1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "WebAssemblyUtilities.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsWebAssembly.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "wasm-lower" 45 46 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 47 const TargetMachine &TM, const WebAssemblySubtarget &STI) 48 : TargetLowering(TM), Subtarget(&STI) { 49 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 50 51 // Booleans always contain 0 or 1. 52 setBooleanContents(ZeroOrOneBooleanContent); 53 // Except in SIMD vectors 54 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 55 // We don't know the microarchitecture here, so just reduce register pressure. 56 setSchedulingPreference(Sched::RegPressure); 57 // Tell ISel that we have a stack pointer. 58 setStackPointerRegisterToSaveRestore( 59 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 60 // Set up the register classes. 61 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 62 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 63 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 64 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 65 if (Subtarget->hasSIMD128()) { 66 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 71 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 72 } 73 if (Subtarget->hasReferenceTypes()) { 74 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 75 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 76 } 77 // Compute derived properties from the register classes. 78 computeRegisterProperties(Subtarget->getRegisterInfo()); 79 80 // Transform loads and stores to pointers in address space 1 to loads and 81 // stores to WebAssembly global variables, outside linear memory. 82 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 83 setOperationAction(ISD::LOAD, T, Custom); 84 setOperationAction(ISD::STORE, T, Custom); 85 } 86 if (Subtarget->hasSIMD128()) { 87 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 88 MVT::v2f64}) { 89 setOperationAction(ISD::LOAD, T, Custom); 90 setOperationAction(ISD::STORE, T, Custom); 91 } 92 } 93 if (Subtarget->hasReferenceTypes()) { 94 // We need custom load and store lowering for both externref, funcref and 95 // Other. The MVT::Other here represents tables of reference types. 96 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 97 setOperationAction(ISD::LOAD, T, Custom); 98 setOperationAction(ISD::STORE, T, Custom); 99 } 100 } 101 102 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 103 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 104 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 105 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 106 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 107 setOperationAction(ISD::BRIND, MVT::Other, Custom); 108 109 // Take the default expansion for va_arg, va_copy, and va_end. There is no 110 // default action for va_start, so we do that custom. 111 setOperationAction(ISD::VASTART, MVT::Other, Custom); 112 setOperationAction(ISD::VAARG, MVT::Other, Expand); 113 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 114 setOperationAction(ISD::VAEND, MVT::Other, Expand); 115 116 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 117 // Don't expand the floating-point types to constant pools. 118 setOperationAction(ISD::ConstantFP, T, Legal); 119 // Expand floating-point comparisons. 120 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 121 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 122 setCondCodeAction(CC, T, Expand); 123 // Expand floating-point library function operators. 124 for (auto Op : 125 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 126 setOperationAction(Op, T, Expand); 127 // Note supported floating-point library function operators that otherwise 128 // default to expand. 129 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 130 ISD::FRINT, ISD::FROUNDEVEN}) 131 setOperationAction(Op, T, Legal); 132 // Support minimum and maximum, which otherwise default to expand. 133 setOperationAction(ISD::FMINIMUM, T, Legal); 134 setOperationAction(ISD::FMAXIMUM, T, Legal); 135 // WebAssembly currently has no builtin f16 support. 136 setOperationAction(ISD::FP16_TO_FP, T, Expand); 137 setOperationAction(ISD::FP_TO_FP16, T, Expand); 138 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 139 setTruncStoreAction(T, MVT::f16, Expand); 140 } 141 142 // Expand unavailable integer operations. 143 for (auto Op : 144 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 145 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 146 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 147 for (auto T : {MVT::i32, MVT::i64}) 148 setOperationAction(Op, T, Expand); 149 if (Subtarget->hasSIMD128()) 150 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 151 setOperationAction(Op, T, Expand); 152 } 153 154 if (Subtarget->hasNontrappingFPToInt()) 155 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 156 for (auto T : {MVT::i32, MVT::i64}) 157 setOperationAction(Op, T, Custom); 158 159 // SIMD-specific configuration 160 if (Subtarget->hasSIMD128()) { 161 // Combine vector mask reductions into alltrue/anytrue 162 setTargetDAGCombine(ISD::SETCC); 163 164 // Convert vector to integer bitcasts to bitmask 165 setTargetDAGCombine(ISD::BITCAST); 166 167 // Hoist bitcasts out of shuffles 168 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 169 170 // Combine extends of extract_subvectors into widening ops 171 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}); 172 173 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 174 // conversions ops 175 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND, 176 ISD::EXTRACT_SUBVECTOR}); 177 178 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 179 // into conversion ops 180 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 181 ISD::FP_ROUND, ISD::CONCAT_VECTORS}); 182 183 setTargetDAGCombine(ISD::TRUNCATE); 184 185 // Support saturating add for i8x16 and i16x8 186 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 187 for (auto T : {MVT::v16i8, MVT::v8i16}) 188 setOperationAction(Op, T, Legal); 189 190 // Support integer abs 191 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 192 setOperationAction(ISD::ABS, T, Legal); 193 194 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 195 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 196 MVT::v2f64}) 197 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 198 199 // We have custom shuffle lowering to expose the shuffle mask 200 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 201 MVT::v2f64}) 202 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 203 204 // Support splatting 205 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 206 MVT::v2f64}) 207 setOperationAction(ISD::SPLAT_VECTOR, T, Legal); 208 209 // Custom lowering since wasm shifts must have a scalar shift amount 210 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 211 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 212 setOperationAction(Op, T, Custom); 213 214 // Custom lower lane accesses to expand out variable indices 215 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 216 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 217 MVT::v2f64}) 218 setOperationAction(Op, T, Custom); 219 220 // There is no i8x16.mul instruction 221 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 222 223 // There is no vector conditional select instruction 224 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 225 MVT::v2f64}) 226 setOperationAction(ISD::SELECT_CC, T, Expand); 227 228 // Expand integer operations supported for scalars but not SIMD 229 for (auto Op : 230 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 231 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 232 setOperationAction(Op, T, Expand); 233 234 // But we do have integer min and max operations 235 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 236 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 237 setOperationAction(Op, T, Legal); 238 239 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 240 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 241 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 242 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 243 244 // Custom lower bit counting operations for other types to scalarize them. 245 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 246 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 247 setOperationAction(Op, T, Custom); 248 249 // Expand float operations supported for scalars but not SIMD 250 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 251 ISD::FEXP, ISD::FEXP2}) 252 for (auto T : {MVT::v4f32, MVT::v2f64}) 253 setOperationAction(Op, T, Expand); 254 255 // Unsigned comparison operations are unavailable for i64x2 vectors. 256 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 257 setCondCodeAction(CC, MVT::v2i64, Custom); 258 259 // 64x2 conversions are not in the spec 260 for (auto Op : 261 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 262 for (auto T : {MVT::v2i64, MVT::v2f64}) 263 setOperationAction(Op, T, Expand); 264 265 // But saturating fp_to_int converstions are 266 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 267 setOperationAction(Op, MVT::v4i32, Custom); 268 269 // Support vector extending 270 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) { 271 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom); 272 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom); 273 } 274 } 275 276 // As a special case, these operators use the type to mean the type to 277 // sign-extend from. 278 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 279 if (!Subtarget->hasSignExt()) { 280 // Sign extends are legal only when extending a vector extract 281 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 282 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 283 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 284 } 285 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 286 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 287 288 // Dynamic stack allocation: use the default expansion. 289 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 290 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 291 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 292 293 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 294 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 295 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 296 297 // Expand these forms; we pattern-match the forms that we can handle in isel. 298 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 299 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 300 setOperationAction(Op, T, Expand); 301 302 // We have custom switch handling. 303 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 304 305 // WebAssembly doesn't have: 306 // - Floating-point extending loads. 307 // - Floating-point truncating stores. 308 // - i1 extending loads. 309 // - truncating SIMD stores and most extending loads 310 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 311 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 312 for (auto T : MVT::integer_valuetypes()) 313 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 314 setLoadExtAction(Ext, T, MVT::i1, Promote); 315 if (Subtarget->hasSIMD128()) { 316 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 317 MVT::v2f64}) { 318 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 319 if (MVT(T) != MemT) { 320 setTruncStoreAction(T, MemT, Expand); 321 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 322 setLoadExtAction(Ext, T, MemT, Expand); 323 } 324 } 325 } 326 // But some vector extending loads are legal 327 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 328 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 329 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 330 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 331 } 332 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 333 } 334 335 // Don't do anything clever with build_pairs 336 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 337 338 // Trap lowers to wasm unreachable 339 setOperationAction(ISD::TRAP, MVT::Other, Legal); 340 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 341 342 // Exception handling intrinsics 343 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 344 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 345 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 346 347 setMaxAtomicSizeInBitsSupported(64); 348 349 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 350 // consistent with the f64 and f128 names. 351 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 352 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 353 354 // Define the emscripten name for return address helper. 355 // TODO: when implementing other Wasm backends, make this generic or only do 356 // this on emscripten depending on what they end up doing. 