB && CLI.CB->isMustTailCall())
962         fail(DL, DAG, Msg);
963       CLI.IsTailCall = false;
964     };
965 
966     if (!Subtarget->hasTailCall())
967       NoTail("WebAssembly 'tail-call' feature not enabled");
968 
969     // Varargs calls cannot be tail calls because the buffer is on the stack
970     if (CLI.IsVarArg)
971       NoTail("WebAssembly does not support varargs tail calls");
972 
973     // Do not tail call unless caller and callee return types match
974     const Function &F = MF.getFunction();
975     const TargetMachine &TM = getTargetMachine();
976     Type *RetTy = F.getReturnType();
977     SmallVector<MVT, 4> CallerRetTys;
978     SmallVector<MVT, 4> CalleeRetTys;
979     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
980     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
981     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
982                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
983                                  CalleeRetTys.begin());
984     if (!TypesMatch)
985       NoTail("WebAssembly tail call requires caller and callee return types to "
986              "match");
987 
988     // If pointers to local stack values are passed, we cannot tail call
989     if (CLI.CB) {
990       for (auto &Arg : CLI.CB->args()) {
991         Value *Val = Arg.get();
992         // Trace the value back through pointer operations
993         while (true) {
994           Value *Src = Val->stripPointerCastsAndAliases();
995           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
996             Src = GEP->getPointerOperand();
997           if (Val == Src)
998             break;
999           Val = Src;
1000         }
1001         if (isa<AllocaInst>(Val)) {
1002           NoTail(
1003               "WebAssembly does not support tail calling with stack arguments");
1004           break;
1005         }
1006       }
1007     }
1008   }
1009 
1010   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1011   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1012   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1013 
1014   // The generic code may have added an sret argument. If we're lowering an
1015   // invoke function, the ABI requires that the function pointer be the first
1016   // argument, so we may have to swap the arguments.
1017   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1018       Outs[0].Flags.isSRet()) {
1019     std::swap(Outs[0], Outs[1]);
1020     std::swap(OutVals[0], OutVals[1]);
1021   }
1022 
1023   bool HasSwiftSelfArg = false;
1024   bool HasSwiftErrorArg = false;
1025   unsigned NumFixedArgs = 0;
1026   for (unsigned I = 0; I < Outs.size(); ++I) {
1027     const ISD::OutputArg &Out = Outs[I];
1028     SDValue &OutVal = OutVals[I];
1029     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1030     HasSwiftErrorArg |= Out.Flags.isSwiftError();
1031     if (Out.Flags.isNest())
1032       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1033     if (Out.Flags.isInAlloca())
1034       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1035     if (Out.Flags.isInConsecutiveRegs())
1036       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1037     if (Out.Flags.isInConsecutiveRegsLast())
1038       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1039     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1040       auto &MFI = MF.getFrameInfo();
1041       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1042                                      Out.Flags.getNonZeroByValAlign(),
1043                                      /*isSS=*/false);
1044       SDValue SizeNode =
1045           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1046       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1047       Chain = DAG.getMemcpy(
1048           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1049           /*isVolatile*/ false, /*AlwaysInline=*/false,
1050           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1051       OutVal = FINode;
1052     }
1053     // Count the number of fixed args *after* legalization.
1054     NumFixedArgs += Out.IsFixed;
1055   }
1056 
1057   bool IsVarArg = CLI.IsVarArg;
1058   auto PtrVT = getPointerTy(Layout);
1059 
1060   // For swiftcc, emit additional swiftself and swifterror arguments
1061   // if there aren't. These additional arguments are also added for callee
1062   // signature They are necessary to match callee and caller signature for
1063   // indirect call.
1064   if (CallConv == CallingConv::Swift) {
1065     if (!HasSwiftSelfArg) {
1066       NumFixedArgs++;
1067       ISD::OutputArg Arg;
1068       Arg.Flags.setSwiftSelf();
1069       CLI.Outs.push_back(Arg);
1070       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1071       CLI.OutVals.push_back(ArgVal);
1072     }
1073     if (!HasSwiftErrorArg) {
1074       NumFixedArgs++;
1075       ISD::OutputArg Arg;
1076       Arg.Flags.setSwiftError();
1077       CLI.Outs.push_back(Arg);
1078       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1079       CLI.OutVals.push_back(ArgVal);
1080     }
1081   }
1082 
1083   // Analyze operands of the call, assigning locations to each operand.
1084   SmallVector<CCValAssign, 16> ArgLocs;
1085   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1086 
1087   if (IsVarArg) {
1088     // Outgoing non-fixed arguments are placed in a buffer. First
1089     // compute their offsets and the total amount of buffer space needed.
1090     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1091       const ISD::OutputArg &Out = Outs[I];
1092       SDValue &Arg = OutVals[I];
1093       EVT VT = Arg.getValueType();
1094       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1095       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1096       Align Alignment =
1097           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1098       unsigned Offset =
1099           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1100       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1101                                         Offset, VT.getSimpleVT(),
1102                                         CCValAssign::Full));
1103     }
1104   }
1105 
1106   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1107 
1108   SDValue FINode;
1109   if (IsVarArg && NumBytes) {
1110     // For non-fixed arguments, next emit stores to store the argument values
1111     // to the stack buffer at the offsets computed above.
1112     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1113                                                  Layout.getStackAlignment(),
1114                                                  /*isSS=*/false);
1115     unsigned ValNo = 0;
1116     SmallVector<SDValue, 8> Chains;
1117     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1118       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1119              "ArgLocs should remain in order and only hold varargs args");
1120       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1121       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1122       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1123                                 DAG.getConstant(Offset, DL, PtrVT));
1124       Chains.push_back(
1125           DAG.getStore(Chain, DL, Arg, Add,
1126                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1127     }
1128     if (!Chains.empty())
1129       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1130   } else if (IsVarArg) {
1131     FINode = DAG.getIntPtrConstant(0, DL);
1132   }
1133 
1134   if (Callee->getOpcode() == ISD::GlobalAddress) {
1135     // If the callee is a GlobalAddress node (quite common, every direct call
1136     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1137     // doesn't at MO_GOT which is not needed for direct calls.
1138     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1139     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1140                                         getPointerTy(DAG.getDataLayout()),
1141                                         GA->getOffset());
1142     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1143                          getPointerTy(DAG.getDataLayout()), Callee);
1144   }
1145 
1146   // Compute the operands for the CALLn node.
1147   SmallVector<SDValue, 16> Ops;
1148   Ops.push_back(Chain);
1149   Ops.push_back(Callee);
1150 
1151   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1152   // isn't reliable.
1153   Ops.append(OutVals.begin(),
1154              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1155   // Add a pointer to the vararg buffer.
1156   if (IsVarArg)
1157     Ops.push_back(FINode);
1158 
1159   SmallVector<EVT, 8> InTys;
1160   for (const auto &In : Ins) {
1161     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1162     assert(!In.Flags.isNest() && "nest is not valid for return values");
1163     if (In.Flags.isInAlloca())
1164       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1165     if (In.Flags.isInConsecutiveRegs())
1166       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1167     if (In.Flags.isInConsecutiveRegsLast())
1168       fail(DL, DAG,
1169            "WebAssembly hasn't implemented cons regs last return values");
1170     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1171     // registers.
