1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/WasmEHFuncInfo.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicsWebAssembly.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetOptions.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-lower" 42 43 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 44 const TargetMachine &TM, const WebAssemblySubtarget &STI) 45 : TargetLowering(TM), Subtarget(&STI) { 46 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 47 48 // Booleans always contain 0 or 1. 49 setBooleanContents(ZeroOrOneBooleanContent); 50 // Except in SIMD vectors 51 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 52 // We don't know the microarchitecture here, so just reduce register pressure. 53 setSchedulingPreference(Sched::RegPressure); 54 // Tell ISel that we have a stack pointer. 55 setStackPointerRegisterToSaveRestore( 56 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 57 // Set up the register classes. 58 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 59 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 60 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 61 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 62 if (Subtarget->hasSIMD128()) { 63 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 69 } 70 if (Subtarget->hasReferenceTypes()) { 71 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 72 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 73 } 74 // Compute derived properties from the register classes. 75 computeRegisterProperties(Subtarget->getRegisterInfo()); 76 77 // Transform loads and stores to pointers in address space 1 to loads and 78 // stores to WebAssembly global variables, outside linear memory. 79 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 80 setOperationAction(ISD::LOAD, T, Custom); 81 setOperationAction(ISD::STORE, T, Custom); 82 } 83 if (Subtarget->hasSIMD128()) { 84 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 85 MVT::v2f64}) { 86 setOperationAction(ISD::LOAD, T, Custom); 87 setOperationAction(ISD::STORE, T, Custom); 88 } 89 } 90 if (Subtarget->hasReferenceTypes()) { 91 for (auto T : {MVT::externref, MVT::funcref}) { 92 setOperationAction(ISD::LOAD, T, Custom); 93 setOperationAction(ISD::STORE, T, Custom); 94 } 95 } 96 97 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 98 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 99 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 100 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 101 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 102 setOperationAction(ISD::BRIND, MVT::Other, Custom); 103 104 // Take the default expansion for va_arg, va_copy, and va_end. There is no 105 // default action for va_start, so we do that custom. 106 setOperationAction(ISD::VASTART, MVT::Other, Custom); 107 setOperationAction(ISD::VAARG, MVT::Other, Expand); 108 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 109 setOperationAction(ISD::VAEND, MVT::Other, Expand); 110 111 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 112 // Don't expand the floating-point types to constant pools. 113 setOperationAction(ISD::ConstantFP, T, Legal); 114 // Expand floating-point comparisons. 115 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 116 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 117 setCondCodeAction(CC, T, Expand); 118 // Expand floating-point library function operators. 119 for (auto Op : 120 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 121 setOperationAction(Op, T, Expand); 122 // Note supported floating-point library function operators that otherwise 123 // default to expand. 124 for (auto Op : 125 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 126 setOperationAction(Op, T, Legal); 127 // Support minimum and maximum, which otherwise default to expand. 128 setOperationAction(ISD::FMINIMUM, T, Legal); 129 setOperationAction(ISD::FMAXIMUM, T, Legal); 130 // WebAssembly currently has no builtin f16 support. 131 setOperationAction(ISD::FP16_TO_FP, T, Expand); 132 setOperationAction(ISD::FP_TO_FP16, T, Expand); 133 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 134 setTruncStoreAction(T, MVT::f16, Expand); 135 } 136 137 // Expand unavailable integer operations. 138 for (auto Op : 139 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 140 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 141 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 142 for (auto T : {MVT::i32, MVT::i64}) 143 setOperationAction(Op, T, Expand); 144 if (Subtarget->hasSIMD128()) 145 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 146 setOperationAction(Op, T, Expand); 147 } 148 149 if (Subtarget->hasNontrappingFPToInt()) 150 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 151 for (auto T : {MVT::i32, MVT::i64}) 152 setOperationAction(Op, T, Custom); 153 154 // SIMD-specific configuration 155 if (Subtarget->hasSIMD128()) { 156 // Hoist bitcasts out of shuffles 157 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 158 159 // Combine extends of extract_subvectors into widening ops 160 setTargetDAGCombine(ISD::SIGN_EXTEND); 161 setTargetDAGCombine(ISD::ZERO_EXTEND); 162 163 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 164 // conversions ops 165 setTargetDAGCombine(ISD::SINT_TO_FP); 166 setTargetDAGCombine(ISD::UINT_TO_FP); 167 setTargetDAGCombine(ISD::FP_EXTEND); 168 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); 169 170 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 171 // into conversion ops 172 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 173 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 174 setTargetDAGCombine(ISD::FP_ROUND); 175 setTargetDAGCombine(ISD::CONCAT_VECTORS); 176 177 // Support saturating add for i8x16 and i16x8 178 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 179 for (auto T : {MVT::v16i8, MVT::v8i16}) 180 setOperationAction(Op, T, Legal); 181 182 // Support integer abs 183 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 184 setOperationAction(ISD::ABS, T, Legal); 185 186 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 188 MVT::v2f64}) 189 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 190 191 // We have custom shuffle lowering to expose the shuffle mask 192 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 193 MVT::v2f64}) 194 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 195 196 // Custom lowering since wasm shifts must have a scalar shift amount 197 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 198 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 199 setOperationAction(Op, T, Custom); 200 201 // Custom lower lane accesses to expand out variable indices 202 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 203 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 204 MVT::v2f64}) 205 setOperationAction(Op, T, Custom); 206 207 // There is no i8x16.mul instruction 208 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 209 210 // There is no vector conditional select instruction 211 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 212 MVT::v2f64}) 213 setOperationAction(ISD::SELECT_CC, T, Expand); 214 215 // Expand integer operations supported for scalars but not SIMD 216 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 217 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 218 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 219 setOperationAction(Op, T, Expand); 220 221 // But we do have integer min and max operations 222 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 223 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 224 setOperationAction(Op, T, Legal); 225 226 // And we have popcnt for i8x16 227 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 228 229 // Expand float operations supported for scalars but not SIMD 230 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 231 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 232 for (auto T : {MVT::v4f32, MVT::v2f64}) 233 setOperationAction(Op, T, Expand); 234 235 // Unsigned comparison operations are unavailable for i64x2 vectors. 236 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 237 setCondCodeAction(CC, MVT::v2i64, Custom); 238 239 // 64x2 conversions are not in the spec 240 for (auto Op : 241 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 242 for (auto T : {MVT::v2i64, MVT::v2f64}) 243 setOperationAction(Op, T, Expand); 244 245 // But saturating fp_to_int converstions are 246 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 247 setOperationAction(Op, MVT::v4i32, Custom); 248 } 249 250 // As a special case, these operators use the type to mean the type to 251 // sign-extend from. 252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 253 if (!Subtarget->hasSignExt()) { 254 // Sign extends are legal only when extending a vector extract 255 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 256 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 257 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 258 } 259 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 260 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 261 262 // Dynamic stack allocation: use the default expansion. 263 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 264 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 265 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 266 267 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 268 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 269 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 270 271 // Expand these forms; we pattern-match the forms that we can handle in isel. 272 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 273 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 274 setOperationAction(Op, T, Expand); 275 276 // We have custom switch handling. 277 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 278 279 // WebAssembly doesn't have: 280 // - Floating-point extending loads. 281 // - Floating-point truncating stores. 282 // - i1 extending loads. 283 // - truncating SIMD stores and most extending loads 284 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 285 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 286 for (auto T : MVT::integer_valuetypes()) 287 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 288 setLoadExtAction(Ext, T, MVT::i1, Promote); 289 if (Subtarget->hasSIMD128()) { 290 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 291 MVT::v2f64}) { 292 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 293 if (MVT(T) != MemT) { 294 setTruncStoreAction(T, MemT, Expand); 295 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 296 setLoadExtAction(Ext, T, MemT, Expand); 297 } 298 } 299 } 300 // But some vector extending loads are legal 301 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 302 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 303 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 304 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 305 } 306 // And some truncating stores are legal as well 307 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 308 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 309 } 310 311 // Don't do anything clever with build_pairs 312 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 313 314 // Trap lowers to wasm unreachable 315 setOperationAction(ISD::TRAP, MVT::Other, Legal); 316 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 317 318 // Exception handling intrinsics 319 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 320 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 321 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 322 323 setMaxAtomicSizeInBitsSupported(64); 324 325 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 326 // consistent with the f64 and f128 names. 