357 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 358 359 // Always convert switches to br_tables unless there is only one case, which 360 // is equivalent to a simple branch. This reduces code size for wasm, and we 361 // defer possible jump table optimizations to the VM. 362 setMinimumJumpTableEntries(2); 363 } 364 365 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 366 uint32_t AS) const { 367 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 368 return MVT::externref; 369 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 370 return MVT::funcref; 371 return TargetLowering::getPointerTy(DL, AS); 372 } 373 374 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 375 uint32_t AS) const { 376 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 377 return MVT::externref; 378 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 379 return MVT::funcref; 380 return TargetLowering::getPointerMemTy(DL, AS); 381 } 382 383 TargetLowering::AtomicExpansionKind 384 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 385 // We have wasm instructions for these 386 switch (AI->getOperation()) { 387 case AtomicRMWInst::Add: 388 case AtomicRMWInst::Sub: 389 case AtomicRMWInst::And: 390 case AtomicRMWInst::Or: 391 case AtomicRMWInst::Xor: 392 case AtomicRMWInst::Xchg: 393 return AtomicExpansionKind::None; 394 default: 395 break; 396 } 397 return AtomicExpansionKind::CmpXChg; 398 } 399 400 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 401 // Implementation copied from X86TargetLowering. 402 unsigned Opc = VecOp.getOpcode(); 403 404 // Assume target opcodes can't be scalarized. 405 // TODO - do we have any exceptions? 406 if (Opc >= ISD::BUILTIN_OP_END) 407 return false; 408 409 // If the vector op is not supported, try to convert to scalar. 410 EVT VecVT = VecOp.getValueType(); 411 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 412 return true; 413 414 // If the vector op is supported, but the scalar op is not, the transform may 415 // not be worthwhile. 416 EVT ScalarVT = VecVT.getScalarType(); 417 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 418 } 419 420 FastISel *WebAssemblyTargetLowering::createFastISel( 421 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 422 return WebAssembly::createFastISel(FuncInfo, LibInfo); 423 } 424 425 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 426 EVT VT) const { 427 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 428 if (BitWidth > 1 && BitWidth < 8) 429 BitWidth = 8; 430 431 if (BitWidth > 64) { 432 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 433 // the count to be an i32. 434 BitWidth = 32; 435 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 436 "32-bit shift counts ought to be enough for anyone"); 437 } 438 439 MVT Result = MVT::getIntegerVT(BitWidth); 440 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 441 "Unable to represent scalar shift amount type"); 442 return Result; 443 } 444 445 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 446 // undefined result on invalid/overflow, to the WebAssembly opcode, which 447 // traps on invalid/overflow. 448 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 449 MachineBasicBlock *BB, 450 const TargetInstrInfo &TII, 451 bool IsUnsigned, bool Int64, 452 bool Float64, unsigned LoweredOpcode) { 453 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 454 455 Register OutReg = MI.getOperand(0).getReg(); 456 Register InReg = MI.getOperand(1).getReg(); 457 458 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 459 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 460 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 461 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 462 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 463 unsigned Eqz = WebAssembly::EQZ_I32; 464 unsigned And = WebAssembly::AND_I32; 465 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 466 int64_t Substitute = IsUnsigned ? 0 : Limit; 467 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 468 auto &Context = BB->getParent()->getFunction().getContext(); 469 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 470 471 const BasicBlock *LLVMBB = BB->getBasicBlock(); 472 MachineFunction *F = BB->getParent(); 473 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 474 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 475 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 476 477 MachineFunction::iterator It = ++BB->getIterator(); 478 F->insert(It, FalseMBB); 479 F->insert(It, TrueMBB); 480 F->insert(It, DoneMBB); 481 482 // Transfer the remainder of BB and its successor edges to DoneMBB. 483 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 484 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 485 486 BB->addSuccessor(TrueMBB); 487 BB->addSuccessor(FalseMBB); 488 TrueMBB->addSuccessor(DoneMBB); 489 FalseMBB->addSuccessor(DoneMBB); 490 491 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 492 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 493 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 494 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 495 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 496 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 497 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 498 499 MI.eraseFromParent(); 500 // For signed numbers, we can do a single comparison to determine whether 501 // fabs(x) is within range. 502 if (IsUnsigned) { 503 Tmp0 = InReg; 504 } else { 505 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 506 } 507 BuildMI(BB, DL, TII.get(FConst), Tmp1) 508 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 509 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 510 511 // For unsigned numbers, we have to do a separate comparison with zero. 512 if (IsUnsigned) { 513 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 514 Register SecondCmpReg = 515 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 516 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 517 BuildMI(BB, DL, TII.get(FConst), Tmp1) 518 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 519 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 520 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 521 CmpReg = AndReg; 522 } 523 524 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 525 526 // Create the CFG diamond to select between doing the conversion or using 527 // the substitute value. 528 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 529 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 530 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 531 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 532 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 533 .addReg(FalseReg) 534 .addMBB(FalseMBB) 535 .addReg(TrueReg) 536 .addMBB(TrueMBB); 537 538 return DoneMBB; 539 } 540 541 static MachineBasicBlock * 542 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 543 const WebAssemblySubtarget *Subtarget, 544 const TargetInstrInfo &TII) { 545 MachineInstr &CallParams = *CallResults.getPrevNode(); 546 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 547 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 548 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 549 550 bool IsIndirect = 551 CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI(); 552 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 553 554 bool IsFuncrefCall = false; 555 if (IsIndirect && CallParams.getOperand(0).isReg()) { 556 Register Reg = CallParams.getOperand(0).getReg(); 557 const MachineFunction *MF = BB->getParent(); 558 const MachineRegisterInfo &MRI = MF->getRegInfo(); 559 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 560 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 561 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 562 } 563 564 unsigned CallOp; 565 if (IsIndirect && IsRetCall) { 566 CallOp = WebAssembly::RET_CALL_INDIRECT; 567 } else if (IsIndirect) { 568 CallOp = WebAssembly::CALL_INDIRECT; 569 } else if (IsRetCall) { 570 CallOp = WebAssembly::RET_CALL; 571 } else { 572 CallOp = WebAssembly::CALL; 573 } 574 575 MachineFunction &MF = *BB->getParent(); 576 const MCInstrDesc &MCID = TII.get(CallOp); 577 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 578 579 // See if we must truncate the function pointer. 580 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 581 // as 64-bit for uniformity with other pointer types. 582 // See also: WebAssemblyFastISel::selectCall 583 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 584 Register Reg32 = 585 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 586 auto &FnPtr = CallParams.getOperand(0); 587 BuildMI(*BB, CallResults.getIterator(), DL, 588 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 589 .addReg(FnPtr.getReg()); 590 FnPtr.setReg(Reg32); 591 } 592 593 // Move the function pointer to the end of the arguments for indirect calls 594 if (IsIndirect) { 595 auto FnPtr = CallParams.getOperand(0); 596 CallParams.removeOperand(0); 597 598 // For funcrefs, call_indirect is done through __funcref_call_table and the 599 // funcref is always installed in slot 0 of the table, therefore instead of 600 // having the function pointer added at the end of the params list, a zero 601 // (the index in 602 // __funcref_call_table is added). 603 if (IsFuncrefCall) { 604 Register RegZero = 605 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 606 MachineInstrBuilder MIBC0 = 607 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 608 609 BB->insert(CallResults.getIterator(), MIBC0); 610 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 611 } else 612 CallParams.addOperand(FnPtr); 613 } 614 615 for (auto Def : CallResults.defs()) 616 MIB.add(Def); 617 618 if (IsIndirect) { 619 // Placeholder for the type index. 620 MIB.addImm(0); 621 // The table into which this call_indirect indexes. 622 MCSymbolWasm *Table = IsFuncrefCall 623 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 624 MF.getContext(), Subtarget) 625 : WebAssembly::getOrCreateFunctionTableSymbol( 626 MF.getContext(), Subtarget); 627 if (Subtarget->hasReferenceTypes()) { 628 MIB.addSym(Table); 629 } else { 630 // For the MVP there is at most one table whose number is 0, but we can't 631 // write a table symbol or issue relocations. Instead we just ensure the 632 // table is live and write a zero. 633 Table->setNoStrip(); 634 MIB.addImm(0); 635 } 636 } 637 638 for (auto Use : CallParams.uses()) 639 MIB.add(Use); 640 641 BB->insert(CallResults.getIterator(), MIB); 642 CallParams.eraseFromParent(); 643 CallResults.eraseFromParent(); 644 645 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 646 // table slot with ref.null upon call_indirect return. 647 // 648 // This generates the following code, which comes right after a call_indirect 649 // of a funcref: 650 // 651 // i32.const 0 652 // ref.null func 653 // table.set __funcref_call_table 654 if (IsIndirect && IsFuncrefCall) { 655 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 656 MF.getContext(), Subtarget); 657 Register RegZero = 658 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 659 MachineInstr *Const0 = 660 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 661 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 662 663 Register RegFuncref = 664 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 665 MachineInstr *RefNull = 666 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 667 BB->insertAfter(Const0->getIterator(), RefNull); 668 669 MachineInstr *TableSet = 670 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 671 .addSym(Table) 672 .addReg(RegZero) 673 .addReg(RegFuncref); 674 BB->insertAfter(RefNull->getIterator(), TableSet); 675 } 676 677 return BB; 678 } 679 680 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 681 MachineInstr &MI, MachineBasicBlock *BB) const { 682 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 683 DebugLoc DL = MI.getDebugLoc(); 684 685 switch (MI.getOpcode()) { 686 default: 687 llvm_unreachable("Unexpected instr type to insert"); 688 case WebAssembly::FP_TO_SINT_I32_F32: 689 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 690 WebAssembly::I32_TRUNC_S_F32); 691 case WebAssembly::FP_TO_UINT_I32_F32: 692 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 693 WebAssembly::I32_TRUNC_U_F32); 694 case WebAssembly::FP_TO_SINT_I64_F32: 695 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 696 WebAssembly::I64_TRUNC_S_F32); 697 case WebAssembly::FP_TO_UINT_I64_F32: 698 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 699 WebAssembly::I64_TRUNC_U_F32); 700 case WebAssembly::FP_TO_SINT_I32_F64: 701 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 702 WebAssembly::I32_TRUNC_S_F64); 703 case WebAssembly::FP_TO_UINT_I32_F64: 704 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 705 WebAssembly::I32_TRUNC_U_F64); 706 case WebAssembly::FP_TO_SINT_I64_F64: 707 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 708 WebAssembly::I64_TRUNC_S_F64); 709 case WebAssembly::FP_TO_UINT_I64_F64: 710 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 711 WebAssembly::I64_TRUNC_U_F64); 712 case WebAssembly::CALL_RESULTS: 713 case WebAssembly::RET_CALL_RESULTS: 714 return LowerCallResults(MI, DL, BB, Subtarget, TII); 715 } 716 } 717 718 const char * 719 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 720 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 721 case WebAssemblyISD::FIRST_NUMBER: 722 case WebAssemblyISD::FIRST_MEM_OPCODE: 723 break; 724 #define HANDLE_NODETYPE(NODE) \ 725 case WebAssemblyISD::NODE: \ 726 return "WebAssemblyISD::" #NODE; 727 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 728 #include "WebAssemblyISD.def" 729 #undef HANDLE_MEM_NODETYPE 730 #undef HANDLE_NODETYPE 731 } 732 return nullptr; 733 } 734 735 std::pair<unsigned, const TargetRegisterClass *> 736 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 737 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 738 // First, see if this is a constraint that directly corresponds to a 739 // WebAssembly register class. 