xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "WebAssemblyMachineFunctionInfo.h"
18 #include "WebAssemblySubtarget.h"
19 #include "WebAssemblyTargetMachine.h"
20 #include "WebAssemblyUtilities.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsWebAssembly.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "wasm-lower"
45 
46 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
47     const TargetMachine &TM, const WebAssemblySubtarget &STI)
48     : TargetLowering(TM), Subtarget(&STI) {
49   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
50 
51   // Booleans always contain 0 or 1.
52   setBooleanContents(ZeroOrOneBooleanContent);
53   // Except in SIMD vectors
54   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
55   // We don't know the microarchitecture here, so just reduce register pressure.
56   setSchedulingPreference(Sched::RegPressure);
57   // Tell ISel that we have a stack pointer.
58   setStackPointerRegisterToSaveRestore(
59       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
60   // Set up the register classes.
61   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
62   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
63   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
64   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
65   if (Subtarget->hasSIMD128()) {
66     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
70     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
71     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
72   }
73   if (Subtarget->hasReferenceTypes()) {
74     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
75     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
76   }
77   // Compute derived properties from the register classes.
78   computeRegisterProperties(Subtarget->getRegisterInfo());
79 
80   // Transform loads and stores to pointers in address space 1 to loads and
81   // stores to WebAssembly global variables, outside linear memory.
82   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
83     setOperationAction(ISD::LOAD, T, Custom);
84     setOperationAction(ISD::STORE, T, Custom);
85   }
86   if (Subtarget->hasSIMD128()) {
87     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
88                    MVT::v2f64}) {
89       setOperationAction(ISD::LOAD, T, Custom);
90       setOperationAction(ISD::STORE, T, Custom);
91     }
92   }
93   if (Subtarget->hasReferenceTypes()) {
94     // We need custom load and store lowering for both externref, funcref and
95     // Other. The MVT::Other here represents tables of reference types.
96     for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
97       setOperationAction(ISD::LOAD, T, Custom);
98       setOperationAction(ISD::STORE, T, Custom);
99     }
100   }
101 
102   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
103   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
104   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
105   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
106   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
107   setOperationAction(ISD::BRIND, MVT::Other, Custom);
108 
109   // Take the default expansion for va_arg, va_copy, and va_end. There is no
110   // default action for va_start, so we do that custom.
111   setOperationAction(ISD::VASTART, MVT::Other, Custom);
112   setOperationAction(ISD::VAARG, MVT::Other, Expand);
113   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
114   setOperationAction(ISD::VAEND, MVT::Other, Expand);
115 
116   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
117     // Don't expand the floating-point types to constant pools.
118     setOperationAction(ISD::ConstantFP, T, Legal);
119     // Expand floating-point comparisons.
120     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
121                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
122       setCondCodeAction(CC, T, Expand);
123     // Expand floating-point library function operators.
124     for (auto Op :
125          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
126       setOperationAction(Op, T, Expand);
127     // Note supported floating-point library function operators that otherwise
128     // default to expand.
129     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
130                     ISD::FRINT, ISD::FROUNDEVEN})
131       setOperationAction(Op, T, Legal);
132     // Support minimum and maximum, which otherwise default to expand.
133     setOperationAction(ISD::FMINIMUM, T, Legal);
134     setOperationAction(ISD::FMAXIMUM, T, Legal);
135     // WebAssembly currently has no builtin f16 support.
136     setOperationAction(ISD::FP16_TO_FP, T, Expand);
137     setOperationAction(ISD::FP_TO_FP16, T, Expand);
138     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
139     setTruncStoreAction(T, MVT::f16, Expand);
140   }
141 
142   // Expand unavailable integer operations.
143   for (auto Op :
144        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
145         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
146         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
147     for (auto T : {MVT::i32, MVT::i64})
148       setOperationAction(Op, T, Expand);
149     if (Subtarget->hasSIMD128())
150       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
151         setOperationAction(Op, T, Expand);
152   }
153 
154   if (Subtarget->hasNontrappingFPToInt())
155     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
156       for (auto T : {MVT::i32, MVT::i64})
157         setOperationAction(Op, T, Custom);
158 
159   // SIMD-specific configuration
160   if (Subtarget->hasSIMD128()) {
161     // Combine vector mask reductions into alltrue/anytrue
162     setTargetDAGCombine(ISD::SETCC);
163 
164     // Convert vector to integer bitcasts to bitmask
165     setTargetDAGCombine(ISD::BITCAST);
166 
167     // Hoist bitcasts out of shuffles
168     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
169 
170     // Combine extends of extract_subvectors into widening ops
171     setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
172 
173     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
174     // conversions ops
175     setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
176                          ISD::EXTRACT_SUBVECTOR});
177 
178     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
179     // into conversion ops
180     setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
181                          ISD::FP_ROUND, ISD::CONCAT_VECTORS});
182 
183     setTargetDAGCombine(ISD::TRUNCATE);
184 
185     // Support saturating add for i8x16 and i16x8
186     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
187       for (auto T : {MVT::v16i8, MVT::v8i16})
188         setOperationAction(Op, T, Legal);
189 
190     // Support integer abs
191     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
192       setOperationAction(ISD::ABS, T, Legal);
193 
194     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
195     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
196                    MVT::v2f64})
197       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
198 
199     // We have custom shuffle lowering to expose the shuffle mask
200     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
201                    MVT::v2f64})
202       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
203 
204     // Support splatting
205     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
206                    MVT::v2f64})
207       setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
208 
209     // Custom lowering since wasm shifts must have a scalar shift amount
210     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
211       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
212         setOperationAction(Op, T, Custom);
213 
214     // Custom lower lane accesses to expand out variable indices
215     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
216       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
217                      MVT::v2f64})
218         setOperationAction(Op, T, Custom);
219 
220     // There is no i8x16.mul instruction
221     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
222 
223     // There is no vector conditional select instruction
224     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
225                    MVT::v2f64})
226       setOperationAction(ISD::SELECT_CC, T, Expand);
227 
228     // Expand integer operations supported for scalars but not SIMD
229     for (auto Op :
230          {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
231       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
232         setOperationAction(Op, T, Expand);
233 
234     // But we do have integer min and max operations
235     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
236       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
237         setOperationAction(Op, T, Legal);
238 
239     // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
240     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
241     setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
242     setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
243 
244     // Custom lower bit counting operations for other types to scalarize them.
245     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
246       for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
247         setOperationAction(Op, T, Custom);
248 
249     // Expand float operations supported for scalars but not SIMD
250     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
251                     ISD::FEXP, ISD::FEXP2})
252       for (auto T : {MVT::v4f32, MVT::v2f64})
253         setOperationAction(Op, T, Expand);
254 
255     // Unsigned comparison operations are unavailable for i64x2 vectors.
256     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
257       setCondCodeAction(CC, MVT::v2i64, Custom);
258 
259     // 64x2 conversions are not in the spec
260     for (auto Op :
261          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
262       for (auto T : {MVT::v2i64, MVT::v2f64})
263         setOperationAction(Op, T, Expand);
264 
265     // But saturating fp_to_int converstions are
266     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
267       setOperationAction(Op, MVT::v4i32, Custom);
268 
269     // Support vector extending
270     for (auto T : MVT::integer_fixedlen_vector_valuetypes()) {
271       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom);
272       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom);
273     }
274   }
275 
276   // As a special case, these operators use the type to mean the type to
277   // sign-extend from.
278   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
279   if (!Subtarget->hasSignExt()) {
280     // Sign extends are legal only when extending a vector extract
281     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
282     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
283       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
284   }
285   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
286     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
287 
288   // Dynamic stack allocation: use the default expansion.
289   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
290   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
291   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
292 
293   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
294   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
295   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
296 
297   // Expand these forms; we pattern-match the forms that we can handle in isel.
298   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
299     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
300       setOperationAction(Op, T, Expand);
301 
302   // We have custom switch handling.
303   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
304 
305   // WebAssembly doesn't have:
306   //  - Floating-point extending loads.
307   //  - Floating-point truncating stores.
308   //  - i1 extending loads.
309   //  - truncating SIMD stores and most extending loads
310   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
311   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
312   for (auto T : MVT::integer_valuetypes())
313     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
314       setLoadExtAction(Ext, T, MVT::i1, Promote);
315   if (Subtarget->hasSIMD128()) {
316     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
317                    MVT::v2f64}) {
318       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
319         if (MVT(T) != MemT) {
320           setTruncStoreAction(T, MemT, Expand);
321           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
322             setLoadExtAction(Ext, T, MemT, Expand);
323         }
324       }
325     }
326     // But some vector extending loads are legal
327     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
328       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
329       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
330       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
331     }
332     setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
333   }
334 
335   // Don't do anything clever with build_pairs
336   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
337 
338   // Trap lowers to wasm unreachable
339   setOperationAction(ISD::TRAP, MVT::Other, Legal);
340   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
341 
342   // Exception handling intrinsics
343   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
344   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
345   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
346 
347   setMaxAtomicSizeInBitsSupported(64);
348 
349   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
350   // consistent with the f64 and f128 names.
351   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
352   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
353 
354   // Define the emscripten name for return address helper.
355   // TODO: when implementing other Wasm backends, make this generic or only do
356   // this on emscripten depending on what they end up doing.
357   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
358 
359   // Always convert switches to br_tables unless there is only one case, which
360   // is equivalent to a simple branch. This reduces code size for wasm, and we
361   // defer possible jump table optimizations to the VM.
362   setMinimumJumpTableEntries(2);
363 }
364 
365 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
366                                             uint32_t AS) const {
367   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
368     return MVT::externref;
369   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
370     return MVT::funcref;
371   return TargetLowering::getPointerTy(DL, AS);
372 }
373 
374 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
375                                                uint32_t AS) const {
376   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
377     return MVT::externref;
378   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
379     return MVT::funcref;
380   return TargetLowering::getPointerMemTy(DL, AS);
381 }
382 
383 TargetLowering::AtomicExpansionKind
384 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
385   // We have wasm instructions for these
386   switch (AI->getOperation()) {
387   case AtomicRMWInst::Add:
388   case AtomicRMWInst::Sub:
389   case AtomicRMWInst::And:
390   case AtomicRMWInst::Or:
391   case AtomicRMWInst::Xor:
392   case AtomicRMWInst::Xchg:
393     return AtomicExpansionKind::None;
394   default:
395     break;
396   }
397   return AtomicExpansionKind::CmpXChg;
398 }
399 
400 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
401   // Implementation copied from X86TargetLowering.
402   unsigned Opc = VecOp.getOpcode();
403 
404   // Assume target opcodes can't be scalarized.
405   // TODO - do we have any exceptions?
406   if (Opc >= ISD::BUILTIN_OP_END)
407     return false;
408 
409   // If the vector op is not supported, try to convert to scalar.
410   EVT VecVT = VecOp.getValueType();
411   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
412     return true;
413 
414   // If the vector op is supported, but the scalar op is not, the transform may
415   // not be worthwhile.
416   EVT ScalarVT = VecVT.getScalarType();
417   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
418 }
419 
420 FastISel *WebAssemblyTargetLowering::createFastISel(
421     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
422   return WebAssembly::createFastISel(FuncInfo, LibInfo);
423 }
424 
425 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
426                                                       EVT VT) const {
427   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
428   if (BitWidth > 1 && BitWidth < 8)
429     BitWidth = 8;
430 
431   if (BitWidth > 64) {
432     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
433     // the count to be an i32.
434     BitWidth = 32;
435     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
436            "32-bit shift counts ought to be enough for anyone");
437   }
438 
439   MVT Result = MVT::getIntegerVT(BitWidth);
440   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
441          "Unable to represent scalar shift amount type");
442   return Result;
443 }
444 
445 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
446 // undefined result on invalid/overflow, to the WebAssembly opcode, which
447 // traps on invalid/overflow.