327 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 328 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 329 330 // Define the emscripten name for return address helper. 331 // TODO: when implementing other Wasm backends, make this generic or only do 332 // this on emscripten depending on what they end up doing. 333 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 334 335 // Always convert switches to br_tables unless there is only one case, which 336 // is equivalent to a simple branch. This reduces code size for wasm, and we 337 // defer possible jump table optimizations to the VM. 338 setMinimumJumpTableEntries(2); 339 } 340 341 TargetLowering::AtomicExpansionKind 342 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 343 // We have wasm instructions for these 344 switch (AI->getOperation()) { 345 case AtomicRMWInst::Add: 346 case AtomicRMWInst::Sub: 347 case AtomicRMWInst::And: 348 case AtomicRMWInst::Or: 349 case AtomicRMWInst::Xor: 350 case AtomicRMWInst::Xchg: 351 return AtomicExpansionKind::None; 352 default: 353 break; 354 } 355 return AtomicExpansionKind::CmpXChg; 356 } 357 358 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 359 // Implementation copied from X86TargetLowering. 360 unsigned Opc = VecOp.getOpcode(); 361 362 // Assume target opcodes can't be scalarized. 363 // TODO - do we have any exceptions? 364 if (Opc >= ISD::BUILTIN_OP_END) 365 return false; 366 367 // If the vector op is not supported, try to convert to scalar. 368 EVT VecVT = VecOp.getValueType(); 369 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 370 return true; 371 372 // If the vector op is supported, but the scalar op is not, the transform may 373 // not be worthwhile. 374 EVT ScalarVT = VecVT.getScalarType(); 375 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 376 } 377 378 FastISel *WebAssemblyTargetLowering::createFastISel( 379 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 380 return WebAssembly::createFastISel(FuncInfo, LibInfo); 381 } 382 383 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 384 EVT VT) const { 385 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 386 if (BitWidth > 1 && BitWidth < 8) 387 BitWidth = 8; 388 389 if (BitWidth > 64) { 390 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 391 // the count to be an i32. 392 BitWidth = 32; 393 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 394 "32-bit shift counts ought to be enough for anyone"); 395 } 396 397 MVT Result = MVT::getIntegerVT(BitWidth); 398 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 399 "Unable to represent scalar shift amount type"); 400 return Result; 401 } 402 403 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 404 // undefined result on invalid/overflow, to the WebAssembly opcode, which 405 // traps on invalid/overflow. 406 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 407 MachineBasicBlock *BB, 408 const TargetInstrInfo &TII, 409 bool IsUnsigned, bool Int64, 410 bool Float64, unsigned LoweredOpcode) { 411 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 412 413 Register OutReg = MI.getOperand(0).getReg(); 414 Register InReg = MI.getOperand(1).getReg(); 415 416 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 417 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 418 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 419 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 420 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 421 unsigned Eqz = WebAssembly::EQZ_I32; 422 unsigned And = WebAssembly::AND_I32; 423 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 424 int64_t Substitute = IsUnsigned ? 0 : Limit; 425 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 426 auto &Context = BB->getParent()->getFunction().getContext(); 427 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 428 429 const BasicBlock *LLVMBB = BB->getBasicBlock(); 430 MachineFunction *F = BB->getParent(); 431 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 432 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 433 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 434 435 MachineFunction::iterator It = ++BB->getIterator(); 436 F->insert(It, FalseMBB); 437 F->insert(It, TrueMBB); 438 F->insert(It, DoneMBB); 439 440 // Transfer the remainder of BB and its successor edges to DoneMBB. 441 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 442 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 443 444 BB->addSuccessor(TrueMBB); 445 BB->addSuccessor(FalseMBB); 446 TrueMBB->addSuccessor(DoneMBB); 447 FalseMBB->addSuccessor(DoneMBB); 448 449 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 450 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 451 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 452 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 453 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 454 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 455 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 456 457 MI.eraseFromParent(); 458 // For signed numbers, we can do a single comparison to determine whether 459 // fabs(x) is within range. 460 if (IsUnsigned) { 461 Tmp0 = InReg; 462 } else { 463 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 464 } 465 BuildMI(BB, DL, TII.get(FConst), Tmp1) 466 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 467 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 468 469 // For unsigned numbers, we have to do a separate comparison with zero. 470 if (IsUnsigned) { 471 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 472 Register SecondCmpReg = 473 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 474 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 475 BuildMI(BB, DL, TII.get(FConst), Tmp1) 476 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 477 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 478 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 479 CmpReg = AndReg; 480 } 481 482 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 483 484 // Create the CFG diamond to select between doing the conversion or using 485 // the substitute value. 486 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 487 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 488 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 489 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 490 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 491 .addReg(FalseReg) 492 .addMBB(FalseMBB) 493 .addReg(TrueReg) 494 .addMBB(TrueMBB); 495 496 return DoneMBB; 497 } 498 499 static MachineBasicBlock * 500 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 501 const WebAssemblySubtarget *Subtarget, 502 const TargetInstrInfo &TII) { 503 MachineInstr &CallParams = *CallResults.getPrevNode(); 504 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 505 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 506 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 507 508 bool IsIndirect = CallParams.getOperand(0).isReg(); 509 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 510 511 bool IsFuncrefCall = false; 512 if (IsIndirect) { 513 Register Reg = CallParams.getOperand(0).getReg(); 514 const MachineFunction *MF = BB->getParent(); 515 const MachineRegisterInfo &MRI = MF->getRegInfo(); 516 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 517 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 518 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 519 } 520 521 unsigned CallOp; 522 if (IsIndirect && IsRetCall) { 523 CallOp = WebAssembly::RET_CALL_INDIRECT; 524 } else if (IsIndirect) { 525 CallOp = WebAssembly::CALL_INDIRECT; 526 } else if (IsRetCall) { 527 CallOp = WebAssembly::RET_CALL; 528 } else { 529 CallOp = WebAssembly::CALL; 530 } 531 532 MachineFunction &MF = *BB->getParent(); 533 const MCInstrDesc &MCID = TII.get(CallOp); 534 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 535 536 // See if we must truncate the function pointer. 537 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 538 // as 64-bit for uniformity with other pointer types. 539 // See also: WebAssemblyFastISel::selectCall 540 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 541 Register Reg32 = 542 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 543 auto &FnPtr = CallParams.getOperand(0); 544 BuildMI(*BB, CallResults.getIterator(), DL, 545 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 546 .addReg(FnPtr.getReg()); 547 FnPtr.setReg(Reg32); 548 } 549 550 // Move the function pointer to the end of the arguments for indirect calls 551 if (IsIndirect) { 552 auto FnPtr = CallParams.getOperand(0); 553 CallParams.RemoveOperand(0); 554 CallParams.addOperand(FnPtr); 555 } 556 557 for (auto Def : CallResults.defs()) 558 MIB.add(Def); 559 560 if (IsIndirect) { 561 // Placeholder for the type index. 562 MIB.addImm(0); 563 // The table into which this call_indirect indexes. 564 MCSymbolWasm *Table = IsFuncrefCall 565 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 566 MF.getContext(), Subtarget) 567 : WebAssembly::getOrCreateFunctionTableSymbol( 568 MF.getContext(), Subtarget); 569 if (Subtarget->hasReferenceTypes()) { 570 MIB.addSym(Table); 571 } else { 572 // For the MVP there is at most one table whose number is 0, but we can't 573 // write a table symbol or issue relocations. Instead we just ensure the 574 // table is live and write a zero. 575 Table->setNoStrip(); 576 MIB.addImm(0); 577 } 578 } 579 580 for (auto Use : CallParams.uses()) 581 MIB.add(Use); 582 583 BB->insert(CallResults.getIterator(), MIB); 584 CallParams.eraseFromParent(); 585 CallResults.eraseFromParent(); 586 587 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 588 // table slot with ref.null upon call_indirect return. 589 // 590 // This generates the following code, which comes right after a call_indirect 591 // of a funcref: 592 // 593 // i32.const 0 594 // ref.null func 595 // table.set __funcref_call_table 596 if (IsIndirect && IsFuncrefCall) { 597 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 598 MF.getContext(), Subtarget); 599 Register RegZero = 600 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 601 MachineInstr *Const0 = 602 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 603 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 604 605 Register RegFuncref = 606 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 607 MachineInstr *RefNull = 608 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref) 609 .