740 if (Constraint.size() == 1) { 741 switch (Constraint[0]) { 742 case 'r': 743 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 744 if (Subtarget->hasSIMD128() && VT.isVector()) { 745 if (VT.getSizeInBits() == 128) 746 return std::make_pair(0U, &WebAssembly::V128RegClass); 747 } 748 if (VT.isInteger() && !VT.isVector()) { 749 if (VT.getSizeInBits() <= 32) 750 return std::make_pair(0U, &WebAssembly::I32RegClass); 751 if (VT.getSizeInBits() <= 64) 752 return std::make_pair(0U, &WebAssembly::I64RegClass); 753 } 754 if (VT.isFloatingPoint() && !VT.isVector()) { 755 switch (VT.getSizeInBits()) { 756 case 32: 757 return std::make_pair(0U, &WebAssembly::F32RegClass); 758 case 64: 759 return std::make_pair(0U, &WebAssembly::F64RegClass); 760 default: 761 break; 762 } 763 } 764 break; 765 default: 766 break; 767 } 768 } 769 770 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 771 } 772 773 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { 774 // Assume ctz is a relatively cheap operation. 775 return true; 776 } 777 778 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { 779 // Assume clz is a relatively cheap operation. 780 return true; 781 } 782 783 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 784 const AddrMode &AM, 785 Type *Ty, unsigned AS, 786 Instruction *I) const { 787 // WebAssembly offsets are added as unsigned without wrapping. The 788 // isLegalAddressingMode gives us no way to determine if wrapping could be 789 // happening, so we approximate this by accepting only non-negative offsets. 790 if (AM.BaseOffs < 0) 791 return false; 792 793 // WebAssembly has no scale register operands. 794 if (AM.Scale != 0) 795 return false; 796 797 // Everything else is legal. 798 return true; 799 } 800 801 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 802 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 803 MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const { 804 // WebAssembly supports unaligned accesses, though it should be declared 805 // with the p2align attribute on loads and stores which do so, and there 806 // may be a performance impact. We tell LLVM they're "fast" because 807 // for the kinds of things that LLVM uses this for (merging adjacent stores 808 // of constants, etc.), WebAssembly implementations will either want the 809 // unaligned access or they'll split anyway. 810 if (Fast) 811 *Fast = 1; 812 return true; 813 } 814 815 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 816 AttributeList Attr) const { 817 // The current thinking is that wasm engines will perform this optimization, 818 // so we can save on code size. 819 return true; 820 } 821 822 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 823 EVT ExtT = ExtVal.getValueType(); 824 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 825 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 826 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 827 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 828 } 829 830 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 831 const GlobalAddressSDNode *GA) const { 832 // Wasm doesn't support function addresses with offsets 833 const GlobalValue *GV = GA->getGlobal(); 834 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 835 } 836 837 bool WebAssemblyTargetLowering::shouldSinkOperands( 838 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 839 using namespace llvm::PatternMatch; 840 841 if (!I->getType()->isVectorTy() || !I->isShift()) 842 return false; 843 844 Value *V = I->getOperand(1); 845 // We dont need to sink constant splat. 846 if (dyn_cast<Constant>(V)) 847 return false; 848 849 if (match(V, m_Shuffle(m_InsertElt(m_Value(), m_Value(), m_ZeroInt()), 850 m_Value(), m_ZeroMask()))) { 851 // Sink insert 852 Ops.push_back(&cast<Instruction>(V)->getOperandUse(0)); 853 // Sink shuffle 854 Ops.push_back(&I->getOperandUse(1)); 855 return true; 856 } 857 858 return false; 859 } 860 861 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 862 LLVMContext &C, 863 EVT VT) const { 864 if (VT.isVector()) 865 return VT.changeVectorElementTypeToInteger(); 866 867 // So far, all branch instructions in Wasm take an I32 condition. 868 // The default TargetLowering::getSetCCResultType returns the pointer size, 869 // which would be useful to reduce instruction counts when testing 870 // against 64-bit pointers/values if at some point Wasm supports that. 871 return EVT::getIntegerVT(C, 32); 872 } 873 874 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 875 const CallInst &I, 876 MachineFunction &MF, 877 unsigned Intrinsic) const { 878 switch (Intrinsic) { 879 case Intrinsic::wasm_memory_atomic_notify: 880 Info.opc = ISD::INTRINSIC_W_CHAIN; 881 Info.memVT = MVT::i32; 882 Info.ptrVal = I.getArgOperand(0); 883 Info.offset = 0; 884 Info.align = Align(4); 885 // atomic.notify instruction does not really load the memory specified with 886 // this argument, but MachineMemOperand should either be load or store, so 887 // we set this to a load. 888 // FIXME Volatile isn't really correct, but currently all LLVM atomic 889 // instructions are treated as volatiles in the backend, so we should be 890 // consistent. The same applies for wasm_atomic_wait intrinsics too. 891 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 892 return true; 893 case Intrinsic::wasm_memory_atomic_wait32: 894 Info.opc = ISD::INTRINSIC_W_CHAIN; 895 Info.memVT = MVT::i32; 896 Info.ptrVal = I.getArgOperand(0); 897 Info.offset = 0; 898 Info.align = Align(4); 899 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 900 return true; 901 case Intrinsic::wasm_memory_atomic_wait64: 902 Info.opc = ISD::INTRINSIC_W_CHAIN; 903 Info.memVT = MVT::i64; 904 Info.ptrVal = I.getArgOperand(0); 905 Info.offset = 0; 906 Info.align = Align(8); 907 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 908 return true; 909 default: 910 return false; 911 } 912 } 913 914 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 915 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 916 const SelectionDAG &DAG, unsigned Depth) const { 917 switch (Op.getOpcode()) { 918 default: 919 break; 920 case ISD::INTRINSIC_WO_CHAIN: { 921 unsigned IntNo = Op.getConstantOperandVal(0); 922 switch (IntNo) { 923 default: 924 break; 925 case Intrinsic::wasm_bitmask: { 926 unsigned BitWidth = Known.getBitWidth(); 927 EVT VT = Op.getOperand(1).getSimpleValueType(); 928 unsigned PossibleBits = VT.getVectorNumElements(); 929 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 930 Known.Zero |= ZeroMask; 931 break; 932 } 933 } 934 } 935 } 936 } 937 938 TargetLoweringBase::LegalizeTypeAction 939 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 940 if (VT.isFixedLengthVector()) { 941 MVT EltVT = VT.getVectorElementType(); 942 // We have legal vector types with these lane types, so widening the 943 // vector would let us use some of the lanes directly without having to 944 // extend or truncate values. 945 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 946 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 947 return TypeWidenVector; 948 } 949 950 return TargetLoweringBase::getPreferredVectorAction(VT); 951 } 952 953 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( 954 SDValue Op, const TargetLoweringOpt &TLO) const { 955 // ISel process runs DAGCombiner after legalization; this step is called 956 // SelectionDAG optimization phase. This post-legalization combining process 957 // runs DAGCombiner on each node, and if there was a change to be made, 958 // re-runs legalization again on it and its user nodes to make sure 959 // everythiing is in a legalized state. 960 // 961 // The legalization calls lowering routines, and we do our custom lowering for 962 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements 963 // into zeros. But there is a set of routines in DAGCombiner that turns unused 964 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts 965 // turns unused vector elements into undefs. But this routine does not work 966 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This 967 // combination can result in a infinite loop, in which undefs are converted to 968 // zeros in legalization and back to undefs in combining. 969 // 970 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from 971 // running for build_vectors. 972 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) 973 return false; 974 return true; 975 } 976 977 //===----------------------------------------------------------------------===// 978 // WebAssembly Lowering private implementation. 979 //===----------------------------------------------------------------------===// 980 981 //===----------------------------------------------------------------------===// 982 // Lowering Code 983 //===----------------------------------------------------------------------===// 984 985 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 986 MachineFunction &MF = DAG.getMachineFunction(); 987 DAG.getContext()->diagnose( 988 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 989 } 990 991 // Test whether the given calling convention is supported. 992 static bool callingConvSupported(CallingConv::ID CallConv) { 993 // We currently support the language-independent target-independent 994 // conventions. We don't yet have a way to annotate calls with properties like 995 // "cold", and we don't have any call-clobbered registers, so these are mostly 996 // all handled the same. 997 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 998 CallConv == CallingConv::Cold || 999 CallConv == CallingConv::PreserveMost || 1000 CallConv == CallingConv::PreserveAll || 1001 CallConv == CallingConv::CXX_FAST_TLS || 1002 CallConv == CallingConv::WASM_EmscriptenInvoke || 1003 CallConv == CallingConv::Swift; 1004 } 1005 1006 SDValue 1007 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 1008 SmallVectorImpl<SDValue> &InVals) const { 1009 SelectionDAG &DAG = CLI.DAG; 1010 SDLoc DL = CLI.DL; 1011 SDValue Chain = CLI.Chain; 1012 SDValue Callee = CLI.Callee; 1013 MachineFunction &MF = DAG.getMachineFunction(); 1014 auto Layout = MF.getDataLayout(); 1015 1016 CallingConv::ID CallConv = CLI.CallConv; 1017 if (!callingConvSupported(CallConv)) 1018 fail(DL, DAG, 1019 "WebAssembly doesn't support language-specific or target-specific " 1020 "calling conventions yet"); 1021 if (CLI.IsPatchPoint) 1022 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 1023 1024 if (CLI.IsTailCall) { 1025 auto NoTail = [&](const char *Msg) { 1026 if (CLI.CB && CLI.CB->isMustTailCall()) 1027 fail(DL, DAG, Msg); 1028 CLI.IsTailCall = false; 1029 }; 1030 1031 if (!Subtarget->hasTailCall()) 1032 NoTail("WebAssembly 'tail-call' feature not enabled"); 1033 1034 // Varargs calls cannot be tail calls because the buffer is on the stack 1035 if (CLI.IsVarArg) 1036 NoTail("WebAssembly does not support varargs tail calls"); 1037 1038 // Do not tail call unless caller and callee return types match 1039 const Function &F = MF.getFunction(); 1040 const TargetMachine &TM = getTargetMachine(); 1041 Type *RetTy = F.getReturnType(); 1042 SmallVector<MVT, 4> CallerRetTys; 1043 SmallVector<MVT, 4> CalleeRetTys; 1044 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 1045 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 1046 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 1047 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 1048 CalleeRetTys.begin()); 1049 if (!TypesMatch) 1050 NoTail("WebAssembly tail call requires caller and callee return types to " 1051 "match"); 1052 1053 // If pointers to local stack values are passed, we cannot tail call 1054 if (CLI.CB) { 1055 for (auto &Arg : CLI.CB->args()) { 1056 Value *Val = Arg.get(); 1057 // Trace the value back through pointer operations 1058 while (true) { 1059 Value *Src = Val->stripPointerCastsAndAliases(); 1060 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 1061 Src = GEP->getPointerOperand(); 1062 if (Val == Src) 1063 break; 1064 Val = Src; 1065 } 1066 if (isa<AllocaInst>(Val)) { 1067 NoTail( 1068 "WebAssembly does not support tail calling with stack arguments"); 1069 break; 1070 } 1071 } 1072 } 1073 } 1074 1075 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1076 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1077 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1078 1079 // The generic code may have added an sret argument. If we're lowering an 1080 // invoke function, the ABI requires that the function pointer be the first 1081 // argument, so we may have to swap the arguments. 