1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetOptions.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-lower" 42 43 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 44 const TargetMachine &TM, const WebAssemblySubtarget &STI) 45 : TargetLowering(TM), Subtarget(&STI) { 46 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 47 48 // Booleans always contain 0 or 1. 49 setBooleanContents(ZeroOrOneBooleanContent); 50 // Except in SIMD vectors 51 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 52 // We don't know the microarchitecture here, so just reduce register pressure. 53 setSchedulingPreference(Sched::RegPressure); 54 // Tell ISel that we have a stack pointer. 55 setStackPointerRegisterToSaveRestore( 56 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 57 // Set up the register classes. 58 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 59 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 60 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 61 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 62 if (Subtarget->hasSIMD128()) { 63 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 69 } 70 if (Subtarget->hasReferenceTypes()) { 71 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 72 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 73 } 74 // Compute derived properties from the register classes. 75 computeRegisterProperties(Subtarget->getRegisterInfo()); 76 77 // Transform loads and stores to pointers in address space 1 to loads and 78 // stores to WebAssembly global variables, outside linear memory. 79 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 80 setOperationAction(ISD::LOAD, T, Custom); 81 setOperationAction(ISD::STORE, T, Custom); 82 } 83 if (Subtarget->hasSIMD128()) { 84 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 85 MVT::v2f64}) { 86 setOperationAction(ISD::LOAD, T, Custom); 87 setOperationAction(ISD::STORE, T, Custom); 88 } 89 } 90 if (Subtarget->hasReferenceTypes()) { 91 // We need custom load and store lowering for both externref, funcref and 92 // Other. The MVT::Other here represents tables of reference types. 93 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 94 setOperationAction(ISD::LOAD, T, Custom); 95 setOperationAction(ISD::STORE, T, Custom); 96 } 97 } 98 99 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 100 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 101 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 102 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 103 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 104 setOperationAction(ISD::BRIND, MVT::Other, Custom); 105 106 // Take the default expansion for va_arg, va_copy, and va_end. There is no 107 // default action for va_start, so we do that custom. 108 setOperationAction(ISD::VASTART, MVT::Other, Custom); 109 setOperationAction(ISD::VAARG, MVT::Other, Expand); 110 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 111 setOperationAction(ISD::VAEND, MVT::Other, Expand); 112 113 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 114 // Don't expand the floating-point types to constant pools. 115 setOperationAction(ISD::ConstantFP, T, Legal); 116 // Expand floating-point comparisons. 117 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 118 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 119 setCondCodeAction(CC, T, Expand); 120 // Expand floating-point library function operators. 121 for (auto Op : 122 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 123 setOperationAction(Op, T, Expand); 124 // Note supported floating-point library function operators that otherwise 125 // default to expand. 126 for (auto Op : 127 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 128 setOperationAction(Op, T, Legal); 129 // Support minimum and maximum, which otherwise default to expand. 130 setOperationAction(ISD::FMINIMUM, T, Legal); 131 setOperationAction(ISD::FMAXIMUM, T, Legal); 132 // WebAssembly currently has no builtin f16 support. 133 setOperationAction(ISD::FP16_TO_FP, T, Expand); 134 setOperationAction(ISD::FP_TO_FP16, T, Expand); 135 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 136 setTruncStoreAction(T, MVT::f16, Expand); 137 } 138 139 // Expand unavailable integer operations. 140 for (auto Op : 141 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 142 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 143 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 144 for (auto T : {MVT::i32, MVT::i64}) 145 setOperationAction(Op, T, Expand); 146 if (Subtarget->hasSIMD128()) 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 148 setOperationAction(Op, T, Expand); 149 } 150 151 if (Subtarget->hasNontrappingFPToInt()) 152 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 153 for (auto T : {MVT::i32, MVT::i64}) 154 setOperationAction(Op, T, Custom); 155 156 // SIMD-specific configuration 157 if (Subtarget->hasSIMD128()) { 158 // Hoist bitcasts out of shuffles 159 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 160 161 // Combine extends of extract_subvectors into widening ops 162 setTargetDAGCombine(ISD::SIGN_EXTEND); 163 setTargetDAGCombine(ISD::ZERO_EXTEND); 164 165 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 166 // conversions ops 167 setTargetDAGCombine(ISD::SINT_TO_FP); 168 setTargetDAGCombine(ISD::UINT_TO_FP); 169 setTargetDAGCombine(ISD::FP_EXTEND); 170 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 171 172 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 173 // into conversion ops 174 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 175 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 176 setTargetDAGCombine(ISD::FP_ROUND); 177 setTargetDAGCombine(ISD::CONCAT_VECTORS); 178 179 setTargetDAGCombine(ISD::TRUNCATE); 180 181 // Support saturating add for i8x16 and i16x8 182 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 183 for (auto T : {MVT::v16i8, MVT::v8i16}) 184 setOperationAction(Op, T, Legal); 185 186 // Support integer abs 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 188 setOperationAction(ISD::ABS, T, Legal); 189 190 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 191 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 192 MVT::v2f64}) 193 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 194 195 // We have custom shuffle lowering to expose the shuffle mask 196 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 197 MVT::v2f64}) 198 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 199 200 // Custom lowering since wasm shifts must have a scalar shift amount 201 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 202 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 203 setOperationAction(Op, T, Custom); 204 205 // Custom lower lane accesses to expand out variable indices 206 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 207 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 208 MVT::v2f64}) 209 setOperationAction(Op, T, Custom); 210 211 // There is no i8x16.mul instruction 212 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 213 214 // There is no vector conditional select instruction 215 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 216 MVT::v2f64}) 217 setOperationAction(ISD::SELECT_CC, T, Expand); 218 219 // Expand integer operations supported for scalars but not SIMD 220 for (auto Op : 221 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 222 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 223 setOperationAction(Op, T, Expand); 224 225 // But we do have integer min and max operations 226 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 227 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 228 setOperationAction(Op, T, Legal); 229 230 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 231 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 232 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 233 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 234 235 // Custom lower bit counting operations for other types to scalarize them. 236 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 237 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 238 setOperationAction(Op, T, Custom); 239 240 // Expand float operations supported for scalars but not SIMD 241 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 242 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 243 for (auto T : {MVT::v4f32, MVT::v2f64}) 244 setOperationAction(Op, T, Expand); 245 246 // Unsigned comparison operations are unavailable for i64x2 vectors. 247 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 248 setCondCodeAction(CC, MVT::v2i64, Custom); 249 250 // 64x2 conversions are not in the spec 251 for (auto Op : 252 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 253 for (auto T : {MVT::v2i64, MVT::v2f64}) 254 setOperationAction(Op, T, Expand); 255 256 // But saturating fp_to_int converstions are 257 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 258 setOperationAction(Op, MVT::v4i32, Custom); 259 } 260 261 // As a special case, these operators use the type to mean the type to 262 // sign-extend from. 263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 264 if (!Subtarget->hasSignExt()) { 265 // Sign extends are legal only when extending a vector extract 266 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 267 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 268 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 269 } 270 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 271 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 272 273 // Dynamic stack allocation: use the default expansion. 274 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 275 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 276 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 277 278 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 279 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 280 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 281 282 // Expand these forms; we pattern-match the forms that we can handle in isel. 283 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 284 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 285 setOperationAction(Op, T, Expand); 286 287 // We have custom switch handling. 288 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 289 290 // WebAssembly doesn't have: 291 // - Floating-point extending loads. 292 // - Floating-point truncating stores. 293 // - i1 extending loads. 294 // - truncating SIMD stores and most extending loads 295 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 296 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 297 for (auto T : MVT::integer_valuetypes()) 298 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 299 setLoadExtAction(Ext, T, MVT::i1, Promote); 300 if (Subtarget->hasSIMD128()) { 301 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 302 MVT::v2f64}) { 303 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 304 if (MVT(T) != MemT) { 305 setTruncStoreAction(T, MemT, Expand); 306 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 307 setLoadExtAction(Ext, T, MemT, Expand); 308 } 309 } 310 } 311 // But some vector extending loads are legal 312 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 313 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 314 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 315 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 316 } 317 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 318 } 319 320 // Don't do anything clever with build_pairs 321 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 322 323 // Trap lowers to wasm unreachable 324 setOperationAction(ISD::TRAP, MVT::Other, Legal); 325 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 326 327 // Exception handling intrinsics 328 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 329 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 330 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 331 332 setMaxAtomicSizeInBitsSupported(64); 333 334 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 335 // consistent with the f64 and f128 names. 336 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 337 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 338 339 // Define the emscripten name for return address helper. 340 // TODO: when implementing other Wasm backends, make this generic or only do 341 // this on emscripten depending on what they end up doing. 