448 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
449                                        MachineBasicBlock *BB,
450                                        const TargetInstrInfo &TII,
451                                        bool IsUnsigned, bool Int64,
452                                        bool Float64, unsigned LoweredOpcode) {
453   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
454 
455   Register OutReg = MI.getOperand(0).getReg();
456   Register InReg = MI.getOperand(1).getReg();
457 
458   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
459   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
460   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
461   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
462   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
463   unsigned Eqz = WebAssembly::EQZ_I32;
464   unsigned And = WebAssembly::AND_I32;
465   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
466   int64_t Substitute = IsUnsigned ? 0 : Limit;
467   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
468   auto &Context = BB->getParent()->getFunction().getContext();
469   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
470 
471   const BasicBlock *LLVMBB = BB->getBasicBlock();
472   MachineFunction *F = BB->getParent();
473   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
474   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
475   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
476 
477   MachineFunction::iterator It = ++BB->getIterator();
478   F->insert(It, FalseMBB);
479   F->insert(It, TrueMBB);
480   F->insert(It, DoneMBB);
481 
482   // Transfer the remainder of BB and its successor edges to DoneMBB.
483   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
484   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
485 
486   BB->addSuccessor(TrueMBB);
487   BB->addSuccessor(FalseMBB);
488   TrueMBB->addSuccessor(DoneMBB);
489   FalseMBB->addSuccessor(DoneMBB);
490 
491   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
492   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
493   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
494   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
495   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
496   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
497   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
498 
499   MI.eraseFromParent();
500   // For signed numbers, we can do a single comparison to determine whether
501   // fabs(x) is within range.
502   if (IsUnsigned) {
503     Tmp0 = InReg;
504   } else {
505     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
506   }
507   BuildMI(BB, DL, TII.get(FConst), Tmp1)
508       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
509   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
510 
511   // For unsigned numbers, we have to do a separate comparison with zero.
512   if (IsUnsigned) {
513     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
514     Register SecondCmpReg =
515         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
516     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
517     BuildMI(BB, DL, TII.get(FConst), Tmp1)
518         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
519     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
520     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
521     CmpReg = AndReg;
522   }
523 
524   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
525 
526   // Create the CFG diamond to select between doing the conversion or using
527   // the substitute value.
528   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
529   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
530   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
531   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
532   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
533       .addReg(FalseReg)
534       .addMBB(FalseMBB)
535       .addReg(TrueReg)
536       .addMBB(TrueMBB);
537 
538   return DoneMBB;
539 }
540 
541 static MachineBasicBlock *
542 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
543                  const WebAssemblySubtarget *Subtarget,
544                  const TargetInstrInfo &TII) {
545   MachineInstr &CallParams = *CallResults.getPrevNode();
546   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
547   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
548          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
549 
550   bool IsIndirect =
551       CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI();
552   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
553 
554   bool IsFuncrefCall = false;
555   if (IsIndirect && CallParams.getOperand(0).isReg()) {
556     Register Reg = CallParams.getOperand(0).getReg();
557     const MachineFunction *MF = BB->getParent();
558     const MachineRegisterInfo &MRI = MF->getRegInfo();
559     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
560     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
561     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
562   }
563 
564   unsigned CallOp;
565   if (IsIndirect && IsRetCall) {
566     CallOp = WebAssembly::RET_CALL_INDIRECT;
567   } else if (IsIndirect) {
568     CallOp = WebAssembly::CALL_INDIRECT;
569   } else if (IsRetCall) {
570     CallOp = WebAssembly::RET_CALL;
571   } else {
572     CallOp = WebAssembly::CALL;
573   }
574 
575   MachineFunction &MF = *BB->getParent();
576   const MCInstrDesc &MCID = TII.get(CallOp);
577   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
578 
579   // See if we must truncate the function pointer.
580   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
581   // as 64-bit for uniformity with other pointer types.
582   // See also: WebAssemblyFastISel::selectCall
583   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
584     Register Reg32 =
585         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
586     auto &FnPtr = CallParams.getOperand(0);
587     BuildMI(*BB, CallResults.getIterator(), DL,
588             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
589         .addReg(FnPtr.getReg());
590     FnPtr.setReg(Reg32);
591   }
592 
593   // Move the function pointer to the end of the arguments for indirect calls
594   if (IsIndirect) {
595     auto FnPtr = CallParams.getOperand(0);
596     CallParams.removeOperand(0);
597 
598     // For funcrefs, call_indirect is done through __funcref_call_table and the
599     // funcref is always installed in slot 0 of the table, therefore instead of
600     // having the function pointer added at the end of the params list, a zero
601     // (the index in
602     // __funcref_call_table is added).
603     if (IsFuncrefCall) {
604       Register RegZero =
605           MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
606       MachineInstrBuilder MIBC0 =
607           BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
608 
609       BB->insert(CallResults.getIterator(), MIBC0);
610       MachineInstrBuilder(MF, CallParams).addReg(RegZero);
611     } else
612       CallParams.addOperand(FnPtr);
613   }
614 
615   for (auto Def : CallResults.defs())
616     MIB.add(Def);
617 
618   if (IsIndirect) {
619     // Placeholder for the type index.
620     MIB.addImm(0);
621     // The table into which this call_indirect indexes.
622     MCSymbolWasm *Table = IsFuncrefCall
623                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
624                                     MF.getContext(), Subtarget)
625                               : WebAssembly::getOrCreateFunctionTableSymbol(
626                                     MF.getContext(), Subtarget);
627     if (Subtarget->hasReferenceTypes()) {
628       MIB.addSym(Table);
629     } else {
630       // For the MVP there is at most one table whose number is 0, but we can't
631       // write a table symbol or issue relocations.  Instead we just ensure the
632       // table is live and write a zero.
633       Table->setNoStrip();
634       MIB.addImm(0);
635     }
636   }
637 
638   for (auto Use : CallParams.uses())
639     MIB.add(Use);
640 
641   BB->insert(CallResults.getIterator(), MIB);
642   CallParams.eraseFromParent();
643   CallResults.eraseFromParent();
644 
645   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
646   // table slot with ref.null upon call_indirect return.
647   //
648   // This generates the following code, which comes right after a call_indirect
649   // of a funcref:
650   //
651   //    i32.const 0
652   //    ref.null func
653   //    table.set __funcref_call_table
654   if (IsIndirect && IsFuncrefCall) {
655     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
656         MF.getContext(), Subtarget);
657     Register RegZero =
658         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
659     MachineInstr *Const0 =
660         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
661     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
662 
663     Register RegFuncref =
664         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
665     MachineInstr *RefNull =
666         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
667     BB->insertAfter(Const0->getIterator(), RefNull);
668 
669     MachineInstr *TableSet =
670         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
671             .addSym(Table)
672             .addReg(RegZero)
673             .addReg(RegFuncref);
674     BB->insertAfter(RefNull->getIterator(), TableSet);
675   }
676 
677   return BB;
678 }
679 
680 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
681     MachineInstr &MI, MachineBasicBlock *BB) const {
682   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
683   DebugLoc DL = MI.getDebugLoc();
684 
685   switch (MI.getOpcode()) {
686   default:
687     llvm_unreachable("Unexpected instr type to insert");
688   case WebAssembly::FP_TO_SINT_I32_F32:
689     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
690                         WebAssembly::I32_TRUNC_S_F32);
691   case WebAssembly::FP_TO_UINT_I32_F32:
692     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
693                         WebAssembly::I32_TRUNC_U_F32);
694   case WebAssembly::FP_TO_SINT_I64_F32:
695     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
696                         WebAssembly::I64_TRUNC_S_F32);
697   case WebAssembly::FP_TO_UINT_I64_F32:
698     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
699                         WebAssembly::I64_TRUNC_U_F32);
700   case WebAssembly::FP_TO_SINT_I32_F64:
701     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
702                         WebAssembly::I32_TRUNC_S_F64);
703   case WebAssembly::FP_TO_UINT_I32_F64:
704     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
705                         WebAssembly::I32_TRUNC_U_F64);
706   case WebAssembly::FP_TO_SINT_I64_F64:
707     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
708                         WebAssembly::I64_TRUNC_S_F64);
709   case WebAssembly::FP_TO_UINT_I64_F64:
710     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
711                         WebAssembly::I64_TRUNC_U_F64);
712   case WebAssembly::CALL_RESULTS:
713   case WebAssembly::RET_CALL_RESULTS:
714     return LowerCallResults(MI, DL, BB, Subtarget, TII);
715   }
716 }
717 
718 const char *
719 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
720   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
721   case WebAssemblyISD::FIRST_NUMBER:
722   case WebAssemblyISD::FIRST_MEM_OPCODE:
723     break;
724 #define HANDLE_NODETYPE(NODE)                                                  \
725   case WebAssemblyISD::NODE:                                                   \
726     return "WebAssemblyISD::" #NODE;
727 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
728 #include "WebAssemblyISD.def"
729 #undef HANDLE_MEM_NODETYPE
730 #undef HANDLE_NODETYPE
731   }
732   return nullptr;
733 }
734 
735 std::pair<unsigned, const TargetRegisterClass *>
736 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
737     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
738   // First, see if this is a constraint that directly corresponds to a
739   // WebAssembly register class.
740   if (Constraint.size() == 1) {
741     switch (Constraint[0]) {
742     case 'r':
743       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
744       if (Subtarget->hasSIMD128() && VT.isVector()) {
745         if (VT.getSizeInBits() == 128)
746           return std::make_pair(0U, &WebAssembly::V128RegClass);
747       }
748       if (VT.isInteger() && !VT.isVector()) {
749         if (VT.getSizeInBits() <= 32)
750           return std::make_pair(0U, &WebAssembly::I32RegClass);
751         if (VT.getSizeInBits() <= 64)
752           return std::make_pair(0U, &WebAssembly::I64RegClass);
753       }
754       if (VT.isFloatingPoint() && !VT.isVector()) {
755         switch (VT.getSizeInBits()) {
756         case 32:
757           return std::make_pair(0U, &WebAssembly::F32RegClass);
758         case 64:
759           return std::make_pair(0U, &WebAssembly::F64RegClass);
760         default:
761           break;
762         }
763       }
764       break;
765     default:
766       break;
767     }
768   }
769 
770   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
771 }
772 
773 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
774   // Assume ctz is a relatively cheap operation.
775   return true;
776 }
777 
778 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
779   // Assume clz is a relatively cheap operation.
780   return true;
781 }
782 
783 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
784                                                       const AddrMode &AM,
785                                                       Type *Ty, unsigned AS,
786                                                       Instruction *I) const {
787   // WebAssembly offsets are added as unsigned without wrapping. The
788   // isLegalAddressingMode gives us no way to determine if wrapping could be
789   // happening, so we approximate this by accepting only non-negative offsets.
790   if (AM.BaseOffs < 0)
791     return false;
792 
793   // WebAssembly has no scale register operands.
794   if (AM.Scale != 0)
795     return false;
796 
797   // Everything else is legal.
798   return true;
799 }
800 
801 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
802     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
803     MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const {
804   // WebAssembly supports unaligned accesses, though it should be declared
805   // with the p2align attribute on loads and stores which do so, and there
806   // may be a performance impact. We tell LLVM they're "fast" because
807   // for the kinds of things that LLVM uses this for (merging adjacent stores
808   // of constants, etc.), WebAssembly implementations will either want the
809   // unaligned access or they'll split anyway.