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref)); 610 BB->insertAfter(Const0->getIterator(), RefNull); 611 612 MachineInstr *TableSet = 613 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 614 .addSym(Table) 615 .addReg(RegZero) 616 .addReg(RegFuncref); 617 BB->insertAfter(RefNull->getIterator(), TableSet); 618 } 619 620 return BB; 621 } 622 623 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 624 MachineInstr &MI, MachineBasicBlock *BB) const { 625 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 626 DebugLoc DL = MI.getDebugLoc(); 627 628 switch (MI.getOpcode()) { 629 default: 630 llvm_unreachable("Unexpected instr type to insert"); 631 case WebAssembly::FP_TO_SINT_I32_F32: 632 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 633 WebAssembly::I32_TRUNC_S_F32); 634 case WebAssembly::FP_TO_UINT_I32_F32: 635 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 636 WebAssembly::I32_TRUNC_U_F32); 637 case WebAssembly::FP_TO_SINT_I64_F32: 638 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 639 WebAssembly::I64_TRUNC_S_F32); 640 case WebAssembly::FP_TO_UINT_I64_F32: 641 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 642 WebAssembly::I64_TRUNC_U_F32); 643 case WebAssembly::FP_TO_SINT_I32_F64: 644 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 645 WebAssembly::I32_TRUNC_S_F64); 646 case WebAssembly::FP_TO_UINT_I32_F64: 647 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 648 WebAssembly::I32_TRUNC_U_F64); 649 case WebAssembly::FP_TO_SINT_I64_F64: 650 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 651 WebAssembly::I64_TRUNC_S_F64); 652 case WebAssembly::FP_TO_UINT_I64_F64: 653 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 654 WebAssembly::I64_TRUNC_U_F64); 655 case WebAssembly::CALL_RESULTS: 656 case WebAssembly::RET_CALL_RESULTS: 657 return LowerCallResults(MI, DL, BB, Subtarget, TII); 658 } 659 } 660 661 const char * 662 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 663 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 664 case WebAssemblyISD::FIRST_NUMBER: 665 case WebAssemblyISD::FIRST_MEM_OPCODE: 666 break; 667 #define HANDLE_NODETYPE(NODE) \ 668 case WebAssemblyISD::NODE: \ 669 return "WebAssemblyISD::" #NODE; 670 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 671 #include "WebAssemblyISD.def" 672 #undef HANDLE_MEM_NODETYPE 673 #undef HANDLE_NODETYPE 674 } 675 return nullptr; 676 } 677 678 std::pair<unsigned, const TargetRegisterClass *> 679 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 680 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 681 // First, see if this is a constraint that directly corresponds to a 682 // WebAssembly register class. 683 if (Constraint.size() == 1) { 684 switch (Constraint[0]) { 685 case 'r': 686 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 687 if (Subtarget->hasSIMD128() && VT.isVector()) { 688 if (VT.getSizeInBits() == 128) 689 return std::make_pair(0U, &WebAssembly::V128RegClass); 690 } 691 if (VT.isInteger() && !VT.isVector()) { 692 if (VT.getSizeInBits() <= 32) 693 return std::make_pair(0U, &WebAssembly::I32RegClass); 694 if (VT.getSizeInBits() <= 64) 695 return std::make_pair(0U, &WebAssembly::I64RegClass); 696 } 697 if (VT.isFloatingPoint() && !VT.isVector()) { 698 switch (VT.getSizeInBits()) { 699 case 32: 700 return std::make_pair(0U, &WebAssembly::F32RegClass); 701 case 64: 702 return std::make_pair(0U, &WebAssembly::F64RegClass); 703 default: 704 break; 705 } 706 } 707 break; 708 default: 709 break; 710 } 711 } 712 713 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 714 } 715 716 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 717 // Assume ctz is a relatively cheap operation. 718 return true; 719 } 720 721 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 722 // Assume clz is a relatively cheap operation. 723 return true; 724 } 725 726 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 727 const AddrMode &AM, 728 Type *Ty, unsigned AS, 729 Instruction *I) const { 730 // WebAssembly offsets are added as unsigned without wrapping. The 731 // isLegalAddressingMode gives us no way to determine if wrapping could be 732 // happening, so we approximate this by accepting only non-negative offsets. 733 if (AM.BaseOffs < 0) 734 return false; 735 736 // WebAssembly has no scale register operands. 737 if (AM.Scale != 0) 738 return false; 739 740 // Everything else is legal. 741 return true; 742 } 743 744 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 745 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 746 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 747 // WebAssembly supports unaligned accesses, though it should be declared 748 // with the p2align attribute on loads and stores which do so, and there 749 // may be a performance impact. We tell LLVM they're "fast" because 750 // for the kinds of things that LLVM uses this for (merging adjacent stores 751 // of constants, etc.), WebAssembly implementations will either want the 752 // unaligned access or they'll split anyway. 753 if (Fast) 754 *Fast = true; 755 return true; 756 } 757 758 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 759 AttributeList Attr) const { 760 // The current thinking is that wasm engines will perform this optimization, 761 // so we can save on code size. 762 return true; 763 } 764 765 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 766 EVT ExtT = ExtVal.getValueType(); 767 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 768 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 769 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 770 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 771 } 772 773 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 774 LLVMContext &C, 775 EVT VT) const { 776 if (VT.isVector()) 777 return VT.changeVectorElementTypeToInteger(); 778 779 // So far, all branch instructions in Wasm take an I32 condition. 780 // The default TargetLowering::getSetCCResultType returns the pointer size, 781 // which would be useful to reduce instruction counts when testing 782 // against 64-bit pointers/values if at some point Wasm supports that. 783 return EVT::getIntegerVT(C, 32); 784 } 785 786 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 787 const CallInst &I, 788 MachineFunction &MF, 789 unsigned Intrinsic) const { 790 switch (Intrinsic) { 791 case Intrinsic::wasm_memory_atomic_notify: 792 Info.opc = ISD::INTRINSIC_W_CHAIN; 793 Info.memVT = MVT::i32; 794 Info.ptrVal = I.getArgOperand(0); 795 Info.offset = 0; 796 Info.align = Align(4); 797 // atomic.notify instruction does not really load the memory specified with 798 // this argument, but MachineMemOperand should either be load or store, so 799 // we set this to a load. 800 // FIXME Volatile isn't really correct, but currently all LLVM atomic 801 // instructions are treated as volatiles in the backend, so we should be 802 // consistent. The same applies for wasm_atomic_wait intrinsics too. 803 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 804 return true; 805 case Intrinsic::wasm_memory_atomic_wait32: 806 Info.opc = ISD::INTRINSIC_W_CHAIN; 807 Info.memVT = MVT::i32; 808 Info.ptrVal = I.getArgOperand(0); 809 Info.offset = 0; 810 Info.align = Align(4); 811 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 812 return true; 813 case Intrinsic::wasm_memory_atomic_wait64: 814 Info.opc = ISD::INTRINSIC_W_CHAIN; 815 Info.memVT = MVT::i64; 816 Info.ptrVal = I.getArgOperand(0); 817 Info.offset = 0; 818 Info.align = Align(8); 819 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 820 return true; 821 default: 822 return false; 823 } 824 } 825 826 //===----------------------------------------------------------------------===// 827 // WebAssembly Lowering private implementation. 828 //===----------------------------------------------------------------------===// 829 830 //===----------------------------------------------------------------------===// 831 // Lowering Code 832 //===----------------------------------------------------------------------===// 833 834 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 835 MachineFunction &MF = DAG.getMachineFunction(); 836 DAG.getContext()->diagnose( 837 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 838 } 839 840 // Test whether the given calling convention is supported. 841 static bool callingConvSupported(CallingConv::ID CallConv) { 842 // We currently support the language-independent target-independent 843 // conventions. We don't yet have a way to annotate calls with properties like 844 // "cold", and we don't have any call-clobbered registers, so these are mostly 845 // all handled the same. 846 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 847 CallConv == CallingConv::Cold || 848 CallConv == CallingConv::PreserveMost || 849 CallConv == CallingConv::PreserveAll || 850 CallConv == CallingConv::CXX_FAST_TLS || 851 CallConv == CallingConv::WASM_EmscriptenInvoke || 852 CallConv == CallingConv::Swift; 853 } 854 855 SDValue 856 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 857 SmallVectorImpl<SDValue> &InVals) const { 858 SelectionDAG &DAG = CLI.DAG; 859 SDLoc DL = CLI.DL; 860 SDValue Chain = CLI.Chain; 861 SDValue Callee = CLI.Callee; 862 MachineFunction &MF = DAG.getMachineFunction(); 863 auto Layout = MF.getDataLayout(); 864 865 CallingConv::ID CallConv = CLI.CallConv; 866 if (!callingConvSupported(CallConv)) 867 fail(DL, DAG, 868 "WebAssembly doesn't support language-specific or target-specific " 869 "calling conventions yet"); 870 if (CLI.IsPatchPoint) 871 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 872 873 if (CLI.IsTailCall) { 874 auto NoTail = [&](const char *Msg) { 875 if (CLI.CB && CLI.CB->isMustTailCall()) 876 fail(DL, DAG, Msg); 877 CLI.IsTailCall = false; 878 }; 879 880 if (!Subtarget->hasTailCall()) 881 NoTail("WebAssembly 'tail-call' feature not enabled"); 882 883 // Varargs calls cannot be tail calls because the buffer is on the stack 884 if (CLI.IsVarArg) 885 NoTail("WebAssembly does not support varargs tail calls"); 886 887 // Do not tail call unless caller and callee return types match 888 const Function &F = MF.getFunction(); 889 const TargetMachine &TM = getTargetMachine(); 890 Type *RetTy = F.getReturnType(); 891 SmallVector<MVT, 4> CallerRetTys; 892 SmallVector<MVT, 4> CalleeRetTys; 893 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 894 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 895 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 896 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 897 CalleeRetTys.begin()); 898 if (!TypesMatch) 899 NoTail("WebAssembly tail call requires caller and callee return types to " 900 "match"); 901 902 // If pointers to local stack values are passed, we cannot tail call 903 if (CLI.CB) { 904 for (auto &Arg : CLI.CB->args()) { 905 Value *Val = Arg.get(); 906 // Trace the value back through pointer operations 907 while (true) { 908 Value *Src = Val->stripPointerCastsAndAliases(); 909 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 910 Src = GEP->getPointerOperand(); 911 if (Val == Src) 912 break; 913 Val = Src; 914 } 915 if (isa<AllocaInst>(Val)) { 916 NoTail( 917 "WebAssembly does not support tail calling with stack arguments"); 918 break; 919 } 920 } 921 } 922 } 923 924 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 925 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 926 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 927 928 // The generic code may have added an sret argument. If we're lowering an 929 // invoke function, the ABI requires that the function pointer be the first 930 // argument, so we may have to swap the arguments. 