1172     InTys.push_back(In.VT);
1173   }
1174 
1175   // Lastly, if this is a call to a funcref we need to add an instruction
1176   // table.set to the chain and transform the call.
1177   if (CLI.CB &&
1178       WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1179     // In the absence of function references proposal where a funcref call is
1180     // lowered to call_ref, using reference types we generate a table.set to set
1181     // the funcref to a special table used solely for this purpose, followed by
1182     // a call_indirect. Here we just generate the table set, and return the
1183     // SDValue of the table.set so that LowerCall can finalize the lowering by
1184     // generating the call_indirect.
1185     SDValue Chain = Ops[0];
1186 
1187     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1188         MF.getContext(), Subtarget);
1189     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1190     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1191     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1192     SDValue TableSet = DAG.getMemIntrinsicNode(
1193         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1194         MVT::funcref,
1195         // Machine Mem Operand args
1196         MachinePointerInfo(
1197             WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1198         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1199         MachineMemOperand::MOStore);
1200 
1201     Ops[0] = TableSet; // The new chain is the TableSet itself
1202   }
1203 
1204   if (CLI.IsTailCall) {
1205     // ret_calls do not return values to the current frame
1206     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1207     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1208   }
1209 
1210   InTys.push_back(MVT::Other);
1211   SDVTList InTyList = DAG.getVTList(InTys);
1212   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1213 
1214   for (size_t I = 0; I < Ins.size(); ++I)
1215     InVals.push_back(Res.getValue(I));
1216 
1217   // Return the chain
1218   return Res.getValue(Ins.size());
1219 }
1220 
1221 bool WebAssemblyTargetLowering::CanLowerReturn(
1222     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1223     const SmallVectorImpl<ISD::OutputArg> &Outs,
1224     LLVMContext & /*Context*/) const {
1225   // WebAssembly can only handle returning tuples with multivalue enabled
1226   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1227 }
1228 
1229 SDValue WebAssemblyTargetLowering::LowerReturn(
1230     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1231     const SmallVectorImpl<ISD::OutputArg> &Outs,
1232     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1233     SelectionDAG &DAG) const {
1234   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1235          "MVP WebAssembly can only return up to one value");
1236   if (!callingConvSupported(CallConv))
1237     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1238 
1239   SmallVector<SDValue, 4> RetOps(1, Chain);
1240   RetOps.append(OutVals.begin(), OutVals.end());
1241   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1242 
1243   // Record the number and types of the return values.
1244   for (const ISD::OutputArg &Out : Outs) {
1245     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1246     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1247     assert(Out.IsFixed && "non-fixed return value is not valid");
1248     if (Out.Flags.isInAlloca())
1249       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1250     if (Out.Flags.isInConsecutiveRegs())
1251       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1252     if (Out.Flags.isInConsecutiveRegsLast())
1253       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1254   }
1255 
1256   return Chain;
1257 }
1258 
1259 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1260     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1261     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1262     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1263   if (!callingConvSupported(CallConv))
1264     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1265 
1266   MachineFunction &MF = DAG.getMachineFunction();
1267   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1268 
1269   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1270   // of the incoming values before they're represented by virtual registers.
1271   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1272 
1273   bool HasSwiftErrorArg = false;
1274   bool HasSwiftSelfArg = false;
1275   for (const ISD::InputArg &In : Ins) {
1276     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1277     HasSwiftErrorArg |= In.Flags.isSwiftError();
1278     if (In.Flags.isInAlloca())
1279       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1280     if (In.Flags.isNest())
1281       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1282     if (In.Flags.isInConsecutiveRegs())
1283       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1284     if (In.Flags.isInConsecutiveRegsLast())
1285       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1286     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1287     // registers.
1288     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1289                                            DAG.getTargetConstant(InVals.size(),
1290                                                                  DL, MVT::i32))
1291                              : DAG.getUNDEF(In.VT));
1292 
1293     // Record the number and types of arguments.
1294     MFI->addParam(In.VT);
1295   }
1296 
1297   // For swiftcc, emit additional swiftself and swifterror arguments
1298   // if there aren't. These additional arguments are also added for callee
1299   // signature They are necessary to match callee and caller signature for
1300   // indirect call.
1301   auto PtrVT = getPointerTy(MF.getDataLayout());
1302   if (CallConv == CallingConv::Swift) {
1303     if (!HasSwiftSelfArg) {
1304       MFI->addParam(PtrVT);
1305     }
1306     if (!HasSwiftErrorArg) {
1307       MFI->addParam(PtrVT);
1308     }
1309   }
1310   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1311   // the buffer is passed as an argument.
1312   if (IsVarArg) {
1313     MVT PtrVT = getPointerTy(MF.getDataLayout());
1314     Register VarargVreg =
1315         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1316     MFI->setVarargBufferVreg(VarargVreg);
1317     Chain = DAG.getCopyToReg(
1318         Chain, DL, VarargVreg,
1319         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1320                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1321     MFI->addParam(PtrVT);
1322   }
1323 
1324   // Record the number and types of arguments and results.
1325   SmallVector<MVT, 4> Params;
1326   SmallVector<MVT, 4> Results;
1327   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1328                       MF.getFunction(), DAG.getTarget(), Params, Results);
1329   for (MVT VT : Results)
1330     MFI->addResult(VT);
1331   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1332   // the param logic here with ComputeSignatureVTs
1333   assert(MFI->getParams().size() == Params.size() &&
1334          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1335                     Params.begin()));
1336 
1337   return Chain;
1338 }
1339 
1340 void WebAssemblyTargetLowering::ReplaceNodeResults(
1341     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1342   switch (N->getOpcode()) {
1343   case ISD::SIGN_EXTEND_INREG:
1344     // Do not add any results, signifying that N should not be custom lowered
1345     // after all. This happens because simd128 turns on custom lowering for
1346     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1347     // illegal type.
1348     break;
1349   default:
1350     llvm_unreachable(
1351         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1352   }
1353 }
1354 
1355 //===----------------------------------------------------------------------===//
1356 //  Custom lowering hooks.