810   if (Fast)
811     *Fast = 1;
812   return true;
813 }
814 
815 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
816                                               AttributeList Attr) const {
817   // The current thinking is that wasm engines will perform this optimization,
818   // so we can save on code size.
819   return true;
820 }
821 
822 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
823   EVT ExtT = ExtVal.getValueType();
824   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
825   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
826          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
827          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
828 }
829 
830 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
831     const GlobalAddressSDNode *GA) const {
832   // Wasm doesn't support function addresses with offsets
833   const GlobalValue *GV = GA->getGlobal();
834   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
835 }
836 
837 bool WebAssemblyTargetLowering::shouldSinkOperands(
838     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
839   using namespace llvm::PatternMatch;
840 
841   if (!I->getType()->isVectorTy() || !I->isShift())
842     return false;
843 
844   Value *V = I->getOperand(1);
845   // We dont need to sink constant splat.
846   if (dyn_cast<Constant>(V))
847     return false;
848 
849   if (match(V, m_Shuffle(m_InsertElt(m_Value(), m_Value(), m_ZeroInt()),
850                          m_Value(), m_ZeroMask()))) {
851     // Sink insert
852     Ops.push_back(&cast<Instruction>(V)->getOperandUse(0));
853     // Sink shuffle
854     Ops.push_back(&I->getOperandUse(1));
855     return true;
856   }
857 
858   return false;
859 }
860 
861 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
862                                                   LLVMContext &C,
863                                                   EVT VT) const {
864   if (VT.isVector())
865     return VT.changeVectorElementTypeToInteger();
866 
867   // So far, all branch instructions in Wasm take an I32 condition.
868   // The default TargetLowering::getSetCCResultType returns the pointer size,
869   // which would be useful to reduce instruction counts when testing
870   // against 64-bit pointers/values if at some point Wasm supports that.
871   return EVT::getIntegerVT(C, 32);
872 }
873 
874 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
875                                                    const CallInst &I,
876                                                    MachineFunction &MF,
877                                                    unsigned Intrinsic) const {
878   switch (Intrinsic) {
879   case Intrinsic::wasm_memory_atomic_notify:
880     Info.opc = ISD::INTRINSIC_W_CHAIN;
881     Info.memVT = MVT::i32;
882     Info.ptrVal = I.getArgOperand(0);
883     Info.offset = 0;
884     Info.align = Align(4);
885     // atomic.notify instruction does not really load the memory specified with
886     // this argument, but MachineMemOperand should either be load or store, so
887     // we set this to a load.
888     // FIXME Volatile isn't really correct, but currently all LLVM atomic
889     // instructions are treated as volatiles in the backend, so we should be
890     // consistent. The same applies for wasm_atomic_wait intrinsics too.
891     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
892     return true;
893   case Intrinsic::wasm_memory_atomic_wait32:
894     Info.opc = ISD::INTRINSIC_W_CHAIN;
895     Info.memVT = MVT::i32;
896     Info.ptrVal = I.getArgOperand(0);
897     Info.offset = 0;
898     Info.align = Align(4);
899     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
900     return true;
901   case Intrinsic::wasm_memory_atomic_wait64:
902     Info.opc = ISD::INTRINSIC_W_CHAIN;
903     Info.memVT = MVT::i64;
904     Info.ptrVal = I.getArgOperand(0);
905     Info.offset = 0;
906     Info.align = Align(8);
907     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
908     return true;
909   default:
910     return false;
911   }
912 }
913 
914 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
915     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
916     const SelectionDAG &DAG, unsigned Depth) const {
917   switch (Op.getOpcode()) {
918   default:
919     break;
920   case ISD::INTRINSIC_WO_CHAIN: {
921     unsigned IntNo = Op.getConstantOperandVal(0);
922     switch (IntNo) {
923     default:
924       break;
925     case Intrinsic::wasm_bitmask: {
926       unsigned BitWidth = Known.getBitWidth();
927       EVT VT = Op.getOperand(1).getSimpleValueType();
928       unsigned PossibleBits = VT.getVectorNumElements();
929       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
930       Known.Zero |= ZeroMask;
931       break;
932     }
933     }
934   }
935   }
936 }
937 
938 TargetLoweringBase::LegalizeTypeAction
939 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
940   if (VT.isFixedLengthVector()) {
941     MVT EltVT = VT.getVectorElementType();
942     // We have legal vector types with these lane types, so widening the
943     // vector would let us use some of the lanes directly without having to
944     // extend or truncate values.
945     if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
946         EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
947       return TypeWidenVector;
948   }
949 
950   return TargetLoweringBase::getPreferredVectorAction(VT);
951 }
952 
953 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
954     SDValue Op, const TargetLoweringOpt &TLO) const {
955   // ISel process runs DAGCombiner after legalization; this step is called
956   // SelectionDAG optimization phase. This post-legalization combining process
957   // runs DAGCombiner on each node, and if there was a change to be made,
958   // re-runs legalization again on it and its user nodes to make sure
959   // everythiing is in a legalized state.
960   //
961   // The legalization calls lowering routines, and we do our custom lowering for
962   // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
963   // into zeros. But there is a set of routines in DAGCombiner that turns unused
964   // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
965   // turns unused vector elements into undefs. But this routine does not work
966   // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
967   // combination can result in a infinite loop, in which undefs are converted to
968   // zeros in legalization and back to undefs in combining.
969   //
970   // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
971   // running for build_vectors.
972   if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
973     return false;
974   return true;
975 }
976 
977 //===----------------------------------------------------------------------===//
978 // WebAssembly Lowering private implementation.
979 //===----------------------------------------------------------------------===//
980 
981 //===----------------------------------------------------------------------===//
982 // Lowering Code
983 //===----------------------------------------------------------------------===//
984 
985 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
986   MachineFunction &MF = DAG.getMachineFunction();
987   DAG.getContext()->diagnose(
988       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
989 }
990 
991 // Test whether the given calling convention is supported.
992 static bool callingConvSupported(CallingConv::ID CallConv) {
993   // We currently support the language-independent target-independent
994   // conventions. We don't yet have a way to annotate calls with properties like
995   // "cold", and we don't have any call-clobbered registers, so these are mostly
996   // all handled the same.
997   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
998          CallConv == CallingConv::Cold ||
999          CallConv == CallingConv::PreserveMost ||
1000          CallConv == CallingConv::PreserveAll ||
1001          CallConv == CallingConv::CXX_FAST_TLS ||
1002          CallConv == CallingConv::WASM_EmscriptenInvoke ||
1003          CallConv == CallingConv::Swift;
1004 }
1005 
1006 SDValue
1007 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
1008                                      SmallVectorImpl<SDValue> &InVals) const {
1009   SelectionDAG &DAG = CLI.DAG;
1010   SDLoc DL = CLI.DL;
1011   SDValue Chain = CLI.Chain;
1012   SDValue Callee = CLI.Callee;
1013   MachineFunction &MF = DAG.getMachineFunction();
1014   auto Layout = MF.getDataLayout();
1015 
1016   CallingConv::ID CallConv = CLI.CallConv;
1017   if (!callingConvSupported(CallConv))
1018     fail(DL, DAG,
1019          "WebAssembly doesn't support language-specific or target-specific "
1020          "calling conventions yet");
1021   if (CLI.IsPatchPoint)
1022     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
1023 
1024   if (CLI.IsTailCall) {
1025     auto NoTail = [&](const char *Msg) {
1026       if (CLI.CB && CLI.CB->isMustTailCall())
1027         fail(DL, DAG, Msg);
1028       CLI.IsTailCall = false;
1029     };
1030 
1031     if (!Subtarget->hasTailCall())
1032       NoTail("WebAssembly 'tail-call' feature not enabled");
1033 
1034     // Varargs calls cannot be tail calls because the buffer is on the stack
1035     if (CLI.IsVarArg)
1036       NoTail("WebAssembly does not support varargs tail calls");
1037 
1038     // Do not tail call unless caller and callee return types match
1039     const Function &F = MF.getFunction();
1040     const TargetMachine &TM = getTargetMachine();
1041     Type *RetTy = F.getReturnType();
1042     SmallVector<MVT, 4> CallerRetTys;
1043     SmallVector<MVT, 4> CalleeRetTys;
1044     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1045     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1046     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1047                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1048                                  CalleeRetTys.begin());
1049     if (!TypesMatch)
1050       NoTail("WebAssembly tail call requires caller and callee return types to "
1051              "match");
1052 
1053     // If pointers to local stack values are passed, we cannot tail call
1054     if (CLI.CB) {
1055       for (auto &Arg : CLI.CB->args()) {
1056         Value *Val = Arg.get();
1057         // Trace the value back through pointer operations
1058         while (true) {
1059           Value *Src = Val->stripPointerCastsAndAliases();
1060           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1061             Src = GEP->getPointerOperand();
1062           if (Val == Src)
1063             break;
1064           Val = Src;
1065         }
1066         if (isa<AllocaInst>(Val)) {
1067           NoTail(
1068               "WebAssembly does not support tail calling with stack arguments");
1069           break;
1070         }
1071       }
1072     }
1073   }
1074 
1075   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1076   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1077   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1078 
1079   // The generic code may have added an sret argument. If we're lowering an
1080   // invoke function, the ABI requires that the function pointer be the first
1081   // argument, so we may have to swap the arguments.
1082   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1083       Outs[0].Flags.isSRet()) {
1084     std::swap(Outs[0], Outs[1]);
1085     std::swap(OutVals[0], OutVals[1]);
1086   }
1087 
1088   bool HasSwiftSelfArg = false;
1089   bool HasSwiftErrorArg = false;
1090   unsigned NumFixedArgs = 0;
1091   for (unsigned I = 0; I < Outs.size(); ++I) {
1092     const ISD::OutputArg &Out = Outs[I];
1093     SDValue &OutVal = OutVals[I];
1094     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1095     HasSwiftErrorArg |= Out.Flags.isSwiftError();
1096     if (Out.Flags.isNest())
1097       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1098     if (Out.Flags.isInAlloca())
1099       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1100     if (Out.Flags.isInConsecutiveRegs())
1101       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1102     if (Out.Flags.isInConsecutiveRegsLast())
1103       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1104     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1105       auto &MFI = MF.getFrameInfo();
1106       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1107                                      Out.Flags.getNonZeroByValAlign(),
1108                                      /*isSS=*/false);
1109       SDValue SizeNode =
1110           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1111       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1112       Chain = DAG.getMemcpy(
1113           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1114           /*isVolatile*/ false, /*AlwaysInline=*/false,
1115           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1116       OutVal = FINode;
1117     }
1118     // Count the number of fixed args *after* legalization.
1119     NumFixedArgs += Out.IsFixed;
1120   }
1121 
1122   bool IsVarArg = CLI.IsVarArg;
1123   auto PtrVT = getPointerTy(Layout);
1124 
1125   // For swiftcc, emit additional swiftself and swifterror arguments
1126   // if there aren't. These additional arguments are also added for callee
1127   // signature They are necessary to match callee and caller signature for
1128   // indirect call.
1129   if (CallConv == CallingConv::Swift) {
1130     if (!HasSwiftSelfArg) {
1131       NumFixedArgs++;
1132       ISD::OutputArg Arg;
1133       Arg.Flags.setSwiftSelf();
1134       CLI.Outs.push_back(Arg);
1135       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1136       CLI.OutVals.push_back(ArgVal);
1137     }
1138     if (!HasSwiftErrorArg) {
1139       NumFixedArgs++;
1140       ISD::OutputArg Arg;
1141       Arg.Flags.setSwiftError();
1142       CLI.Outs.push_back(Arg);
1143       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1144       CLI.OutVals.push_back(ArgVal);
1145     }
1146   }
1147 
1148   // Analyze operands of the call, assigning locations to each operand.