342 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 343 344 // Always convert switches to br_tables unless there is only one case, which 345 // is equivalent to a simple branch. This reduces code size for wasm, and we 346 // defer possible jump table optimizations to the VM. 347 setMinimumJumpTableEntries(2); 348 } 349 350 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 351 uint32_t AS) const { 352 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 353 return MVT::externref; 354 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 355 return MVT::funcref; 356 return TargetLowering::getPointerTy(DL, AS); 357 } 358 359 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 360 uint32_t AS) const { 361 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 362 return MVT::externref; 363 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 364 return MVT::funcref; 365 return TargetLowering::getPointerMemTy(DL, AS); 366 } 367 368 TargetLowering::AtomicExpansionKind 369 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 370 // We have wasm instructions for these 371 switch (AI->getOperation()) { 372 case AtomicRMWInst::Add: 373 case AtomicRMWInst::Sub: 374 case AtomicRMWInst::And: 375 case AtomicRMWInst::Or: 376 case AtomicRMWInst::Xor: 377 case AtomicRMWInst::Xchg: 378 return AtomicExpansionKind::None; 379 default: 380 break; 381 } 382 return AtomicExpansionKind::CmpXChg; 383 } 384 385 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 386 // Implementation copied from X86TargetLowering. 387 unsigned Opc = VecOp.getOpcode(); 388 389 // Assume target opcodes can't be scalarized. 390 // TODO - do we have any exceptions? 391 if (Opc >= ISD::BUILTIN_OP_END) 392 return false; 393 394 // If the vector op is not supported, try to convert to scalar. 395 EVT VecVT = VecOp.getValueType(); 396 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 397 return true; 398 399 // If the vector op is supported, but the scalar op is not, the transform may 400 // not be worthwhile. 401 EVT ScalarVT = VecVT.getScalarType(); 402 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 403 } 404 405 FastISel *WebAssemblyTargetLowering::createFastISel( 406 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 407 return WebAssembly::createFastISel(FuncInfo, LibInfo); 408 } 409 410 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 411 EVT VT) const { 412 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 413 if (BitWidth > 1 && BitWidth < 8) 414 BitWidth = 8; 415 416 if (BitWidth > 64) { 417 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 418 // the count to be an i32. 419 BitWidth = 32; 420 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 421 "32-bit shift counts ought to be enough for anyone"); 422 } 423 424 MVT Result = MVT::getIntegerVT(BitWidth); 425 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 426 "Unable to represent scalar shift amount type"); 427 return Result; 428 } 429 430 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 431 // undefined result on invalid/overflow, to the WebAssembly opcode, which 432 // traps on invalid/overflow. 433 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 434 MachineBasicBlock *BB, 435 const TargetInstrInfo &TII, 436 bool IsUnsigned, bool Int64, 437 bool Float64, unsigned LoweredOpcode) { 438 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 439 440 Register OutReg = MI.getOperand(0).getReg(); 441 Register InReg = MI.getOperand(1).getReg(); 442 443 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 444 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 445 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 446 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 447 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 448 unsigned Eqz = WebAssembly::EQZ_I32; 449 unsigned And = WebAssembly::AND_I32; 450 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 451 int64_t Substitute = IsUnsigned ? 0 : Limit; 452 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 453 auto &Context = BB->getParent()->getFunction().getContext(); 454 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 455 456 const BasicBlock *LLVMBB = BB->getBasicBlock(); 457 MachineFunction *F = BB->getParent(); 458 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 459 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 460 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 461 462 MachineFunction::iterator It = ++BB->getIterator(); 463 F->insert(It, FalseMBB); 464 F->insert(It, TrueMBB); 465 F->insert(It, DoneMBB); 466 467 // Transfer the remainder of BB and its successor edges to DoneMBB. 468 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 469 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 470 471 BB->addSuccessor(TrueMBB); 472 BB->addSuccessor(FalseMBB); 473 TrueMBB->addSuccessor(DoneMBB); 474 FalseMBB->addSuccessor(DoneMBB); 475 476 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 477 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 478 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 479 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 480 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 481 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 482 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 483 484 MI.eraseFromParent(); 485 // For signed numbers, we can do a single comparison to determine whether 486 // fabs(x) is within range. 487 if (IsUnsigned) { 488 Tmp0 = InReg; 489 } else { 490 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 491 } 492 BuildMI(BB, DL, TII.get(FConst), Tmp1) 493 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 494 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 495 496 // For unsigned numbers, we have to do a separate comparison with zero. 497 if (IsUnsigned) { 498 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 499 Register SecondCmpReg = 500 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 501 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 502 BuildMI(BB, DL, TII.get(FConst), Tmp1) 503 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 504 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 505 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 506 CmpReg = AndReg; 507 } 508 509 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 510 511 // Create the CFG diamond to select between doing the conversion or using 512 // the substitute value. 513 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 514 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 515 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 516 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 517 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 518 .addReg(FalseReg) 519 .addMBB(FalseMBB) 520 .addReg(TrueReg) 521 .addMBB(TrueMBB); 522 523 return DoneMBB; 524 } 525 526 static MachineBasicBlock * 527 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 528 const WebAssemblySubtarget *Subtarget, 529 const TargetInstrInfo &TII) { 530 MachineInstr &CallParams = *CallResults.getPrevNode(); 531 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 532 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 533 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 534 535 bool IsIndirect = CallParams.getOperand(0).isReg(); 536 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 537 538 bool IsFuncrefCall = false; 539 if (IsIndirect) { 540 Register Reg = CallParams.getOperand(0).getReg(); 541 const MachineFunction *MF = BB->getParent(); 542 const MachineRegisterInfo &MRI = MF->getRegInfo(); 543 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 544 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 545 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 546 } 547 548 unsigned CallOp; 549 if (IsIndirect && IsRetCall) { 550 CallOp = WebAssembly::RET_CALL_INDIRECT; 551 } else if (IsIndirect) { 552 CallOp = WebAssembly::CALL_INDIRECT; 553 } else if (IsRetCall) { 554 CallOp = WebAssembly::RET_CALL; 555 } else { 556 CallOp = WebAssembly::CALL; 557 } 558 559 MachineFunction &MF = *BB->getParent(); 560 const MCInstrDesc &MCID = TII.get(CallOp); 561 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 562 563 // See if we must truncate the function pointer. 564 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 565 // as 64-bit for uniformity with other pointer types. 566 // See also: WebAssemblyFastISel::selectCall 567 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 568 Register Reg32 = 569 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 570 auto &FnPtr = CallParams.getOperand(0); 571 BuildMI(*BB, CallResults.getIterator(), DL, 572 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 573 .addReg(FnPtr.getReg()); 574 FnPtr.setReg(Reg32); 575 } 576 577 // Move the function pointer to the end of the arguments for indirect calls 578 if (IsIndirect) { 579 auto FnPtr = CallParams.getOperand(0); 580 CallParams.RemoveOperand(0); 581 582 // For funcrefs, call_indirect is done through __funcref_call_table and the 583 // funcref is always installed in slot 0 of the table, therefore instead of having 584 // the function pointer added at the end of the params list, a zero (the index in 585 // __funcref_call_table is added). 586 if (IsFuncrefCall) { 587 Register RegZero = 588 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 589 MachineInstrBuilder MIBC0 = 590 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 591 592 BB->insert(CallResults.getIterator(), MIBC0); 593 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 594 } else 595 CallParams.addOperand(FnPtr); 596 } 597 598 for (auto Def : CallResults.defs()) 599 MIB.add(Def); 600 601 if (IsIndirect) { 602 // Placeholder for the type index. 603 MIB.addImm(0); 604 // The table into which this call_indirect indexes. 605 MCSymbolWasm *Table = IsFuncrefCall 606 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 607 MF.getContext(), Subtarget) 608 : WebAssembly::getOrCreateFunctionTableSymbol( 609 MF.getContext(), Subtarget); 610 if (Subtarget->hasReferenceTypes()) { 611 MIB.addSym(Table); 612 } else { 613 // For the MVP there is at most one table whose number is 0, but we can't 614 // write a table symbol or issue relocations. Instead we just ensure the 615 // table is live and write a zero. 616 Table->setNoStrip(); 617 MIB.addImm(0); 618 } 619 } 620 621 for (auto Use : CallParams.uses()) 622 MIB.add(Use); 623 624 BB->insert(CallResults.getIterator(), MIB); 625 CallParams.eraseFromParent(); 626 CallResults.eraseFromParent(); 627 628 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 629 // table slot with ref.null upon call_indirect return. 630 // 631 // This generates the following code, which comes right after a call_indirect 632 // of a funcref: 633 // 634 // i32.const 0 635 // ref.null func 636 // table.set __funcref_call_table 637 if (IsIndirect && IsFuncrefCall) { 638 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 639 MF.getContext(), Subtarget); 640 Register RegZero = 641 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 642 MachineInstr *Const0 = 643 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 644 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 645 646 Register RegFuncref = 647 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 648 MachineInstr *RefNull = 649 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 650 BB->insertAfter(Const0->getIterator(), RefNull); 651 652 MachineInstr *TableSet = 653 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 654 .addSym(Table) 655 .addReg(RegZero) 656 .addReg(RegFuncref); 657 BB->insertAfter(RefNull->getIterator(), TableSet); 658 } 659 660 return BB; 661 } 662 663 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 664 MachineInstr &MI, MachineBasicBlock *BB) const { 665 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 666 DebugLoc DL = MI.getDebugLoc(); 667 668 switch (MI.getOpcode()) { 669 default: 670 llvm_unreachable("Unexpected instr type to insert"); 671 case WebAssembly::FP_TO_SINT_I32_F32: 672 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 673 WebAssembly::I32_TRUNC_S_F32); 674 case WebAssembly::FP_TO_UINT_I32_F32: 675 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 676 WebAssembly::I32_TRUNC_U_F32); 677 case WebAssembly::FP_TO_SINT_I64_F32: 678 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 679 WebAssembly::I64_TRUNC_S_F32); 680 case WebAssembly::FP_TO_UINT_I64_F32: 681 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 682 WebAssembly::I64_TRUNC_U_F32); 683 case WebAssembly::FP_TO_SINT_I32_F64: 684 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 685 WebAssembly::I32_TRUNC_S_F64); 686 case WebAssembly::FP_TO_UINT_I32_F64: 687 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 688 WebAssembly::I32_TRUNC_U_F64); 689 case WebAssembly::FP_TO_SINT_I64_F64: 690 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 691 WebAssembly::I64_TRUNC_S_F64); 692 case WebAssembly::FP_TO_UINT_I64_F64: 693 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 694 WebAssembly::I64_TRUNC_U_F64); 695 case WebAssembly::CALL_RESULTS: 696 case WebAssembly::RET_CALL_RESULTS: 697 return LowerCallResults(MI, DL, BB, Subtarget, TII); 698 } 699 } 700 701 const char * 702 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 703 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 704 case WebAssemblyISD::FIRST_NUMBER: 705 case WebAssemblyISD::FIRST_MEM_OPCODE: 706 break; 707 #define HANDLE_NODETYPE(NODE) \ 708 case WebAssemblyISD::NODE: \ 709 return "WebAssemblyISD::" #NODE; 710 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 711 #include "WebAssemblyISD.def" 712 #undef HANDLE_MEM_NODETYPE 713 #undef HANDLE_NODETYPE 714 } 715 return nullptr; 716 } 717 718 std::pair<unsigned, const TargetRegisterClass *> 719 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 720 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 721 // First, see if this is a constraint that directly corresponds to a 722 // WebAssembly register class. 