1357 //===----------------------------------------------------------------------===//
1358 
1359 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1360                                                   SelectionDAG &DAG) const {
1361   SDLoc DL(Op);
1362   switch (Op.getOpcode()) {
1363   default:
1364     llvm_unreachable("unimplemented operation lowering");
1365     return SDValue();
1366   case ISD::FrameIndex:
1367     return LowerFrameIndex(Op, DAG);
1368   case ISD::GlobalAddress:
1369     return LowerGlobalAddress(Op, DAG);
1370   case ISD::GlobalTLSAddress:
1371     return LowerGlobalTLSAddress(Op, DAG);
1372   case ISD::ExternalSymbol:
1373     return LowerExternalSymbol(Op, DAG);
1374   case ISD::JumpTable:
1375     return LowerJumpTable(Op, DAG);
1376   case ISD::BR_JT:
1377     return LowerBR_JT(Op, DAG);
1378   case ISD::VASTART:
1379     return LowerVASTART(Op, DAG);
1380   case ISD::BlockAddress:
1381   case ISD::BRIND:
1382     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1383     return SDValue();
1384   case ISD::RETURNADDR:
1385     return LowerRETURNADDR(Op, DAG);
1386   case ISD::FRAMEADDR:
1387     return LowerFRAMEADDR(Op, DAG);
1388   case ISD::CopyToReg:
1389     return LowerCopyToReg(Op, DAG);
1390   case ISD::EXTRACT_VECTOR_ELT:
1391   case ISD::INSERT_VECTOR_ELT:
1392     return LowerAccessVectorElement(Op, DAG);
1393   case ISD::INTRINSIC_VOID:
1394   case ISD::INTRINSIC_WO_CHAIN:
1395   case ISD::INTRINSIC_W_CHAIN:
1396     return LowerIntrinsic(Op, DAG);
1397   case ISD::SIGN_EXTEND_INREG:
1398     return LowerSIGN_EXTEND_INREG(Op, DAG);
1399   case ISD::BUILD_VECTOR:
1400     return LowerBUILD_VECTOR(Op, DAG);
1401   case ISD::VECTOR_SHUFFLE:
1402     return LowerVECTOR_SHUFFLE(Op, DAG);
1403   case ISD::SETCC:
1404     return LowerSETCC(Op, DAG);
1405   case ISD::SHL:
1406   case ISD::SRA:
1407   case ISD::SRL:
1408     return LowerShift(Op, DAG);
1409   case ISD::FP_TO_SINT_SAT:
1410   case ISD::FP_TO_UINT_SAT:
1411     return LowerFP_TO_INT_SAT(Op, DAG);
1412   case ISD::LOAD:
1413     return LowerLoad(Op, DAG);
1414   case ISD::STORE:
1415     return LowerStore(Op, DAG);
1416   case ISD::CTPOP:
1417   case ISD::CTLZ:
1418   case ISD::CTTZ:
1419     return DAG.UnrollVectorOp(Op.getNode());
1420   }
1421 }
1422 
1423 static bool IsWebAssemblyGlobal(SDValue Op) {
1424   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1425     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1426 
1427   return false;
1428 }
1429 
1430 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1431   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1432   if (!FI)
1433     return None;
1434 
1435   auto &MF = DAG.getMachineFunction();
1436   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1437 }
1438 
1439 static bool IsWebAssemblyTable(SDValue Op) {
1440   const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1441   if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) {
1442     const GlobalValue *Value = GA->getGlobal();
1443     const Type *Ty = Value->getValueType();
1444 
1445     if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType()))
1446       return true;
1447   }
1448   return false;
1449 }
1450 
1451 // This function will accept as Op any access to a table, so Op can
1452 // be the actual table or an offset into the table.
1453 static bool IsWebAssemblyTableWithOffset(SDValue Op) {
1454   if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2)
1455     return (Op->getOperand(1).getSimpleValueType() == MVT::i32 &&
1456             IsWebAssemblyTableWithOffset(Op->getOperand(0))) ||
1457            (Op->getOperand(0).getSimpleValueType() == MVT::i32 &&
1458             IsWebAssemblyTableWithOffset(Op->getOperand(1)));
1459 
1460   return IsWebAssemblyTable(Op);
1461 }
1462 
1463 // Helper for table pattern matching used in LowerStore and LowerLoad
1464 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG,
1465                                                       const SDLoc &DL,
1466                                                       const SDValue &Base,
1467                                                       GlobalAddressSDNode *&GA,
1468                                                       SDValue &Idx) const {
1469   // We expect the following graph for a load of the form:
1470   // table[<var> + <constant offset>]
1471   //
1472   // Case 1:
1473   // externref = load t1
1474   // t1: i32 = add t2, i32:<constant offset>
1475   // t2: i32 = add tX, table
1476   //
1477   // This is in some cases simplified to just:
1478   // Case 2:
1479   // externref = load t1
1480   // t1: i32 = add t2, i32:tX
1481   //
1482   // So, unfortunately we need to check for both cases and if we are in the
1483   // first case extract the table GlobalAddressNode and build a new node tY
1484   // that's tY: i32 = add i32:<constant offset>, i32:tX
1485   //
1486   if (IsWebAssemblyTable(Base)) {
1487     GA = cast<GlobalAddressSDNode>(Base);
1488     Idx = DAG.getConstant(0, DL, MVT::i32);
1489   } else {
1490     GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0));
1491     if (GA) {
1492       // We are in Case 2 above.
1493       Idx = Base->getOperand(1);
1494       assert(GA->getNumValues() == 1);
1495     } else {
1496       // This might be Case 1 above (or an error)
1497       SDValue V = Base->getOperand(0);
1498       GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1));
1499 
1500       if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA)
1501         return false;
1502 
1503       SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1),
1504                                  V->getOperand(0));
1505       Idx = IdxV;
1506     }
1507   }
1508 
1509   return true;
1510 }
1511 
1512 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1513                                               SelectionDAG &DAG) const {
1514   SDLoc DL(Op);
1515   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1516   const SDValue &Value = SN->getValue();
1517   const SDValue &Base = SN->getBasePtr();
1518   const SDValue &Offset = SN->getOffset();
1519 
1520   if (IsWebAssemblyTableWithOffset(Base)) {
1521     if (!Offset->isUndef())
1522       report_fatal_error(
1523           "unexpected offset when loading from webassembly table", false);
1524 
1525     SDValue Idx;
1526     GlobalAddressSDNode *GA;
1527 
1528     if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
1529       report_fatal_error("failed pattern matching for lowering table store",
1530                          false);
1531 
1532     SDVTList Tys = DAG.getVTList(MVT::Other);
1533     SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value};
1534     SDValue TableSet =
1535         DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps,
1536                                 SN->getMemoryVT(), SN->getMemOperand());
1537     return TableSet;
1538   }
1539 
1540   if (IsWebAssemblyGlobal(Base)) {
1541     if (!Offset->isUndef())
1542       report_fatal_error("unexpected offset when storing to webassembly global",
1543                          false);
1544 
1545     SDVTList Tys = DAG.getVTList(MVT::Other);
1546     SDValue Ops[] = {SN->getChain(), Value, Base};
1547     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1548                                    SN->getMemoryVT(), SN->getMemOperand());
1549   }
1550 
1551   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1552     if (!Offset->isUndef())
1553       report_fatal_error("unexpected offset when storing to webassembly local",
1554                          false);
1555 
1556     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1557     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1558     SDValue Ops[] = {SN->getChain(), Idx, Value};
1559     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1560   }
1561 
1562   return Op;
1563 }
1564 
1565 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1566                                              SelectionDAG &DAG) const {
1567   SDLoc DL(Op);
1568   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1569   const SDValue &Base = LN->getBasePtr();
1570   const SDValue &Offset = LN->getOffset();
1571 
1572   if (IsWebAssemblyTableWithOffset(Base)) {
1573     if (!Offset->isUndef())
1574       report_fatal_error(
1575           "unexpected offset when loading from webassembly table", false);
1576 
1577     GlobalAddressSDNode *GA;
1578     SDValue Idx;
1579 
1580     if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
1581       report_fatal_error("failed pattern matching for lowering table load",
1582                          false);
1583 
1584     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1585     SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx};
1586     SDValue TableGet =
1587         DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps,
1588                                 LN->getMemoryVT(), LN->getMemOperand());
1589     return TableGet;
1590   }
1591 
1592   if (IsWebAssemblyGlobal(Base)) {
1593     if (!Offset->isUndef())
1594       report_fatal_error(
1595           "unexpected offset when loading from webassembly global", false);
1596 
1597     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1598     SDValue Ops[] = {LN->getChain(), Base};
1599     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1600                                    LN->getMemoryVT(), LN->getMemOperand());
1601   }
1602 
1603   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1604     if (!Offset->isUndef())
1605       report_fatal_error(
1606           "unexpected offset when loading from webassembly local", false);
1607 
1608     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1609     EVT LocalVT = LN->getValueType(0);
1610     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1611                                    {LN->getChain(), Idx});
1612     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1613     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1614     return Result;
1615   }
1616 
1617   return Op;
1618 }
1619 
1620 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1621                                                   SelectionDAG &DAG) const {
1622   SDValue Src = Op.getOperand(2);
1623   if (isa<FrameIndexSDNode>(Src.getNode())) {
1624     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1625     // the FI to some LEA-like instruction, but since we don't have that, we
1626     // need to insert some kind of instruction that can take an FI operand and
1627     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1628     // local.copy between Op and its FI operand.