1149   SmallVector<CCValAssign, 16> ArgLocs;
1150   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1151 
1152   if (IsVarArg) {
1153     // Outgoing non-fixed arguments are placed in a buffer. First
1154     // compute their offsets and the total amount of buffer space needed.
1155     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1156       const ISD::OutputArg &Out = Outs[I];
1157       SDValue &Arg = OutVals[I];
1158       EVT VT = Arg.getValueType();
1159       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1160       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1161       Align Alignment =
1162           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1163       unsigned Offset =
1164           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1165       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1166                                         Offset, VT.getSimpleVT(),
1167                                         CCValAssign::Full));
1168     }
1169   }
1170 
1171   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1172 
1173   SDValue FINode;
1174   if (IsVarArg && NumBytes) {
1175     // For non-fixed arguments, next emit stores to store the argument values
1176     // to the stack buffer at the offsets computed above.
1177     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1178                                                  Layout.getStackAlignment(),
1179                                                  /*isSS=*/false);
1180     unsigned ValNo = 0;
1181     SmallVector<SDValue, 8> Chains;
1182     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1183       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1184              "ArgLocs should remain in order and only hold varargs args");
1185       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1186       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1187       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1188                                 DAG.getConstant(Offset, DL, PtrVT));
1189       Chains.push_back(
1190           DAG.getStore(Chain, DL, Arg, Add,
1191                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1192     }
1193     if (!Chains.empty())
1194       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1195   } else if (IsVarArg) {
1196     FINode = DAG.getIntPtrConstant(0, DL);
1197   }
1198 
1199   if (Callee->getOpcode() == ISD::GlobalAddress) {
1200     // If the callee is a GlobalAddress node (quite common, every direct call
1201     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1202     // doesn't at MO_GOT which is not needed for direct calls.
1203     GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
1204     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1205                                         getPointerTy(DAG.getDataLayout()),
1206                                         GA->getOffset());
1207     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1208                          getPointerTy(DAG.getDataLayout()), Callee);
1209   }
1210 
1211   // Compute the operands for the CALLn node.
1212   SmallVector<SDValue, 16> Ops;
1213   Ops.push_back(Chain);
1214   Ops.push_back(Callee);
1215 
1216   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1217   // isn't reliable.
1218   Ops.append(OutVals.begin(),
1219              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1220   // Add a pointer to the vararg buffer.
1221   if (IsVarArg)
1222     Ops.push_back(FINode);
1223 
1224   SmallVector<EVT, 8> InTys;
1225   for (const auto &In : Ins) {
1226     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1227     assert(!In.Flags.isNest() && "nest is not valid for return values");
1228     if (In.Flags.isInAlloca())
1229       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1230     if (In.Flags.isInConsecutiveRegs())
1231       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1232     if (In.Flags.isInConsecutiveRegsLast())
1233       fail(DL, DAG,
1234            "WebAssembly hasn't implemented cons regs last return values");
1235     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1236     // registers.
1237     InTys.push_back(In.VT);
1238   }
1239 
1240   // Lastly, if this is a call to a funcref we need to add an instruction
1241   // table.set to the chain and transform the call.
1242   if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType(
1243                     CLI.CB->getCalledOperand()->getType())) {
1244     // In the absence of function references proposal where a funcref call is
1245     // lowered to call_ref, using reference types we generate a table.set to set
1246     // the funcref to a special table used solely for this purpose, followed by
1247     // a call_indirect. Here we just generate the table set, and return the
1248     // SDValue of the table.set so that LowerCall can finalize the lowering by
1249     // generating the call_indirect.
1250     SDValue Chain = Ops[0];
1251 
1252     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1253         MF.getContext(), Subtarget);
1254     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1255     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1256     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1257     SDValue TableSet = DAG.getMemIntrinsicNode(
1258         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1259         MVT::funcref,
1260         // Machine Mem Operand args
1261         MachinePointerInfo(
1262             WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1263         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1264         MachineMemOperand::MOStore);
1265 
1266     Ops[0] = TableSet; // The new chain is the TableSet itself
1267   }
1268 
1269   if (CLI.IsTailCall) {
1270     // ret_calls do not return values to the current frame
1271     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1272     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1273   }
1274 
1275   InTys.push_back(MVT::Other);
1276   SDVTList InTyList = DAG.getVTList(InTys);
1277   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1278 
1279   for (size_t I = 0; I < Ins.size(); ++I)
1280     InVals.push_back(Res.getValue(I));
1281 
1282   // Return the chain
1283   return Res.getValue(Ins.size());
1284 }
1285 
1286 bool WebAssemblyTargetLowering::CanLowerReturn(
1287     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1288     const SmallVectorImpl<ISD::OutputArg> &Outs,
1289     LLVMContext & /*Context*/) const {
1290   // WebAssembly can only handle returning tuples with multivalue enabled
1291   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1292 }
1293 
1294 SDValue WebAssemblyTargetLowering::LowerReturn(
1295     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1296     const SmallVectorImpl<ISD::OutputArg> &Outs,
1297     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1298     SelectionDAG &DAG) const {
1299   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1300          "MVP WebAssembly can only return up to one value");
1301   if (!callingConvSupported(CallConv))
1302     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1303 
1304   SmallVector<SDValue, 4> RetOps(1, Chain);
1305   RetOps.append(OutVals.begin(), OutVals.end());
1306   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1307 
1308   // Record the number and types of the return values.
1309   for (const ISD::OutputArg &Out : Outs) {
1310     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1311     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1312     assert(Out.IsFixed && "non-fixed return value is not valid");
1313     if (Out.Flags.isInAlloca())
1314       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1315     if (Out.Flags.isInConsecutiveRegs())
1316       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1317     if (Out.Flags.isInConsecutiveRegsLast())
1318       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1319   }
1320 
1321   return Chain;
1322 }
1323 
1324 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1325     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1326     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1327     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1328   if (!callingConvSupported(CallConv))
1329     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1330 
1331   MachineFunction &MF = DAG.getMachineFunction();
1332   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1333 
1334   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1335   // of the incoming values before they're represented by virtual registers.
1336   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1337 
1338   bool HasSwiftErrorArg = false;
1339   bool HasSwiftSelfArg = false;
1340   for (const ISD::InputArg &In : Ins) {
1341     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1342     HasSwiftErrorArg |= In.Flags.isSwiftError();
1343     if (In.Flags.isInAlloca())
1344       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1345     if (In.Flags.isNest())
1346       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1347     if (In.Flags.isInConsecutiveRegs())
1348       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1349     if (In.Flags.isInConsecutiveRegsLast())
1350       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1351     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1352     // registers.
1353     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1354                                            DAG.getTargetConstant(InVals.size(),
1355                                                                  DL, MVT::i32))
1356                              : DAG.getUNDEF(In.VT));
1357 
1358     // Record the number and types of arguments.
1359     MFI->addParam(In.VT);
1360   }
1361 
1362   // For swiftcc, emit additional swiftself and swifterror arguments
1363   // if there aren't. These additional arguments are also added for callee
1364   // signature They are necessary to match callee and caller signature for
1365   // indirect call.
1366   auto PtrVT = getPointerTy(MF.getDataLayout());
1367   if (CallConv == CallingConv::Swift) {
1368     if (!HasSwiftSelfArg) {
1369       MFI->addParam(PtrVT);
1370     }
1371     if (!HasSwiftErrorArg) {
1372       MFI->addParam(PtrVT);
1373     }
1374   }
1375   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1376   // the buffer is passed as an argument.
1377   if (IsVarArg) {
1378     MVT PtrVT = getPointerTy(MF.getDataLayout());
1379     Register VarargVreg =
1380         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1381     MFI->setVarargBufferVreg(VarargVreg);
1382     Chain = DAG.getCopyToReg(
1383         Chain, DL, VarargVreg,
1384         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1385                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1386     MFI->addParam(PtrVT);
1387   }
1388 
1389   // Record the number and types of arguments and results.
1390   SmallVector<MVT, 4> Params;
1391   SmallVector<MVT, 4> Results;
1392   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1393                       MF.getFunction(), DAG.getTarget(), Params, Results);
1394   for (MVT VT : Results)
1395     MFI->addResult(VT);
1396   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1397   // the param logic here with ComputeSignatureVTs
1398   assert(MFI->getParams().size() == Params.size() &&
1399          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1400                     Params.begin()));
1401 
1402   return Chain;
1403 }
1404 
1405 void WebAssemblyTargetLowering::ReplaceNodeResults(
1406     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1407   switch (N->getOpcode()) {
1408   case ISD::SIGN_EXTEND_INREG:
1409     // Do not add any results, signifying that N should not be custom lowered
1410     // after all. This happens because simd128 turns on custom lowering for
1411     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1412     // illegal type.
1413     break;
1414   case ISD::SIGN_EXTEND_VECTOR_INREG:
1415   case ISD::ZERO_EXTEND_VECTOR_INREG:
1416     // Do not add any results, signifying that N should not be custom lowered.
1417     // EXTEND_VECTOR_INREG is implemented for some vectors, but not all.
1418     break;
1419   default:
1420     llvm_unreachable(
1421         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1422   }
1423 }
1424 
1425 //===----------------------------------------------------------------------===//
1426 //  Custom lowering hooks.