931 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 932 Outs[0].Flags.isSRet()) { 933 std::swap(Outs[0], Outs[1]); 934 std::swap(OutVals[0], OutVals[1]); 935 } 936 937 bool HasSwiftSelfArg = false; 938 bool HasSwiftErrorArg = false; 939 unsigned NumFixedArgs = 0; 940 for (unsigned I = 0; I < Outs.size(); ++I) { 941 const ISD::OutputArg &Out = Outs[I]; 942 SDValue &OutVal = OutVals[I]; 943 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 944 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 945 if (Out.Flags.isNest()) 946 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 947 if (Out.Flags.isInAlloca()) 948 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 949 if (Out.Flags.isInConsecutiveRegs()) 950 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 951 if (Out.Flags.isInConsecutiveRegsLast()) 952 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 953 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 954 auto &MFI = MF.getFrameInfo(); 955 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 956 Out.Flags.getNonZeroByValAlign(), 957 /*isSS=*/false); 958 SDValue SizeNode = 959 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 960 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 961 Chain = DAG.getMemcpy( 962 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 963 /*isVolatile*/ false, /*AlwaysInline=*/false, 964 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 965 OutVal = FINode; 966 } 967 // Count the number of fixed args *after* legalization. 968 NumFixedArgs += Out.IsFixed; 969 } 970 971 bool IsVarArg = CLI.IsVarArg; 972 auto PtrVT = getPointerTy(Layout); 973 974 // For swiftcc, emit additional swiftself and swifterror arguments 975 // if there aren't. These additional arguments are also added for callee 976 // signature They are necessary to match callee and caller signature for 977 // indirect call. 978 if (CallConv == CallingConv::Swift) { 979 if (!HasSwiftSelfArg) { 980 NumFixedArgs++; 981 ISD::OutputArg Arg; 982 Arg.Flags.setSwiftSelf(); 983 CLI.Outs.push_back(Arg); 984 SDValue ArgVal = DAG.getUNDEF(PtrVT); 985 CLI.OutVals.push_back(ArgVal); 986 } 987 if (!HasSwiftErrorArg) { 988 NumFixedArgs++; 989 ISD::OutputArg Arg; 990 Arg.Flags.setSwiftError(); 991 CLI.Outs.push_back(Arg); 992 SDValue ArgVal = DAG.getUNDEF(PtrVT); 993 CLI.OutVals.push_back(ArgVal); 994 } 995 } 996 997 // Analyze operands of the call, assigning locations to each operand. 998 SmallVector<CCValAssign, 16> ArgLocs; 999 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1000 1001 if (IsVarArg) { 1002 // Outgoing non-fixed arguments are placed in a buffer. First 1003 // compute their offsets and the total amount of buffer space needed. 1004 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1005 const ISD::OutputArg &Out = Outs[I]; 1006 SDValue &Arg = OutVals[I]; 1007 EVT VT = Arg.getValueType(); 1008 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1009 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1010 Align Alignment = 1011 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1012 unsigned Offset = 1013 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1014 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1015 Offset, VT.getSimpleVT(), 1016 CCValAssign::Full)); 1017 } 1018 } 1019 1020 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1021 1022 SDValue FINode; 1023 if (IsVarArg && NumBytes) { 1024 // For non-fixed arguments, next emit stores to store the argument values 1025 // to the stack buffer at the offsets computed above. 1026 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1027 Layout.getStackAlignment(), 1028 /*isSS=*/false); 1029 unsigned ValNo = 0; 1030 SmallVector<SDValue, 8> Chains; 1031 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1032 assert(ArgLocs[ValNo].getValNo() == ValNo && 1033 "ArgLocs should remain in order and only hold varargs args"); 1034 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1035 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1036 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1037 DAG.getConstant(Offset, DL, PtrVT)); 1038 Chains.push_back( 1039 DAG.getStore(Chain, DL, Arg, Add, 1040 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1041 } 1042 if (!Chains.empty()) 1043 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1044 } else if (IsVarArg) { 1045 FINode = DAG.getIntPtrConstant(0, DL); 1046 } 1047 1048 if (Callee->getOpcode() == ISD::GlobalAddress) { 1049 // If the callee is a GlobalAddress node (quite common, every direct call 1050 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1051 // doesn't at MO_GOT which is not needed for direct calls. 1052 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1053 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1054 getPointerTy(DAG.getDataLayout()), 1055 GA->getOffset()); 1056 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1057 getPointerTy(DAG.getDataLayout()), Callee); 1058 } 1059 1060 // Compute the operands for the CALLn node. 1061 SmallVector<SDValue, 16> Ops; 1062 Ops.push_back(Chain); 1063 Ops.push_back(Callee); 1064 1065 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1066 // isn't reliable. 1067 Ops.append(OutVals.begin(), 1068 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1069 // Add a pointer to the vararg buffer. 1070 if (IsVarArg) 1071 Ops.push_back(FINode); 1072 1073 SmallVector<EVT, 8> InTys; 1074 for (const auto &In : Ins) { 1075 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1076 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1077 if (In.Flags.isInAlloca()) 1078 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1079 if (In.Flags.isInConsecutiveRegs()) 1080 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1081 if (In.Flags.isInConsecutiveRegsLast()) 1082 fail(DL, DAG, 1083 "WebAssembly hasn't implemented cons regs last return values"); 1084 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1085 // registers. 1086 InTys.push_back(In.VT); 1087 } 1088 1089 // Lastly, if this is a call to a funcref we need to add an instruction 1090 // table.set to the chain and transform the call. 1091 if (CLI.CB && isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1092 // In the absence of function references proposal where a funcref call is 1093 // lowered to call_ref, using reference types we generate a table.set to set 1094 // the funcref to a special table used solely for this purpose, followed by 1095 // a call_indirect. Here we just generate the table set, and return the 1096 // SDValue of the table.set so that LowerCall can finalize the lowering by 1097 // generating the call_indirect. 1098 SDValue Chain = Ops[0]; 1099 1100 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1101 MF.getContext(), Subtarget); 1102 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1103 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1104 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1105 SDValue TableSet = DAG.getMemIntrinsicNode( 1106 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1107 MVT::funcref, 1108 // Machine Mem Operand args 1109 MachinePointerInfo(WasmAddressSpace::FUNCREF), 1110 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1111 MachineMemOperand::MOStore); 1112 1113 Ops[0] = TableSet; // The new chain is the TableSet itself 1114 } 1115 1116 if (CLI.IsTailCall) { 1117 // ret_calls do not return values to the current frame 1118 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1119 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1120 } 1121 1122 InTys.push_back(MVT::Other); 1123 SDVTList InTyList = DAG.getVTList(InTys); 1124 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1125 1126 for (size_t I = 0; I < Ins.size(); ++I) 1127 InVals.push_back(Res.getValue(I)); 1128 1129 // Return the chain 1130 return Res.getValue(Ins.size()); 1131 } 1132 1133 bool WebAssemblyTargetLowering::CanLowerReturn( 1134 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1135 const SmallVectorImpl<ISD::OutputArg> &Outs, 1136 LLVMContext & /*Context*/) const { 1137 // WebAssembly can only handle returning tuples with multivalue enabled 1138 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1139 } 1140 1141 SDValue WebAssemblyTargetLowering::LowerReturn( 1142 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1143 const SmallVectorImpl<ISD::OutputArg> &Outs, 1144 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1145 SelectionDAG &DAG) const { 1146 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1147 "MVP WebAssembly can only return up to one value"); 1148 if (!callingConvSupported(CallConv)) 1149 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1150 1151 SmallVector<SDValue, 4> RetOps(1, Chain); 1152 RetOps.append(OutVals.begin(), OutVals.end()); 1153 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1154 1155 // Record the number and types of the return values. 1156 for (const ISD::OutputArg &Out : Outs) { 1157 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1158 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1159 assert(Out.IsFixed && "non-fixed return value is not valid"); 1160 if (Out.Flags.isInAlloca()) 1161 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1162 if (Out.Flags.isInConsecutiveRegs()) 1163 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1164 if (Out.Flags.isInConsecutiveRegsLast()) 1165 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1166 } 1167 1168 return Chain; 1169 } 1170 1171 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1172 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1173 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1174 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1175 if (!callingConvSupported(CallConv)) 1176 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1177 1178 MachineFunction &MF = DAG.getMachineFunction(); 1179 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1180 1181 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1182 // of the incoming values before they're represented by virtual registers. 