1082 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1083 Outs[0].Flags.isSRet()) { 1084 std::swap(Outs[0], Outs[1]); 1085 std::swap(OutVals[0], OutVals[1]); 1086 } 1087 1088 bool HasSwiftSelfArg = false; 1089 bool HasSwiftErrorArg = false; 1090 unsigned NumFixedArgs = 0; 1091 for (unsigned I = 0; I < Outs.size(); ++I) { 1092 const ISD::OutputArg &Out = Outs[I]; 1093 SDValue &OutVal = OutVals[I]; 1094 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1095 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1096 if (Out.Flags.isNest()) 1097 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1098 if (Out.Flags.isInAlloca()) 1099 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1100 if (Out.Flags.isInConsecutiveRegs()) 1101 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1102 if (Out.Flags.isInConsecutiveRegsLast()) 1103 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1104 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1105 auto &MFI = MF.getFrameInfo(); 1106 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1107 Out.Flags.getNonZeroByValAlign(), 1108 /*isSS=*/false); 1109 SDValue SizeNode = 1110 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1111 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1112 Chain = DAG.getMemcpy( 1113 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1114 /*isVolatile*/ false, /*AlwaysInline=*/false, 1115 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1116 OutVal = FINode; 1117 } 1118 // Count the number of fixed args *after* legalization. 1119 NumFixedArgs += Out.IsFixed; 1120 } 1121 1122 bool IsVarArg = CLI.IsVarArg; 1123 auto PtrVT = getPointerTy(Layout); 1124 1125 // For swiftcc, emit additional swiftself and swifterror arguments 1126 // if there aren't. These additional arguments are also added for callee 1127 // signature They are necessary to match callee and caller signature for 1128 // indirect call. 1129 if (CallConv == CallingConv::Swift) { 1130 if (!HasSwiftSelfArg) { 1131 NumFixedArgs++; 1132 ISD::OutputArg Arg; 1133 Arg.Flags.setSwiftSelf(); 1134 CLI.Outs.push_back(Arg); 1135 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1136 CLI.OutVals.push_back(ArgVal); 1137 } 1138 if (!HasSwiftErrorArg) { 1139 NumFixedArgs++; 1140 ISD::OutputArg Arg; 1141 Arg.Flags.setSwiftError(); 1142 CLI.Outs.push_back(Arg); 1143 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1144 CLI.OutVals.push_back(ArgVal); 1145 } 1146 } 1147 1148 // Analyze operands of the call, assigning locations to each operand. 1149 SmallVector<CCValAssign, 16> ArgLocs; 1150 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1151 1152 if (IsVarArg) { 1153 // Outgoing non-fixed arguments are placed in a buffer. First 1154 // compute their offsets and the total amount of buffer space needed. 1155 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1156 const ISD::OutputArg &Out = Outs[I]; 1157 SDValue &Arg = OutVals[I]; 1158 EVT VT = Arg.getValueType(); 1159 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1160 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1161 Align Alignment = 1162 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1163 unsigned Offset = 1164 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1165 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1166 Offset, VT.getSimpleVT(), 1167 CCValAssign::Full)); 1168 } 1169 } 1170 1171 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1172 1173 SDValue FINode; 1174 if (IsVarArg && NumBytes) { 1175 // For non-fixed arguments, next emit stores to store the argument values 1176 // to the stack buffer at the offsets computed above. 1177 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1178 Layout.getStackAlignment(), 1179 /*isSS=*/false); 1180 unsigned ValNo = 0; 1181 SmallVector<SDValue, 8> Chains; 1182 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1183 assert(ArgLocs[ValNo].getValNo() == ValNo && 1184 "ArgLocs should remain in order and only hold varargs args"); 1185 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1186 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1187 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1188 DAG.getConstant(Offset, DL, PtrVT)); 1189 Chains.push_back( 1190 DAG.getStore(Chain, DL, Arg, Add, 1191 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1192 } 1193 if (!Chains.empty()) 1194 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1195 } else if (IsVarArg) { 1196 FINode = DAG.getIntPtrConstant(0, DL); 1197 } 1198 1199 if (Callee->getOpcode() == ISD::GlobalAddress) { 1200 // If the callee is a GlobalAddress node (quite common, every direct call 1201 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1202 // doesn't at MO_GOT which is not needed for direct calls. 1203 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee); 1204 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1205 getPointerTy(DAG.getDataLayout()), 1206 GA->getOffset()); 1207 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1208 getPointerTy(DAG.getDataLayout()), Callee); 1209 } 1210 1211 // Compute the operands for the CALLn node. 1212 SmallVector<SDValue, 16> Ops; 1213 Ops.push_back(Chain); 1214 Ops.push_back(Callee); 1215 1216 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1217 // isn't reliable. 1218 Ops.append(OutVals.begin(), 1219 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1220 // Add a pointer to the vararg buffer. 1221 if (IsVarArg) 1222 Ops.push_back(FINode); 1223 1224 SmallVector<EVT, 8> InTys; 1225 for (const auto &In : Ins) { 1226 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1227 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1228 if (In.Flags.isInAlloca()) 1229 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1230 if (In.Flags.isInConsecutiveRegs()) 1231 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1232 if (In.Flags.isInConsecutiveRegsLast()) 1233 fail(DL, DAG, 1234 "WebAssembly hasn't implemented cons regs last return values"); 1235 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1236 // registers. 1237 InTys.push_back(In.VT); 1238 } 1239 1240 // Lastly, if this is a call to a funcref we need to add an instruction 1241 // table.set to the chain and transform the call. 1242 if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType( 1243 CLI.CB->getCalledOperand()->getType())) { 1244 // In the absence of function references proposal where a funcref call is 1245 // lowered to call_ref, using reference types we generate a table.set to set 1246 // the funcref to a special table used solely for this purpose, followed by 1247 // a call_indirect. Here we just generate the table set, and return the 1248 // SDValue of the table.set so that LowerCall can finalize the lowering by 1249 // generating the call_indirect. 1250 SDValue Chain = Ops[0]; 1251 1252 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1253 MF.getContext(), Subtarget); 1254 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1255 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1256 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1257 SDValue TableSet = DAG.getMemIntrinsicNode( 1258 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1259 MVT::funcref, 1260 // Machine Mem Operand args 1261 MachinePointerInfo( 1262 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1263 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1264 MachineMemOperand::MOStore); 1265 1266 Ops[0] = TableSet; // The new chain is the TableSet itself 1267 } 1268 1269 if (CLI.IsTailCall) { 1270 // ret_calls do not return values to the current frame 1271 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1272 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1273 } 1274 1275 InTys.push_back(MVT::Other); 1276 SDVTList InTyList = DAG.getVTList(InTys); 1277 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1278 1279 for (size_t I = 0; I < Ins.size(); ++I) 1280 InVals.push_back(Res.getValue(I)); 1281 1282 // Return the chain 1283 return Res.getValue(Ins.size()); 1284 } 1285 1286 bool WebAssemblyTargetLowering::CanLowerReturn( 1287 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1288 const SmallVectorImpl<ISD::OutputArg> &Outs, 1289 LLVMContext & /*Context*/) const { 1290 // WebAssembly can only handle returning tuples with multivalue enabled 1291 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1292 } 1293 1294 SDValue WebAssemblyTargetLowering::LowerReturn( 1295 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1296 const SmallVectorImpl<ISD::OutputArg> &Outs, 1297 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1298 SelectionDAG &DAG) const { 1299 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1300 "MVP WebAssembly can only return up to one value"); 1301 if (!callingConvSupported(CallConv)) 1302 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1303 1304 SmallVector<SDValue, 4> RetOps(1, Chain); 1305 RetOps.append(OutVals.begin(), OutVals.end()); 1306 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1307 1308 // Record the number and types of the return values. 1309 for (const ISD::OutputArg &Out : Outs) { 1310 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1311 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1312 assert(Out.IsFixed && "non-fixed return value is not valid"); 1313 if (Out.Flags.isInAlloca()) 1314 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1315 if (Out.Flags.isInConsecutiveRegs()) 1316 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1317 if (Out.Flags.isInConsecutiveRegsLast()) 1318 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1319 } 1320 1321 return Chain; 1322 } 1323 1324 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1325 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1326 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1327 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1328 if (!callingConvSupported(CallConv)) 1329 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1330 1331 MachineFunction &MF = DAG.getMachineFunction(); 1332 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1333 1334 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1335 // of the incoming values before they're represented by virtual registers. 1336 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1337 1338 bool HasSwiftErrorArg = false; 1339 bool HasSwiftSelfArg = false; 1340 for (const ISD::InputArg &In : Ins) { 1341 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1342 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1343 if (In.Flags.isInAlloca()) 1344 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1345 if (In.Flags.isNest()) 1346 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1347 if (In.Flags.isInConsecutiveRegs()) 1348 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1349 if (In.Flags.isInConsecutiveRegsLast()) 1350 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1351 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1352 // registers. 1353 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1354 DAG.getTargetConstant(InVals.size(), 1355 DL, MVT::i32)) 1356 : DAG.getUNDEF(In.VT)); 1357 1358 // Record the number and types of arguments. 1359 MFI->addParam(In.VT); 1360 } 1361 1362 // For swiftcc, emit additional swiftself and swifterror arguments 1363 // if there aren't. These additional arguments are also added for callee 1364 // signature They are necessary to match callee and caller signature for 1365 // indirect call. 1366 auto PtrVT = getPointerTy(MF.getDataLayout()); 1367 if (CallConv == CallingConv::Swift) { 1368 if (!HasSwiftSelfArg) { 1369 MFI->addParam(PtrVT); 1370 } 1371 if (!HasSwiftErrorArg) { 1372 MFI->addParam(PtrVT); 1373 } 1374 } 1375 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1376 // the buffer is passed as an argument. 1377 if (IsVarArg) { 1378 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1379 Register VarargVreg = 1380 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1381 MFI->setVarargBufferVreg(VarargVreg); 1382 Chain = DAG.getCopyToReg( 1383 Chain, DL, VarargVreg, 1384 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1385 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1386 MFI->addParam(PtrVT); 1387 } 1388 1389 // Record the number and types of arguments and results. 1390 SmallVector<MVT, 4> Params; 1391 SmallVector<MVT, 4> Results; 1392 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1393 MF.getFunction(), DAG.getTarget(), Params, Results); 1394 for (MVT VT : Results) 1395 MFI->addResult(VT); 1396 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1397 // the param logic here with ComputeSignatureVTs 1398 assert(MFI->getParams().size() == Params.size() && 1399 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1400 Params.begin())); 1401 1402 return Chain; 1403 } 1404 1405 void WebAssemblyTargetLowering::ReplaceNodeResults( 1406 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1407 switch (N->getOpcode()) { 1408 case ISD::SIGN_EXTEND_INREG: 1409 // Do not add any results, signifying that N should not be custom lowered 1410 // after all. This happens because simd128 turns on custom lowering for 1411 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1412 // illegal type. 1413 break; 1414 case ISD::SIGN_EXTEND_VECTOR_INREG: 1415 case ISD::ZERO_EXTEND_VECTOR_INREG: 1416 // Do not add any results, signifying that N should not be custom lowered. 