1427 //===----------------------------------------------------------------------===//
1428 
1429 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1430                                                   SelectionDAG &DAG) const {
1431   SDLoc DL(Op);
1432   switch (Op.getOpcode()) {
1433   default:
1434     llvm_unreachable("unimplemented operation lowering");
1435     return SDValue();
1436   case ISD::FrameIndex:
1437     return LowerFrameIndex(Op, DAG);
1438   case ISD::GlobalAddress:
1439     return LowerGlobalAddress(Op, DAG);
1440   case ISD::GlobalTLSAddress:
1441     return LowerGlobalTLSAddress(Op, DAG);
1442   case ISD::ExternalSymbol:
1443     return LowerExternalSymbol(Op, DAG);
1444   case ISD::JumpTable:
1445     return LowerJumpTable(Op, DAG);
1446   case ISD::BR_JT:
1447     return LowerBR_JT(Op, DAG);
1448   case ISD::VASTART:
1449     return LowerVASTART(Op, DAG);
1450   case ISD::BlockAddress:
1451   case ISD::BRIND:
1452     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1453     return SDValue();
1454   case ISD::RETURNADDR:
1455     return LowerRETURNADDR(Op, DAG);
1456   case ISD::FRAMEADDR:
1457     return LowerFRAMEADDR(Op, DAG);
1458   case ISD::CopyToReg:
1459     return LowerCopyToReg(Op, DAG);
1460   case ISD::EXTRACT_VECTOR_ELT:
1461   case ISD::INSERT_VECTOR_ELT:
1462     return LowerAccessVectorElement(Op, DAG);
1463   case ISD::INTRINSIC_VOID:
1464   case ISD::INTRINSIC_WO_CHAIN:
1465   case ISD::INTRINSIC_W_CHAIN:
1466     return LowerIntrinsic(Op, DAG);
1467   case ISD::SIGN_EXTEND_INREG:
1468     return LowerSIGN_EXTEND_INREG(Op, DAG);
1469   case ISD::ZERO_EXTEND_VECTOR_INREG:
1470   case ISD::SIGN_EXTEND_VECTOR_INREG:
1471     return LowerEXTEND_VECTOR_INREG(Op, DAG);
1472   case ISD::BUILD_VECTOR:
1473     return LowerBUILD_VECTOR(Op, DAG);
1474   case ISD::VECTOR_SHUFFLE:
1475     return LowerVECTOR_SHUFFLE(Op, DAG);
1476   case ISD::SETCC:
1477     return LowerSETCC(Op, DAG);
1478   case ISD::SHL:
1479   case ISD::SRA:
1480   case ISD::SRL:
1481     return LowerShift(Op, DAG);
1482   case ISD::FP_TO_SINT_SAT:
1483   case ISD::FP_TO_UINT_SAT:
1484     return LowerFP_TO_INT_SAT(Op, DAG);
1485   case ISD::LOAD:
1486     return LowerLoad(Op, DAG);
1487   case ISD::STORE:
1488     return LowerStore(Op, DAG);
1489   case ISD::CTPOP:
1490   case ISD::CTLZ:
1491   case ISD::CTTZ:
1492     return DAG.UnrollVectorOp(Op.getNode());
1493   }
1494 }
1495 
1496 static bool IsWebAssemblyGlobal(SDValue Op) {
1497   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1498     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1499 
1500   return false;
1501 }
1502 
1503 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op,
1504                                                   SelectionDAG &DAG) {
1505   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1506   if (!FI)
1507     return std::nullopt;
1508 
1509   auto &MF = DAG.getMachineFunction();
1510   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1511 }
1512 
1513 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1514                                               SelectionDAG &DAG) const {
1515   SDLoc DL(Op);
1516   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1517   const SDValue &Value = SN->getValue();
1518   const SDValue &Base = SN->getBasePtr();
1519   const SDValue &Offset = SN->getOffset();
1520 
1521   if (IsWebAssemblyGlobal(Base)) {
1522     if (!Offset->isUndef())
1523       report_fatal_error("unexpected offset when storing to webassembly global",
1524                          false);
1525 
1526     SDVTList Tys = DAG.getVTList(MVT::Other);
1527     SDValue Ops[] = {SN->getChain(), Value, Base};
1528     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1529                                    SN->getMemoryVT(), SN->getMemOperand());
1530   }
1531 
1532   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1533     if (!Offset->isUndef())
1534       report_fatal_error("unexpected offset when storing to webassembly local",
1535                          false);
1536 
1537     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1538     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1539     SDValue Ops[] = {SN->getChain(), Idx, Value};
1540     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1541   }
1542 
1543   if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace()))
1544     report_fatal_error(
1545         "Encountered an unlowerable store to the wasm_var address space",
1546         false);
1547 
1548   return Op;
1549 }
1550 
1551 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1552                                              SelectionDAG &DAG) const {
1553   SDLoc DL(Op);
1554   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1555   const SDValue &Base = LN->getBasePtr();
1556   const SDValue &Offset = LN->getOffset();
1557 
1558   if (IsWebAssemblyGlobal(Base)) {
1559     if (!Offset->isUndef())
1560       report_fatal_error(
1561           "unexpected offset when loading from webassembly global", false);
1562 
1563     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1564     SDValue Ops[] = {LN->getChain(), Base};
1565     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1566                                    LN->getMemoryVT(), LN->getMemOperand());
1567   }
1568 
1569   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1570     if (!Offset->isUndef())
1571       report_fatal_error(
1572           "unexpected offset when loading from webassembly local", false);
1573 
1574     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1575     EVT LocalVT = LN->getValueType(0);
1576     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1577                                    {LN->getChain(), Idx});
1578     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1579     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1580     return Result;
1581   }
1582 
1583   if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace()))
1584     report_fatal_error(
1585         "Encountered an unlowerable load from the wasm_var address space",
1586         false);
1587 
1588   return Op;
1589 }
1590 
1591 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1592                                                   SelectionDAG &DAG) const {
1593   SDValue Src = Op.getOperand(2);
1594   if (isa<FrameIndexSDNode>(Src.getNode())) {
1595     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1596     // the FI to some LEA-like instruction, but since we don't have that, we
1597     // need to insert some kind of instruction that can take an FI operand and
1598     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1599     // local.copy between Op and its FI operand.
1600     SDValue Chain = Op.getOperand(0);
1601     SDLoc DL(Op);
1602     Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1603     EVT VT = Src.getValueType();
1604     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1605                                                    : WebAssembly::COPY_I64,
1606                                     DL, VT, Src),
1607                  0);
1608     return Op.getNode()->getNumValues() == 1
1609                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1610                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1611                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1612                                                            : SDValue());
1613   }
1614   return SDValue();
1615 }
1616 
1617 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1618                                                    SelectionDAG &DAG) const {
1619   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1620   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1621 }
1622 
1623 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1624                                                    SelectionDAG &DAG) const {
1625   SDLoc DL(Op);
1626 
1627   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1628     fail(DL, DAG,
1629          "Non-Emscripten WebAssembly hasn't implemented "
1630          "__builtin_return_address");
1631     return SDValue();
1632   }
1633 
1634   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1635     return SDValue();
1636 
1637   unsigned Depth = Op.getConstantOperandVal(0);
1638   MakeLibCallOptions CallOptions;
1639   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1640                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1641       .first;
1642 }
1643 
1644 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1645                                                   SelectionDAG &DAG) const {
1646   // Non-zero depths are not supported by WebAssembly currently. Use the
1647   // legalizer's default expansion, which is to return 0 (what this function is
1648   // documented to do).
1649   if (Op.getConstantOperandVal(0) > 0)
1650     return SDValue();
1651 
1652   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1653   EVT VT = Op.getValueType();
1654   Register FP =
1655       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1656   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1657 }
1658 
1659 SDValue
1660 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1661                                                  SelectionDAG &DAG) const {
1662   SDLoc DL(Op);
1663   const auto *GA = cast<GlobalAddressSDNode>(Op);
1664 
1665   MachineFunction &MF = DAG.getMachineFunction();
1666   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1667     report_fatal_error("cannot use thread-local storage without bulk memory",
1668                        false);
1669 
1670   const GlobalValue *GV = GA->getGlobal();
1671 
1672   // Currently only Emscripten supports dynamic linking with threads. Therefore,
1673   // on other targets, if we have thread-local storage, only the local-exec
1674   // model is possible.
1675   auto model = Subtarget->getTargetTriple().isOSEmscripten()
1676                    ? GV->getThreadLocalMode()
1677                    : GlobalValue::LocalExecTLSModel;
1678 
1679   // Unsupported TLS modes
1680   assert(model != GlobalValue::NotThreadLocal);
1681   assert(model != GlobalValue::InitialExecTLSModel);
1682 
1683   if (model == GlobalValue::LocalExecTLSModel ||
1684       model == GlobalValue::LocalDynamicTLSModel ||
1685       (model == GlobalValue::GeneralDynamicTLSModel &&
1686        getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1687     // For DSO-local TLS variables we use offset from __tls_base
1688 
1689     MVT PtrVT = getPointerTy(DAG.getDataLayout());
1690     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1691                                        : WebAssembly::GLOBAL_GET_I32;
1692     const char *BaseName = MF.createExternalSymbolName("__tls_base");
1693 
1694     SDValue BaseAddr(
1695         DAG.getMachineNode(GlobalGet, DL, PtrVT,
1696                            DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1697         0);
1698 
1699     SDValue TLSOffset = DAG.getTargetGlobalAddress(
1700         GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1701     SDValue SymOffset =
1702         DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1703 
1704     return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1705   }
1706 
1707   assert(model == GlobalValue::GeneralDynamicTLSModel);
1708 
1709   EVT VT = Op.getValueType();
1710   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1711                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1712                                                 GA->getOffset(),
1713                                                 WebAssemblyII::MO_GOT_TLS));
1714 }
1715 
1716 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1717                                                       SelectionDAG &DAG) const {
1718   SDLoc DL(Op);
1719   const auto *GA = cast<GlobalAddressSDNode>(Op);
1720   EVT VT = Op.getValueType();
1721   assert(GA->getTargetFlags() == 0 &&
1722          "Unexpected target flags on generic GlobalAddressSDNode");
1723   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1724     fail(DL, DAG, "Invalid address space for WebAssembly target");
1725 
1726   unsigned OperandFlags = 0;
1727   const GlobalValue *GV = GA->getGlobal();
1728   // Since WebAssembly tables cannot yet be shared accross modules, we don't
1729   // need special treatment for tables in PIC mode.
1730   if (isPositionIndependent() &&
1731       !WebAssembly::isWebAssemblyTableType(GV->getValueType())) {
1732     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1733       MachineFunction &MF = DAG.getMachineFunction();
1734       MVT PtrVT = getPointerTy(MF.getDataLayout());
1735       const char *BaseName;
1736       if (GV->getValueType()->isFunctionTy()) {
1737         BaseName = MF.createExternalSymbolName("__table_base");
1738         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1739       } else {
1740         BaseName = MF.createExternalSymbolName("__memory_base");
1741         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1742       }
1743       SDValue BaseAddr =
1744           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1745                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1746 
1747       SDValue SymAddr = DAG.getNode(
1748           WebAssemblyISD::WrapperREL, DL, VT,
1749           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1750                                      OperandFlags));
1751 
1752       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1753     }
1754     OperandFlags = WebAssemblyII::MO_GOT;
1755   }
1756 
1757   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1758                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1759                                                 GA->getOffset(), OperandFlags));
1760 }
1761 
1762 SDValue
1763 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1764                                                SelectionDAG &DAG) const {
1765   SDLoc DL(Op);
1766   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1767   EVT VT = Op.getValueType();
1768   assert(ES->getTargetFlags() == 0 &&
1769          "Unexpected target flags on generic ExternalSymbolSDNode");
1770   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1771                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1772 }
1773 
1774 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1775                                                   SelectionDAG &DAG) const {
1776   // There's no need for a Wrapper node because we always incorporate a jump
1777   // table operand into a BR_TABLE instruction, rather than ever
1778   // materializing it in a register.
1779   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1780   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1781                                 JT->getTargetFlags());
1782 }
1783 
1784 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1785                                               SelectionDAG &DAG) const {
1786   SDLoc DL(Op);
1787   SDValue Chain = Op.getOperand(0);
1788   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1789   SDValue Index = Op.getOperand(2);
1790   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1791 
1792   SmallVector<SDValue, 8> Ops;
1793   Ops.push_back(Chain);
1794   Ops.push_back(Index);
1795 
1796   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1797   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1798 
1799   // Add an operand for each case.
1800   for (auto *MBB : MBBs)
1801     Ops.push_back(DAG.getBasicBlock(MBB));
1802 
1803   // Add the first MBB as a dummy default target for now. This will be replaced
1804   // with the proper default target (and the preceding range check eliminated)
1805   // if possible by WebAssemblyFixBrTableDefaults.
1806   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1807   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1808 }
1809 
1810 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1811                                                 SelectionDAG &DAG) const {
1812   SDLoc DL(Op);
1813   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1814 
1815   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1816   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1817 
1818   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1819                                     MFI->getVarargBufferVreg(), PtrVT);
1820   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1821                       MachinePointerInfo(SV));
1822 }
1823 
1824 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1825                                                   SelectionDAG &DAG) const {
1826   MachineFunction &MF = DAG.getMachineFunction();
1827   unsigned IntNo;
1828   switch (Op.getOpcode()) {
1829   case ISD::INTRINSIC_VOID:
1830   case ISD::INTRINSIC_W_CHAIN:
1831     IntNo = Op.getConstantOperandVal(1);
1832     break;
1833   case ISD::INTRINSIC_WO_CHAIN:
1834     IntNo = Op.getConstantOperandVal(0);
1835     break;
1836   default:
1837     llvm_unreachable("Invalid intrinsic");
1838   }
1839   SDLoc DL(Op);
1840 
1841   switch (IntNo) {
1842   default:
1843     return SDValue(); // Don't custom lower most intrinsics.