723 if (Constraint.size() == 1) { 724 switch (Constraint[0]) { 725 case 'r': 726 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 727 if (Subtarget->hasSIMD128() && VT.isVector()) { 728 if (VT.getSizeInBits() == 128) 729 return std::make_pair(0U, &WebAssembly::V128RegClass); 730 } 731 if (VT.isInteger() && !VT.isVector()) { 732 if (VT.getSizeInBits() <= 32) 733 return std::make_pair(0U, &WebAssembly::I32RegClass); 734 if (VT.getSizeInBits() <= 64) 735 return std::make_pair(0U, &WebAssembly::I64RegClass); 736 } 737 if (VT.isFloatingPoint() && !VT.isVector()) { 738 switch (VT.getSizeInBits()) { 739 case 32: 740 return std::make_pair(0U, &WebAssembly::F32RegClass); 741 case 64: 742 return std::make_pair(0U, &WebAssembly::F64RegClass); 743 default: 744 break; 745 } 746 } 747 break; 748 default: 749 break; 750 } 751 } 752 753 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 754 } 755 756 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 757 // Assume ctz is a relatively cheap operation. 758 return true; 759 } 760 761 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 762 // Assume clz is a relatively cheap operation. 763 return true; 764 } 765 766 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 767 const AddrMode &AM, 768 Type *Ty, unsigned AS, 769 Instruction *I) const { 770 // WebAssembly offsets are added as unsigned without wrapping. The 771 // isLegalAddressingMode gives us no way to determine if wrapping could be 772 // happening, so we approximate this by accepting only non-negative offsets. 773 if (AM.BaseOffs < 0) 774 return false; 775 776 // WebAssembly has no scale register operands. 777 if (AM.Scale != 0) 778 return false; 779 780 // Everything else is legal. 781 return true; 782 } 783 784 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 785 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 786 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 787 // WebAssembly supports unaligned accesses, though it should be declared 788 // with the p2align attribute on loads and stores which do so, and there 789 // may be a performance impact. We tell LLVM they're "fast" because 790 // for the kinds of things that LLVM uses this for (merging adjacent stores 791 // of constants, etc.), WebAssembly implementations will either want the 792 // unaligned access or they'll split anyway. 793 if (Fast) 794 *Fast = true; 795 return true; 796 } 797 798 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 799 AttributeList Attr) const { 800 // The current thinking is that wasm engines will perform this optimization, 801 // so we can save on code size. 802 return true; 803 } 804 805 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 806 EVT ExtT = ExtVal.getValueType(); 807 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 808 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 809 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 810 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 811 } 812 813 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 814 const GlobalAddressSDNode *GA) const { 815 // Wasm doesn't support function addresses with offsets 816 const GlobalValue *GV = GA->getGlobal(); 817 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 818 } 819 820 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 821 LLVMContext &C, 822 EVT VT) const { 823 if (VT.isVector()) 824 return VT.changeVectorElementTypeToInteger(); 825 826 // So far, all branch instructions in Wasm take an I32 condition. 827 // The default TargetLowering::getSetCCResultType returns the pointer size, 828 // which would be useful to reduce instruction counts when testing 829 // against 64-bit pointers/values if at some point Wasm supports that. 830 return EVT::getIntegerVT(C, 32); 831 } 832 833 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 834 const CallInst &I, 835 MachineFunction &MF, 836 unsigned Intrinsic) const { 837 switch (Intrinsic) { 838 case Intrinsic::wasm_memory_atomic_notify: 839 Info.opc = ISD::INTRINSIC_W_CHAIN; 840 Info.memVT = MVT::i32; 841 Info.ptrVal = I.getArgOperand(0); 842 Info.offset = 0; 843 Info.align = Align(4); 844 // atomic.notify instruction does not really load the memory specified with 845 // this argument, but MachineMemOperand should either be load or store, so 846 // we set this to a load. 847 // FIXME Volatile isn't really correct, but currently all LLVM atomic 848 // instructions are treated as volatiles in the backend, so we should be 849 // consistent. The same applies for wasm_atomic_wait intrinsics too. 850 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 851 return true; 852 case Intrinsic::wasm_memory_atomic_wait32: 853 Info.opc = ISD::INTRINSIC_W_CHAIN; 854 Info.memVT = MVT::i32; 855 Info.ptrVal = I.getArgOperand(0); 856 Info.offset = 0; 857 Info.align = Align(4); 858 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 859 return true; 860 case Intrinsic::wasm_memory_atomic_wait64: 861 Info.opc = ISD::INTRINSIC_W_CHAIN; 862 Info.memVT = MVT::i64; 863 Info.ptrVal = I.getArgOperand(0); 864 Info.offset = 0; 865 Info.align = Align(8); 866 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 867 return true; 868 default: 869 return false; 870 } 871 } 872 873 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 874 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 875 const SelectionDAG &DAG, unsigned Depth) const { 876 switch (Op.getOpcode()) { 877 default: 878 break; 879 case ISD::INTRINSIC_WO_CHAIN: { 880 unsigned IntNo = Op.getConstantOperandVal(0); 881 switch (IntNo) { 882 default: 883 break; 884 case Intrinsic::wasm_bitmask: { 885 unsigned BitWidth = Known.getBitWidth(); 886 EVT VT = Op.getOperand(1).getSimpleValueType(); 887 unsigned PossibleBits = VT.getVectorNumElements(); 888 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 889 Known.Zero |= ZeroMask; 890 break; 891 } 892 } 893 } 894 } 895 } 896 897 TargetLoweringBase::LegalizeTypeAction 898 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 899 if (VT.isFixedLengthVector()) { 900 MVT EltVT = VT.getVectorElementType(); 901 // We have legal vector types with these lane types, so widening the 902 // vector would let us use some of the lanes directly without having to 903 // extend or truncate values. 904 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 905 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 906 return TypeWidenVector; 907 } 908 909 return TargetLoweringBase::getPreferredVectorAction(VT); 910 } 911 912 //===----------------------------------------------------------------------===// 913 // WebAssembly Lowering private implementation. 914 //===----------------------------------------------------------------------===// 915 916 //===----------------------------------------------------------------------===// 917 // Lowering Code 918 //===----------------------------------------------------------------------===// 919 920 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 921 MachineFunction &MF = DAG.getMachineFunction(); 922 DAG.getContext()->diagnose( 923 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 924 } 925 926 // Test whether the given calling convention is supported. 927 static bool callingConvSupported(CallingConv::ID CallConv) { 928 // We currently support the language-independent target-independent 929 // conventions. We don't yet have a way to annotate calls with properties like 930 // "cold", and we don't have any call-clobbered registers, so these are mostly 931 // all handled the same. 932 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 933 CallConv == CallingConv::Cold || 934 CallConv == CallingConv::PreserveMost || 935 CallConv == CallingConv::PreserveAll || 936 CallConv == CallingConv::CXX_FAST_TLS || 937 CallConv == CallingConv::WASM_EmscriptenInvoke || 938 CallConv == CallingConv::Swift; 939 } 940 941 SDValue 942 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 943 SmallVectorImpl<SDValue> &InVals) const { 944 SelectionDAG &DAG = CLI.DAG; 945 SDLoc DL = CLI.DL; 946 SDValue Chain = CLI.Chain; 947 SDValue Callee = CLI.Callee; 948 MachineFunction &MF = DAG.getMachineFunction(); 949 auto Layout = MF.getDataLayout(); 950 951 CallingConv::ID CallConv = CLI.CallConv; 952 if (!callingConvSupported(CallConv)) 953 fail(DL, DAG, 954 "WebAssembly doesn't support language-specific or target-specific " 955 "calling conventions yet"); 956 if (CLI.IsPatchPoint) 957 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 958 959 if (CLI.IsTailCall) { 960 auto NoTail = [&](const char *Msg) { 961 if (CLI.CB && CLI.CB->isMustTailCall()) 962 fail(DL, DAG, Msg); 963 CLI.IsTailCall = false; 964 }; 965 966 if (!Subtarget->hasTailCall()) 967 NoTail("WebAssembly 'tail-call' feature not enabled"); 968 969 // Varargs calls cannot be tail calls because the buffer is on the stack 970 if (CLI.IsVarArg) 971 NoTail("WebAssembly does not support varargs tail calls"); 972 973 // Do not tail call unless caller and callee return types match 974 const Function &F = MF.getFunction(); 975 const TargetMachine &TM = getTargetMachine(); 976 Type *RetTy = F.getReturnType(); 977 SmallVector<MVT, 4> CallerRetTys; 978 SmallVector<MVT, 4> CalleeRetTys; 979 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 980 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 981 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 982 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 983 CalleeRetTys.begin()); 984 if (!TypesMatch) 985 NoTail("WebAssembly tail call requires caller and callee return types to " 986 "match"); 987 988 // If pointers to local stack values are passed, we cannot tail call 989 if (CLI.CB) { 990 for (auto &Arg : CLI.CB->args()) { 991 Value *Val = Arg.get(); 992 // Trace the value back through pointer operations 993 while (true) { 994 Value *Src = Val->stripPointerCastsAndAliases(); 995 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 996 Src = GEP->getPointerOperand(); 997 if (Val == Src) 998 break; 999 Val = Src; 1000 } 1001 if (isa<AllocaInst>(Val)) { 1002 NoTail( 1003 "WebAssembly does not support tail calling with stack arguments"); 1004 break; 1005 } 1006 } 1007 } 1008 } 1009 1010 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1011 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1012 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1013 1014 // The generic code may have added an sret argument. If we're lowering an 1015 // invoke function, the ABI requires that the function pointer be the first 1016 // argument, so we may have to swap the arguments. 