1629     SDValue Chain = Op.getOperand(0);
1630     SDLoc DL(Op);
1631     Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1632     EVT VT = Src.getValueType();
1633     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1634                                                    : WebAssembly::COPY_I64,
1635                                     DL, VT, Src),
1636                  0);
1637     return Op.getNode()->getNumValues() == 1
1638                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1639                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1640                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1641                                                            : SDValue());
1642   }
1643   return SDValue();
1644 }
1645 
1646 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1647                                                    SelectionDAG &DAG) const {
1648   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1649   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1650 }
1651 
1652 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1653                                                    SelectionDAG &DAG) const {
1654   SDLoc DL(Op);
1655 
1656   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1657     fail(DL, DAG,
1658          "Non-Emscripten WebAssembly hasn't implemented "
1659          "__builtin_return_address");
1660     return SDValue();
1661   }
1662 
1663   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1664     return SDValue();
1665 
1666   unsigned Depth = Op.getConstantOperandVal(0);
1667   MakeLibCallOptions CallOptions;
1668   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1669                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1670       .first;
1671 }
1672 
1673 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1674                                                   SelectionDAG &DAG) const {
1675   // Non-zero depths are not supported by WebAssembly currently. Use the
1676   // legalizer's default expansion, which is to return 0 (what this function is
1677   // documented to do).
1678   if (Op.getConstantOperandVal(0) > 0)
1679     return SDValue();
1680 
1681   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1682   EVT VT = Op.getValueType();
1683   Register FP =
1684       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1685   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1686 }
1687 
1688 SDValue
1689 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1690                                                  SelectionDAG &DAG) const {
1691   SDLoc DL(Op);
1692   const auto *GA = cast<GlobalAddressSDNode>(Op);
1693 
1694   MachineFunction &MF = DAG.getMachineFunction();
1695   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1696     report_fatal_error("cannot use thread-local storage without bulk memory",
1697                        false);
1698 
1699   const GlobalValue *GV = GA->getGlobal();
1700 
1701   // Currently Emscripten does not support dynamic linking with threads.
1702   // Therefore, if we have thread-local storage, only the local-exec model
1703   // is possible.
1704   // TODO: remove this and implement proper TLS models once Emscripten
1705   // supports dynamic linking with threads.
1706   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1707       !Subtarget->getTargetTriple().isOSEmscripten()) {
1708     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1709                        "non-Emscripten OSes: variable " +
1710                            GV->getName(),
1711                        false);
1712   }
1713 
1714   auto model = GV->getThreadLocalMode();
1715 
1716   // Unsupported TLS modes
1717   assert(model != GlobalValue::NotThreadLocal);
1718   assert(model != GlobalValue::InitialExecTLSModel);
1719 
1720   if (model == GlobalValue::LocalExecTLSModel ||
1721       model == GlobalValue::LocalDynamicTLSModel ||
1722       (model == GlobalValue::GeneralDynamicTLSModel &&
1723        getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1724     // For DSO-local TLS variables we use offset from __tls_base
1725 
1726     MVT PtrVT = getPointerTy(DAG.getDataLayout());
1727     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1728                                        : WebAssembly::GLOBAL_GET_I32;
1729     const char *BaseName = MF.createExternalSymbolName("__tls_base");
1730 
1731     SDValue BaseAddr(
1732         DAG.getMachineNode(GlobalGet, DL, PtrVT,
1733                            DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1734         0);
1735 
1736     SDValue TLSOffset = DAG.getTargetGlobalAddress(
1737         GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1738     SDValue SymOffset =
1739         DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1740 
1741     return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1742   }
1743 
1744   assert(model == GlobalValue::GeneralDynamicTLSModel);
1745 
1746   EVT VT = Op.getValueType();
1747   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1748                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1749                                                 GA->getOffset(),
1750                                                 WebAssemblyII::MO_GOT_TLS));
1751 }
1752 
1753 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1754                                                       SelectionDAG &DAG) const {
1755   SDLoc DL(Op);
1756   const auto *GA = cast<GlobalAddressSDNode>(Op);
1757   EVT VT = Op.getValueType();
1758   assert(GA->getTargetFlags() == 0 &&
1759          "Unexpected target flags on generic GlobalAddressSDNode");
1760   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1761     fail(DL, DAG, "Invalid address space for WebAssembly target");
1762 
1763   unsigned OperandFlags = 0;
1764   if (isPositionIndependent()) {
1765     const GlobalValue *GV = GA->getGlobal();
1766     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1767       MachineFunction &MF = DAG.getMachineFunction();
1768       MVT PtrVT = getPointerTy(MF.getDataLayout());
1769       const char *BaseName;
1770       if (GV->getValueType()->isFunctionTy()) {
1771         BaseName = MF.createExternalSymbolName("__table_base");
1772         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1773       }
1774       else {
1775         BaseName = MF.createExternalSymbolName("__memory_base");
1776         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1777       }
1778       SDValue BaseAddr =
1779           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1780                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1781 
1782       SDValue SymAddr = DAG.getNode(
1783           WebAssemblyISD::WrapperREL, DL, VT,
1784           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1785                                      OperandFlags));
1786 
1787       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1788     }
1789     OperandFlags = WebAssemblyII::MO_GOT;
1790   }
1791 
1792   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1793                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1794                                                 GA->getOffset(), OperandFlags));
1795 }
1796 
1797 SDValue
1798 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1799                                                SelectionDAG &DAG) const {
1800   SDLoc DL(Op);
1801   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1802   EVT VT = Op.getValueType();
1803   assert(ES->getTargetFlags() == 0 &&
1804          "Unexpected target flags on generic ExternalSymbolSDNode");
1805   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1806                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1807 }
1808 
1809 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1810                                                   SelectionDAG &DAG) const {
1811   // There's no need for a Wrapper node because we always incorporate a jump
1812   // table operand into a BR_TABLE instruction, rather than ever
1813   // materializing it in a register.
1814   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1815   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1816                                 JT->getTargetFlags());
1817 }
1818 
1819 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1820                                               SelectionDAG &DAG) const {
1821   SDLoc DL(Op);
1822   SDValue Chain = Op.getOperand(0);
1823   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1824   SDValue Index = Op.getOperand(2);
1825   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1826 
1827   SmallVector<SDValue, 8> Ops;
1828   Ops.push_back(Chain);
1829   Ops.push_back(Index);
1830 
1831   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1832   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1833 
1834   // Add an operand for each case.