1844 
1845   case Intrinsic::wasm_lsda: {
1846     auto PtrVT = getPointerTy(MF.getDataLayout());
1847     const char *SymName = MF.createExternalSymbolName(
1848         "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1849     if (isPositionIndependent()) {
1850       SDValue Node = DAG.getTargetExternalSymbol(
1851           SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1852       const char *BaseName = MF.createExternalSymbolName("__memory_base");
1853       SDValue BaseAddr =
1854           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1855                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1856       SDValue SymAddr =
1857           DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1858       return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1859     }
1860     SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1861     return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1862   }
1863 
1864   case Intrinsic::wasm_shuffle: {
1865     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1866     SDValue Ops[18];
1867     size_t OpIdx = 0;
1868     Ops[OpIdx++] = Op.getOperand(1);
1869     Ops[OpIdx++] = Op.getOperand(2);
1870     while (OpIdx < 18) {
1871       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1872       if (MaskIdx.isUndef() || MaskIdx.getNode()->getAsZExtVal() >= 32) {
1873         bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant;
1874         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget);
1875       } else {
1876         Ops[OpIdx++] = MaskIdx;
1877       }
1878     }
1879     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1880   }
1881   }
1882 }
1883 
1884 SDValue
1885 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1886                                                   SelectionDAG &DAG) const {
1887   SDLoc DL(Op);
1888   // If sign extension operations are disabled, allow sext_inreg only if operand
1889   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1890   // extension operations, but allowing sext_inreg in this context lets us have
1891   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1892   // everywhere would be simpler in this file, but would necessitate large and
1893   // brittle patterns to undo the expansion and select extract_lane_s
1894   // instructions.
1895   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1896   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1897     return SDValue();
1898 
1899   const SDValue &Extract = Op.getOperand(0);
1900   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1901   if (VecT.getVectorElementType().getSizeInBits() > 32)
1902     return SDValue();
1903   MVT ExtractedLaneT =
1904       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1905   MVT ExtractedVecT =
1906       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1907   if (ExtractedVecT == VecT)
1908     return Op;
1909 
1910   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1911   const SDNode *Index = Extract.getOperand(1).getNode();
1912   if (!isa<ConstantSDNode>(Index))
1913     return SDValue();
1914   unsigned IndexVal = Index->getAsZExtVal();
1915   unsigned Scale =
1916       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1917   assert(Scale > 1);
1918   SDValue NewIndex =
1919       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1920   SDValue NewExtract = DAG.getNode(
1921       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1922       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1923   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1924                      Op.getOperand(1));
1925 }
1926 
1927 SDValue
1928 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op,
1929                                                     SelectionDAG &DAG) const {
1930   SDLoc DL(Op);
1931   EVT VT = Op.getValueType();
1932   SDValue Src = Op.getOperand(0);
1933   EVT SrcVT = Src.getValueType();
1934 
1935   if (SrcVT.getVectorElementType() == MVT::i1 ||
1936       SrcVT.getVectorElementType() == MVT::i64)
1937     return SDValue();
1938 
1939   assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 &&
1940          "Unexpected extension factor.");
1941   unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits();
1942 
1943   if (Scale != 2 && Scale != 4 && Scale != 8)
1944     return SDValue();
1945 
1946   unsigned Ext;
1947   switch (Op.getOpcode()) {
1948   case ISD::ZERO_EXTEND_VECTOR_INREG:
1949     Ext = WebAssemblyISD::EXTEND_LOW_U;
1950     break;
1951   case ISD::SIGN_EXTEND_VECTOR_INREG:
1952     Ext = WebAssemblyISD::EXTEND_LOW_S;
1953     break;
1954   }
1955 
1956   SDValue Ret = Src;
1957   while (Scale != 1) {
1958     Ret = DAG.getNode(Ext, DL,
1959                       Ret.getValueType()
1960                           .widenIntegerVectorElementType(*DAG.getContext())
1961                           .getHalfNumVectorElementsVT(*DAG.getContext()),
1962                       Ret);
1963     Scale /= 2;
1964   }
1965   assert(Ret.getValueType() == VT);
1966   return Ret;
1967 }
1968 
1969 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1970   SDLoc DL(Op);
1971   if (Op.getValueType() != MVT::v2f64)
1972     return SDValue();
1973 
1974   auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1975                              unsigned &Index) -> bool {
1976     switch (Op.getOpcode()) {
1977     case ISD::SINT_TO_FP:
1978       Opcode = WebAssemblyISD::CONVERT_LOW_S;
1979       break;
1980     case ISD::UINT_TO_FP:
1981       Opcode = WebAssemblyISD::CONVERT_LOW_U;
1982       break;
1983     case ISD::FP_EXTEND:
1984       Opcode = WebAssemblyISD::PROMOTE_LOW;
1985       break;
1986     default:
1987       return false;
1988     }
1989 
1990     auto ExtractVector = Op.getOperand(0);
1991     if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1992       return false;
1993 
1994     if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
1995       return false;
1996 
1997     SrcVec = ExtractVector.getOperand(0);
1998     Index = ExtractVector.getConstantOperandVal(1);
1999     return true;
2000   };
2001 
2002   unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2003   SDValue LHSSrcVec, RHSSrcVec;
2004   if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2005       !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2006     return SDValue();
2007 
2008   if (LHSOpcode != RHSOpcode)
2009     return SDValue();
2010 
2011   MVT ExpectedSrcVT;
2012   switch (LHSOpcode) {
2013   case WebAssemblyISD::CONVERT_LOW_S:
2014   case WebAssemblyISD::CONVERT_LOW_U:
2015     ExpectedSrcVT = MVT::v4i32;
2016     break;
2017   case WebAssemblyISD::PROMOTE_LOW:
2018     ExpectedSrcVT = MVT::v4f32;
2019     break;
2020   }
2021   if (LHSSrcVec.getValueType() != ExpectedSrcVT)
2022     return SDValue();
2023 
2024   auto Src = LHSSrcVec;
2025   if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2026     // Shuffle the source vector so that the converted lanes are the low lanes.
2027     Src = DAG.getVectorShuffle(
2028         ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2029         {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2030   }
2031   return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2032 }
2033 
2034 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2035                                                      SelectionDAG &DAG) const {
2036   if (auto ConvertLow = LowerConvertLow(Op, DAG))
2037     return ConvertLow;
2038 
2039   SDLoc DL(Op);
2040   const EVT VecT = Op.getValueType();
2041   const EVT LaneT = Op.getOperand(0).getValueType();
2042   const size_t Lanes = Op.getNumOperands();
2043   bool CanSwizzle = VecT == MVT::v16i8;
2044 
2045   // BUILD_VECTORs are lowered to the instruction that initializes the highest
2046   // possible number of lanes at once followed by a sequence of replace_lane
2047   // instructions to individually initialize any remaining lanes.
2048 
2049   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2050   // swizzled lanes should be given greater weight.
2051 
2052   // TODO: Investigate looping rather than always extracting/replacing specific
2053   // lanes to fill gaps.
2054 
2055   auto IsConstant = [](const SDValue &V) {
2056     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2057   };
2058 
2059   // Returns the source vector and index vector pair if they exist. Checks for:
2060   //   (extract_vector_elt
2061   //     $src,
2062   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
2063   //   )
2064   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2065     auto Bail = std::make_pair(SDValue(), SDValue());
2066     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2067       return Bail;
2068     const SDValue &SwizzleSrc = Lane->getOperand(0);
2069     const SDValue &IndexExt = Lane->getOperand(1);
2070     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2071       return Bail;
2072     const SDValue &Index = IndexExt->getOperand(0);
2073     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2074       return Bail;
2075     const SDValue &SwizzleIndices = Index->getOperand(0);
2076     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2077         SwizzleIndices.getValueType() != MVT::v16i8 ||
2078         Index->getOperand(1)->getOpcode() != ISD::Constant ||
2079         Index->getConstantOperandVal(1) != I)
2080       return Bail;
2081     return std::make_pair(SwizzleSrc, SwizzleIndices);
2082   };
2083 
2084   // If the lane is extracted from another vector at a constant index, return
2085   // that vector. The source vector must not have more lanes than the dest
2086   // because the shufflevector indices are in terms of the destination lanes and
2087   // would not be able to address the smaller individual source lanes.
2088   auto GetShuffleSrc = [&](const SDValue &Lane) {
2089     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2090       return SDValue();
2091     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2092       return SDValue();
2093     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2094         VecT.getVectorNumElements())
2095       return SDValue();
2096     return Lane->getOperand(0);
2097   };
2098 
2099   using ValueEntry = std::pair<SDValue, size_t>;
2100   SmallVector<ValueEntry, 16> SplatValueCounts;
2101 
2102   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2103   SmallVector<SwizzleEntry, 16> SwizzleCounts;
2104 
2105   using ShuffleEntry = std::pair<SDValue, size_t>;
2106   SmallVector<ShuffleEntry, 16> ShuffleCounts;
2107 
2108   auto AddCount = [](auto &Counts, const auto &Val) {
2109     auto CountIt =
2110         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2111     if (CountIt == Counts.end()) {
2112       Counts.emplace_back(Val, 1);
2113     } else {
2114       CountIt->second++;
2115     }
2116   };
2117 
2118   auto GetMostCommon = [](auto &Counts) {
2119     auto CommonIt =
2120         std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2121     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2122     return *CommonIt;
2123   };
2124 
2125   size_t NumConstantLanes = 0;
2126 
2127   // Count eligible lanes for each type of vector creation op
2128   for (size_t I = 0; I < Lanes; ++I) {
2129     const SDValue &Lane = Op->getOperand(I);
2130     if (Lane.isUndef())
2131       continue;
2132 
2133     AddCount(SplatValueCounts, Lane);
2134 
2135     if (IsConstant(Lane))
2136       NumConstantLanes++;
2137     if (auto ShuffleSrc = GetShuffleSrc(Lane))
2138       AddCount(ShuffleCounts, ShuffleSrc);
2139     if (CanSwizzle) {
2140       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2141       if (SwizzleSrcs.first)
2142         AddCount(SwizzleCounts, SwizzleSrcs);
2143     }
2144   }
2145 
2146   SDValue SplatValue;
2147   size_t NumSplatLanes;
2148   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2149 
2150   SDValue SwizzleSrc;
2151   SDValue SwizzleIndices;
2152   size_t NumSwizzleLanes = 0;
2153   if (SwizzleCounts.size())
2154     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2155                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2156 
2157   // Shuffles can draw from up to two vectors, so find the two most common
2158   // sources.