1017 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1018 Outs[0].Flags.isSRet()) { 1019 std::swap(Outs[0], Outs[1]); 1020 std::swap(OutVals[0], OutVals[1]); 1021 } 1022 1023 bool HasSwiftSelfArg = false; 1024 bool HasSwiftErrorArg = false; 1025 unsigned NumFixedArgs = 0; 1026 for (unsigned I = 0; I < Outs.size(); ++I) { 1027 const ISD::OutputArg &Out = Outs[I]; 1028 SDValue &OutVal = OutVals[I]; 1029 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1030 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1031 if (Out.Flags.isNest()) 1032 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1033 if (Out.Flags.isInAlloca()) 1034 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1035 if (Out.Flags.isInConsecutiveRegs()) 1036 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1037 if (Out.Flags.isInConsecutiveRegsLast()) 1038 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1039 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1040 auto &MFI = MF.getFrameInfo(); 1041 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1042 Out.Flags.getNonZeroByValAlign(), 1043 /*isSS=*/false); 1044 SDValue SizeNode = 1045 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1046 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1047 Chain = DAG.getMemcpy( 1048 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1049 /*isVolatile*/ false, /*AlwaysInline=*/false, 1050 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1051 OutVal = FINode; 1052 } 1053 // Count the number of fixed args *after* legalization. 1054 NumFixedArgs += Out.IsFixed; 1055 } 1056 1057 bool IsVarArg = CLI.IsVarArg; 1058 auto PtrVT = getPointerTy(Layout); 1059 1060 // For swiftcc, emit additional swiftself and swifterror arguments 1061 // if there aren't. These additional arguments are also added for callee 1062 // signature They are necessary to match callee and caller signature for 1063 // indirect call. 1064 if (CallConv == CallingConv::Swift) { 1065 if (!HasSwiftSelfArg) { 1066 NumFixedArgs++; 1067 ISD::OutputArg Arg; 1068 Arg.Flags.setSwiftSelf(); 1069 CLI.Outs.push_back(Arg); 1070 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1071 CLI.OutVals.push_back(ArgVal); 1072 } 1073 if (!HasSwiftErrorArg) { 1074 NumFixedArgs++; 1075 ISD::OutputArg Arg; 1076 Arg.Flags.setSwiftError(); 1077 CLI.Outs.push_back(Arg); 1078 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1079 CLI.OutVals.push_back(ArgVal); 1080 } 1081 } 1082 1083 // Analyze operands of the call, assigning locations to each operand. 1084 SmallVector<CCValAssign, 16> ArgLocs; 1085 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1086 1087 if (IsVarArg) { 1088 // Outgoing non-fixed arguments are placed in a buffer. First 1089 // compute their offsets and the total amount of buffer space needed. 1090 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1091 const ISD::OutputArg &Out = Outs[I]; 1092 SDValue &Arg = OutVals[I]; 1093 EVT VT = Arg.getValueType(); 1094 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1095 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1096 Align Alignment = 1097 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1098 unsigned Offset = 1099 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1100 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1101 Offset, VT.getSimpleVT(), 1102 CCValAssign::Full)); 1103 } 1104 } 1105 1106 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1107 1108 SDValue FINode; 1109 if (IsVarArg && NumBytes) { 1110 // For non-fixed arguments, next emit stores to store the argument values 1111 // to the stack buffer at the offsets computed above. 1112 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1113 Layout.getStackAlignment(), 1114 /*isSS=*/false); 1115 unsigned ValNo = 0; 1116 SmallVector<SDValue, 8> Chains; 1117 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1118 assert(ArgLocs[ValNo].getValNo() == ValNo && 1119 "ArgLocs should remain in order and only hold varargs args"); 1120 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1121 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1122 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1123 DAG.getConstant(Offset, DL, PtrVT)); 1124 Chains.push_back( 1125 DAG.getStore(Chain, DL, Arg, Add, 1126 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1127 } 1128 if (!Chains.empty()) 1129 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1130 } else if (IsVarArg) { 1131 FINode = DAG.getIntPtrConstant(0, DL); 1132 } 1133 1134 if (Callee->getOpcode() == ISD::GlobalAddress) { 1135 // If the callee is a GlobalAddress node (quite common, every direct call 1136 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1137 // doesn't at MO_GOT which is not needed for direct calls. 1138 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1139 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1140 getPointerTy(DAG.getDataLayout()), 1141 GA->getOffset()); 1142 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1143 getPointerTy(DAG.getDataLayout()), Callee); 1144 } 1145 1146 // Compute the operands for the CALLn node. 1147 SmallVector<SDValue, 16> Ops; 1148 Ops.push_back(Chain); 1149 Ops.push_back(Callee); 1150 1151 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1152 // isn't reliable. 1153 Ops.append(OutVals.begin(), 1154 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1155 // Add a pointer to the vararg buffer. 1156 if (IsVarArg) 1157 Ops.push_back(FINode); 1158 1159 SmallVector<EVT, 8> InTys; 1160 for (const auto &In : Ins) { 1161 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1162 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1163 if (In.Flags.isInAlloca()) 1164 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1165 if (In.Flags.isInConsecutiveRegs()) 1166 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1167 if (In.Flags.isInConsecutiveRegsLast()) 1168 fail(DL, DAG, 1169 "WebAssembly hasn't implemented cons regs last return values"); 1170 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1171 // registers. 1172 InTys.push_back(In.VT); 1173 } 1174 1175 // Lastly, if this is a call to a funcref we need to add an instruction 1176 // table.set to the chain and transform the call. 1177 if (CLI.CB && 1178 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1179 // In the absence of function references proposal where a funcref call is 1180 // lowered to call_ref, using reference types we generate a table.set to set 1181 // the funcref to a special table used solely for this purpose, followed by 1182 // a call_indirect. Here we just generate the table set, and return the 1183 // SDValue of the table.set so that LowerCall can finalize the lowering by 1184 // generating the call_indirect. 1185 SDValue Chain = Ops[0]; 1186 1187 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1188 MF.getContext(), Subtarget); 1189 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1190 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1191 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1192 SDValue TableSet = DAG.getMemIntrinsicNode( 1193 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1194 MVT::funcref, 1195 // Machine Mem Operand args 1196 MachinePointerInfo( 1197 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1198 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1199 MachineMemOperand::MOStore); 1200 1201 Ops[0] = TableSet; // The new chain is the TableSet itself 1202 } 1203 1204 if (CLI.IsTailCall) { 1205 // ret_calls do not return values to the current frame 1206 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1207 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1208 } 1209 1210 InTys.push_back(MVT::Other); 1211 SDVTList InTyList = DAG.getVTList(InTys); 1212 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1213 1214 for (size_t I = 0; I < Ins.size(); ++I) 1215 InVals.push_back(Res.getValue(I)); 1216 1217 // Return the chain 1218 return Res.getValue(Ins.size()); 1219 } 1220 1221 bool WebAssemblyTargetLowering::CanLowerReturn( 1222 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1223 const SmallVectorImpl<ISD::OutputArg> &Outs, 1224 LLVMContext & /*Context*/) const { 1225 // WebAssembly can only handle returning tuples with multivalue enabled 1226 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1227 } 1228 1229 SDValue WebAssemblyTargetLowering::LowerReturn( 1230 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1231 const SmallVectorImpl<ISD::OutputArg> &Outs, 1232 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1233 SelectionDAG &DAG) const { 1234 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1235 "MVP WebAssembly can only return up to one value"); 1236 if (!callingConvSupported(CallConv)) 1237 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1238 1239 SmallVector<SDValue, 4> RetOps(1, Chain); 1240 RetOps.append(OutVals.begin(), OutVals.end()); 1241 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1242 1243 // Record the number and types of the return values. 1244 for (const ISD::OutputArg &Out : Outs) { 1245 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1246 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1247 assert(Out.IsFixed && "non-fixed return value is not valid"); 1248 if (Out.Flags.isInAlloca()) 1249 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1250 if (Out.Flags.isInConsecutiveRegs()) 1251 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1252 if (Out.Flags.isInConsecutiveRegsLast()) 1253 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1254 } 1255 1256 return Chain; 1257 } 1258 1259 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1260 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1261 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1262 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1263 if (!callingConvSupported(CallConv)) 1264 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1265 1266 MachineFunction &MF = DAG.getMachineFunction(); 1267 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1268 1269 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1270 // of the incoming values before they're represented by virtual registers. 1271 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1272 1273 bool HasSwiftErrorArg = false; 1274 bool HasSwiftSelfArg = false; 1275 for (const ISD::InputArg &In : Ins) { 1276 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1277 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1278 if (In.Flags.isInAlloca()) 1279 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1280 if (In.Flags.isNest()) 1281 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1282 if (In.Flags.isInConsecutiveRegs()) 1283 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1284 if (In.Flags.isInConsecutiveRegsLast()) 1285 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1286 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1287 // registers. 1288 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1289 DAG.getTargetConstant(InVals.size(), 1290 DL, MVT::i32)) 1291 : DAG.getUNDEF(In.VT)); 1292 1293 // Record the number and types of arguments. 1294 MFI->addParam(In.VT); 1295 } 1296 1297 // For swiftcc, emit additional swiftself and swifterror arguments 1298 // if there aren't. These additional arguments are also added for callee 1299 // signature They are necessary to match callee and caller signature for 1300 // indirect call. 1301 auto PtrVT = getPointerTy(MF.getDataLayout()); 1302 if (CallConv == CallingConv::Swift) { 1303 if (!HasSwiftSelfArg) { 1304 MFI->addParam(PtrVT); 1305 } 1306 if (!HasSwiftErrorArg) { 1307 MFI->addParam(PtrVT); 1308 } 1309 } 1310 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1311 // the buffer is passed as an argument. 1312 if (IsVarArg) { 1313 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1314 Register VarargVreg = 1315 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1316 MFI->setVarargBufferVreg(VarargVreg); 1317 Chain = DAG.getCopyToReg( 1318 Chain, DL, VarargVreg, 1319 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1320 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1321 MFI->addParam(PtrVT); 1322 } 1323 1324 // Record the number and types of arguments and results. 