1835   for (auto MBB : MBBs)
1836     Ops.push_back(DAG.getBasicBlock(MBB));
1837 
1838   // Add the first MBB as a dummy default target for now. This will be replaced
1839   // with the proper default target (and the preceding range check eliminated)
1840   // if possible by WebAssemblyFixBrTableDefaults.
1841   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1842   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1843 }
1844 
1845 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1846                                                 SelectionDAG &DAG) const {
1847   SDLoc DL(Op);
1848   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1849 
1850   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1851   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1852 
1853   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1854                                     MFI->getVarargBufferVreg(), PtrVT);
1855   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1856                       MachinePointerInfo(SV));
1857 }
1858 
1859 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1860                                                   SelectionDAG &DAG) const {
1861   MachineFunction &MF = DAG.getMachineFunction();
1862   unsigned IntNo;
1863   switch (Op.getOpcode()) {
1864   case ISD::INTRINSIC_VOID:
1865   case ISD::INTRINSIC_W_CHAIN:
1866     IntNo = Op.getConstantOperandVal(1);
1867     break;
1868   case ISD::INTRINSIC_WO_CHAIN:
1869     IntNo = Op.getConstantOperandVal(0);
1870     break;
1871   default:
1872     llvm_unreachable("Invalid intrinsic");
1873   }
1874   SDLoc DL(Op);
1875 
1876   switch (IntNo) {
1877   default:
1878     return SDValue(); // Don't custom lower most intrinsics.
1879 
1880   case Intrinsic::wasm_lsda: {
1881     auto PtrVT = getPointerTy(MF.getDataLayout());
1882     const char *SymName = MF.createExternalSymbolName(
1883         "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1884     if (isPositionIndependent()) {
1885       SDValue Node = DAG.getTargetExternalSymbol(
1886           SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1887       const char *BaseName = MF.createExternalSymbolName("__memory_base");
1888       SDValue BaseAddr =
1889           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1890                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1891       SDValue SymAddr =
1892           DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1893       return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1894     }
1895     SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1896     return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1897   }
1898 
1899   case Intrinsic::wasm_shuffle: {
1900     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1901     SDValue Ops[18];
1902     size_t OpIdx = 0;
1903     Ops[OpIdx++] = Op.getOperand(1);
1904     Ops[OpIdx++] = Op.getOperand(2);
1905     while (OpIdx < 18) {
1906       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1907       if (MaskIdx.isUndef() ||
1908           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1909         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1910       } else {
1911         Ops[OpIdx++] = MaskIdx;
1912       }
1913     }
1914     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1915   }
1916   }
1917 }
1918 
1919 SDValue
1920 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1921                                                   SelectionDAG &DAG) const {
1922   SDLoc DL(Op);
1923   // If sign extension operations are disabled, allow sext_inreg only if operand
1924   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1925   // extension operations, but allowing sext_inreg in this context lets us have
1926   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1927   // everywhere would be simpler in this file, but would necessitate large and
1928   // brittle patterns to undo the expansion and select extract_lane_s
1929   // instructions.
1930   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1931   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1932     return SDValue();
1933 
1934   const SDValue &Extract = Op.getOperand(0);
1935   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1936   if (VecT.getVectorElementType().getSizeInBits() > 32)
1937     return SDValue();
1938   MVT ExtractedLaneT =
1939       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1940   MVT ExtractedVecT =
1941       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1942   if (ExtractedVecT == VecT)
1943     return Op;
1944 
1945   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1946   const SDNode *Index = Extract.getOperand(1).getNode();
1947   if (!isa<ConstantSDNode>(Index))
1948     return SDValue();
1949   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1950   unsigned Scale =
1951       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1952   assert(Scale > 1);
1953   SDValue NewIndex =
1954       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1955   SDValue NewExtract = DAG.getNode(
1956       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1957       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1958   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1959                      Op.getOperand(1));
1960 }
1961 
1962 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1963   SDLoc DL(Op);
1964   if (Op.getValueType() != MVT::v2f64)
1965     return SDValue();
1966 
1967   auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1968                              unsigned &Index) -> bool {
1969     switch (Op.getOpcode()) {
1970     case ISD::SINT_TO_FP:
1971       Opcode = WebAssemblyISD::CONVERT_LOW_S;
1972       break;
1973     case ISD::UINT_TO_FP:
1974       Opcode = WebAssemblyISD::CONVERT_LOW_U;
1975       break;
1976     case ISD::FP_EXTEND:
1977       Opcode = WebAssemblyISD::PROMOTE_LOW;
1978       break;
1979     default:
1980       return false;
1981     }
1982 
1983     auto ExtractVector = Op.getOperand(0);
1984     if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1985       return false;
1986 
1987     if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
1988       return false;
1989 
1990     SrcVec = ExtractVector.getOperand(0);
1991     Index = ExtractVector.getConstantOperandVal(1);
1992     return true;
1993   };
1994 
1995   unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
1996   SDValue LHSSrcVec, RHSSrcVec;
1997   if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
1998       !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
1999     return SDValue();
2000 
2001   if (LHSOpcode != RHSOpcode)
2002     return SDValue();
2003 
2004   MVT ExpectedSrcVT;
2005   switch (LHSOpcode) {
2006   case WebAssemblyISD::CONVERT_LOW_S:
2007   case WebAssemblyISD::CONVERT_LOW_U:
2008     ExpectedSrcVT = MVT::v4i32;
2009     break;
2010   case WebAssemblyISD::PROMOTE_LOW:
2011     ExpectedSrcVT = MVT::v4f32;
2012     break;
2013   }
2014   if (LHSSrcVec.getValueType() != ExpectedSrcVT)
2015     return SDValue();
2016 
2017   auto Src = LHSSrcVec;
2018   if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2019     // Shuffle the source vector so that the converted lanes are the low lanes.
2020     Src = DAG.getVectorShuffle(
2021         ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2022         {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2023   }
2024   return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2025 }
2026 
2027 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2028                                                      SelectionDAG &DAG) const {
2029   if (auto ConvertLow = LowerConvertLow(Op, DAG))
2030     return ConvertLow;
2031 
2032   SDLoc DL(Op);
2033   const EVT VecT = Op.getValueType();
2034   const EVT LaneT = Op.getOperand(0).getValueType();
2035   const size_t Lanes = Op.getNumOperands();
2036   bool CanSwizzle = VecT == MVT::v16i8;
2037 
2038   // BUILD_VECTORs are lowered to the instruction that initializes the highest
2039   // possible number of lanes at once followed by a sequence of replace_lane
2040   // instructions to individually initialize any remaining lanes.
2041 
2042   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2043   // swizzled lanes should be given greater weight.
2044 
2045   // TODO: Investigate looping rather than always extracting/replacing specific
2046   // lanes to fill gaps.