2159   SDValue ShuffleSrc1, ShuffleSrc2;
2160   size_t NumShuffleLanes = 0;
2161   if (ShuffleCounts.size()) {
2162     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2163     llvm::erase_if(ShuffleCounts,
2164                    [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2165   }
2166   if (ShuffleCounts.size()) {
2167     size_t AdditionalShuffleLanes;
2168     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2169         GetMostCommon(ShuffleCounts);
2170     NumShuffleLanes += AdditionalShuffleLanes;
2171   }
2172 
2173   // Predicate returning true if the lane is properly initialized by the
2174   // original instruction
2175   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2176   SDValue Result;
2177   // Prefer swizzles over shuffles over vector consts over splats
2178   if (NumSwizzleLanes >= NumShuffleLanes &&
2179       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2180     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2181                          SwizzleIndices);
2182     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2183     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2184       return Swizzled == GetSwizzleSrcs(I, Lane);
2185     };
2186   } else if (NumShuffleLanes >= NumConstantLanes &&
2187              NumShuffleLanes >= NumSplatLanes) {
2188     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2189     size_t DestLaneCount = VecT.getVectorNumElements();
2190     size_t Scale1 = 1;
2191     size_t Scale2 = 1;
2192     SDValue Src1 = ShuffleSrc1;
2193     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2194     if (Src1.getValueType() != VecT) {
2195       size_t LaneSize =
2196           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2197       assert(LaneSize > DestLaneSize);
2198       Scale1 = LaneSize / DestLaneSize;
2199       Src1 = DAG.getBitcast(VecT, Src1);
2200     }
2201     if (Src2.getValueType() != VecT) {
2202       size_t LaneSize =
2203           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2204       assert(LaneSize > DestLaneSize);
2205       Scale2 = LaneSize / DestLaneSize;
2206       Src2 = DAG.getBitcast(VecT, Src2);
2207     }
2208 
2209     int Mask[16];
2210     assert(DestLaneCount <= 16);
2211     for (size_t I = 0; I < DestLaneCount; ++I) {
2212       const SDValue &Lane = Op->getOperand(I);
2213       SDValue Src = GetShuffleSrc(Lane);
2214       if (Src == ShuffleSrc1) {
2215         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2216       } else if (Src && Src == ShuffleSrc2) {
2217         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2218       } else {
2219         Mask[I] = -1;
2220       }
2221     }
2222     ArrayRef<int> MaskRef(Mask, DestLaneCount);
2223     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2224     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2225       auto Src = GetShuffleSrc(Lane);
2226       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2227     };
2228   } else if (NumConstantLanes >= NumSplatLanes) {
2229     SmallVector<SDValue, 16> ConstLanes;
2230     for (const SDValue &Lane : Op->op_values()) {
2231       if (IsConstant(Lane)) {
2232         // Values may need to be fixed so that they will sign extend to be
2233         // within the expected range during ISel. Check whether the value is in
2234         // bounds based on the lane bit width and if it is out of bounds, lop
2235         // off the extra bits and subtract 2^n to reflect giving the high bit
2236         // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2237         // cannot possibly be out of range.
2238         auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2239         int64_t Val = Const ? Const->getSExtValue() : 0;
2240         uint64_t LaneBits = 128 / Lanes;
2241         assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2242                "Unexpected out of bounds negative value");
2243         if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2244           uint64_t Mask = (1ll << LaneBits) - 1;
2245           auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask;
2246           ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2247         } else {
2248           ConstLanes.push_back(Lane);
2249         }
2250       } else if (LaneT.isFloatingPoint()) {
2251         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2252       } else {
2253         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2254       }
2255     }
2256     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2257     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2258       return IsConstant(Lane);
2259     };
2260   } else {
2261     // Use a splat (which might be selected as a load splat)
2262     Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2263     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2264       return Lane == SplatValue;
2265     };
2266   }
2267 
2268   assert(Result);
2269   assert(IsLaneConstructed);
2270 
2271   // Add replace_lane instructions for any unhandled values
2272   for (size_t I = 0; I < Lanes; ++I) {
2273     const SDValue &Lane = Op->getOperand(I);
2274     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2275       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2276                            DAG.getConstant(I, DL, MVT::i32));
2277   }
2278 
2279   return Result;
2280 }
2281 
2282 SDValue
2283 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2284                                                SelectionDAG &DAG) const {
2285   SDLoc DL(Op);
2286   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2287   MVT VecType = Op.getOperand(0).getSimpleValueType();
2288   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2289   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2290 
2291   // Space for two vector args and sixteen mask indices
2292   SDValue Ops[18];
2293   size_t OpIdx = 0;
2294   Ops[OpIdx++] = Op.getOperand(0);
2295   Ops[OpIdx++] = Op.getOperand(1);
2296 
2297   // Expand mask indices to byte indices and materialize them as operands
2298   for (int M : Mask) {
2299     for (size_t J = 0; J < LaneBytes; ++J) {
2300       // Lower undefs (represented by -1 in mask) to {0..J}, which use a
2301       // whole lane of vector input, to allow further reduction at VM. E.g.
2302       // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle.
2303       uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J;
2304       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2305     }
2306   }
2307 
2308   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2309 }
2310 
2311 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2312                                               SelectionDAG &DAG) const {
2313   SDLoc DL(Op);
2314   // The legalizer does not know how to expand the unsupported comparison modes
2315   // of i64x2 vectors, so we manually unroll them here.
2316   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2317   SmallVector<SDValue, 2> LHS, RHS;
2318   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2319   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2320   const SDValue &CC = Op->getOperand(2);
2321   auto MakeLane = [&](unsigned I) {
2322     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2323                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2324                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2325   };
2326   return DAG.getBuildVector(Op->getValueType(0), DL,
2327                             {MakeLane(0), MakeLane(1)});
2328 }
2329 
2330 SDValue
2331 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2332                                                     SelectionDAG &DAG) const {
2333   // Allow constant lane indices, expand variable lane indices
2334   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2335   if (isa<ConstantSDNode>(IdxNode)) {
2336     // Ensure the index type is i32 to match the tablegen patterns
2337     uint64_t Idx = IdxNode->getAsZExtVal();
2338     SmallVector<SDValue, 3> Ops(Op.getNode()->ops());
2339     Ops[Op.getNumOperands() - 1] =
2340         DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32);
2341     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops);
2342   }
2343   // Perform default expansion
2344   return SDValue();
2345 }
2346 
2347 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2348   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2349   // 32-bit and 64-bit unrolled shifts will have proper semantics
2350   if (LaneT.bitsGE(MVT::i32))
2351     return DAG.UnrollVectorOp(Op.getNode());
2352   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2353   SDLoc DL(Op);
2354   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2355   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2356   unsigned ShiftOpcode = Op.getOpcode();
2357   SmallVector<SDValue, 16> ShiftedElements;
2358   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2359   SmallVector<SDValue, 16> ShiftElements;
2360   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2361   SmallVector<SDValue, 16> UnrolledOps;
2362   for (size_t i = 0; i < NumLanes; ++i) {
2363     SDValue MaskedShiftValue =
2364         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2365     SDValue ShiftedValue = ShiftedElements[i];
2366     if (ShiftOpcode == ISD::SRA)
2367       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2368                                  ShiftedValue, DAG.getValueType(LaneT));
2369     UnrolledOps.push_back(
2370         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2371   }
2372   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2373 }
2374 
2375 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2376                                               SelectionDAG &DAG) const {
2377   SDLoc DL(Op);
2378 
2379   // Only manually lower vector shifts
2380   assert(Op.getSimpleValueType().isVector());
2381 
2382   uint64_t LaneBits = Op.getValueType().getScalarSizeInBits();
2383   auto ShiftVal = Op.getOperand(1);
2384 
2385   // Try to skip bitmask operation since it is implied inside shift instruction
2386   auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) {
2387     if (MaskOp.getOpcode() != ISD::AND)
2388       return MaskOp;
2389     SDValue LHS = MaskOp.getOperand(0);
2390     SDValue RHS = MaskOp.getOperand(1);
2391     if (MaskOp.getValueType().isVector()) {
2392       APInt MaskVal;
2393       if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal))
2394         std::swap(LHS, RHS);
2395 
2396       if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) &&
2397           MaskVal == MaskBits)
2398         MaskOp = LHS;
2399     } else {
2400       if (!isa<ConstantSDNode>(RHS.getNode()))
2401         std::swap(LHS, RHS);
2402 
2403       auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode());
2404       if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2405         MaskOp = LHS;
2406     }
2407 
2408     return MaskOp;
2409   };
2410 
2411   // Skip vector and operation
2412   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2413   ShiftVal = DAG.getSplatValue(ShiftVal);
2414   if (!ShiftVal)
2415     return unrollVectorShift(Op, DAG);
2416 
2417   // Skip scalar and operation
2418   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2419   // Use anyext because none of the high bits can affect the shift
2420   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2421 
2422   unsigned Opcode;
2423   switch (Op.getOpcode()) {
2424   case ISD::SHL:
2425     Opcode = WebAssemblyISD::VEC_SHL;
2426     break;
2427   case ISD::SRA:
2428     Opcode = WebAssemblyISD::VEC_SHR_S;
2429     break;
2430   case ISD::SRL:
2431     Opcode = WebAssemblyISD::VEC_SHR_U;
2432     break;
2433   default:
2434     llvm_unreachable("unexpected opcode");
2435   }
2436 
2437   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2438 }
2439 
2440 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2441                                                       SelectionDAG &DAG) const {
2442   SDLoc DL(Op);
2443   EVT ResT = Op.getValueType();
2444   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2445 
2446   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2447       (SatVT == MVT::i32 || SatVT == MVT::i64))
2448     return Op;
2449 
2450   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2451     return Op;
2452 
2453   return SDValue();
2454 }
2455 
2456 //===----------------------------------------------------------------------===//
2457 //   Custom DAG combine hooks
2458 //===----------------------------------------------------------------------===//
2459 static SDValue
2460 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2461   auto &DAG = DCI.DAG;
2462   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2463 
2464   // Hoist vector bitcasts that don't change the number of lanes out of unary
2465   // shuffles, where they are less likely to get in the way of other combines.
2466   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2467   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2468   SDValue Bitcast = N->getOperand(0);
2469   if (Bitcast.getOpcode() != ISD::BITCAST)
2470     return SDValue();
2471   if (!N->getOperand(1).isUndef())
2472     return SDValue();
2473   SDValue CastOp = Bitcast.getOperand(0);
2474   EVT SrcType = CastOp.getValueType();
2475   EVT DstType = Bitcast.getValueType();
2476   if (!SrcType.is128BitVector() ||
2477       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2478     return SDValue();
2479   SDValue NewShuffle = DAG.getVectorShuffle(
2480       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2481   return DAG.getBitcast(DstType, NewShuffle);
2482 }
2483 
2484 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get
2485 /// split up into scalar instructions during legalization, and the vector
2486 /// extending instructions are selected in performVectorExtendCombine below.
2487 static SDValue
2488 performVectorExtendToFPCombine(SDNode *N,
2489                                TargetLowering::DAGCombinerInfo &DCI) {
2490   auto &DAG = DCI.DAG;
2491   assert(N->getOpcode() == ISD::UINT_TO_FP ||
2492          N->getOpcode() == ISD::SINT_TO_FP);
2493 
2494   EVT InVT = N->getOperand(0)->getValueType(0);
2495   EVT ResVT = N->getValueType(0);
2496   MVT ExtVT;
2497   if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2498     ExtVT = MVT::v4i32;
2499   else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2500     ExtVT = MVT::v2i32;
2501   else
2502     return SDValue();
2503 
2504   unsigned Op =
2505       N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
2506   SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0));
2507   return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv);
2508 }
2509 
2510 static SDValue
2511 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2512   auto &DAG = DCI.DAG;
2513   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2514          N->getOpcode() == ISD::ZERO_EXTEND);
2515 
2516   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2517   // possible before the extract_subvector can be expanded.
2518   auto Extract = N->getOperand(0);
2519   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2520     return SDValue();
2521   auto Source = Extract.getOperand(0);
2522   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2523   if (IndexNode == nullptr)
2524     return SDValue();
2525   auto Index = IndexNode->getZExtValue();
2526 
2527   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2528   // extracted subvector is the low or high half of its source.