1325 SmallVector<MVT, 4> Params; 1326 SmallVector<MVT, 4> Results; 1327 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1328 MF.getFunction(), DAG.getTarget(), Params, Results); 1329 for (MVT VT : Results) 1330 MFI->addResult(VT); 1331 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1332 // the param logic here with ComputeSignatureVTs 1333 assert(MFI->getParams().size() == Params.size() && 1334 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1335 Params.begin())); 1336 1337 return Chain; 1338 } 1339 1340 void WebAssemblyTargetLowering::ReplaceNodeResults( 1341 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1342 switch (N->getOpcode()) { 1343 case ISD::SIGN_EXTEND_INREG: 1344 // Do not add any results, signifying that N should not be custom lowered 1345 // after all. This happens because simd128 turns on custom lowering for 1346 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1347 // illegal type. 1348 break; 1349 default: 1350 llvm_unreachable( 1351 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1352 } 1353 } 1354 1355 //===----------------------------------------------------------------------===// 1356 // Custom lowering hooks. 1357 //===----------------------------------------------------------------------===// 1358 1359 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1360 SelectionDAG &DAG) const { 1361 SDLoc DL(Op); 1362 switch (Op.getOpcode()) { 1363 default: 1364 llvm_unreachable("unimplemented operation lowering"); 1365 return SDValue(); 1366 case ISD::FrameIndex: 1367 return LowerFrameIndex(Op, DAG); 1368 case ISD::GlobalAddress: 1369 return LowerGlobalAddress(Op, DAG); 1370 case ISD::GlobalTLSAddress: 1371 return LowerGlobalTLSAddress(Op, DAG); 1372 case ISD::ExternalSymbol: 1373 return LowerExternalSymbol(Op, DAG); 1374 case ISD::JumpTable: 1375 return LowerJumpTable(Op, DAG); 1376 case ISD::BR_JT: 1377 return LowerBR_JT(Op, DAG); 1378 case ISD::VASTART: 1379 return LowerVASTART(Op, DAG); 1380 case ISD::BlockAddress: 1381 case ISD::BRIND: 1382 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1383 return SDValue(); 1384 case ISD::RETURNADDR: 1385 return LowerRETURNADDR(Op, DAG); 1386 case ISD::FRAMEADDR: 1387 return LowerFRAMEADDR(Op, DAG); 1388 case ISD::CopyToReg: 1389 return LowerCopyToReg(Op, DAG); 1390 case ISD::EXTRACT_VECTOR_ELT: 1391 case ISD::INSERT_VECTOR_ELT: 1392 return LowerAccessVectorElement(Op, DAG); 1393 case ISD::INTRINSIC_VOID: 1394 case ISD::INTRINSIC_WO_CHAIN: 1395 case ISD::INTRINSIC_W_CHAIN: 1396 return LowerIntrinsic(Op, DAG); 1397 case ISD::SIGN_EXTEND_INREG: 1398 return LowerSIGN_EXTEND_INREG(Op, DAG); 1399 case ISD::BUILD_VECTOR: 1400 return LowerBUILD_VECTOR(Op, DAG); 1401 case ISD::VECTOR_SHUFFLE: 1402 return LowerVECTOR_SHUFFLE(Op, DAG); 1403 case ISD::SETCC: 1404 return LowerSETCC(Op, DAG); 1405 case ISD::SHL: 1406 case ISD::SRA: 1407 case ISD::SRL: 1408 return LowerShift(Op, DAG); 1409 case ISD::FP_TO_SINT_SAT: 1410 case ISD::FP_TO_UINT_SAT: 1411 return LowerFP_TO_INT_SAT(Op, DAG); 1412 case ISD::LOAD: 1413 return LowerLoad(Op, DAG); 1414 case ISD::STORE: 1415 return LowerStore(Op, DAG); 1416 case ISD::CTPOP: 1417 case ISD::CTLZ: 1418 case ISD::CTTZ: 1419 return DAG.UnrollVectorOp(Op.getNode()); 1420 } 1421 } 1422 1423 static bool IsWebAssemblyGlobal(SDValue Op) { 1424 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1425 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1426 1427 return false; 1428 } 1429 1430 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1431 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1432 if (!FI) 1433 return None; 1434 1435 auto &MF = DAG.getMachineFunction(); 1436 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1437 } 1438 1439 static bool IsWebAssemblyTable(SDValue Op) { 1440 const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 1441 if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) { 1442 const GlobalValue *Value = GA->getGlobal(); 1443 const Type *Ty = Value->getValueType(); 1444 1445 if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType())) 1446 return true; 1447 } 1448 return false; 1449 } 1450 1451 // This function will accept as Op any access to a table, so Op can 1452 // be the actual table or an offset into the table. 1453 static bool IsWebAssemblyTableWithOffset(SDValue Op) { 1454 if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2) 1455 return (Op->getOperand(1).getSimpleValueType() == MVT::i32 && 1456 IsWebAssemblyTableWithOffset(Op->getOperand(0))) || 1457 (Op->getOperand(0).getSimpleValueType() == MVT::i32 && 1458 IsWebAssemblyTableWithOffset(Op->getOperand(1))); 1459 1460 return IsWebAssemblyTable(Op); 1461 } 1462 1463 // Helper for table pattern matching used in LowerStore and LowerLoad 1464 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG, 1465 const SDLoc &DL, 1466 const SDValue &Base, 1467 GlobalAddressSDNode *&GA, 1468 SDValue &Idx) const { 1469 // We expect the following graph for a load of the form: 1470 // table[<var> + <constant offset>] 1471 // 1472 // Case 1: 1473 // externref = load t1 1474 // t1: i32 = add t2, i32:<constant offset> 1475 // t2: i32 = add tX, table 1476 // 1477 // This is in some cases simplified to just: 1478 // Case 2: 1479 // externref = load t1 1480 // t1: i32 = add t2, i32:tX 1481 // 1482 // So, unfortunately we need to check for both cases and if we are in the 1483 // first case extract the table GlobalAddressNode and build a new node tY 1484 // that's tY: i32 = add i32:<constant offset>, i32:tX 1485 // 1486 if (IsWebAssemblyTable(Base)) { 1487 GA = cast<GlobalAddressSDNode>(Base); 1488 Idx = DAG.getConstant(0, DL, MVT::i32); 1489 } else { 1490 GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0)); 1491 if (GA) { 1492 // We are in Case 2 above. 1493 Idx = Base->getOperand(1); 1494 assert(GA->getNumValues() == 1); 1495 } else { 1496 // This might be Case 1 above (or an error) 1497 SDValue V = Base->getOperand(0); 1498 GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1)); 1499 1500 if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA) 1501 return false; 1502 1503 SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1), 1504 V->getOperand(0)); 1505 Idx = IdxV; 1506 } 1507 } 1508 1509 return true; 1510 } 1511 1512 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1513 SelectionDAG &DAG) const { 1514 SDLoc DL(Op); 1515 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1516 const SDValue &Value = SN->getValue(); 1517 const SDValue &Base = SN->getBasePtr(); 1518 const SDValue &Offset = SN->getOffset(); 1519 1520 if (IsWebAssemblyTableWithOffset(Base)) { 1521 if (!Offset->isUndef()) 1522 report_fatal_error( 1523 "unexpected offset when loading from webassembly table", false); 1524 1525 SDValue Idx; 1526 GlobalAddressSDNode *GA; 1527 1528 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1529 report_fatal_error("failed pattern matching for lowering table store", 1530 false); 1531 1532 SDVTList Tys = DAG.getVTList(MVT::Other); 1533 SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value}; 1534 SDValue TableSet = 1535 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps, 1536 SN->getMemoryVT(), SN->getMemOperand()); 1537 return TableSet; 1538 } 1539 1540 if (IsWebAssemblyGlobal(Base)) { 1541 if (!Offset->isUndef()) 1542 report_fatal_error("unexpected offset when storing to webassembly global", 1543 false); 1544 1545 SDVTList Tys = DAG.getVTList(MVT::Other); 1546 SDValue Ops[] = {SN->getChain(), Value, Base}; 1547 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1548 SN->getMemoryVT(), SN->getMemOperand()); 1549 } 1550 1551 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1552 if (!Offset->isUndef()) 1553 report_fatal_error("unexpected offset when storing to webassembly local", 1554 false); 1555 1556 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1557 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1558 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1559 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1560 } 1561 1562 return Op; 1563 } 1564 1565 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1566 SelectionDAG &DAG) const { 1567 SDLoc DL(Op); 1568 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1569 const SDValue &Base = LN->getBasePtr(); 1570 const SDValue &Offset = LN->getOffset(); 1571 1572 if (IsWebAssemblyTableWithOffset(Base)) { 1573 if (!Offset->isUndef()) 1574 report_fatal_error( 1575 "unexpected offset when loading from webassembly table", false); 1576 1577 GlobalAddressSDNode *GA; 1578 SDValue Idx; 1579 1580 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1581 report_fatal_error("failed pattern matching for lowering table load", 1582 false); 1583 1584 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1585 SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx}; 1586 SDValue TableGet = 1587 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps, 1588 LN->getMemoryVT(), LN->getMemOperand()); 1589 return TableGet; 1590 } 1591 1592 if (IsWebAssemblyGlobal(Base)) { 1593 if (!Offset->isUndef()) 1594 report_fatal_error( 1595 "unexpected offset when loading from webassembly global", false); 1596 1597 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1598 SDValue Ops[] = {LN->getChain(), Base}; 1599 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1600 LN->getMemoryVT(), LN->getMemOperand()); 1601 } 1602 1603 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1604 if (!Offset->isUndef()) 1605 report_fatal_error( 1606 "unexpected offset when loading from webassembly local", false); 1607 1608 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1609 EVT LocalVT = LN->getValueType(0); 1610 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1611 {LN->getChain(), Idx}); 1612 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1613 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1614 return Result; 1615 } 1616 1617 return Op; 1618 } 1619 1620 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1621 SelectionDAG &DAG) const { 1622 SDValue Src = Op.getOperand(2); 1623 if (isa<FrameIndexSDNode>(Src.getNode())) { 1624 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1625 // the FI to some LEA-like instruction, but since we don't have that, we 1626 // need to insert some kind of instruction that can take an FI operand and 1627 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1628 // local.copy between Op and its FI operand. 1629 SDValue Chain = Op.getOperand(0); 1630 SDLoc DL(Op); 1631 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1632 EVT VT = Src.getValueType(); 1633 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1634 : WebAssembly::COPY_I64, 1635 DL, VT, Src), 1636 0); 1637 return Op.getNode()->getNumValues() == 1 1638 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1639 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1640 Op.getNumOperands() == 4 ? Op.getOperand(3) 1641 : SDValue()); 1642 } 1643 return SDValue(); 1644 } 1645 1646 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1647 SelectionDAG &DAG) const { 1648 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1649 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1650 } 1651 1652 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1653 SelectionDAG &DAG) const { 1654 SDLoc DL(Op); 1655 1656 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1657 fail(DL, DAG, 1658 "Non-Emscripten WebAssembly hasn't implemented " 1659 "__builtin_return_address"); 1660 return SDValue(); 1661 } 1662 1663 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1664 return SDValue(); 1665 1666 unsigned Depth = Op.getConstantOperandVal(0); 1667 MakeLibCallOptions CallOptions; 1668 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1669 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1670 .first; 1671 } 1672 1673 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1674 SelectionDAG &DAG) const { 1675 // Non-zero depths are not supported by WebAssembly currently. Use the 1676 // legalizer's default expansion, which is to return 0 (what this function is 1677 // documented to do). 1678 if (Op.getConstantOperandVal(0) > 0) 1679 return SDValue(); 1680 1681 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1682 EVT VT = Op.getValueType(); 1683 Register FP = 1684 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1685 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1686 } 1687 1688 SDValue 1689 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1690 SelectionDAG &DAG) const { 1691 SDLoc DL(Op); 1692 const auto *GA = cast<GlobalAddressSDNode>(Op); 1693 1694 MachineFunction &MF = DAG.getMachineFunction(); 1695 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1696 report_fatal_error("cannot use thread-local storage without bulk memory", 1697 false); 1698 1699 const GlobalValue *GV = GA->getGlobal(); 1700 1701 // Currently Emscripten does not support dynamic linking with threads. 