2047 
2048   auto IsConstant = [](const SDValue &V) {
2049     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2050   };
2051 
2052   // Returns the source vector and index vector pair if they exist. Checks for:
2053   //   (extract_vector_elt
2054   //     $src,
2055   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
2056   //   )
2057   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2058     auto Bail = std::make_pair(SDValue(), SDValue());
2059     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2060       return Bail;
2061     const SDValue &SwizzleSrc = Lane->getOperand(0);
2062     const SDValue &IndexExt = Lane->getOperand(1);
2063     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2064       return Bail;
2065     const SDValue &Index = IndexExt->getOperand(0);
2066     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2067       return Bail;
2068     const SDValue &SwizzleIndices = Index->getOperand(0);
2069     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2070         SwizzleIndices.getValueType() != MVT::v16i8 ||
2071         Index->getOperand(1)->getOpcode() != ISD::Constant ||
2072         Index->getConstantOperandVal(1) != I)
2073       return Bail;
2074     return std::make_pair(SwizzleSrc, SwizzleIndices);
2075   };
2076 
2077   // If the lane is extracted from another vector at a constant index, return
2078   // that vector. The source vector must not have more lanes than the dest
2079   // because the shufflevector indices are in terms of the destination lanes and
2080   // would not be able to address the smaller individual source lanes.
2081   auto GetShuffleSrc = [&](const SDValue &Lane) {
2082     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2083       return SDValue();
2084     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2085       return SDValue();
2086     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2087         VecT.getVectorNumElements())
2088       return SDValue();
2089     return Lane->getOperand(0);
2090   };
2091 
2092   using ValueEntry = std::pair<SDValue, size_t>;
2093   SmallVector<ValueEntry, 16> SplatValueCounts;
2094 
2095   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2096   SmallVector<SwizzleEntry, 16> SwizzleCounts;
2097 
2098   using ShuffleEntry = std::pair<SDValue, size_t>;
2099   SmallVector<ShuffleEntry, 16> ShuffleCounts;
2100 
2101   auto AddCount = [](auto &Counts, const auto &Val) {
2102     auto CountIt =
2103         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2104     if (CountIt == Counts.end()) {
2105       Counts.emplace_back(Val, 1);
2106     } else {
2107       CountIt->second++;
2108     }
2109   };
2110 
2111   auto GetMostCommon = [](auto &Counts) {
2112     auto CommonIt =
2113         std::max_element(Counts.begin(), Counts.end(),
2114                          [](auto A, auto B) { return A.second < B.second; });
2115     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2116     return *CommonIt;
2117   };
2118 
2119   size_t NumConstantLanes = 0;
2120 
2121   // Count eligible lanes for each type of vector creation op
2122   for (size_t I = 0; I < Lanes; ++I) {
2123     const SDValue &Lane = Op->getOperand(I);
2124     if (Lane.isUndef())
2125       continue;
2126 
2127     AddCount(SplatValueCounts, Lane);
2128 
2129     if (IsConstant(Lane))
2130       NumConstantLanes++;
2131     if (auto ShuffleSrc = GetShuffleSrc(Lane))
2132       AddCount(ShuffleCounts, ShuffleSrc);
2133     if (CanSwizzle) {
2134       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2135       if (SwizzleSrcs.first)
2136         AddCount(SwizzleCounts, SwizzleSrcs);
2137     }
2138   }
2139 
2140   SDValue SplatValue;
2141   size_t NumSplatLanes;
2142   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2143 
2144   SDValue SwizzleSrc;
2145   SDValue SwizzleIndices;
2146   size_t NumSwizzleLanes = 0;
2147   if (SwizzleCounts.size())
2148     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2149                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2150 
2151   // Shuffles can draw from up to two vectors, so find the two most common
2152   // sources.
2153   SDValue ShuffleSrc1, ShuffleSrc2;
2154   size_t NumShuffleLanes = 0;
2155   if (ShuffleCounts.size()) {
2156     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2157     llvm::erase_if(ShuffleCounts,
2158                    [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2159   }
2160   if (ShuffleCounts.size()) {
2161     size_t AdditionalShuffleLanes;
2162     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2163         GetMostCommon(ShuffleCounts);
2164     NumShuffleLanes += AdditionalShuffleLanes;
2165   }
2166 
2167   // Predicate returning true if the lane is properly initialized by the
2168   // original instruction
2169   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2170   SDValue Result;
2171   // Prefer swizzles over shuffles over vector consts over splats
2172   if (NumSwizzleLanes >= NumShuffleLanes &&
2173       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2174     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2175                          SwizzleIndices);
2176     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2177     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2178       return Swizzled == GetSwizzleSrcs(I, Lane);
2179     };
2180   } else if (NumShuffleLanes >= NumConstantLanes &&
2181              NumShuffleLanes >= NumSplatLanes) {
2182     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2183     size_t DestLaneCount = VecT.getVectorNumElements();
2184     size_t Scale1 = 1;
2185     size_t Scale2 = 1;
2186     SDValue Src1 = ShuffleSrc1;
2187     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2188     if (Src1.getValueType() != VecT) {
2189       size_t LaneSize =
2190           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2191       assert(LaneSize > DestLaneSize);
2192       Scale1 = LaneSize / DestLaneSize;
2193       Src1 = DAG.getBitcast(VecT, Src1);
2194     }
2195     if (Src2.getValueType() != VecT) {
2196       size_t LaneSize =
2197           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2198       assert(LaneSize > DestLaneSize);
2199       Scale2 = LaneSize / DestLaneSize;
2200       Src2 = DAG.getBitcast(VecT, Src2);
2201     }
2202 
2203     int Mask[16];
2204     assert(DestLaneCount <= 16);
2205     for (size_t I = 0; I < DestLaneCount; ++I) {
2206       const SDValue &Lane = Op->getOperand(I);
2207       SDValue Src = GetShuffleSrc(Lane);
2208       if (Src == ShuffleSrc1) {
2209         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2210       } else if (Src && Src == ShuffleSrc2) {
2211         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2212       } else {
2213         Mask[I] = -1;
2214       }
2215     }
2216     ArrayRef<int> MaskRef(Mask, DestLaneCount);
2217     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2218     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2219       auto Src = GetShuffleSrc(Lane);
2220       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2221     };
2222   } else if (NumConstantLanes >= NumSplatLanes) {
2223     SmallVector<SDValue, 16> ConstLanes;
2224     for (const SDValue &Lane : Op->op_values()) {
2225       if (IsConstant(Lane)) {
2226         // Values may need to be fixed so that they will sign extend to be
2227         // within the expected range during ISel. Check whether the value is in
2228         // bounds based on the lane bit width and if it is out of bounds, lop
2229         // off the extra bits and subtract 2^n to reflect giving the high bit
2230         // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2231         // cannot possibly be out of range.