1417 // EXTEND_VECTOR_INREG is implemented for some vectors, but not all. 1418 break; 1419 default: 1420 llvm_unreachable( 1421 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1422 } 1423 } 1424 1425 //===----------------------------------------------------------------------===// 1426 // Custom lowering hooks. 1427 //===----------------------------------------------------------------------===// 1428 1429 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1430 SelectionDAG &DAG) const { 1431 SDLoc DL(Op); 1432 switch (Op.getOpcode()) { 1433 default: 1434 llvm_unreachable("unimplemented operation lowering"); 1435 return SDValue(); 1436 case ISD::FrameIndex: 1437 return LowerFrameIndex(Op, DAG); 1438 case ISD::GlobalAddress: 1439 return LowerGlobalAddress(Op, DAG); 1440 case ISD::GlobalTLSAddress: 1441 return LowerGlobalTLSAddress(Op, DAG); 1442 case ISD::ExternalSymbol: 1443 return LowerExternalSymbol(Op, DAG); 1444 case ISD::JumpTable: 1445 return LowerJumpTable(Op, DAG); 1446 case ISD::BR_JT: 1447 return LowerBR_JT(Op, DAG); 1448 case ISD::VASTART: 1449 return LowerVASTART(Op, DAG); 1450 case ISD::BlockAddress: 1451 case ISD::BRIND: 1452 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1453 return SDValue(); 1454 case ISD::RETURNADDR: 1455 return LowerRETURNADDR(Op, DAG); 1456 case ISD::FRAMEADDR: 1457 return LowerFRAMEADDR(Op, DAG); 1458 case ISD::CopyToReg: 1459 return LowerCopyToReg(Op, DAG); 1460 case ISD::EXTRACT_VECTOR_ELT: 1461 case ISD::INSERT_VECTOR_ELT: 1462 return LowerAccessVectorElement(Op, DAG); 1463 case ISD::INTRINSIC_VOID: 1464 case ISD::INTRINSIC_WO_CHAIN: 1465 case ISD::INTRINSIC_W_CHAIN: 1466 return LowerIntrinsic(Op, DAG); 1467 case ISD::SIGN_EXTEND_INREG: 1468 return LowerSIGN_EXTEND_INREG(Op, DAG); 1469 case ISD::ZERO_EXTEND_VECTOR_INREG: 1470 case ISD::SIGN_EXTEND_VECTOR_INREG: 1471 return LowerEXTEND_VECTOR_INREG(Op, DAG); 1472 case ISD::BUILD_VECTOR: 1473 return LowerBUILD_VECTOR(Op, DAG); 1474 case ISD::VECTOR_SHUFFLE: 1475 return LowerVECTOR_SHUFFLE(Op, DAG); 1476 case ISD::SETCC: 1477 return LowerSETCC(Op, DAG); 1478 case ISD::SHL: 1479 case ISD::SRA: 1480 case ISD::SRL: 1481 return LowerShift(Op, DAG); 1482 case ISD::FP_TO_SINT_SAT: 1483 case ISD::FP_TO_UINT_SAT: 1484 return LowerFP_TO_INT_SAT(Op, DAG); 1485 case ISD::LOAD: 1486 return LowerLoad(Op, DAG); 1487 case ISD::STORE: 1488 return LowerStore(Op, DAG); 1489 case ISD::CTPOP: 1490 case ISD::CTLZ: 1491 case ISD::CTTZ: 1492 return DAG.UnrollVectorOp(Op.getNode()); 1493 } 1494 } 1495 1496 static bool IsWebAssemblyGlobal(SDValue Op) { 1497 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1498 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1499 1500 return false; 1501 } 1502 1503 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op, 1504 SelectionDAG &DAG) { 1505 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1506 if (!FI) 1507 return std::nullopt; 1508 1509 auto &MF = DAG.getMachineFunction(); 1510 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1511 } 1512 1513 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1514 SelectionDAG &DAG) const { 1515 SDLoc DL(Op); 1516 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1517 const SDValue &Value = SN->getValue(); 1518 const SDValue &Base = SN->getBasePtr(); 1519 const SDValue &Offset = SN->getOffset(); 1520 1521 if (IsWebAssemblyGlobal(Base)) { 1522 if (!Offset->isUndef()) 1523 report_fatal_error("unexpected offset when storing to webassembly global", 1524 false); 1525 1526 SDVTList Tys = DAG.getVTList(MVT::Other); 1527 SDValue Ops[] = {SN->getChain(), Value, Base}; 1528 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1529 SN->getMemoryVT(), SN->getMemOperand()); 1530 } 1531 1532 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1533 if (!Offset->isUndef()) 1534 report_fatal_error("unexpected offset when storing to webassembly local", 1535 false); 1536 1537 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1538 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1539 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1540 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1541 } 1542 1543 if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace())) 1544 report_fatal_error( 1545 "Encountered an unlowerable store to the wasm_var address space", 1546 false); 1547 1548 return Op; 1549 } 1550 1551 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1552 SelectionDAG &DAG) const { 1553 SDLoc DL(Op); 1554 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1555 const SDValue &Base = LN->getBasePtr(); 1556 const SDValue &Offset = LN->getOffset(); 1557 1558 if (IsWebAssemblyGlobal(Base)) { 1559 if (!Offset->isUndef()) 1560 report_fatal_error( 1561 "unexpected offset when loading from webassembly global", false); 1562 1563 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1564 SDValue Ops[] = {LN->getChain(), Base}; 1565 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1566 LN->getMemoryVT(), LN->getMemOperand()); 1567 } 1568 1569 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1570 if (!Offset->isUndef()) 1571 report_fatal_error( 1572 "unexpected offset when loading from webassembly local", false); 1573 1574 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1575 EVT LocalVT = LN->getValueType(0); 1576 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1577 {LN->getChain(), Idx}); 1578 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1579 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1580 return Result; 1581 } 1582 1583 if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace())) 1584 report_fatal_error( 1585 "Encountered an unlowerable load from the wasm_var address space", 1586 false); 1587 1588 return Op; 1589 } 1590 1591 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1592 SelectionDAG &DAG) const { 1593 SDValue Src = Op.getOperand(2); 1594 if (isa<FrameIndexSDNode>(Src.getNode())) { 1595 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1596 // the FI to some LEA-like instruction, but since we don't have that, we 1597 // need to insert some kind of instruction that can take an FI operand and 1598 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1599 // local.copy between Op and its FI operand. 1600 SDValue Chain = Op.getOperand(0); 1601 SDLoc DL(Op); 1602 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1603 EVT VT = Src.getValueType(); 1604 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1605 : WebAssembly::COPY_I64, 1606 DL, VT, Src), 1607 0); 1608 return Op.getNode()->getNumValues() == 1 1609 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1610 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1611 Op.getNumOperands() == 4 ? Op.getOperand(3) 1612 : SDValue()); 1613 } 1614 return SDValue(); 1615 } 1616 1617 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1618 SelectionDAG &DAG) const { 1619 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1620 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1621 } 1622 1623 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1624 SelectionDAG &DAG) const { 1625 SDLoc DL(Op); 1626 1627 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1628 fail(DL, DAG, 1629 "Non-Emscripten WebAssembly hasn't implemented " 1630 "__builtin_return_address"); 1631 return SDValue(); 1632 } 1633 1634 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1635 return SDValue(); 1636 1637 unsigned Depth = Op.getConstantOperandVal(0); 1638 MakeLibCallOptions CallOptions; 1639 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1640 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1641 .first; 1642 } 1643 1644 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1645 SelectionDAG &DAG) const { 1646 // Non-zero depths are not supported by WebAssembly currently. Use the 1647 // legalizer's default expansion, which is to return 0 (what this function is 1648 // documented to do). 1649 if (Op.getConstantOperandVal(0) > 0) 1650 return SDValue(); 1651 1652 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1653 EVT VT = Op.getValueType(); 1654 Register FP = 1655 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1656 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1657 } 1658 1659 SDValue 1660 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1661 SelectionDAG &DAG) const { 1662 SDLoc DL(Op); 1663 const auto *GA = cast<GlobalAddressSDNode>(Op); 1664 1665 MachineFunction &MF = DAG.getMachineFunction(); 1666 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1667 report_fatal_error("cannot use thread-local storage without bulk memory", 1668 false); 1669 1670 const GlobalValue *GV = GA->getGlobal(); 1671 1672 // Currently only Emscripten supports dynamic linking with threads. Therefore, 1673 // on other targets, if we have thread-local storage, only the local-exec 1674 // model is possible. 1675 auto model = Subtarget->getTargetTriple().isOSEmscripten() 1676 ? GV->getThreadLocalMode() 1677 : GlobalValue::LocalExecTLSModel; 1678 1679 // Unsupported TLS modes 1680 assert(model != GlobalValue::NotThreadLocal); 1681 assert(model != GlobalValue::InitialExecTLSModel); 1682 1683 if (model == GlobalValue::LocalExecTLSModel || 1684 model == GlobalValue::LocalDynamicTLSModel || 1685 (model == GlobalValue::GeneralDynamicTLSModel && 1686 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1687 // For DSO-local TLS variables we use offset from __tls_base 1688 1689 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1690 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1691 : WebAssembly::GLOBAL_GET_I32; 1692 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1693 1694 SDValue BaseAddr( 1695 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1696 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1697 0); 1698 1699 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1700 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1701 SDValue SymOffset = 1702 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1703 1704 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1705 } 1706 1707 assert(model == GlobalValue::GeneralDynamicTLSModel); 1708 1709 EVT VT = Op.getValueType(); 1710 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1711 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1712 GA->getOffset(), 1713 WebAssemblyII::MO_GOT_TLS)); 1714 } 1715 1716 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1717 SelectionDAG &DAG) const { 1718 SDLoc DL(Op); 1719 const auto *GA = cast<GlobalAddressSDNode>(Op); 1720 EVT VT = Op.getValueType(); 1721 assert(GA->getTargetFlags() == 0 && 1722 "Unexpected target flags on generic GlobalAddressSDNode"); 1723 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1724 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1725 1726 unsigned OperandFlags = 0; 1727 const GlobalValue *GV = GA->getGlobal(); 1728 // Since WebAssembly tables cannot yet be shared accross modules, we don't 1729 // need special treatment for tables in PIC mode. 1730 if (isPositionIndependent() && 1731 !WebAssembly::isWebAssemblyTableType(GV->getValueType())) { 1732 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1733 MachineFunction &MF = DAG.getMachineFunction(); 1734 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1735 const char *BaseName; 1736 if (GV->getValueType()->isFunctionTy()) { 1737 BaseName = MF.createExternalSymbolName("__table_base"); 1738 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1739 } else { 1740 BaseName = MF.createExternalSymbolName("__memory_base"); 1741 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1742 } 1743 SDValue BaseAddr = 1744 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1745 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1746 1747 SDValue SymAddr = DAG.getNode( 1748 WebAssemblyISD::WrapperREL, DL, VT, 1749 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1750 OperandFlags)); 1751 1752 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1753 } 1754 OperandFlags = WebAssemblyII::MO_GOT; 1755 } 1756 1757 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1758 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1759 GA->getOffset(), OperandFlags)); 1760 } 1761 1762 SDValue 1763 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1764 SelectionDAG &DAG) const { 1765 SDLoc DL(Op); 1766 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1767 EVT VT = Op.getValueType(); 1768 assert(ES->getTargetFlags() == 0 && 1769 "Unexpected target flags on generic ExternalSymbolSDNode"); 1770 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1771 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1772 } 1773 1774 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1775 SelectionDAG &DAG) const { 1776 // There's no need for a Wrapper node because we always incorporate a jump 1777 // table operand into a BR_TABLE instruction, rather than ever 1778 // materializing it in a register. 