1702 // Therefore, if we have thread-local storage, only the local-exec model 1703 // is possible. 1704 // TODO: remove this and implement proper TLS models once Emscripten 1705 // supports dynamic linking with threads. 1706 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1707 !Subtarget->getTargetTriple().isOSEmscripten()) { 1708 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1709 "non-Emscripten OSes: variable " + 1710 GV->getName(), 1711 false); 1712 } 1713 1714 auto model = GV->getThreadLocalMode(); 1715 1716 // Unsupported TLS modes 1717 assert(model != GlobalValue::NotThreadLocal); 1718 assert(model != GlobalValue::InitialExecTLSModel); 1719 1720 if (model == GlobalValue::LocalExecTLSModel || 1721 model == GlobalValue::LocalDynamicTLSModel || 1722 (model == GlobalValue::GeneralDynamicTLSModel && 1723 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1724 // For DSO-local TLS variables we use offset from __tls_base 1725 1726 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1727 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1728 : WebAssembly::GLOBAL_GET_I32; 1729 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1730 1731 SDValue BaseAddr( 1732 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1733 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1734 0); 1735 1736 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1737 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1738 SDValue SymOffset = 1739 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1740 1741 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1742 } 1743 1744 assert(model == GlobalValue::GeneralDynamicTLSModel); 1745 1746 EVT VT = Op.getValueType(); 1747 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1748 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1749 GA->getOffset(), 1750 WebAssemblyII::MO_GOT_TLS)); 1751 } 1752 1753 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1754 SelectionDAG &DAG) const { 1755 SDLoc DL(Op); 1756 const auto *GA = cast<GlobalAddressSDNode>(Op); 1757 EVT VT = Op.getValueType(); 1758 assert(GA->getTargetFlags() == 0 && 1759 "Unexpected target flags on generic GlobalAddressSDNode"); 1760 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1761 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1762 1763 unsigned OperandFlags = 0; 1764 if (isPositionIndependent()) { 1765 const GlobalValue *GV = GA->getGlobal(); 1766 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1767 MachineFunction &MF = DAG.getMachineFunction(); 1768 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1769 const char *BaseName; 1770 if (GV->getValueType()->isFunctionTy()) { 1771 BaseName = MF.createExternalSymbolName("__table_base"); 1772 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1773 } 1774 else { 1775 BaseName = MF.createExternalSymbolName("__memory_base"); 1776 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1777 } 1778 SDValue BaseAddr = 1779 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1780 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1781 1782 SDValue SymAddr = DAG.getNode( 1783 WebAssemblyISD::WrapperREL, DL, VT, 1784 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1785 OperandFlags)); 1786 1787 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1788 } 1789 OperandFlags = WebAssemblyII::MO_GOT; 1790 } 1791 1792 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1793 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1794 GA->getOffset(), OperandFlags)); 1795 } 1796 1797 SDValue 1798 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1799 SelectionDAG &DAG) const { 1800 SDLoc DL(Op); 1801 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1802 EVT VT = Op.getValueType(); 1803 assert(ES->getTargetFlags() == 0 && 1804 "Unexpected target flags on generic ExternalSymbolSDNode"); 1805 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1806 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1807 } 1808 1809 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1810 SelectionDAG &DAG) const { 1811 // There's no need for a Wrapper node because we always incorporate a jump 1812 // table operand into a BR_TABLE instruction, rather than ever 1813 // materializing it in a register. 1814 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1815 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1816 JT->getTargetFlags()); 1817 } 1818 1819 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1820 SelectionDAG &DAG) const { 1821 SDLoc DL(Op); 1822 SDValue Chain = Op.getOperand(0); 1823 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1824 SDValue Index = Op.getOperand(2); 1825 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1826 1827 SmallVector<SDValue, 8> Ops; 1828 Ops.push_back(Chain); 1829 Ops.push_back(Index); 1830 1831 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1832 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1833 1834 // Add an operand for each case. 1835 for (auto MBB : MBBs) 1836 Ops.push_back(DAG.getBasicBlock(MBB)); 1837 1838 // Add the first MBB as a dummy default target for now. This will be replaced 1839 // with the proper default target (and the preceding range check eliminated) 1840 // if possible by WebAssemblyFixBrTableDefaults. 1841 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1842 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1843 } 1844 1845 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1846 SelectionDAG &DAG) const { 1847 SDLoc DL(Op); 1848 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1849 1850 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1851 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1852 1853 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1854 MFI->getVarargBufferVreg(), PtrVT); 1855 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1856 MachinePointerInfo(SV)); 1857 } 1858 1859 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1860 SelectionDAG &DAG) const { 1861 MachineFunction &MF = DAG.getMachineFunction(); 1862 unsigned IntNo; 1863 switch (Op.getOpcode()) { 1864 case ISD::INTRINSIC_VOID: 1865 case ISD::INTRINSIC_W_CHAIN: 1866 IntNo = Op.getConstantOperandVal(1); 1867 break; 1868 case ISD::INTRINSIC_WO_CHAIN: 1869 IntNo = Op.getConstantOperandVal(0); 1870 break; 1871 default: 1872 llvm_unreachable("Invalid intrinsic"); 1873 } 1874 SDLoc DL(Op); 1875 1876 switch (IntNo) { 1877 default: 1878 return SDValue(); // Don't custom lower most intrinsics. 1879 1880 case Intrinsic::wasm_lsda: { 1881 auto PtrVT = getPointerTy(MF.getDataLayout()); 1882 const char *SymName = MF.createExternalSymbolName( 1883 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1884 if (isPositionIndependent()) { 1885 SDValue Node = DAG.getTargetExternalSymbol( 1886 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1887 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1888 SDValue BaseAddr = 1889 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1890 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1891 SDValue SymAddr = 1892 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1893 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1894 } 1895 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1896 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1897 } 1898 1899 case Intrinsic::wasm_shuffle: { 1900 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1901 SDValue Ops[18]; 1902 size_t OpIdx = 0; 1903 Ops[OpIdx++] = Op.getOperand(1); 1904 Ops[OpIdx++] = Op.getOperand(2); 1905 while (OpIdx < 18) { 1906 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1907 if (MaskIdx.isUndef() || 1908 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1909 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1910 } else { 1911 Ops[OpIdx++] = MaskIdx; 1912 } 1913 } 1914 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1915 } 1916 } 1917 } 1918 1919 SDValue 1920 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1921 SelectionDAG &DAG) const { 1922 SDLoc DL(Op); 1923 // If sign extension operations are disabled, allow sext_inreg only if operand 1924 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1925 // extension operations, but allowing sext_inreg in this context lets us have 1926 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1927 // everywhere would be simpler in this file, but would necessitate large and 1928 // brittle patterns to undo the expansion and select extract_lane_s 1929 // instructions. 1930 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1931 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1932 return SDValue(); 1933 1934 const SDValue &Extract = Op.getOperand(0); 1935 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1936 if (VecT.getVectorElementType().getSizeInBits() > 32) 1937 return SDValue(); 1938 MVT ExtractedLaneT = 1939 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1940 MVT ExtractedVecT = 1941 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1942 if (ExtractedVecT == VecT) 1943 return Op; 1944 1945 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1946 const SDNode *Index = Extract.getOperand(1).getNode(); 1947 if (!isa<ConstantSDNode>(Index)) 1948 return SDValue(); 1949 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1950 unsigned Scale = 1951 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1952 assert(Scale > 1); 1953 SDValue NewIndex = 1954 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1955 SDValue NewExtract = DAG.getNode( 1956 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1957 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1958 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1959 Op.getOperand(1)); 1960 } 1961 1962 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1963 SDLoc DL(Op); 1964 if (Op.getValueType() != MVT::v2f64) 1965 return SDValue(); 1966 1967 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1968 unsigned &Index) -> bool { 1969 switch (Op.getOpcode()) { 1970 case ISD::SINT_TO_FP: 1971 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1972 break; 1973 case ISD::UINT_TO_FP: 1974 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1975 break; 1976 case ISD::FP_EXTEND: 1977 Opcode = WebAssemblyISD::PROMOTE_LOW; 1978 break; 1979 default: 1980 return false; 1981 } 1982 1983 auto ExtractVector = Op.getOperand(0); 1984 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1985 return false; 1986 1987 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 1988 return false; 1989 1990 SrcVec = ExtractVector.getOperand(0); 1991 Index = ExtractVector.getConstantOperandVal(1); 1992 return true; 1993 }; 1994 1995 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 1996 SDValue LHSSrcVec, RHSSrcVec; 1997 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 1998 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 1999 return SDValue(); 2000 2001 if (LHSOpcode != RHSOpcode) 2002 return SDValue(); 2003 2004 MVT ExpectedSrcVT; 2005 switch (LHSOpcode) { 2006 case WebAssemblyISD::CONVERT_LOW_S: 2007 case WebAssemblyISD::CONVERT_LOW_U: 2008 ExpectedSrcVT = MVT::v4i32; 2009 break; 2010 case WebAssemblyISD::PROMOTE_LOW: 2011 ExpectedSrcVT = MVT::v4f32; 2012 break; 2013 } 2014 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2015 return SDValue(); 2016 2017 auto Src = LHSSrcVec; 2018 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2019 // Shuffle the source vector so that the converted lanes are the low lanes. 2020 Src = DAG.getVectorShuffle( 2021 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2022 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2023 } 2024 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2025 } 2026 2027 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2028 SelectionDAG &DAG) const { 2029 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2030 return ConvertLow; 2031 2032 SDLoc DL(Op); 2033 const EVT VecT = Op.getValueType(); 2034 const EVT LaneT = Op.getOperand(0).getValueType(); 2035 const size_t Lanes = Op.getNumOperands(); 2036 bool CanSwizzle = VecT == MVT::v16i8; 2037 2038 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2039 // possible number of lanes at once followed by a sequence of replace_lane 2040 // instructions to individually initialize any remaining lanes. 2041 2042 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2043 // swizzled lanes should be given greater weight. 