2232         auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2233         int64_t Val = Const ? Const->getSExtValue() : 0;
2234         uint64_t LaneBits = 128 / Lanes;
2235         assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2236                "Unexpected out of bounds negative value");
2237         if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2238           auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
2239           ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2240         } else {
2241           ConstLanes.push_back(Lane);
2242         }
2243       } else if (LaneT.isFloatingPoint()) {
2244         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2245       } else {
2246         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2247       }
2248     }
2249     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2250     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2251       return IsConstant(Lane);
2252     };
2253   } else {
2254     // Use a splat, but possibly a load_splat
2255     LoadSDNode *SplattedLoad;
2256     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
2257         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
2258       Result = DAG.getMemIntrinsicNode(
2259           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
2260           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
2261            SplattedLoad->getOffset()},
2262           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
2263     } else {
2264       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2265     }
2266     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2267       return Lane == SplatValue;
2268     };
2269   }
2270 
2271   assert(Result);
2272   assert(IsLaneConstructed);
2273 
2274   // Add replace_lane instructions for any unhandled values
2275   for (size_t I = 0; I < Lanes; ++I) {
2276     const SDValue &Lane = Op->getOperand(I);
2277     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2278       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2279                            DAG.getConstant(I, DL, MVT::i32));
2280   }
2281 
2282   return Result;
2283 }
2284 
2285 SDValue
2286 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2287                                                SelectionDAG &DAG) const {
2288   SDLoc DL(Op);
2289   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2290   MVT VecType = Op.getOperand(0).getSimpleValueType();
2291   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2292   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2293 
2294   // Space for two vector args and sixteen mask indices
2295   SDValue Ops[18];
2296   size_t OpIdx = 0;
2297   Ops[OpIdx++] = Op.getOperand(0);
2298   Ops[OpIdx++] = Op.getOperand(1);
2299 
2300   // Expand mask indices to byte indices and materialize them as operands
2301   for (int M : Mask) {
2302     for (size_t J = 0; J < LaneBytes; ++J) {
2303       // Lower undefs (represented by -1 in mask) to zero
2304       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
2305       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2306     }
2307   }
2308 
2309   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2310 }
2311 
2312 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2313                                               SelectionDAG &DAG) const {
2314   SDLoc DL(Op);
2315   // The legalizer does not know how to expand the unsupported comparison modes
2316   // of i64x2 vectors, so we manually unroll them here.
2317   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2318   SmallVector<SDValue, 2> LHS, RHS;
2319   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2320   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2321   const SDValue &CC = Op->getOperand(2);
2322   auto MakeLane = [&](unsigned I) {
2323     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2324                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2325                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2326   };
2327   return DAG.getBuildVector(Op->getValueType(0), DL,
2328                             {MakeLane(0), MakeLane(1)});
2329 }
2330 
2331 SDValue
2332 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2333                                                     SelectionDAG &DAG) const {
2334   // Allow constant lane indices, expand variable lane indices
2335   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2336   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2337     return Op;
2338   else
2339     // Perform default expansion
2340     return SDValue();
2341 }
2342 
2343 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2344   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2345   // 32-bit and 64-bit unrolled shifts will have proper semantics
2346   if (LaneT.bitsGE(MVT::i32))
2347     return DAG.UnrollVectorOp(Op.getNode());
2348   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2349   SDLoc DL(Op);
2350   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2351   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2352   unsigned ShiftOpcode = Op.getOpcode();
2353   SmallVector<SDValue, 16> ShiftedElements;
2354   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2355   SmallVector<SDValue, 16> ShiftElements;
2356   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2357   SmallVector<SDValue, 16> UnrolledOps;
2358   for (size_t i = 0; i < NumLanes; ++i) {
2359     SDValue MaskedShiftValue =
2360         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2361     SDValue ShiftedValue = ShiftedElements[i];
2362     if (ShiftOpcode == ISD::SRA)
2363       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2364                                  ShiftedValue, DAG.getValueType(LaneT));
2365     UnrolledOps.push_back(
2366         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2367   }
2368   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2369 }
2370 
2371 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2372                                               SelectionDAG &DAG) const {
2373   SDLoc DL(Op);
2374 
2375   // Only manually lower vector shifts
2376   assert(Op.getSimpleValueType().isVector());
2377 
2378   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2379   if (!ShiftVal)
2380     return unrollVectorShift(Op, DAG);
2381 
2382   // Use anyext because none of the high bits can affect the shift
2383   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2384 
2385   unsigned Opcode;
2386   switch (Op.getOpcode()) {
2387   case ISD::SHL:
2388     Opcode = WebAssemblyISD::VEC_SHL;
2389     break;
2390   case ISD::SRA:
2391     Opcode = WebAssemblyISD::VEC_SHR_S;
2392     break;
2393   case ISD::SRL:
2394     Opcode = WebAssemblyISD::VEC_SHR_U;
2395     break;
2396   default:
2397     llvm_unreachable("unexpected opcode");
2398   }
2399 
2400   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2401 }
2402 
2403 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2404                                                       SelectionDAG &DAG) const {
2405   SDLoc DL(Op);
2406   EVT ResT = Op.getValueType();
2407   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2408 
2409   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2410       (SatVT == MVT::i32 || SatVT == MVT::i64))
2411     return Op;
2412 
2413   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2414     return Op;
2415 
2416   return SDValue();
2417 }
2418 
2419 //===----------------------------------------------------------------------===//
2420 //   Custom DAG combine hooks
2421 //===----------------------------------------------------------------------===//
2422 static SDValue
2423 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2424   auto &DAG = DCI.DAG;
2425   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2426 
2427   // Hoist vector bitcasts that don't change the number of lanes out of unary
2428   // shuffles, where they are less likely to get in the way of other combines.
2429   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2430   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2431   SDValue Bitcast = N->getOperand(0);
2432   if (Bitcast.getOpcode() != ISD::BITCAST)
2433     return SDValue();
2434   if (!N->getOperand(1).isUndef())
2435     return SDValue();
2436   SDValue CastOp = Bitcast.getOperand(0);
2437   MVT SrcType = CastOp.getSimpleValueType();
2438   MVT DstType = Bitcast.getSimpleValueType();
2439   if (!SrcType.is128BitVector() ||
2440       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2441     return SDValue();
2442   SDValue NewShuffle = DAG.getVectorShuffle(
2443       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2444   return DAG.getBitcast(DstType, NewShuffle);
2445 }
2446 
2447 static SDValue
2448 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2449   auto &DAG = DCI.DAG;
2450   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2451          N->getOpcode() == ISD::ZERO_EXTEND);
2452 
2453   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2454   // possible before the extract_subvector can be expanded.
2455   auto Extract = N->getOperand(0);
2456   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2457     return SDValue();
2458   auto Source = Extract.getOperand(0);
2459   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2460   if (IndexNode == nullptr)
2461     return SDValue();
2462   auto Index = IndexNode->getZExtValue();
2463 
2464   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2465   // extracted subvector is the low or high half of its source.
2466   EVT ResVT = N->getValueType(0);
2467   if (ResVT == MVT::v8i16) {
2468     if (Extract.getValueType() != MVT::v8i8 ||
2469         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2470       return SDValue();
2471   } else if (ResVT == MVT::v4i32) {
2472     if (Extract.getValueType() != MVT::v4i16 ||
2473         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2474       return SDValue();
2475   } else if (ResVT == MVT::v2i64) {
2476     if (Extract.getValueType() != MVT::v2i32 ||
2477         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2478       return SDValue();
2479   } else {
2480     return SDValue();
2481   }
2482 
2483   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2484   bool IsLow = Index == 0;
2485 
2486   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2487                                 : WebAssemblyISD::EXTEND_HIGH_S)
2488                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2489                                 : WebAssemblyISD::EXTEND_HIGH_U);
2490 
2491   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2492 }
2493 
2494 static SDValue
2495 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2496   auto &DAG = DCI.DAG;
2497 
2498   auto GetWasmConversionOp = [](unsigned Op) {
2499     switch (Op) {
2500     case ISD::FP_TO_SINT_SAT:
2501       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2502     case ISD::FP_TO_UINT_SAT:
2503       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2504     case ISD::FP_ROUND:
2505       return WebAssemblyISD::DEMOTE_ZERO;
2506     }
2507     llvm_unreachable("unexpected op");
2508   };
2509 
2510   auto IsZeroSplat = [](SDValue SplatVal) {
2511     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2512     APInt SplatValue, SplatUndef;
2513     unsigned SplatBitSize;
2514     bool HasAnyUndefs;
2515     return Splat &&
2516            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2517                                   HasAnyUndefs) &&
2518            SplatValue == 0;
2519   };
2520 
2521   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2522     // Combine this:
2523     //
2524     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2525     //
2526     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2527     //
2528     // Or this:
2529     //
2530     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2531     //
2532     // into (f32x4.demote_zero_f64x2 $x).