1779 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1780 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1781 JT->getTargetFlags()); 1782 } 1783 1784 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1785 SelectionDAG &DAG) const { 1786 SDLoc DL(Op); 1787 SDValue Chain = Op.getOperand(0); 1788 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1789 SDValue Index = Op.getOperand(2); 1790 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1791 1792 SmallVector<SDValue, 8> Ops; 1793 Ops.push_back(Chain); 1794 Ops.push_back(Index); 1795 1796 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1797 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1798 1799 // Add an operand for each case. 1800 for (auto *MBB : MBBs) 1801 Ops.push_back(DAG.getBasicBlock(MBB)); 1802 1803 // Add the first MBB as a dummy default target for now. This will be replaced 1804 // with the proper default target (and the preceding range check eliminated) 1805 // if possible by WebAssemblyFixBrTableDefaults. 1806 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1807 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1808 } 1809 1810 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1811 SelectionDAG &DAG) const { 1812 SDLoc DL(Op); 1813 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1814 1815 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1816 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1817 1818 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1819 MFI->getVarargBufferVreg(), PtrVT); 1820 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1821 MachinePointerInfo(SV)); 1822 } 1823 1824 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1825 SelectionDAG &DAG) const { 1826 MachineFunction &MF = DAG.getMachineFunction(); 1827 unsigned IntNo; 1828 switch (Op.getOpcode()) { 1829 case ISD::INTRINSIC_VOID: 1830 case ISD::INTRINSIC_W_CHAIN: 1831 IntNo = Op.getConstantOperandVal(1); 1832 break; 1833 case ISD::INTRINSIC_WO_CHAIN: 1834 IntNo = Op.getConstantOperandVal(0); 1835 break; 1836 default: 1837 llvm_unreachable("Invalid intrinsic"); 1838 } 1839 SDLoc DL(Op); 1840 1841 switch (IntNo) { 1842 default: 1843 return SDValue(); // Don't custom lower most intrinsics. 1844 1845 case Intrinsic::wasm_lsda: { 1846 auto PtrVT = getPointerTy(MF.getDataLayout()); 1847 const char *SymName = MF.createExternalSymbolName( 1848 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1849 if (isPositionIndependent()) { 1850 SDValue Node = DAG.getTargetExternalSymbol( 1851 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1852 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1853 SDValue BaseAddr = 1854 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1855 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1856 SDValue SymAddr = 1857 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1858 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1859 } 1860 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1861 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1862 } 1863 1864 case Intrinsic::wasm_shuffle: { 1865 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1866 SDValue Ops[18]; 1867 size_t OpIdx = 0; 1868 Ops[OpIdx++] = Op.getOperand(1); 1869 Ops[OpIdx++] = Op.getOperand(2); 1870 while (OpIdx < 18) { 1871 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1872 if (MaskIdx.isUndef() || MaskIdx.getNode()->getAsZExtVal() >= 32) { 1873 bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant; 1874 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget); 1875 } else { 1876 Ops[OpIdx++] = MaskIdx; 1877 } 1878 } 1879 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1880 } 1881 } 1882 } 1883 1884 SDValue 1885 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1886 SelectionDAG &DAG) const { 1887 SDLoc DL(Op); 1888 // If sign extension operations are disabled, allow sext_inreg only if operand 1889 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1890 // extension operations, but allowing sext_inreg in this context lets us have 1891 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1892 // everywhere would be simpler in this file, but would necessitate large and 1893 // brittle patterns to undo the expansion and select extract_lane_s 1894 // instructions. 1895 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1896 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1897 return SDValue(); 1898 1899 const SDValue &Extract = Op.getOperand(0); 1900 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1901 if (VecT.getVectorElementType().getSizeInBits() > 32) 1902 return SDValue(); 1903 MVT ExtractedLaneT = 1904 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1905 MVT ExtractedVecT = 1906 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1907 if (ExtractedVecT == VecT) 1908 return Op; 1909 1910 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1911 const SDNode *Index = Extract.getOperand(1).getNode(); 1912 if (!isa<ConstantSDNode>(Index)) 1913 return SDValue(); 1914 unsigned IndexVal = Index->getAsZExtVal(); 1915 unsigned Scale = 1916 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1917 assert(Scale > 1); 1918 SDValue NewIndex = 1919 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1920 SDValue NewExtract = DAG.getNode( 1921 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1922 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1923 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1924 Op.getOperand(1)); 1925 } 1926 1927 SDValue 1928 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op, 1929 SelectionDAG &DAG) const { 1930 SDLoc DL(Op); 1931 EVT VT = Op.getValueType(); 1932 SDValue Src = Op.getOperand(0); 1933 EVT SrcVT = Src.getValueType(); 1934 1935 if (SrcVT.getVectorElementType() == MVT::i1 || 1936 SrcVT.getVectorElementType() == MVT::i64) 1937 return SDValue(); 1938 1939 assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 && 1940 "Unexpected extension factor."); 1941 unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits(); 1942 1943 if (Scale != 2 && Scale != 4 && Scale != 8) 1944 return SDValue(); 1945 1946 unsigned Ext; 1947 switch (Op.getOpcode()) { 1948 case ISD::ZERO_EXTEND_VECTOR_INREG: 1949 Ext = WebAssemblyISD::EXTEND_LOW_U; 1950 break; 1951 case ISD::SIGN_EXTEND_VECTOR_INREG: 1952 Ext = WebAssemblyISD::EXTEND_LOW_S; 1953 break; 1954 } 1955 1956 SDValue Ret = Src; 1957 while (Scale != 1) { 1958 Ret = DAG.getNode(Ext, DL, 1959 Ret.getValueType() 1960 .widenIntegerVectorElementType(*DAG.getContext()) 1961 .getHalfNumVectorElementsVT(*DAG.getContext()), 1962 Ret); 1963 Scale /= 2; 1964 } 1965 assert(Ret.getValueType() == VT); 1966 return Ret; 1967 } 1968 1969 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1970 SDLoc DL(Op); 1971 if (Op.getValueType() != MVT::v2f64) 1972 return SDValue(); 1973 1974 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1975 unsigned &Index) -> bool { 1976 switch (Op.getOpcode()) { 1977 case ISD::SINT_TO_FP: 1978 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1979 break; 1980 case ISD::UINT_TO_FP: 1981 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1982 break; 1983 case ISD::FP_EXTEND: 1984 Opcode = WebAssemblyISD::PROMOTE_LOW; 1985 break; 1986 default: 1987 return false; 1988 } 1989 1990 auto ExtractVector = Op.getOperand(0); 1991 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1992 return false; 1993 1994 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 1995 return false; 1996 1997 SrcVec = ExtractVector.getOperand(0); 1998 Index = ExtractVector.getConstantOperandVal(1); 1999 return true; 2000 }; 2001 2002 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 2003 SDValue LHSSrcVec, RHSSrcVec; 2004 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 2005 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 2006 return SDValue(); 2007 2008 if (LHSOpcode != RHSOpcode) 2009 return SDValue(); 2010 2011 MVT ExpectedSrcVT; 2012 switch (LHSOpcode) { 2013 case WebAssemblyISD::CONVERT_LOW_S: 2014 case WebAssemblyISD::CONVERT_LOW_U: 2015 ExpectedSrcVT = MVT::v4i32; 2016 break; 2017 case WebAssemblyISD::PROMOTE_LOW: 2018 ExpectedSrcVT = MVT::v4f32; 2019 break; 2020 } 2021 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2022 return SDValue(); 2023 2024 auto Src = LHSSrcVec; 2025 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2026 // Shuffle the source vector so that the converted lanes are the low lanes. 2027 Src = DAG.getVectorShuffle( 2028 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2029 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2030 } 2031 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2032 } 2033 2034 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2035 SelectionDAG &DAG) const { 2036 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2037 return ConvertLow; 2038 2039 SDLoc DL(Op); 2040 const EVT VecT = Op.getValueType(); 2041 const EVT LaneT = Op.getOperand(0).getValueType(); 2042 const size_t Lanes = Op.getNumOperands(); 2043 bool CanSwizzle = VecT == MVT::v16i8; 2044 2045 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2046 // possible number of lanes at once followed by a sequence of replace_lane 2047 // instructions to individually initialize any remaining lanes. 2048 2049 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2050 // swizzled lanes should be given greater weight. 2051 2052 // TODO: Investigate looping rather than always extracting/replacing specific 2053 // lanes to fill gaps. 2054 2055 auto IsConstant = [](const SDValue &V) { 2056 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2057 }; 2058 2059 // Returns the source vector and index vector pair if they exist. Checks for: 2060 // (extract_vector_elt 2061 // $src, 2062 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2063 // ) 2064 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2065 auto Bail = std::make_pair(SDValue(), SDValue()); 2066 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2067 return Bail; 2068 const SDValue &SwizzleSrc = Lane->getOperand(0); 2069 const SDValue &IndexExt = Lane->getOperand(1); 2070 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2071 return Bail; 2072 const SDValue &Index = IndexExt->getOperand(0); 2073 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2074 return Bail; 2075 const SDValue &SwizzleIndices = Index->getOperand(0); 2076 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2077 SwizzleIndices.getValueType() != MVT::v16i8 || 2078 Index->getOperand(1)->getOpcode() != ISD::Constant || 2079 Index->getConstantOperandVal(1) != I) 2080 return Bail; 2081 return std::make_pair(SwizzleSrc, SwizzleIndices); 2082 }; 2083 2084 // If the lane is extracted from another vector at a constant index, return 2085 // that vector. The source vector must not have more lanes than the dest 2086 // because the shufflevector indices are in terms of the destination lanes and 2087 // would not be able to address the smaller individual source lanes. 2088 auto GetShuffleSrc = [&](const SDValue &Lane) { 2089 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2090 return SDValue(); 2091 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2092 return SDValue(); 2093 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2094 VecT.getVectorNumElements()) 2095 return SDValue(); 2096 return Lane->getOperand(0); 2097 }; 2098 2099 using ValueEntry = std::pair<SDValue, size_t>; 2100 SmallVector<ValueEntry, 16> SplatValueCounts; 2101 2102 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2103 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2104 2105 using ShuffleEntry = std::pair<SDValue, size_t>; 2106 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2107 2108 auto AddCount = [](auto &Counts, const auto &Val) { 2109 auto CountIt = 2110 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2111 if (CountIt == Counts.end()) { 2112 Counts.emplace_back(Val, 1); 2113 } else { 2114 CountIt->second++; 2115 } 2116 }; 2117 2118 auto GetMostCommon = [](auto &Counts) { 2119 auto CommonIt = 2120 std::max_element(Counts.begin(), Counts.end(), llvm::less_second()); 2121 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2122 return *CommonIt; 2123 }; 2124 2125 size_t NumConstantLanes = 0; 2126 2127 // Count eligible lanes for each type of vector creation op 2128 for (size_t I = 0; I < Lanes; ++I) { 2129 const SDValue &Lane = Op->getOperand(I); 2130 if (Lane.isUndef()) 2131 continue; 2132 2133 AddCount(SplatValueCounts, Lane); 2134 2135 if (IsConstant(Lane)) 2136 NumConstantLanes++; 2137 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2138 AddCount(ShuffleCounts, ShuffleSrc); 2139 if (CanSwizzle) { 2140 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2141 if (SwizzleSrcs.first) 2142 AddCount(SwizzleCounts, SwizzleSrcs); 2143 } 2144 } 2145 2146 SDValue SplatValue; 2147 size_t NumSplatLanes; 2148 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2149 2150 SDValue SwizzleSrc; 2151 SDValue SwizzleIndices; 2152 size_t NumSwizzleLanes = 0; 2153 if (SwizzleCounts.size()) 2154 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2155 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2156 2157 // Shuffles can draw from up to two vectors, so find the two most common 2158 // sources. 