1183 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1184 1185 bool HasSwiftErrorArg = false; 1186 bool HasSwiftSelfArg = false; 1187 for (const ISD::InputArg &In : Ins) { 1188 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1189 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1190 if (In.Flags.isInAlloca()) 1191 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1192 if (In.Flags.isNest()) 1193 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1194 if (In.Flags.isInConsecutiveRegs()) 1195 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1196 if (In.Flags.isInConsecutiveRegsLast()) 1197 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1198 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1199 // registers. 1200 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1201 DAG.getTargetConstant(InVals.size(), 1202 DL, MVT::i32)) 1203 : DAG.getUNDEF(In.VT)); 1204 1205 // Record the number and types of arguments. 1206 MFI->addParam(In.VT); 1207 } 1208 1209 // For swiftcc, emit additional swiftself and swifterror arguments 1210 // if there aren't. These additional arguments are also added for callee 1211 // signature They are necessary to match callee and caller signature for 1212 // indirect call. 1213 auto PtrVT = getPointerTy(MF.getDataLayout()); 1214 if (CallConv == CallingConv::Swift) { 1215 if (!HasSwiftSelfArg) { 1216 MFI->addParam(PtrVT); 1217 } 1218 if (!HasSwiftErrorArg) { 1219 MFI->addParam(PtrVT); 1220 } 1221 } 1222 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1223 // the buffer is passed as an argument. 1224 if (IsVarArg) { 1225 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1226 Register VarargVreg = 1227 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1228 MFI->setVarargBufferVreg(VarargVreg); 1229 Chain = DAG.getCopyToReg( 1230 Chain, DL, VarargVreg, 1231 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1232 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1233 MFI->addParam(PtrVT); 1234 } 1235 1236 // Record the number and types of arguments and results. 1237 SmallVector<MVT, 4> Params; 1238 SmallVector<MVT, 4> Results; 1239 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1240 MF.getFunction(), DAG.getTarget(), Params, Results); 1241 for (MVT VT : Results) 1242 MFI->addResult(VT); 1243 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1244 // the param logic here with ComputeSignatureVTs 1245 assert(MFI->getParams().size() == Params.size() && 1246 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1247 Params.begin())); 1248 1249 return Chain; 1250 } 1251 1252 void WebAssemblyTargetLowering::ReplaceNodeResults( 1253 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1254 switch (N->getOpcode()) { 1255 case ISD::SIGN_EXTEND_INREG: 1256 // Do not add any results, signifying that N should not be custom lowered 1257 // after all. This happens because simd128 turns on custom lowering for 1258 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1259 // illegal type. 1260 break; 1261 default: 1262 llvm_unreachable( 1263 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1264 } 1265 } 1266 1267 //===----------------------------------------------------------------------===// 1268 // Custom lowering hooks. 1269 //===----------------------------------------------------------------------===// 1270 1271 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1272 SelectionDAG &DAG) const { 1273 SDLoc DL(Op); 1274 switch (Op.getOpcode()) { 1275 default: 1276 llvm_unreachable("unimplemented operation lowering"); 1277 return SDValue(); 1278 case ISD::FrameIndex: 1279 return LowerFrameIndex(Op, DAG); 1280 case ISD::GlobalAddress: 1281 return LowerGlobalAddress(Op, DAG); 1282 case ISD::GlobalTLSAddress: 1283 return LowerGlobalTLSAddress(Op, DAG); 1284 case ISD::ExternalSymbol: 1285 return LowerExternalSymbol(Op, DAG); 1286 case ISD::JumpTable: 1287 return LowerJumpTable(Op, DAG); 1288 case ISD::BR_JT: 1289 return LowerBR_JT(Op, DAG); 1290 case ISD::VASTART: 1291 return LowerVASTART(Op, DAG); 1292 case ISD::BlockAddress: 1293 case ISD::BRIND: 1294 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1295 return SDValue(); 1296 case ISD::RETURNADDR: 1297 return LowerRETURNADDR(Op, DAG); 1298 case ISD::FRAMEADDR: 1299 return LowerFRAMEADDR(Op, DAG); 1300 case ISD::CopyToReg: 1301 return LowerCopyToReg(Op, DAG); 1302 case ISD::EXTRACT_VECTOR_ELT: 1303 case ISD::INSERT_VECTOR_ELT: 1304 return LowerAccessVectorElement(Op, DAG); 1305 case ISD::INTRINSIC_VOID: 1306 case ISD::INTRINSIC_WO_CHAIN: 1307 case ISD::INTRINSIC_W_CHAIN: 1308 return LowerIntrinsic(Op, DAG); 1309 case ISD::SIGN_EXTEND_INREG: 1310 return LowerSIGN_EXTEND_INREG(Op, DAG); 1311 case ISD::BUILD_VECTOR: 1312 return LowerBUILD_VECTOR(Op, DAG); 1313 case ISD::VECTOR_SHUFFLE: 1314 return LowerVECTOR_SHUFFLE(Op, DAG); 1315 case ISD::SETCC: 1316 return LowerSETCC(Op, DAG); 1317 case ISD::SHL: 1318 case ISD::SRA: 1319 case ISD::SRL: 1320 return LowerShift(Op, DAG); 1321 case ISD::FP_TO_SINT_SAT: 1322 case ISD::FP_TO_UINT_SAT: 1323 return LowerFP_TO_INT_SAT(Op, DAG); 1324 case ISD::LOAD: 1325 return LowerLoad(Op, DAG); 1326 case ISD::STORE: 1327 return LowerStore(Op, DAG); 1328 } 1329 } 1330 1331 static bool IsWebAssemblyGlobal(SDValue Op) { 1332 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1333 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1334 1335 return false; 1336 } 1337 1338 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1339 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1340 if (!FI) 1341 return None; 1342 1343 auto &MF = DAG.getMachineFunction(); 1344 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1345 } 1346 1347 bool WebAssemblyTargetLowering::isFuncrefType(const Type *Ty) { 1348 return isa<PointerType>(Ty) && 1349 Ty->getPointerAddressSpace() == WasmAddressSpace::FUNCREF; 1350 } 1351 1352 bool WebAssemblyTargetLowering::isExternrefType(const Type *Ty) { 1353 return isa<PointerType>(Ty) && 1354 Ty->getPointerAddressSpace() == WasmAddressSpace::EXTERNREF; 1355 } 1356 1357 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1358 SelectionDAG &DAG) const { 1359 SDLoc DL(Op); 1360 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1361 const SDValue &Value = SN->getValue(); 1362 const SDValue &Base = SN->getBasePtr(); 1363 const SDValue &Offset = SN->getOffset(); 1364 1365 if (IsWebAssemblyGlobal(Base)) { 1366 if (!Offset->isUndef()) 1367 report_fatal_error("unexpected offset when storing to webassembly global", 1368 false); 1369 1370 SDVTList Tys = DAG.getVTList(MVT::Other); 1371 SDValue Ops[] = {SN->getChain(), Value, Base}; 1372 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1373 SN->getMemoryVT(), SN->getMemOperand()); 1374 } 1375 1376 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1377 if (!Offset->isUndef()) 1378 report_fatal_error("unexpected offset when storing to webassembly local", 1379 false); 1380 1381 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1382 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1383 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1384 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1385 } 1386 1387 return Op; 1388 } 1389 1390 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1391 SelectionDAG &DAG) const { 1392 SDLoc DL(Op); 1393 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1394 const SDValue &Base = LN->getBasePtr(); 1395 const SDValue &Offset = LN->getOffset(); 1396 1397 if (IsWebAssemblyGlobal(Base)) { 1398 if (!Offset->isUndef()) 1399 report_fatal_error( 1400 "unexpected offset when loading from webassembly global", false); 1401 1402 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1403 SDValue Ops[] = {LN->getChain(), Base}; 1404 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1405 LN->getMemoryVT(), LN->getMemOperand()); 1406 } 1407 1408 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1409 if (!Offset->isUndef()) 1410 report_fatal_error( 1411 "unexpected offset when loading from webassembly local", false); 1412 1413 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1414 EVT LocalVT = LN->getValueType(0); 1415 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1416 {LN->getChain(), Idx}); 1417 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1418 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1419 return Result; 1420 } 1421 1422 return Op; 1423 } 1424 1425 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1426 SelectionDAG &DAG) const { 1427 SDValue Src = Op.getOperand(2); 1428 if (isa<FrameIndexSDNode>(Src.getNode())) { 1429 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1430 // the FI to some LEA-like instruction, but since we don't have that, we 1431 // need to insert some kind of instruction that can take an FI operand and 1432 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1433 // local.copy between Op and its FI operand. 1434 SDValue Chain = Op.getOperand(0); 1435 SDLoc DL(Op); 1436 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1437 EVT VT = Src.getValueType(); 1438 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1439 : WebAssembly::COPY_I64, 1440 DL, VT, Src), 1441 0); 1442 return Op.getNode()->getNumValues() == 1 1443 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1444 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1445 Op.getNumOperands() == 4 ? Op.getOperand(3) 1446 : SDValue()); 1447 } 1448 return SDValue(); 1449 } 1450 1451 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1452 SelectionDAG &DAG) const { 1453 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1454 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1455 } 1456 1457 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1458 SelectionDAG &DAG) const { 1459 SDLoc DL(Op); 1460 1461 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1462 fail(DL, DAG, 1463 "Non-Emscripten WebAssembly hasn't implemented " 1464 "__builtin_return_address"); 1465 return SDValue(); 1466 } 1467 1468 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1469 return SDValue(); 1470 1471 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1472 MakeLibCallOptions CallOptions; 1473 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1474 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1475 .first; 1476 } 1477 1478 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1479 SelectionDAG &DAG) const { 1480 // Non-zero depths are not supported by WebAssembly currently. Use the 1481 // legalizer's default expansion, which is to return 0 (what this function is 1482 // documented to do). 