2533     EVT ResVT;
2534     EVT ExpectedConversionType;
2535     auto Conversion = N->getOperand(0);
2536     auto ConversionOp = Conversion.getOpcode();
2537     switch (ConversionOp) {
2538     case ISD::FP_TO_SINT_SAT:
2539     case ISD::FP_TO_UINT_SAT:
2540       ResVT = MVT::v4i32;
2541       ExpectedConversionType = MVT::v2i32;
2542       break;
2543     case ISD::FP_ROUND:
2544       ResVT = MVT::v4f32;
2545       ExpectedConversionType = MVT::v2f32;
2546       break;
2547     default:
2548       return SDValue();
2549     }
2550 
2551     if (N->getValueType(0) != ResVT)
2552       return SDValue();
2553 
2554     if (Conversion.getValueType() != ExpectedConversionType)
2555       return SDValue();
2556 
2557     auto Source = Conversion.getOperand(0);
2558     if (Source.getValueType() != MVT::v2f64)
2559       return SDValue();
2560 
2561     if (!IsZeroSplat(N->getOperand(1)) ||
2562         N->getOperand(1).getValueType() != ExpectedConversionType)
2563       return SDValue();
2564 
2565     unsigned Op = GetWasmConversionOp(ConversionOp);
2566     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2567   }
2568 
2569   // Combine this:
2570   //
2571   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2572   //
2573   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2574   //
2575   // Or this:
2576   //
2577   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2578   //
2579   // into (f32x4.demote_zero_f64x2 $x).
2580   EVT ResVT;
2581   auto ConversionOp = N->getOpcode();
2582   switch (ConversionOp) {
2583   case ISD::FP_TO_SINT_SAT:
2584   case ISD::FP_TO_UINT_SAT:
2585     ResVT = MVT::v4i32;
2586     break;
2587   case ISD::FP_ROUND:
2588     ResVT = MVT::v4f32;
2589     break;
2590   default:
2591     llvm_unreachable("unexpected op");
2592   }
2593 
2594   if (N->getValueType(0) != ResVT)
2595     return SDValue();
2596 
2597   auto Concat = N->getOperand(0);
2598   if (Concat.getValueType() != MVT::v4f64)
2599     return SDValue();
2600 
2601   auto Source = Concat.getOperand(0);
2602   if (Source.getValueType() != MVT::v2f64)
2603     return SDValue();
2604 
2605   if (!IsZeroSplat(Concat.getOperand(1)) ||
2606       Concat.getOperand(1).getValueType() != MVT::v2f64)
2607     return SDValue();
2608 
2609   unsigned Op = GetWasmConversionOp(ConversionOp);
2610   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2611 }
2612 
2613 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2614 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2615                                 const SDLoc &DL, unsigned VectorWidth) {
2616   EVT VT = Vec.getValueType();
2617   EVT ElVT = VT.getVectorElementType();
2618   unsigned Factor = VT.getSizeInBits() / VectorWidth;
2619   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2620                                   VT.getVectorNumElements() / Factor);
2621 
2622   // Extract the relevant VectorWidth bits.  Generate an EXTRACT_SUBVECTOR
2623   unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2624   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2625 
2626   // This is the index of the first element of the VectorWidth-bit chunk
2627   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2628   IdxVal &= ~(ElemsPerChunk - 1);
2629 
2630   // If the input is a buildvector just emit a smaller one.
2631   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2632     return DAG.getBuildVector(ResultVT, DL,
2633                               Vec->ops().slice(IdxVal, ElemsPerChunk));
2634 
2635   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2636   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2637 }
2638 
2639 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2640 // is the expected destination value type after recursion. In is the initial
2641 // input. Note that the input should have enough leading zero bits to prevent
2642 // NARROW_U from saturating results.
2643 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2644                                         SelectionDAG &DAG) {
2645   EVT SrcVT = In.getValueType();
2646 
2647   // No truncation required, we might get here due to recursive calls.
2648   if (SrcVT == DstVT)
2649     return In;
2650 
2651   unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2652   unsigned NumElems = SrcVT.getVectorNumElements();
2653   if (!isPowerOf2_32(NumElems))
2654     return SDValue();
2655   assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2656   assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2657 
2658   LLVMContext &Ctx = *DAG.getContext();
2659   EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2660 
2661   // Narrow to the largest type possible:
2662   // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2663   EVT InVT = MVT::i16, OutVT = MVT::i8;
2664   if (SrcVT.getScalarSizeInBits() > 16) {
2665     InVT = MVT::i32;
2666     OutVT = MVT::i16;
2667   }
2668   unsigned SubSizeInBits = SrcSizeInBits / 2;
2669   InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2670   OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2671 
2672   // Split lower/upper subvectors.
2673   SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2674   SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2675 
2676   // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2677   if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2678     Lo = DAG.getBitcast(InVT, Lo);
2679     Hi = DAG.getBitcast(InVT, Hi);
2680     SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2681     return DAG.getBitcast(DstVT, Res);
2682   }
2683 
2684   // Recursively narrow lower/upper subvectors, concat result and narrow again.
2685   EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2686   Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2687   Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2688 
2689   PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2690   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2691   return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2692 }
2693 
2694 static SDValue performTruncateCombine(SDNode *N,
2695                                       TargetLowering::DAGCombinerInfo &DCI) {
2696   auto &DAG = DCI.DAG;
2697 
2698   SDValue In = N->getOperand(0);
2699   EVT InVT = In.getValueType();
2700   if (!InVT.isSimple())
2701     return SDValue();
2702 
2703   EVT OutVT = N->getValueType(0);
2704   if (!OutVT.isVector())
2705     return SDValue();
2706 
2707   EVT OutSVT = OutVT.getVectorElementType();
2708   EVT InSVT = InVT.getVectorElementType();
2709   // Currently only cover truncate to v16i8 or v8i16.
2710   if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2711         (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2712     return SDValue();
2713 
2714   SDLoc DL(N);
2715   APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2716                                     OutVT.getScalarSizeInBits());
2717   In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2718   return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2719 }
2720 
2721 SDValue
2722 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2723                                              DAGCombinerInfo &DCI) const {
2724   switch (N->getOpcode()) {
2725   default:
2726     return SDValue();
2727   case ISD::VECTOR_SHUFFLE:
2728     return performVECTOR_SHUFFLECombine(N, DCI);
2729   case ISD::SIGN_EXTEND:
2730   case ISD::ZERO_EXTEND:
2731     return performVectorExtendCombine(N, DCI);
2732   case ISD::FP_TO_SINT_SAT:
2733   case ISD::FP_TO_UINT_SAT:
2734   case ISD::FP_ROUND:
2735   case ISD::CONCAT_VECTORS:
2736     return performVectorTruncZeroCombine(N, DCI);
2737   case ISD::TRUNCATE:
2738     return performTruncateCombine(N, DCI);
2739   }
2740 }
2741