2159 SDValue ShuffleSrc1, ShuffleSrc2; 2160 size_t NumShuffleLanes = 0; 2161 if (ShuffleCounts.size()) { 2162 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2163 llvm::erase_if(ShuffleCounts, 2164 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2165 } 2166 if (ShuffleCounts.size()) { 2167 size_t AdditionalShuffleLanes; 2168 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2169 GetMostCommon(ShuffleCounts); 2170 NumShuffleLanes += AdditionalShuffleLanes; 2171 } 2172 2173 // Predicate returning true if the lane is properly initialized by the 2174 // original instruction 2175 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2176 SDValue Result; 2177 // Prefer swizzles over shuffles over vector consts over splats 2178 if (NumSwizzleLanes >= NumShuffleLanes && 2179 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2180 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2181 SwizzleIndices); 2182 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2183 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2184 return Swizzled == GetSwizzleSrcs(I, Lane); 2185 }; 2186 } else if (NumShuffleLanes >= NumConstantLanes && 2187 NumShuffleLanes >= NumSplatLanes) { 2188 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2189 size_t DestLaneCount = VecT.getVectorNumElements(); 2190 size_t Scale1 = 1; 2191 size_t Scale2 = 1; 2192 SDValue Src1 = ShuffleSrc1; 2193 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2194 if (Src1.getValueType() != VecT) { 2195 size_t LaneSize = 2196 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2197 assert(LaneSize > DestLaneSize); 2198 Scale1 = LaneSize / DestLaneSize; 2199 Src1 = DAG.getBitcast(VecT, Src1); 2200 } 2201 if (Src2.getValueType() != VecT) { 2202 size_t LaneSize = 2203 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2204 assert(LaneSize > DestLaneSize); 2205 Scale2 = LaneSize / DestLaneSize; 2206 Src2 = DAG.getBitcast(VecT, Src2); 2207 } 2208 2209 int Mask[16]; 2210 assert(DestLaneCount <= 16); 2211 for (size_t I = 0; I < DestLaneCount; ++I) { 2212 const SDValue &Lane = Op->getOperand(I); 2213 SDValue Src = GetShuffleSrc(Lane); 2214 if (Src == ShuffleSrc1) { 2215 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2216 } else if (Src && Src == ShuffleSrc2) { 2217 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2218 } else { 2219 Mask[I] = -1; 2220 } 2221 } 2222 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2223 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2224 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2225 auto Src = GetShuffleSrc(Lane); 2226 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2227 }; 2228 } else if (NumConstantLanes >= NumSplatLanes) { 2229 SmallVector<SDValue, 16> ConstLanes; 2230 for (const SDValue &Lane : Op->op_values()) { 2231 if (IsConstant(Lane)) { 2232 // Values may need to be fixed so that they will sign extend to be 2233 // within the expected range during ISel. Check whether the value is in 2234 // bounds based on the lane bit width and if it is out of bounds, lop 2235 // off the extra bits and subtract 2^n to reflect giving the high bit 2236 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2237 // cannot possibly be out of range. 2238 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2239 int64_t Val = Const ? Const->getSExtValue() : 0; 2240 uint64_t LaneBits = 128 / Lanes; 2241 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2242 "Unexpected out of bounds negative value"); 2243 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2244 uint64_t Mask = (1ll << LaneBits) - 1; 2245 auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask; 2246 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2247 } else { 2248 ConstLanes.push_back(Lane); 2249 } 2250 } else if (LaneT.isFloatingPoint()) { 2251 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2252 } else { 2253 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2254 } 2255 } 2256 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2257 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2258 return IsConstant(Lane); 2259 }; 2260 } else { 2261 // Use a splat (which might be selected as a load splat) 2262 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2263 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2264 return Lane == SplatValue; 2265 }; 2266 } 2267 2268 assert(Result); 2269 assert(IsLaneConstructed); 2270 2271 // Add replace_lane instructions for any unhandled values 2272 for (size_t I = 0; I < Lanes; ++I) { 2273 const SDValue &Lane = Op->getOperand(I); 2274 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2275 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2276 DAG.getConstant(I, DL, MVT::i32)); 2277 } 2278 2279 return Result; 2280 } 2281 2282 SDValue 2283 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2284 SelectionDAG &DAG) const { 2285 SDLoc DL(Op); 2286 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2287 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2288 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2289 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2290 2291 // Space for two vector args and sixteen mask indices 2292 SDValue Ops[18]; 2293 size_t OpIdx = 0; 2294 Ops[OpIdx++] = Op.getOperand(0); 2295 Ops[OpIdx++] = Op.getOperand(1); 2296 2297 // Expand mask indices to byte indices and materialize them as operands 2298 for (int M : Mask) { 2299 for (size_t J = 0; J < LaneBytes; ++J) { 2300 // Lower undefs (represented by -1 in mask) to {0..J}, which use a 2301 // whole lane of vector input, to allow further reduction at VM. E.g. 2302 // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle. 2303 uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J; 2304 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2305 } 2306 } 2307 2308 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2309 } 2310 2311 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2312 SelectionDAG &DAG) const { 2313 SDLoc DL(Op); 2314 // The legalizer does not know how to expand the unsupported comparison modes 2315 // of i64x2 vectors, so we manually unroll them here. 2316 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2317 SmallVector<SDValue, 2> LHS, RHS; 2318 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2319 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2320 const SDValue &CC = Op->getOperand(2); 2321 auto MakeLane = [&](unsigned I) { 2322 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2323 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2324 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2325 }; 2326 return DAG.getBuildVector(Op->getValueType(0), DL, 2327 {MakeLane(0), MakeLane(1)}); 2328 } 2329 2330 SDValue 2331 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2332 SelectionDAG &DAG) const { 2333 // Allow constant lane indices, expand variable lane indices 2334 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2335 if (isa<ConstantSDNode>(IdxNode)) { 2336 // Ensure the index type is i32 to match the tablegen patterns 2337 uint64_t Idx = IdxNode->getAsZExtVal(); 2338 SmallVector<SDValue, 3> Ops(Op.getNode()->ops()); 2339 Ops[Op.getNumOperands() - 1] = 2340 DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32); 2341 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops); 2342 } 2343 // Perform default expansion 2344 return SDValue(); 2345 } 2346 2347 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2348 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2349 // 32-bit and 64-bit unrolled shifts will have proper semantics 2350 if (LaneT.bitsGE(MVT::i32)) 2351 return DAG.UnrollVectorOp(Op.getNode()); 2352 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2353 SDLoc DL(Op); 2354 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2355 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2356 unsigned ShiftOpcode = Op.getOpcode(); 2357 SmallVector<SDValue, 16> ShiftedElements; 2358 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2359 SmallVector<SDValue, 16> ShiftElements; 2360 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2361 SmallVector<SDValue, 16> UnrolledOps; 2362 for (size_t i = 0; i < NumLanes; ++i) { 2363 SDValue MaskedShiftValue = 2364 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2365 SDValue ShiftedValue = ShiftedElements[i]; 2366 if (ShiftOpcode == ISD::SRA) 2367 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2368 ShiftedValue, DAG.getValueType(LaneT)); 2369 UnrolledOps.push_back( 2370 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2371 } 2372 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2373 } 2374 2375 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2376 SelectionDAG &DAG) const { 2377 SDLoc DL(Op); 2378 2379 // Only manually lower vector shifts 2380 assert(Op.getSimpleValueType().isVector()); 2381 2382 uint64_t LaneBits = Op.getValueType().getScalarSizeInBits(); 2383 auto ShiftVal = Op.getOperand(1); 2384 2385 // Try to skip bitmask operation since it is implied inside shift instruction 2386 auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) { 2387 if (MaskOp.getOpcode() != ISD::AND) 2388 return MaskOp; 2389 SDValue LHS = MaskOp.getOperand(0); 2390 SDValue RHS = MaskOp.getOperand(1); 2391 if (MaskOp.getValueType().isVector()) { 2392 APInt MaskVal; 2393 if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal)) 2394 std::swap(LHS, RHS); 2395 2396 if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) && 2397 MaskVal == MaskBits) 2398 MaskOp = LHS; 2399 } else { 2400 if (!isa<ConstantSDNode>(RHS.getNode())) 2401 std::swap(LHS, RHS); 2402 2403 auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode()); 2404 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits) 2405 MaskOp = LHS; 2406 } 2407 2408 return MaskOp; 2409 }; 2410 2411 // Skip vector and operation 2412 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2413 ShiftVal = DAG.getSplatValue(ShiftVal); 2414 if (!ShiftVal) 2415 return unrollVectorShift(Op, DAG); 2416 2417 // Skip scalar and operation 2418 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2419 // Use anyext because none of the high bits can affect the shift 2420 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2421 2422 unsigned Opcode; 2423 switch (Op.getOpcode()) { 2424 case ISD::SHL: 2425 Opcode = WebAssemblyISD::VEC_SHL; 2426 break; 2427 case ISD::SRA: 2428 Opcode = WebAssemblyISD::VEC_SHR_S; 2429 break; 2430 case ISD::SRL: 2431 Opcode = WebAssemblyISD::VEC_SHR_U; 2432 break; 2433 default: 2434 llvm_unreachable("unexpected opcode"); 2435 } 2436 2437 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2438 } 2439 2440 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2441 SelectionDAG &DAG) const { 2442 SDLoc DL(Op); 2443 EVT ResT = Op.getValueType(); 2444 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2445 2446 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2447 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2448 return Op; 2449 2450 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2451 return Op; 2452 2453 return SDValue(); 2454 } 2455 2456 //===----------------------------------------------------------------------===// 2457 // Custom DAG combine hooks 2458 //===----------------------------------------------------------------------===// 2459 static SDValue 2460 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2461 auto &DAG = DCI.DAG; 2462 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2463 2464 // Hoist vector bitcasts that don't change the number of lanes out of unary 2465 // shuffles, where they are less likely to get in the way of other combines. 2466 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2467 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2468 SDValue Bitcast = N->getOperand(0); 2469 if (Bitcast.getOpcode() != ISD::BITCAST) 2470 return SDValue(); 2471 if (!N->getOperand(1).isUndef()) 2472 return SDValue(); 2473 SDValue CastOp = Bitcast.getOperand(0); 2474 EVT SrcType = CastOp.getValueType(); 2475 EVT DstType = Bitcast.getValueType(); 2476 if (!SrcType.is128BitVector() || 2477 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2478 return SDValue(); 2479 SDValue NewShuffle = DAG.getVectorShuffle( 2480 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2481 return DAG.getBitcast(DstType, NewShuffle); 2482 } 2483 2484 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get 2485 /// split up into scalar instructions during legalization, and the vector 2486 /// extending instructions are selected in performVectorExtendCombine below. 2487 static SDValue 2488 performVectorExtendToFPCombine(SDNode *N, 2489 TargetLowering::DAGCombinerInfo &DCI) { 2490 auto &DAG = DCI.DAG; 2491 assert(N->getOpcode() == ISD::UINT_TO_FP || 2492 N->getOpcode() == ISD::SINT_TO_FP); 2493 2494 EVT InVT = N->getOperand(0)->getValueType(0); 2495 EVT ResVT = N->getValueType(0); 2496 MVT ExtVT; 2497 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8)) 2498 ExtVT = MVT::v4i32; 2499 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8)) 2500 ExtVT = MVT::v2i32; 2501 else 2502 return SDValue(); 2503 2504 unsigned Op = 2505 N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 2506 SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0)); 2507 return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv); 2508 } 2509 2510 static SDValue 2511 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2512 auto &DAG = DCI.DAG; 2513 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2514 N->getOpcode() == ISD::ZERO_EXTEND); 2515 2516 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2517 // possible before the extract_subvector can be expanded. 