2044 2045 // TODO: Investigate looping rather than always extracting/replacing specific 2046 // lanes to fill gaps. 2047 2048 auto IsConstant = [](const SDValue &V) { 2049 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2050 }; 2051 2052 // Returns the source vector and index vector pair if they exist. Checks for: 2053 // (extract_vector_elt 2054 // $src, 2055 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2056 // ) 2057 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2058 auto Bail = std::make_pair(SDValue(), SDValue()); 2059 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2060 return Bail; 2061 const SDValue &SwizzleSrc = Lane->getOperand(0); 2062 const SDValue &IndexExt = Lane->getOperand(1); 2063 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2064 return Bail; 2065 const SDValue &Index = IndexExt->getOperand(0); 2066 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2067 return Bail; 2068 const SDValue &SwizzleIndices = Index->getOperand(0); 2069 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2070 SwizzleIndices.getValueType() != MVT::v16i8 || 2071 Index->getOperand(1)->getOpcode() != ISD::Constant || 2072 Index->getConstantOperandVal(1) != I) 2073 return Bail; 2074 return std::make_pair(SwizzleSrc, SwizzleIndices); 2075 }; 2076 2077 // If the lane is extracted from another vector at a constant index, return 2078 // that vector. The source vector must not have more lanes than the dest 2079 // because the shufflevector indices are in terms of the destination lanes and 2080 // would not be able to address the smaller individual source lanes. 2081 auto GetShuffleSrc = [&](const SDValue &Lane) { 2082 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2083 return SDValue(); 2084 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2085 return SDValue(); 2086 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2087 VecT.getVectorNumElements()) 2088 return SDValue(); 2089 return Lane->getOperand(0); 2090 }; 2091 2092 using ValueEntry = std::pair<SDValue, size_t>; 2093 SmallVector<ValueEntry, 16> SplatValueCounts; 2094 2095 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2096 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2097 2098 using ShuffleEntry = std::pair<SDValue, size_t>; 2099 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2100 2101 auto AddCount = [](auto &Counts, const auto &Val) { 2102 auto CountIt = 2103 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2104 if (CountIt == Counts.end()) { 2105 Counts.emplace_back(Val, 1); 2106 } else { 2107 CountIt->second++; 2108 } 2109 }; 2110 2111 auto GetMostCommon = [](auto &Counts) { 2112 auto CommonIt = 2113 std::max_element(Counts.begin(), Counts.end(), 2114 [](auto A, auto B) { return A.second < B.second; }); 2115 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2116 return *CommonIt; 2117 }; 2118 2119 size_t NumConstantLanes = 0; 2120 2121 // Count eligible lanes for each type of vector creation op 2122 for (size_t I = 0; I < Lanes; ++I) { 2123 const SDValue &Lane = Op->getOperand(I); 2124 if (Lane.isUndef()) 2125 continue; 2126 2127 AddCount(SplatValueCounts, Lane); 2128 2129 if (IsConstant(Lane)) 2130 NumConstantLanes++; 2131 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2132 AddCount(ShuffleCounts, ShuffleSrc); 2133 if (CanSwizzle) { 2134 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2135 if (SwizzleSrcs.first) 2136 AddCount(SwizzleCounts, SwizzleSrcs); 2137 } 2138 } 2139 2140 SDValue SplatValue; 2141 size_t NumSplatLanes; 2142 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2143 2144 SDValue SwizzleSrc; 2145 SDValue SwizzleIndices; 2146 size_t NumSwizzleLanes = 0; 2147 if (SwizzleCounts.size()) 2148 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2149 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2150 2151 // Shuffles can draw from up to two vectors, so find the two most common 2152 // sources. 2153 SDValue ShuffleSrc1, ShuffleSrc2; 2154 size_t NumShuffleLanes = 0; 2155 if (ShuffleCounts.size()) { 2156 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2157 llvm::erase_if(ShuffleCounts, 2158 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2159 } 2160 if (ShuffleCounts.size()) { 2161 size_t AdditionalShuffleLanes; 2162 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2163 GetMostCommon(ShuffleCounts); 2164 NumShuffleLanes += AdditionalShuffleLanes; 2165 } 2166 2167 // Predicate returning true if the lane is properly initialized by the 2168 // original instruction 2169 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2170 SDValue Result; 2171 // Prefer swizzles over shuffles over vector consts over splats 2172 if (NumSwizzleLanes >= NumShuffleLanes && 2173 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2174 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2175 SwizzleIndices); 2176 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2177 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2178 return Swizzled == GetSwizzleSrcs(I, Lane); 2179 }; 2180 } else if (NumShuffleLanes >= NumConstantLanes && 2181 NumShuffleLanes >= NumSplatLanes) { 2182 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2183 size_t DestLaneCount = VecT.getVectorNumElements(); 2184 size_t Scale1 = 1; 2185 size_t Scale2 = 1; 2186 SDValue Src1 = ShuffleSrc1; 2187 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2188 if (Src1.getValueType() != VecT) { 2189 size_t LaneSize = 2190 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2191 assert(LaneSize > DestLaneSize); 2192 Scale1 = LaneSize / DestLaneSize; 2193 Src1 = DAG.getBitcast(VecT, Src1); 2194 } 2195 if (Src2.getValueType() != VecT) { 2196 size_t LaneSize = 2197 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2198 assert(LaneSize > DestLaneSize); 2199 Scale2 = LaneSize / DestLaneSize; 2200 Src2 = DAG.getBitcast(VecT, Src2); 2201 } 2202 2203 int Mask[16]; 2204 assert(DestLaneCount <= 16); 2205 for (size_t I = 0; I < DestLaneCount; ++I) { 2206 const SDValue &Lane = Op->getOperand(I); 2207 SDValue Src = GetShuffleSrc(Lane); 2208 if (Src == ShuffleSrc1) { 2209 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2210 } else if (Src && Src == ShuffleSrc2) { 2211 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2212 } else { 2213 Mask[I] = -1; 2214 } 2215 } 2216 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2217 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2218 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2219 auto Src = GetShuffleSrc(Lane); 2220 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2221 }; 2222 } else if (NumConstantLanes >= NumSplatLanes) { 2223 SmallVector<SDValue, 16> ConstLanes; 2224 for (const SDValue &Lane : Op->op_values()) { 2225 if (IsConstant(Lane)) { 2226 // Values may need to be fixed so that they will sign extend to be 2227 // within the expected range during ISel. Check whether the value is in 2228 // bounds based on the lane bit width and if it is out of bounds, lop 2229 // off the extra bits and subtract 2^n to reflect giving the high bit 2230 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2231 // cannot possibly be out of range. 2232 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2233 int64_t Val = Const ? Const->getSExtValue() : 0; 2234 uint64_t LaneBits = 128 / Lanes; 2235 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2236 "Unexpected out of bounds negative value"); 2237 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2238 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2239 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2240 } else { 2241 ConstLanes.push_back(Lane); 2242 } 2243 } else if (LaneT.isFloatingPoint()) { 2244 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2245 } else { 2246 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2247 } 2248 } 2249 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2250 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2251 return IsConstant(Lane); 2252 }; 2253 } else { 2254 // Use a splat, but possibly a load_splat 2255 LoadSDNode *SplattedLoad; 2256 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2257 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2258 Result = DAG.getMemIntrinsicNode( 2259 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2260 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2261 SplattedLoad->getOffset()}, 2262 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2263 } else { 2264 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2265 } 2266 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2267 return Lane == SplatValue; 2268 }; 2269 } 2270 2271 assert(Result); 2272 assert(IsLaneConstructed); 2273 2274 // Add replace_lane instructions for any unhandled values 2275 for (size_t I = 0; I < Lanes; ++I) { 2276 const SDValue &Lane = Op->getOperand(I); 2277 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2278 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2279 DAG.getConstant(I, DL, MVT::i32)); 2280 } 2281 2282 return Result; 2283 } 2284 2285 SDValue 2286 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2287 SelectionDAG &DAG) const { 2288 SDLoc DL(Op); 2289 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2290 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2291 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2292 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2293 2294 // Space for two vector args and sixteen mask indices 2295 SDValue Ops[18]; 2296 size_t OpIdx = 0; 2297 Ops[OpIdx++] = Op.getOperand(0); 2298 Ops[OpIdx++] = Op.getOperand(1); 2299 2300 // Expand mask indices to byte indices and materialize them as operands 2301 for (int M : Mask) { 2302 for (size_t J = 0; J < LaneBytes; ++J) { 2303 // Lower undefs (represented by -1 in mask) to zero 2304 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2305 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2306 } 2307 } 2308 2309 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2310 } 2311 2312 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2313 SelectionDAG &DAG) const { 2314 SDLoc DL(Op); 2315 // The legalizer does not know how to expand the unsupported comparison modes 2316 // of i64x2 vectors, so we manually unroll them here. 2317 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2318 SmallVector<SDValue, 2> LHS, RHS; 2319 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2320 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2321 const SDValue &CC = Op->getOperand(2); 2322 auto MakeLane = [&](unsigned I) { 2323 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2324 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2325 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2326 }; 2327 return DAG.getBuildVector(Op->getValueType(0), DL, 2328 {MakeLane(0), MakeLane(1)}); 2329 } 2330 2331 SDValue 2332 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2333 SelectionDAG &DAG) const { 2334 // Allow constant lane indices, expand variable lane indices 2335 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2336 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2337 return Op; 2338 else 2339 // Perform default expansion 2340 return SDValue(); 2341 } 2342 2343 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2344 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2345 // 32-bit and 64-bit unrolled shifts will have proper semantics 2346 if (LaneT.bitsGE(MVT::i32)) 2347 return DAG.UnrollVectorOp(Op.getNode()); 2348 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2349 SDLoc DL(Op); 2350 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2351 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2352 unsigned ShiftOpcode = Op.getOpcode(); 2353 SmallVector<SDValue, 16> ShiftedElements; 2354 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2355 SmallVector<SDValue, 16> ShiftElements; 2356 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2357 SmallVector<SDValue, 16> UnrolledOps; 2358 for (size_t i = 0; i < NumLanes; ++i) { 2359 SDValue MaskedShiftValue = 2360 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2361 SDValue ShiftedValue = ShiftedElements[i]; 2362 if (ShiftOpcode == ISD::SRA) 2363 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2364 ShiftedValue, DAG.getValueType(LaneT)); 2365 UnrolledOps.push_back( 2366 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2367 } 2368 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2369 } 2370 2371 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2372 SelectionDAG &DAG) const { 2373 SDLoc DL(Op); 2374 2375 // Only manually lower vector shifts 2376 assert(Op.getSimpleValueType().isVector()); 2377 2378 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2379 if (!ShiftVal) 2380 return unrollVectorShift(Op, DAG); 2381 2382 // Use anyext because none of the high bits can affect the shift 2383 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2384 2385 unsigned Opcode; 2386 switch (Op.getOpcode()) { 2387 case ISD::SHL: 2388 Opcode = WebAssemblyISD::VEC_SHL; 2389 break; 2390 case ISD::SRA: 2391 Opcode = WebAssemblyISD::VEC_SHR_S; 2392 break; 2393 case ISD::SRL: 2394 Opcode = WebAssemblyISD::VEC_SHR_U; 2395 break; 2396 default: 2397 llvm_unreachable("unexpected opcode"); 2398 } 2399 2400 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2401 } 2402 2403 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2404 SelectionDAG &DAG) const { 2405 SDLoc DL(Op); 2406 EVT ResT = Op.getValueType(); 2407 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2408 2409 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2410 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2411 return Op; 2412 2413 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2414 return Op; 2415 2416 return SDValue(); 2417 } 2418 2419 //===----------------------------------------------------------------------===// 2420 // Custom DAG combine hooks 2421 //===----------------------------------------------------------------------===// 2422 static SDValue 2423 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2424 auto &DAG = DCI.DAG; 2425 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2426 2427 // Hoist vector bitcasts that don't change the number of lanes out of unary 2428 // shuffles, where they are less likely to get in the way of other combines. 