1483 if (Op.getConstantOperandVal(0) > 0) 1484 return SDValue(); 1485 1486 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1487 EVT VT = Op.getValueType(); 1488 Register FP = 1489 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1490 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1491 } 1492 1493 SDValue 1494 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1495 SelectionDAG &DAG) const { 1496 SDLoc DL(Op); 1497 const auto *GA = cast<GlobalAddressSDNode>(Op); 1498 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1499 1500 MachineFunction &MF = DAG.getMachineFunction(); 1501 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1502 report_fatal_error("cannot use thread-local storage without bulk memory", 1503 false); 1504 1505 const GlobalValue *GV = GA->getGlobal(); 1506 1507 // Currently Emscripten does not support dynamic linking with threads. 1508 // Therefore, if we have thread-local storage, only the local-exec model 1509 // is possible. 1510 // TODO: remove this and implement proper TLS models once Emscripten 1511 // supports dynamic linking with threads. 1512 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1513 !Subtarget->getTargetTriple().isOSEmscripten()) { 1514 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1515 "non-Emscripten OSes: variable " + 1516 GV->getName(), 1517 false); 1518 } 1519 1520 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1521 : WebAssembly::GLOBAL_GET_I32; 1522 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1523 1524 SDValue BaseAddr( 1525 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1526 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1527 0); 1528 1529 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1530 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1531 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1532 1533 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1534 } 1535 1536 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1537 SelectionDAG &DAG) const { 1538 SDLoc DL(Op); 1539 const auto *GA = cast<GlobalAddressSDNode>(Op); 1540 EVT VT = Op.getValueType(); 1541 assert(GA->getTargetFlags() == 0 && 1542 "Unexpected target flags on generic GlobalAddressSDNode"); 1543 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1544 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1545 1546 unsigned OperandFlags = 0; 1547 if (isPositionIndependent()) { 1548 const GlobalValue *GV = GA->getGlobal(); 1549 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1550 MachineFunction &MF = DAG.getMachineFunction(); 1551 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1552 const char *BaseName; 1553 if (GV->getValueType()->isFunctionTy()) { 1554 BaseName = MF.createExternalSymbolName("__table_base"); 1555 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1556 } 1557 else { 1558 BaseName = MF.createExternalSymbolName("__memory_base"); 1559 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1560 } 1561 SDValue BaseAddr = 1562 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1563 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1564 1565 SDValue SymAddr = DAG.getNode( 1566 WebAssemblyISD::WrapperPIC, DL, VT, 1567 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1568 OperandFlags)); 1569 1570 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1571 } else { 1572 OperandFlags = WebAssemblyII::MO_GOT; 1573 } 1574 } 1575 1576 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1577 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1578 GA->getOffset(), OperandFlags)); 1579 } 1580 1581 SDValue 1582 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1583 SelectionDAG &DAG) const { 1584 SDLoc DL(Op); 1585 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1586 EVT VT = Op.getValueType(); 1587 assert(ES->getTargetFlags() == 0 && 1588 "Unexpected target flags on generic ExternalSymbolSDNode"); 1589 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1590 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1591 } 1592 1593 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1594 SelectionDAG &DAG) const { 1595 // There's no need for a Wrapper node because we always incorporate a jump 1596 // table operand into a BR_TABLE instruction, rather than ever 1597 // materializing it in a register. 1598 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1599 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1600 JT->getTargetFlags()); 1601 } 1602 1603 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1604 SelectionDAG &DAG) const { 1605 SDLoc DL(Op); 1606 SDValue Chain = Op.getOperand(0); 1607 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1608 SDValue Index = Op.getOperand(2); 1609 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1610 1611 SmallVector<SDValue, 8> Ops; 1612 Ops.push_back(Chain); 1613 Ops.push_back(Index); 1614 1615 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1616 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1617 1618 // Add an operand for each case. 1619 for (auto MBB : MBBs) 1620 Ops.push_back(DAG.getBasicBlock(MBB)); 1621 1622 // Add the first MBB as a dummy default target for now. This will be replaced 1623 // with the proper default target (and the preceding range check eliminated) 1624 // if possible by WebAssemblyFixBrTableDefaults. 1625 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1626 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1627 } 1628 1629 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1630 SelectionDAG &DAG) const { 1631 SDLoc DL(Op); 1632 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1633 1634 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1635 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1636 1637 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1638 MFI->getVarargBufferVreg(), PtrVT); 1639 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1640 MachinePointerInfo(SV)); 1641 } 1642 1643 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1644 SelectionDAG &DAG) { 1645 // We only support C++ exceptions for now 1646 int Tag = 1647 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1648 if (Tag != WebAssembly::CPP_EXCEPTION) 1649 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1650 auto &MF = DAG.getMachineFunction(); 1651 const auto &TLI = DAG.getTargetLoweringInfo(); 1652 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1653 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1654 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1655 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1656 } 1657 1658 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1659 SelectionDAG &DAG) const { 1660 MachineFunction &MF = DAG.getMachineFunction(); 1661 unsigned IntNo; 1662 switch (Op.getOpcode()) { 1663 case ISD::INTRINSIC_VOID: 1664 case ISD::INTRINSIC_W_CHAIN: 1665 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1666 break; 1667 case ISD::INTRINSIC_WO_CHAIN: 1668 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1669 break; 1670 default: 1671 llvm_unreachable("Invalid intrinsic"); 1672 } 1673 SDLoc DL(Op); 1674 1675 switch (IntNo) { 1676 default: 1677 return SDValue(); // Don't custom lower most intrinsics. 1678 1679 case Intrinsic::wasm_lsda: { 1680 EVT VT = Op.getValueType(); 1681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1682 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1683 auto &Context = MF.getMMI().getContext(); 1684 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1685 Twine(MF.getFunctionNumber())); 1686 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1687 DAG.getMCSymbol(S, PtrVT)); 1688 } 1689 1690 case Intrinsic::wasm_throw: { 1691 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1692 return DAG.getNode(WebAssemblyISD::THROW, DL, 1693 MVT::Other, // outchain type 1694 { 1695 Op.getOperand(0), // inchain 1696 SymNode, // exception symbol 1697 Op.getOperand(3) // thrown value 1698 }); 1699 } 1700 1701 case Intrinsic::wasm_catch: { 1702 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1703 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1704 { 1705 MVT::i32, // outchain type 1706 MVT::Other // return value 1707 }, 1708 { 1709 Op.getOperand(0), // inchain 1710 SymNode // exception symbol 1711 }); 1712 } 1713 1714 case Intrinsic::wasm_shuffle: { 1715 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1716 SDValue Ops[18]; 1717 size_t OpIdx = 0; 1718 Ops[OpIdx++] = Op.getOperand(1); 1719 Ops[OpIdx++] = Op.getOperand(2); 1720 while (OpIdx < 18) { 1721 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1722 if (MaskIdx.isUndef() || 1723 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1724 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1725 } else { 1726 Ops[OpIdx++] = MaskIdx; 1727 } 1728 } 1729 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1730 } 1731 } 1732 } 1733 1734 SDValue 1735 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1736 SelectionDAG &DAG) const { 1737 SDLoc DL(Op); 1738 // If sign extension operations are disabled, allow sext_inreg only if operand 1739 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1740 // extension operations, but allowing sext_inreg in this context lets us have 1741 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1742 // everywhere would be simpler in this file, but would necessitate large and 1743 // brittle patterns to undo the expansion and select extract_lane_s 1744 // instructions. 1745 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1746 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1747 return SDValue(); 1748 1749 const SDValue &Extract = Op.getOperand(0); 1750 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1751 if (VecT.getVectorElementType().getSizeInBits() > 32) 1752 return SDValue(); 1753 MVT ExtractedLaneT = 1754 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1755 MVT ExtractedVecT = 1756 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1757 if (ExtractedVecT == VecT) 1758 return Op; 1759 1760 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1761 const SDNode *Index = Extract.getOperand(1).getNode(); 1762 if (!isa<ConstantSDNode>(Index)) 1763 return SDValue(); 1764 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1765 unsigned Scale = 1766 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1767 assert(Scale > 1); 1768 SDValue NewIndex = 1769 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1770 SDValue NewExtract = DAG.getNode( 1771 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1772 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1773 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1774 Op.getOperand(1)); 1775 } 1776 1777 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1778 SelectionDAG &DAG) const { 1779 SDLoc DL(Op); 1780 const EVT VecT = Op.getValueType(); 1781 const EVT LaneT = Op.getOperand(0).getValueType(); 1782 const size_t Lanes = Op.getNumOperands(); 1783 bool CanSwizzle = VecT == MVT::v16i8; 1784 1785 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1786 // possible number of lanes at once followed by a sequence of replace_lane 1787 // instructions to individually initialize any remaining lanes. 1788 1789 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1790 // swizzled lanes should be given greater weight. 