2518 auto Extract = N->getOperand(0); 2519 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2520 return SDValue(); 2521 auto Source = Extract.getOperand(0); 2522 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2523 if (IndexNode == nullptr) 2524 return SDValue(); 2525 auto Index = IndexNode->getZExtValue(); 2526 2527 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2528 // extracted subvector is the low or high half of its source. 2529 EVT ResVT = N->getValueType(0); 2530 if (ResVT == MVT::v8i16) { 2531 if (Extract.getValueType() != MVT::v8i8 || 2532 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2533 return SDValue(); 2534 } else if (ResVT == MVT::v4i32) { 2535 if (Extract.getValueType() != MVT::v4i16 || 2536 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2537 return SDValue(); 2538 } else if (ResVT == MVT::v2i64) { 2539 if (Extract.getValueType() != MVT::v2i32 || 2540 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2541 return SDValue(); 2542 } else { 2543 return SDValue(); 2544 } 2545 2546 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2547 bool IsLow = Index == 0; 2548 2549 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2550 : WebAssemblyISD::EXTEND_HIGH_S) 2551 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2552 : WebAssemblyISD::EXTEND_HIGH_U); 2553 2554 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2555 } 2556 2557 static SDValue 2558 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2559 auto &DAG = DCI.DAG; 2560 2561 auto GetWasmConversionOp = [](unsigned Op) { 2562 switch (Op) { 2563 case ISD::FP_TO_SINT_SAT: 2564 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2565 case ISD::FP_TO_UINT_SAT: 2566 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2567 case ISD::FP_ROUND: 2568 return WebAssemblyISD::DEMOTE_ZERO; 2569 } 2570 llvm_unreachable("unexpected op"); 2571 }; 2572 2573 auto IsZeroSplat = [](SDValue SplatVal) { 2574 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2575 APInt SplatValue, SplatUndef; 2576 unsigned SplatBitSize; 2577 bool HasAnyUndefs; 2578 // Endianness doesn't matter in this context because we are looking for 2579 // an all-zero value. 2580 return Splat && 2581 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2582 HasAnyUndefs) && 2583 SplatValue == 0; 2584 }; 2585 2586 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2587 // Combine this: 2588 // 2589 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2590 // 2591 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2592 // 2593 // Or this: 2594 // 2595 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2596 // 2597 // into (f32x4.demote_zero_f64x2 $x). 2598 EVT ResVT; 2599 EVT ExpectedConversionType; 2600 auto Conversion = N->getOperand(0); 2601 auto ConversionOp = Conversion.getOpcode(); 2602 switch (ConversionOp) { 2603 case ISD::FP_TO_SINT_SAT: 2604 case ISD::FP_TO_UINT_SAT: 2605 ResVT = MVT::v4i32; 2606 ExpectedConversionType = MVT::v2i32; 2607 break; 2608 case ISD::FP_ROUND: 2609 ResVT = MVT::v4f32; 2610 ExpectedConversionType = MVT::v2f32; 2611 break; 2612 default: 2613 return SDValue(); 2614 } 2615 2616 if (N->getValueType(0) != ResVT) 2617 return SDValue(); 2618 2619 if (Conversion.getValueType() != ExpectedConversionType) 2620 return SDValue(); 2621 2622 auto Source = Conversion.getOperand(0); 2623 if (Source.getValueType() != MVT::v2f64) 2624 return SDValue(); 2625 2626 if (!IsZeroSplat(N->getOperand(1)) || 2627 N->getOperand(1).getValueType() != ExpectedConversionType) 2628 return SDValue(); 2629 2630 unsigned Op = GetWasmConversionOp(ConversionOp); 2631 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2632 } 2633 2634 // Combine this: 2635 // 2636 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2637 // 2638 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2639 // 2640 // Or this: 2641 // 2642 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2643 // 2644 // into (f32x4.demote_zero_f64x2 $x). 2645 EVT ResVT; 2646 auto ConversionOp = N->getOpcode(); 2647 switch (ConversionOp) { 2648 case ISD::FP_TO_SINT_SAT: 2649 case ISD::FP_TO_UINT_SAT: 2650 ResVT = MVT::v4i32; 2651 break; 2652 case ISD::FP_ROUND: 2653 ResVT = MVT::v4f32; 2654 break; 2655 default: 2656 llvm_unreachable("unexpected op"); 2657 } 2658 2659 if (N->getValueType(0) != ResVT) 2660 return SDValue(); 2661 2662 auto Concat = N->getOperand(0); 2663 if (Concat.getValueType() != MVT::v4f64) 2664 return SDValue(); 2665 2666 auto Source = Concat.getOperand(0); 2667 if (Source.getValueType() != MVT::v2f64) 2668 return SDValue(); 2669 2670 if (!IsZeroSplat(Concat.getOperand(1)) || 2671 Concat.getOperand(1).getValueType() != MVT::v2f64) 2672 return SDValue(); 2673 2674 unsigned Op = GetWasmConversionOp(ConversionOp); 2675 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2676 } 2677 2678 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2679 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2680 const SDLoc &DL, unsigned VectorWidth) { 2681 EVT VT = Vec.getValueType(); 2682 EVT ElVT = VT.getVectorElementType(); 2683 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2684 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2685 VT.getVectorNumElements() / Factor); 2686 2687 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2688 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2689 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2690 2691 // This is the index of the first element of the VectorWidth-bit chunk 2692 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2693 IdxVal &= ~(ElemsPerChunk - 1); 2694 2695 // If the input is a buildvector just emit a smaller one. 2696 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2697 return DAG.getBuildVector(ResultVT, DL, 2698 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2699 2700 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2701 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2702 } 2703 2704 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2705 // is the expected destination value type after recursion. In is the initial 2706 // input. Note that the input should have enough leading zero bits to prevent 2707 // NARROW_U from saturating results. 2708 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2709 SelectionDAG &DAG) { 2710 EVT SrcVT = In.getValueType(); 2711 2712 // No truncation required, we might get here due to recursive calls. 2713 if (SrcVT == DstVT) 2714 return In; 2715 2716 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2717 unsigned NumElems = SrcVT.getVectorNumElements(); 2718 if (!isPowerOf2_32(NumElems)) 2719 return SDValue(); 2720 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2721 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2722 2723 LLVMContext &Ctx = *DAG.getContext(); 2724 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2725 2726 // Narrow to the largest type possible: 2727 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2728 EVT InVT = MVT::i16, OutVT = MVT::i8; 2729 if (SrcVT.getScalarSizeInBits() > 16) { 2730 InVT = MVT::i32; 2731 OutVT = MVT::i16; 2732 } 2733 unsigned SubSizeInBits = SrcSizeInBits / 2; 2734 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2735 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2736 2737 // Split lower/upper subvectors. 2738 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2739 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2740 2741 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2742 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2743 Lo = DAG.getBitcast(InVT, Lo); 2744 Hi = DAG.getBitcast(InVT, Hi); 2745 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2746 return DAG.getBitcast(DstVT, Res); 2747 } 2748 2749 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2750 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2751 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2752 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2753 2754 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2755 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2756 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2757 } 2758 2759 static SDValue performTruncateCombine(SDNode *N, 2760 TargetLowering::DAGCombinerInfo &DCI) { 2761 auto &DAG = DCI.DAG; 2762 2763 SDValue In = N->getOperand(0); 2764 EVT InVT = In.getValueType(); 2765 if (!InVT.isSimple()) 2766 return SDValue(); 2767 2768 EVT OutVT = N->getValueType(0); 2769 if (!OutVT.isVector()) 2770 return SDValue(); 2771 2772 EVT OutSVT = OutVT.getVectorElementType(); 2773 EVT InSVT = InVT.getVectorElementType(); 2774 // Currently only cover truncate to v16i8 or v8i16. 2775 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 2776 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 2777 return SDValue(); 2778 2779 SDLoc DL(N); 2780 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 2781 OutVT.getScalarSizeInBits()); 2782 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 2783 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 2784 } 2785 2786 static SDValue performBitcastCombine(SDNode *N, 2787 TargetLowering::DAGCombinerInfo &DCI) { 2788 auto &DAG = DCI.DAG; 2789 SDLoc DL(N); 2790 SDValue Src = N->getOperand(0); 2791 EVT VT = N->getValueType(0); 2792 EVT SrcVT = Src.getValueType(); 2793 2794 // bitcast <N x i1> to iN 2795 // ==> bitmask 2796 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 2797 SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) { 2798 unsigned NumElts = SrcVT.getVectorNumElements(); 2799 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2800 return SDValue(); 2801 EVT Width = MVT::getIntegerVT(128 / NumElts); 2802 return DAG.getZExtOrTrunc( 2803 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 2804 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32), 2805 DAG.getSExtOrTrunc(N->getOperand(0), DL, 2806 SrcVT.changeVectorElementType(Width))}), 2807 DL, VT); 2808 } 2809 2810 return SDValue(); 2811 } 2812 2813 static SDValue performSETCCCombine(SDNode *N, 2814 TargetLowering::DAGCombinerInfo &DCI) { 2815 auto &DAG = DCI.DAG; 2816 2817 SDValue LHS = N->getOperand(0); 2818 SDValue RHS = N->getOperand(1); 2819 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2820 SDLoc DL(N); 2821 EVT VT = N->getValueType(0); 2822 2823 // setcc (iN (bitcast (vNi1 X))), 0, ne 2824 // ==> any_true (vNi1 X) 2825 // setcc (iN (bitcast (vNi1 X))), 0, eq 2826 // ==> xor (any_true (vNi1 X)), -1 2827 // setcc (iN (bitcast (vNi1 X))), -1, eq 2828 // ==> all_true (vNi1 X) 2829 // setcc (iN (bitcast (vNi1 X))), -1, ne 2830 // ==> xor (all_true (vNi1 X)), -1 2831 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 2832 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2833 (isNullConstant(RHS) || isAllOnesConstant(RHS)) && 2834 LHS->getOpcode() == ISD::BITCAST) { 2835 EVT FromVT = LHS->getOperand(0).getValueType(); 2836 if (FromVT.isFixedLengthVector() && 2837 FromVT.getVectorElementType() == MVT::i1) { 2838 int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue 2839 : Intrinsic::wasm_alltrue; 2840 unsigned NumElts = FromVT.getVectorNumElements(); 2841 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2842 return SDValue(); 2843 EVT Width = MVT::getIntegerVT(128 / NumElts); 2844 SDValue Ret = DAG.getZExtOrTrunc( 2845 DAG.getNode( 2846 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 2847 {DAG.getConstant(Intrin, DL, MVT::i32), 2848 DAG.getSExtOrTrunc(LHS->getOperand(0), DL, 2849 FromVT.changeVectorElementType(Width))}), 2850 DL, MVT::i1); 2851 if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) || 2852 (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) { 2853 Ret = DAG.getNOT(DL, Ret, MVT::i1); 2854 } 2855 return DAG.getZExtOrTrunc(Ret, DL, VT); 2856 } 2857 } 2858 2859 return SDValue(); 2860 } 2861 2862 SDValue 2863 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2864 DAGCombinerInfo &DCI) const { 2865 switch (N->getOpcode()) { 2866 default: 2867 return SDValue(); 2868 case ISD::BITCAST: 2869 return performBitcastCombine(N, DCI); 2870 case ISD::SETCC: 2871 return performSETCCCombine(N, DCI); 2872 case ISD::VECTOR_SHUFFLE: 2873 return performVECTOR_SHUFFLECombine(N, DCI); 2874 case ISD::SIGN_EXTEND: 2875 case ISD::ZERO_EXTEND: 2876 return performVectorExtendCombine(N, DCI); 2877 case ISD::UINT_TO_FP: 2878 case ISD::SINT_TO_FP: 2879 return performVectorExtendToFPCombine(N, DCI); 2880 case ISD::FP_TO_SINT_SAT: 2881 case ISD::FP_TO_UINT_SAT: 2882 case ISD::FP_ROUND: 2883 case ISD::CONCAT_VECTORS: 2884 return performVectorTruncZeroCombine(N, DCI); 2885 case ISD::TRUNCATE: 2886 return performTruncateCombine(N, DCI); 2887 } 2888 } 2889