2429 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2430 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2431 SDValue Bitcast = N->getOperand(0); 2432 if (Bitcast.getOpcode() != ISD::BITCAST) 2433 return SDValue(); 2434 if (!N->getOperand(1).isUndef()) 2435 return SDValue(); 2436 SDValue CastOp = Bitcast.getOperand(0); 2437 MVT SrcType = CastOp.getSimpleValueType(); 2438 MVT DstType = Bitcast.getSimpleValueType(); 2439 if (!SrcType.is128BitVector() || 2440 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2441 return SDValue(); 2442 SDValue NewShuffle = DAG.getVectorShuffle( 2443 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2444 return DAG.getBitcast(DstType, NewShuffle); 2445 } 2446 2447 static SDValue 2448 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2449 auto &DAG = DCI.DAG; 2450 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2451 N->getOpcode() == ISD::ZERO_EXTEND); 2452 2453 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2454 // possible before the extract_subvector can be expanded. 2455 auto Extract = N->getOperand(0); 2456 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2457 return SDValue(); 2458 auto Source = Extract.getOperand(0); 2459 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2460 if (IndexNode == nullptr) 2461 return SDValue(); 2462 auto Index = IndexNode->getZExtValue(); 2463 2464 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2465 // extracted subvector is the low or high half of its source. 2466 EVT ResVT = N->getValueType(0); 2467 if (ResVT == MVT::v8i16) { 2468 if (Extract.getValueType() != MVT::v8i8 || 2469 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2470 return SDValue(); 2471 } else if (ResVT == MVT::v4i32) { 2472 if (Extract.getValueType() != MVT::v4i16 || 2473 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2474 return SDValue(); 2475 } else if (ResVT == MVT::v2i64) { 2476 if (Extract.getValueType() != MVT::v2i32 || 2477 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2478 return SDValue(); 2479 } else { 2480 return SDValue(); 2481 } 2482 2483 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2484 bool IsLow = Index == 0; 2485 2486 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2487 : WebAssemblyISD::EXTEND_HIGH_S) 2488 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2489 : WebAssemblyISD::EXTEND_HIGH_U); 2490 2491 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2492 } 2493 2494 static SDValue 2495 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2496 auto &DAG = DCI.DAG; 2497 2498 auto GetWasmConversionOp = [](unsigned Op) { 2499 switch (Op) { 2500 case ISD::FP_TO_SINT_SAT: 2501 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2502 case ISD::FP_TO_UINT_SAT: 2503 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2504 case ISD::FP_ROUND: 2505 return WebAssemblyISD::DEMOTE_ZERO; 2506 } 2507 llvm_unreachable("unexpected op"); 2508 }; 2509 2510 auto IsZeroSplat = [](SDValue SplatVal) { 2511 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2512 APInt SplatValue, SplatUndef; 2513 unsigned SplatBitSize; 2514 bool HasAnyUndefs; 2515 return Splat && 2516 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2517 HasAnyUndefs) && 2518 SplatValue == 0; 2519 }; 2520 2521 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2522 // Combine this: 2523 // 2524 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2525 // 2526 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2527 // 2528 // Or this: 2529 // 2530 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2531 // 2532 // into (f32x4.demote_zero_f64x2 $x). 2533 EVT ResVT; 2534 EVT ExpectedConversionType; 2535 auto Conversion = N->getOperand(0); 2536 auto ConversionOp = Conversion.getOpcode(); 2537 switch (ConversionOp) { 2538 case ISD::FP_TO_SINT_SAT: 2539 case ISD::FP_TO_UINT_SAT: 2540 ResVT = MVT::v4i32; 2541 ExpectedConversionType = MVT::v2i32; 2542 break; 2543 case ISD::FP_ROUND: 2544 ResVT = MVT::v4f32; 2545 ExpectedConversionType = MVT::v2f32; 2546 break; 2547 default: 2548 return SDValue(); 2549 } 2550 2551 if (N->getValueType(0) != ResVT) 2552 return SDValue(); 2553 2554 if (Conversion.getValueType() != ExpectedConversionType) 2555 return SDValue(); 2556 2557 auto Source = Conversion.getOperand(0); 2558 if (Source.getValueType() != MVT::v2f64) 2559 return SDValue(); 2560 2561 if (!IsZeroSplat(N->getOperand(1)) || 2562 N->getOperand(1).getValueType() != ExpectedConversionType) 2563 return SDValue(); 2564 2565 unsigned Op = GetWasmConversionOp(ConversionOp); 2566 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2567 } 2568 2569 // Combine this: 2570 // 2571 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2572 // 2573 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2574 // 2575 // Or this: 2576 // 2577 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2578 // 2579 // into (f32x4.demote_zero_f64x2 $x). 2580 EVT ResVT; 2581 auto ConversionOp = N->getOpcode(); 2582 switch (ConversionOp) { 2583 case ISD::FP_TO_SINT_SAT: 2584 case ISD::FP_TO_UINT_SAT: 2585 ResVT = MVT::v4i32; 2586 break; 2587 case ISD::FP_ROUND: 2588 ResVT = MVT::v4f32; 2589 break; 2590 default: 2591 llvm_unreachable("unexpected op"); 2592 } 2593 2594 if (N->getValueType(0) != ResVT) 2595 return SDValue(); 2596 2597 auto Concat = N->getOperand(0); 2598 if (Concat.getValueType() != MVT::v4f64) 2599 return SDValue(); 2600 2601 auto Source = Concat.getOperand(0); 2602 if (Source.getValueType() != MVT::v2f64) 2603 return SDValue(); 2604 2605 if (!IsZeroSplat(Concat.getOperand(1)) || 2606 Concat.getOperand(1).getValueType() != MVT::v2f64) 2607 return SDValue(); 2608 2609 unsigned Op = GetWasmConversionOp(ConversionOp); 2610 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2611 } 2612 2613 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2614 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2615 const SDLoc &DL, unsigned VectorWidth) { 2616 EVT VT = Vec.getValueType(); 2617 EVT ElVT = VT.getVectorElementType(); 2618 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2619 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2620 VT.getVectorNumElements() / Factor); 2621 2622 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2623 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2624 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2625 2626 // This is the index of the first element of the VectorWidth-bit chunk 2627 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2628 IdxVal &= ~(ElemsPerChunk - 1); 2629 2630 // If the input is a buildvector just emit a smaller one. 2631 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2632 return DAG.getBuildVector(ResultVT, DL, 2633 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2634 2635 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2636 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2637 } 2638 2639 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2640 // is the expected destination value type after recursion. In is the initial 2641 // input. Note that the input should have enough leading zero bits to prevent 2642 // NARROW_U from saturating results. 2643 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2644 SelectionDAG &DAG) { 2645 EVT SrcVT = In.getValueType(); 2646 2647 // No truncation required, we might get here due to recursive calls. 2648 if (SrcVT == DstVT) 2649 return In; 2650 2651 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2652 unsigned NumElems = SrcVT.getVectorNumElements(); 2653 if (!isPowerOf2_32(NumElems)) 2654 return SDValue(); 2655 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2656 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2657 2658 LLVMContext &Ctx = *DAG.getContext(); 2659 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2660 2661 // Narrow to the largest type possible: 2662 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2663 EVT InVT = MVT::i16, OutVT = MVT::i8; 2664 if (SrcVT.getScalarSizeInBits() > 16) { 2665 InVT = MVT::i32; 2666 OutVT = MVT::i16; 2667 } 2668 unsigned SubSizeInBits = SrcSizeInBits / 2; 2669 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2670 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2671 2672 // Split lower/upper subvectors. 2673 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2674 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2675 2676 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2677 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2678 Lo = DAG.getBitcast(InVT, Lo); 2679 Hi = DAG.getBitcast(InVT, Hi); 2680 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2681 return DAG.getBitcast(DstVT, Res); 2682 } 2683 2684 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2685 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2686 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2687 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2688 2689 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2690 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2691 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2692 } 2693 2694 static SDValue performTruncateCombine(SDNode *N, 2695 TargetLowering::DAGCombinerInfo &DCI) { 2696 auto &DAG = DCI.DAG; 2697 2698 SDValue In = N->getOperand(0); 2699 EVT InVT = In.getValueType(); 2700 if (!InVT.isSimple()) 2701 return SDValue(); 2702 2703 EVT OutVT = N->getValueType(0); 2704 if (!OutVT.isVector()) 2705 return SDValue(); 2706 2707 EVT OutSVT = OutVT.getVectorElementType(); 2708 EVT InSVT = InVT.getVectorElementType(); 2709 // Currently only cover truncate to v16i8 or v8i16. 2710 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 2711 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 2712 return SDValue(); 2713 2714 SDLoc DL(N); 2715 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 2716 OutVT.getScalarSizeInBits()); 2717 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 2718 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 2719 } 2720 2721 SDValue 2722 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2723 DAGCombinerInfo &DCI) const { 2724 switch (N->getOpcode()) { 2725 default: 2726 return SDValue(); 2727 case ISD::VECTOR_SHUFFLE: 2728 return performVECTOR_SHUFFLECombine(N, DCI); 2729 case ISD::SIGN_EXTEND: 2730 case ISD::ZERO_EXTEND: 2731 return performVectorExtendCombine(N, DCI); 2732 case ISD::FP_TO_SINT_SAT: 2733 case ISD::FP_TO_UINT_SAT: 2734 case ISD::FP_ROUND: 2735 case ISD::CONCAT_VECTORS: 2736 return performVectorTruncZeroCombine(N, DCI); 2737 case ISD::TRUNCATE: 2738 return performTruncateCombine(N, DCI); 2739 } 2740 } 2741