1791 1792 // TODO: Investigate looping rather than always extracting/replacing specific 1793 // lanes to fill gaps. 1794 1795 auto IsConstant = [](const SDValue &V) { 1796 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1797 }; 1798 1799 // Returns the source vector and index vector pair if they exist. Checks for: 1800 // (extract_vector_elt 1801 // $src, 1802 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1803 // ) 1804 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1805 auto Bail = std::make_pair(SDValue(), SDValue()); 1806 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1807 return Bail; 1808 const SDValue &SwizzleSrc = Lane->getOperand(0); 1809 const SDValue &IndexExt = Lane->getOperand(1); 1810 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1811 return Bail; 1812 const SDValue &Index = IndexExt->getOperand(0); 1813 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1814 return Bail; 1815 const SDValue &SwizzleIndices = Index->getOperand(0); 1816 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1817 SwizzleIndices.getValueType() != MVT::v16i8 || 1818 Index->getOperand(1)->getOpcode() != ISD::Constant || 1819 Index->getConstantOperandVal(1) != I) 1820 return Bail; 1821 return std::make_pair(SwizzleSrc, SwizzleIndices); 1822 }; 1823 1824 // If the lane is extracted from another vector at a constant index, return 1825 // that vector. The source vector must not have more lanes than the dest 1826 // because the shufflevector indices are in terms of the destination lanes and 1827 // would not be able to address the smaller individual source lanes. 1828 auto GetShuffleSrc = [&](const SDValue &Lane) { 1829 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1830 return SDValue(); 1831 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 1832 return SDValue(); 1833 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 1834 VecT.getVectorNumElements()) 1835 return SDValue(); 1836 return Lane->getOperand(0); 1837 }; 1838 1839 using ValueEntry = std::pair<SDValue, size_t>; 1840 SmallVector<ValueEntry, 16> SplatValueCounts; 1841 1842 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1843 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1844 1845 using ShuffleEntry = std::pair<SDValue, size_t>; 1846 SmallVector<ShuffleEntry, 16> ShuffleCounts; 1847 1848 auto AddCount = [](auto &Counts, const auto &Val) { 1849 auto CountIt = 1850 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1851 if (CountIt == Counts.end()) { 1852 Counts.emplace_back(Val, 1); 1853 } else { 1854 CountIt->second++; 1855 } 1856 }; 1857 1858 auto GetMostCommon = [](auto &Counts) { 1859 auto CommonIt = 1860 std::max_element(Counts.begin(), Counts.end(), 1861 [](auto A, auto B) { return A.second < B.second; }); 1862 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1863 return *CommonIt; 1864 }; 1865 1866 size_t NumConstantLanes = 0; 1867 1868 // Count eligible lanes for each type of vector creation op 1869 for (size_t I = 0; I < Lanes; ++I) { 1870 const SDValue &Lane = Op->getOperand(I); 1871 if (Lane.isUndef()) 1872 continue; 1873 1874 AddCount(SplatValueCounts, Lane); 1875 1876 if (IsConstant(Lane)) 1877 NumConstantLanes++; 1878 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 1879 AddCount(ShuffleCounts, ShuffleSrc); 1880 if (CanSwizzle) { 1881 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1882 if (SwizzleSrcs.first) 1883 AddCount(SwizzleCounts, SwizzleSrcs); 1884 } 1885 } 1886 1887 SDValue SplatValue; 1888 size_t NumSplatLanes; 1889 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1890 1891 SDValue SwizzleSrc; 1892 SDValue SwizzleIndices; 1893 size_t NumSwizzleLanes = 0; 1894 if (SwizzleCounts.size()) 1895 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1896 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1897 1898 // Shuffles can draw from up to two vectors, so find the two most common 1899 // sources. 1900 SDValue ShuffleSrc1, ShuffleSrc2; 1901 size_t NumShuffleLanes = 0; 1902 if (ShuffleCounts.size()) { 1903 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 1904 ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(), 1905 ShuffleCounts.end(), 1906 [&](const auto &Pair) { 1907 return Pair.first == ShuffleSrc1; 1908 }), 1909 ShuffleCounts.end()); 1910 } 1911 if (ShuffleCounts.size()) { 1912 size_t AdditionalShuffleLanes; 1913 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 1914 GetMostCommon(ShuffleCounts); 1915 NumShuffleLanes += AdditionalShuffleLanes; 1916 } 1917 1918 // Predicate returning true if the lane is properly initialized by the 1919 // original instruction 1920 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1921 SDValue Result; 1922 // Prefer swizzles over shuffles over vector consts over splats 1923 if (NumSwizzleLanes >= NumShuffleLanes && 1924 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 1925 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1926 SwizzleIndices); 1927 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1928 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1929 return Swizzled == GetSwizzleSrcs(I, Lane); 1930 }; 1931 } else if (NumShuffleLanes >= NumConstantLanes && 1932 NumShuffleLanes >= NumSplatLanes) { 1933 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 1934 size_t DestLaneCount = VecT.getVectorNumElements(); 1935 size_t Scale1 = 1; 1936 size_t Scale2 = 1; 1937 SDValue Src1 = ShuffleSrc1; 1938 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 1939 if (Src1.getValueType() != VecT) { 1940 size_t LaneSize = 1941 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1942 assert(LaneSize > DestLaneSize); 1943 Scale1 = LaneSize / DestLaneSize; 1944 Src1 = DAG.getBitcast(VecT, Src1); 1945 } 1946 if (Src2.getValueType() != VecT) { 1947 size_t LaneSize = 1948 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 1949 assert(LaneSize > DestLaneSize); 1950 Scale2 = LaneSize / DestLaneSize; 1951 Src2 = DAG.getBitcast(VecT, Src2); 1952 } 1953 1954 int Mask[16]; 1955 assert(DestLaneCount <= 16); 1956 for (size_t I = 0; I < DestLaneCount; ++I) { 1957 const SDValue &Lane = Op->getOperand(I); 1958 SDValue Src = GetShuffleSrc(Lane); 1959 if (Src == ShuffleSrc1) { 1960 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 1961 } else if (Src && Src == ShuffleSrc2) { 1962 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 1963 } else { 1964 Mask[I] = -1; 1965 } 1966 } 1967 ArrayRef<int> MaskRef(Mask, DestLaneCount); 1968 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 1969 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 1970 auto Src = GetShuffleSrc(Lane); 1971 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 1972 }; 1973 } else if (NumConstantLanes >= NumSplatLanes) { 1974 SmallVector<SDValue, 16> ConstLanes; 1975 for (const SDValue &Lane : Op->op_values()) { 1976 if (IsConstant(Lane)) { 1977 ConstLanes.push_back(Lane); 1978 } else if (LaneT.isFloatingPoint()) { 1979 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1980 } else { 1981 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1982 } 1983 } 1984 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1985 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1986 return IsConstant(Lane); 1987 }; 1988 } else { 1989 // Use a splat, but possibly a load_splat 1990 LoadSDNode *SplattedLoad; 1991 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1992 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1993 Result = DAG.getMemIntrinsicNode( 1994 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1995 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1996 SplattedLoad->getOffset()}, 1997 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1998 } else { 1999 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2000 } 2001 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2002 return Lane == SplatValue; 2003 }; 2004 } 2005 2006 assert(Result); 2007 assert(IsLaneConstructed); 2008 2009 // Add replace_lane instructions for any unhandled values 2010 for (size_t I = 0; I < Lanes; ++I) { 2011 const SDValue &Lane = Op->getOperand(I); 2012 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2013 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2014 DAG.getConstant(I, DL, MVT::i32)); 2015 } 2016 2017 return Result; 2018 } 2019 2020 SDValue 2021 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2022 SelectionDAG &DAG) const { 2023 SDLoc DL(Op); 2024 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2025 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2026 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2027 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2028 2029 // Space for two vector args and sixteen mask indices 2030 SDValue Ops[18]; 2031 size_t OpIdx = 0; 2032 Ops[OpIdx++] = Op.getOperand(0); 2033 Ops[OpIdx++] = Op.getOperand(1); 2034 2035 // Expand mask indices to byte indices and materialize them as operands 2036 for (int M : Mask) { 2037 for (size_t J = 0; J < LaneBytes; ++J) { 2038 // Lower undefs (represented by -1 in mask) to zero 2039 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2040 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2041 } 2042 } 2043 2044 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2045 } 2046 2047 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2048 SelectionDAG &DAG) const { 2049 SDLoc DL(Op); 2050 // The legalizer does not know how to expand the unsupported comparison modes 2051 // of i64x2 vectors, so we manually unroll them here. 2052 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2053 SmallVector<SDValue, 2> LHS, RHS; 2054 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2055 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2056 const SDValue &CC = Op->getOperand(2); 2057 auto MakeLane = [&](unsigned I) { 2058 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2059 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2060 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2061 }; 2062 return DAG.getBuildVector(Op->getValueType(0), DL, 2063 {MakeLane(0), MakeLane(1)}); 2064 } 2065 2066 SDValue 2067 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2068 SelectionDAG &DAG) const { 2069 // Allow constant lane indices, expand variable lane indices 2070 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2071 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2072 return Op; 2073 else 2074 // Perform default expansion 2075 return SDValue(); 2076 } 2077 2078 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2079 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2080 // 32-bit and 64-bit unrolled shifts will have proper semantics 2081 if (LaneT.bitsGE(MVT::i32)) 2082 return DAG.UnrollVectorOp(Op.getNode()); 2083 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2084 SDLoc DL(Op); 2085 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2086 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2087 unsigned ShiftOpcode = Op.getOpcode(); 2088 SmallVector<SDValue, 