2529   EVT ResVT = N->getValueType(0);
2530   if (ResVT == MVT::v8i16) {
2531     if (Extract.getValueType() != MVT::v8i8 ||
2532         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2533       return SDValue();
2534   } else if (ResVT == MVT::v4i32) {
2535     if (Extract.getValueType() != MVT::v4i16 ||
2536         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2537       return SDValue();
2538   } else if (ResVT == MVT::v2i64) {
2539     if (Extract.getValueType() != MVT::v2i32 ||
2540         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2541       return SDValue();
2542   } else {
2543     return SDValue();
2544   }
2545 
2546   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2547   bool IsLow = Index == 0;
2548 
2549   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2550                                 : WebAssemblyISD::EXTEND_HIGH_S)
2551                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2552                                 : WebAssemblyISD::EXTEND_HIGH_U);
2553 
2554   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2555 }
2556 
2557 static SDValue
2558 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2559   auto &DAG = DCI.DAG;
2560 
2561   auto GetWasmConversionOp = [](unsigned Op) {
2562     switch (Op) {
2563     case ISD::FP_TO_SINT_SAT:
2564       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2565     case ISD::FP_TO_UINT_SAT:
2566       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2567     case ISD::FP_ROUND:
2568       return WebAssemblyISD::DEMOTE_ZERO;
2569     }
2570     llvm_unreachable("unexpected op");
2571   };
2572 
2573   auto IsZeroSplat = [](SDValue SplatVal) {
2574     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2575     APInt SplatValue, SplatUndef;
2576     unsigned SplatBitSize;
2577     bool HasAnyUndefs;
2578     // Endianness doesn't matter in this context because we are looking for
2579     // an all-zero value.
2580     return Splat &&
2581            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2582                                   HasAnyUndefs) &&
2583            SplatValue == 0;
2584   };
2585 
2586   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2587     // Combine this:
2588     //
2589     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2590     //
2591     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2592     //
2593     // Or this:
2594     //
2595     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2596     //
2597     // into (f32x4.demote_zero_f64x2 $x).
2598     EVT ResVT;
2599     EVT ExpectedConversionType;
2600     auto Conversion = N->getOperand(0);
2601     auto ConversionOp = Conversion.getOpcode();
2602     switch (ConversionOp) {
2603     case ISD::FP_TO_SINT_SAT:
2604     case ISD::FP_TO_UINT_SAT:
2605       ResVT = MVT::v4i32;
2606       ExpectedConversionType = MVT::v2i32;
2607       break;
2608     case ISD::FP_ROUND:
2609       ResVT = MVT::v4f32;
2610       ExpectedConversionType = MVT::v2f32;
2611       break;
2612     default:
2613       return SDValue();
2614     }
2615 
2616     if (N->getValueType(0) != ResVT)
2617       return SDValue();
2618 
2619     if (Conversion.getValueType() != ExpectedConversionType)
2620       return SDValue();
2621 
2622     auto Source = Conversion.getOperand(0);
2623     if (Source.getValueType() != MVT::v2f64)
2624       return SDValue();
2625 
2626     if (!IsZeroSplat(N->getOperand(1)) ||
2627         N->getOperand(1).getValueType() != ExpectedConversionType)
2628       return SDValue();
2629 
2630     unsigned Op = GetWasmConversionOp(ConversionOp);
2631     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2632   }
2633 
2634   // Combine this:
2635   //
2636   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2637   //
2638   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2639   //
2640   // Or this:
2641   //
2642   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2643   //
2644   // into (f32x4.demote_zero_f64x2 $x).
2645   EVT ResVT;
2646   auto ConversionOp = N->getOpcode();
2647   switch (ConversionOp) {
2648   case ISD::FP_TO_SINT_SAT:
2649   case ISD::FP_TO_UINT_SAT:
2650     ResVT = MVT::v4i32;
2651     break;
2652   case ISD::FP_ROUND:
2653     ResVT = MVT::v4f32;
2654     break;
2655   default:
2656     llvm_unreachable("unexpected op");
2657   }
2658 
2659   if (N->getValueType(0) != ResVT)
2660     return SDValue();
2661 
2662   auto Concat = N->getOperand(0);
2663   if (Concat.getValueType() != MVT::v4f64)
2664     return SDValue();
2665 
2666   auto Source = Concat.getOperand(0);
2667   if (Source.getValueType() != MVT::v2f64)
2668     return SDValue();
2669 
2670   if (!IsZeroSplat(Concat.getOperand(1)) ||
2671       Concat.getOperand(1).getValueType() != MVT::v2f64)
2672     return SDValue();
2673 
2674   unsigned Op = GetWasmConversionOp(ConversionOp);
2675   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2676 }
2677 
2678 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2679 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2680                                 const SDLoc &DL, unsigned VectorWidth) {
2681   EVT VT = Vec.getValueType();
2682   EVT ElVT = VT.getVectorElementType();
2683   unsigned Factor = VT.getSizeInBits() / VectorWidth;
2684   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2685                                   VT.getVectorNumElements() / Factor);
2686 
2687   // Extract the relevant VectorWidth bits.  Generate an EXTRACT_SUBVECTOR
2688   unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2689   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2690 
2691   // This is the index of the first element of the VectorWidth-bit chunk
2692   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2693   IdxVal &= ~(ElemsPerChunk - 1);
2694 
2695   // If the input is a buildvector just emit a smaller one.
2696   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2697     return DAG.getBuildVector(ResultVT, DL,
2698                               Vec->ops().slice(IdxVal, ElemsPerChunk));
2699 
2700   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2701   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2702 }
2703 
2704 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2705 // is the expected destination value type after recursion. In is the initial
2706 // input. Note that the input should have enough leading zero bits to prevent
2707 // NARROW_U from saturating results.
2708 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2709                                         SelectionDAG &DAG) {
2710   EVT SrcVT = In.getValueType();
2711 
2712   // No truncation required, we might get here due to recursive calls.
2713   if (SrcVT == DstVT)
2714     return In;
2715 
2716   unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2717   unsigned NumElems = SrcVT.getVectorNumElements();
2718   if (!isPowerOf2_32(NumElems))
2719     return SDValue();
2720   assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2721   assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2722 
2723   LLVMContext &Ctx = *DAG.getContext();
2724   EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2725 
2726   // Narrow to the largest type possible:
2727   // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2728   EVT InVT = MVT::i16, OutVT = MVT::i8;
2729   if (SrcVT.getScalarSizeInBits() > 16) {
2730     InVT = MVT::i32;
2731     OutVT = MVT::i16;
2732   }
2733   unsigned SubSizeInBits = SrcSizeInBits / 2;
2734   InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2735   OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2736 
2737   // Split lower/upper subvectors.
2738   SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2739   SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2740 
2741   // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2742   if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2743     Lo = DAG.getBitcast(InVT, Lo);
2744     Hi = DAG.getBitcast(InVT, Hi);
2745     SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2746     return DAG.getBitcast(DstVT, Res);
2747   }
2748 
2749   // Recursively narrow lower/upper subvectors, concat result and narrow again.
2750   EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2751   Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2752   Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2753 
2754   PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2755   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2756   return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2757 }
2758 
2759 static SDValue performTruncateCombine(SDNode *N,
2760                                       TargetLowering::DAGCombinerInfo &DCI) {
2761   auto &DAG = DCI.DAG;
2762 
2763   SDValue In = N->getOperand(0);
2764   EVT InVT = In.getValueType();
2765   if (!InVT.isSimple())
2766     return SDValue();
2767 
2768   EVT OutVT = N->getValueType(0);
2769   if (!OutVT.isVector())
2770     return SDValue();
2771 
2772   EVT OutSVT = OutVT.getVectorElementType();
2773   EVT InSVT = InVT.getVectorElementType();
2774   // Currently only cover truncate to v16i8 or v8i16.
2775   if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2776         (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2777     return SDValue();
2778 
2779   SDLoc DL(N);
2780   APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2781                                     OutVT.getScalarSizeInBits());
2782   In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2783   return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2784 }
2785 
2786 static SDValue performBitcastCombine(SDNode *N,
2787                                      TargetLowering::DAGCombinerInfo &DCI) {
2788   auto &DAG = DCI.DAG;
2789   SDLoc DL(N);
2790   SDValue Src = N->getOperand(0);
2791   EVT VT = N->getValueType(0);
2792   EVT SrcVT = Src.getValueType();
2793 
2794   // bitcast <N x i1> to iN
2795   //   ==> bitmask
2796   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
2797       SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) {
2798     unsigned NumElts = SrcVT.getVectorNumElements();
2799     if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2800       return SDValue();
2801     EVT Width = MVT::getIntegerVT(128 / NumElts);
2802     return DAG.getZExtOrTrunc(
2803         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
2804                     {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
2805                      DAG.getSExtOrTrunc(N->getOperand(0), DL,
2806                                         SrcVT.changeVectorElementType(Width))}),
2807         DL, VT);
2808   }
2809 
2810   return SDValue();
2811 }
2812 
2813 static SDValue performSETCCCombine(SDNode *N,
2814                                    TargetLowering::DAGCombinerInfo &DCI) {
2815   auto &DAG = DCI.DAG;
2816 
2817   SDValue LHS = N->getOperand(0);
2818   SDValue RHS = N->getOperand(1);
2819   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
2820   SDLoc DL(N);
2821   EVT VT = N->getValueType(0);
2822 
2823   // setcc (iN (bitcast (vNi1 X))), 0, ne
2824   //   ==> any_true (vNi1 X)
2825   // setcc (iN (bitcast (vNi1 X))), 0, eq
2826   //   ==> xor (any_true (vNi1 X)), -1
2827   // setcc (iN (bitcast (vNi1 X))), -1, eq
2828   //   ==> all_true (vNi1 X)
2829   // setcc (iN (bitcast (vNi1 X))), -1, ne
2830   //   ==> xor (all_true (vNi1 X)), -1
2831   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
2832       (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2833       (isNullConstant(RHS) || isAllOnesConstant(RHS)) &&
2834       LHS->getOpcode() == ISD::BITCAST) {
2835     EVT FromVT = LHS->getOperand(0).getValueType();
2836     if (FromVT.isFixedLengthVector() &&
2837         FromVT.getVectorElementType() == MVT::i1) {
2838       int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue
2839                                        : Intrinsic::wasm_alltrue;
2840       unsigned NumElts = FromVT.getVectorNumElements();
2841       if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2842         return SDValue();
2843       EVT Width = MVT::getIntegerVT(128 / NumElts);
2844       SDValue Ret = DAG.getZExtOrTrunc(
2845           DAG.getNode(
2846               ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
2847               {DAG.getConstant(Intrin, DL, MVT::i32),
2848                DAG.getSExtOrTrunc(LHS->getOperand(0), DL,
2849                                   FromVT.changeVectorElementType(Width))}),
2850           DL, MVT::i1);
2851       if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) ||
2852           (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) {
2853         Ret = DAG.getNOT(DL, Ret, MVT::i1);
2854       }
2855       return DAG.getZExtOrTrunc(Ret, DL, VT);
2856     }
2857   }
2858 
2859   return SDValue();
2860 }
2861 
2862 SDValue
2863 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2864                                              DAGCombinerInfo &DCI) const {
2865   switch (N->getOpcode()) {
2866   default:
2867     return SDValue();
2868   case ISD::BITCAST:
2869     return performBitcastCombine(N, DCI);
2870   case ISD::SETCC:
2871     return performSETCCCombine(N, DCI);
2872   case ISD::VECTOR_SHUFFLE:
2873     return performVECTOR_SHUFFLECombine(N, DCI);
2874   case ISD::SIGN_EXTEND:
2875   case ISD::ZERO_EXTEND:
2876     return performVectorExtendCombine(N, DCI);
2877   case ISD::UINT_TO_FP:
2878   case ISD::SINT_TO_FP:
2879     return performVectorExtendToFPCombine(N, DCI);
2880   case ISD::FP_TO_SINT_SAT:
2881   case ISD::FP_TO_UINT_SAT:
2882   case ISD::FP_ROUND:
2883   case ISD::CONCAT_VECTORS:
2884     return performVectorTruncZeroCombine(N, DCI);
2885   case ISD::TRUNCATE:
2886     return performTruncateCombine(N, DCI);
2887   }
2888 }
2889