16> ShiftedElements; 2089 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2090 SmallVector<SDValue, 16> ShiftElements; 2091 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2092 SmallVector<SDValue, 16> UnrolledOps; 2093 for (size_t i = 0; i < NumLanes; ++i) { 2094 SDValue MaskedShiftValue = 2095 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2096 SDValue ShiftedValue = ShiftedElements[i]; 2097 if (ShiftOpcode == ISD::SRA) 2098 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2099 ShiftedValue, DAG.getValueType(LaneT)); 2100 UnrolledOps.push_back( 2101 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2102 } 2103 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2104 } 2105 2106 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2107 SelectionDAG &DAG) const { 2108 SDLoc DL(Op); 2109 2110 // Only manually lower vector shifts 2111 assert(Op.getSimpleValueType().isVector()); 2112 2113 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2114 if (!ShiftVal) 2115 return unrollVectorShift(Op, DAG); 2116 2117 // Use anyext because none of the high bits can affect the shift 2118 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2119 2120 unsigned Opcode; 2121 switch (Op.getOpcode()) { 2122 case ISD::SHL: 2123 Opcode = WebAssemblyISD::VEC_SHL; 2124 break; 2125 case ISD::SRA: 2126 Opcode = WebAssemblyISD::VEC_SHR_S; 2127 break; 2128 case ISD::SRL: 2129 Opcode = WebAssemblyISD::VEC_SHR_U; 2130 break; 2131 default: 2132 llvm_unreachable("unexpected opcode"); 2133 } 2134 2135 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2136 } 2137 2138 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2139 SelectionDAG &DAG) const { 2140 SDLoc DL(Op); 2141 EVT ResT = Op.getValueType(); 2142 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2143 2144 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2145 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2146 return Op; 2147 2148 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2149 return Op; 2150 2151 return SDValue(); 2152 } 2153 2154 //===----------------------------------------------------------------------===// 2155 // Custom DAG combine hooks 2156 //===----------------------------------------------------------------------===// 2157 static SDValue 2158 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2159 auto &DAG = DCI.DAG; 2160 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2161 2162 // Hoist vector bitcasts that don't change the number of lanes out of unary 2163 // shuffles, where they are less likely to get in the way of other combines. 2164 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2165 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2166 SDValue Bitcast = N->getOperand(0); 2167 if (Bitcast.getOpcode() != ISD::BITCAST) 2168 return SDValue(); 2169 if (!N->getOperand(1).isUndef()) 2170 return SDValue(); 2171 SDValue CastOp = Bitcast.getOperand(0); 2172 MVT SrcType = CastOp.getSimpleValueType(); 2173 MVT DstType = Bitcast.getSimpleValueType(); 2174 if (!SrcType.is128BitVector() || 2175 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2176 return SDValue(); 2177 SDValue NewShuffle = DAG.getVectorShuffle( 2178 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2179 return DAG.getBitcast(DstType, NewShuffle); 2180 } 2181 2182 static SDValue 2183 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2184 auto &DAG = DCI.DAG; 2185 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2186 N->getOpcode() == ISD::ZERO_EXTEND); 2187 2188 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2189 // possible before the extract_subvector can be expanded. 2190 auto Extract = N->getOperand(0); 2191 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2192 return SDValue(); 2193 auto Source = Extract.getOperand(0); 2194 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2195 if (IndexNode == nullptr) 2196 return SDValue(); 2197 auto Index = IndexNode->getZExtValue(); 2198 2199 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2200 // extracted subvector is the low or high half of its source. 2201 EVT ResVT = N->getValueType(0); 2202 if (ResVT == MVT::v8i16) { 2203 if (Extract.getValueType() != MVT::v8i8 || 2204 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2205 return SDValue(); 2206 } else if (ResVT == MVT::v4i32) { 2207 if (Extract.getValueType() != MVT::v4i16 || 2208 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2209 return SDValue(); 2210 } else if (ResVT == MVT::v2i64) { 2211 if (Extract.getValueType() != MVT::v2i32 || 2212 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2213 return SDValue(); 2214 } else { 2215 return SDValue(); 2216 } 2217 2218 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2219 bool IsLow = Index == 0; 2220 2221 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2222 : WebAssemblyISD::EXTEND_HIGH_S) 2223 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2224 : WebAssemblyISD::EXTEND_HIGH_U); 2225 2226 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2227 } 2228 2229 static SDValue 2230 performVectorConvertLowCombine(SDNode *N, 2231 TargetLowering::DAGCombinerInfo &DCI) { 2232 auto &DAG = DCI.DAG; 2233 2234 EVT ResVT = N->getValueType(0); 2235 if (ResVT != MVT::v2f64) 2236 return SDValue(); 2237 2238 auto GetWasmConversionOp = [](unsigned Op) { 2239 switch (Op) { 2240 case ISD::SINT_TO_FP: 2241 return WebAssemblyISD::CONVERT_LOW_S; 2242 case ISD::UINT_TO_FP: 2243 return WebAssemblyISD::CONVERT_LOW_U; 2244 case ISD::FP_EXTEND: 2245 return WebAssemblyISD::PROMOTE_LOW; 2246 } 2247 llvm_unreachable("unexpected op"); 2248 }; 2249 2250 if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 2251 // Combine this: 2252 // 2253 // (v2f64 (extract_subvector 2254 // (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0)) 2255 // 2256 // into (f64x2.convert_low_i32x4_{s,u} $x). 2257 // 2258 // Or this: 2259 // 2260 // (v2f64 (extract_subvector 2261 // (v4f64 (fp_extend (v4f32 $x))), 0)) 2262 // 2263 // into (f64x2.promote_low_f32x4 $x). 2264 auto Conversion = N->getOperand(0); 2265 auto ConversionOp = Conversion.getOpcode(); 2266 MVT ExpectedSourceType; 2267 switch (ConversionOp) { 2268 case ISD::SINT_TO_FP: 2269 case ISD::UINT_TO_FP: 2270 ExpectedSourceType = MVT::v4i32; 2271 break; 2272 case ISD::FP_EXTEND: 2273 ExpectedSourceType = MVT::v4f32; 2274 break; 2275 default: 2276 return SDValue(); 2277 } 2278 2279 if (Conversion.getValueType() != MVT::v4f64) 2280 return SDValue(); 2281 2282 auto Source = Conversion.getOperand(0); 2283 if (Source.getValueType() != ExpectedSourceType) 2284 return SDValue(); 2285 2286 auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2287 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2288 return SDValue(); 2289 2290 auto Op = GetWasmConversionOp(ConversionOp); 2291 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2292 } 2293 2294 // Combine this: 2295 // 2296 // (v2f64 ({s,u}int_to_fp 2297 // (v2i32 (extract_subvector (v4i32 $x), 0)))) 2298 // 2299 // into (f64x2.convert_low_i32x4_{s,u} $x). 2300 // 2301 // Or this: 2302 // 2303 // (v2f64 (fp_extend 2304 // (v2f32 (extract_subvector (v4f32 $x), 0)))) 2305 // 2306 // into (f64x2.promote_low_f32x4 $x). 2307 auto ConversionOp = N->getOpcode(); 2308 MVT ExpectedExtractType; 2309 MVT ExpectedSourceType; 2310 switch (ConversionOp) { 2311 case ISD::SINT_TO_FP: 2312 case ISD::UINT_TO_FP: 2313 ExpectedExtractType = MVT::v2i32; 2314 ExpectedSourceType = MVT::v4i32; 2315 break; 2316 case ISD::FP_EXTEND: 2317 ExpectedExtractType = MVT::v2f32; 2318 ExpectedSourceType = MVT::v4f32; 2319 break; 2320 default: 2321 llvm_unreachable("unexpected opcode"); 2322 } 2323 2324 auto Extract = N->getOperand(0); 2325 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2326 return SDValue(); 2327 2328 if (Extract.getValueType() != ExpectedExtractType) 2329 return SDValue(); 2330 2331 auto Source = Extract.getOperand(0); 2332 if (Source.getValueType() != ExpectedSourceType) 2333 return SDValue(); 2334 2335 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2336 if (IndexNode == nullptr || IndexNode->getZExtValue() != 0) 2337 return SDValue(); 2338 2339 unsigned Op = GetWasmConversionOp(ConversionOp); 2340 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2341 } 2342 2343 static SDValue 2344 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2345 auto &DAG = DCI.DAG; 2346 2347 auto GetWasmConversionOp = [](unsigned Op) { 2348 switch (Op) { 2349 case ISD::FP_TO_SINT_SAT: 2350 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2351 case ISD::FP_TO_UINT_SAT: 2352 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2353 case ISD::FP_ROUND: 2354 return WebAssemblyISD::DEMOTE_ZERO; 2355 } 2356 llvm_unreachable("unexpected op"); 2357 }; 2358 2359 auto IsZeroSplat = [](SDValue SplatVal) { 2360 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2361 APInt SplatValue, SplatUndef; 2362 unsigned SplatBitSize; 2363 bool HasAnyUndefs; 2364 return Splat && 2365 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2366 HasAnyUndefs) && 2367 SplatValue == 0; 2368 }; 2369 2370 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2371 // Combine this: 2372 // 2373 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2374 // 2375 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2376 // 2377 // Or this: 2378 // 2379 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2380 // 2381 // into (f32x4.demote_zero_f64x2 $x). 2382 EVT ResVT; 2383 EVT ExpectedConversionType; 2384 auto Conversion = N->getOperand(0); 2385 auto ConversionOp = Conversion.getOpcode(); 2386 switch (ConversionOp) { 2387 case ISD::FP_TO_SINT_SAT: 2388 case ISD::FP_TO_UINT_SAT: 2389 ResVT = MVT::v4i32; 2390 ExpectedConversionType = MVT::v2i32; 2391 break; 2392 case ISD::FP_ROUND: 2393 ResVT = MVT::v4f32; 2394 ExpectedConversionType = MVT::v2f32; 2395 break; 2396 default: 2397 return SDValue(); 2398 } 2399 2400 if (N->getValueType(0) != ResVT) 2401 return SDValue(); 2402 2403 if (Conversion.getValueType() != ExpectedConversionType) 2404 return SDValue(); 2405 2406 auto Source = Conversion.getOperand(0); 2407 if (Source.getValueType() != MVT::v2f64) 2408 return SDValue(); 2409 2410 if (!IsZeroSplat(N->getOperand(1)) || 2411 N->getOperand(1).getValueType() != ExpectedConversionType) 2412 return SDValue(); 2413 2414 unsigned Op = GetWasmConversionOp(ConversionOp); 2415 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2416 } 2417 2418 // Combine this: 2419 // 2420 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2421 // 2422 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2423 // 2424 // Or this: 2425 // 2426 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2427 // 2428 // into (f32x4.demote_zero_f64x2 $x). 2429 EVT ResVT; 2430 auto ConversionOp = N->getOpcode(); 2431 switch (ConversionOp) { 2432 case ISD::FP_TO_SINT_SAT: 2433 case ISD::FP_TO_UINT_SAT: 2434 ResVT = MVT::v4i32; 2435 break; 2436 case ISD::FP_ROUND: 2437 ResVT = MVT::v4f32; 2438 break; 2439 default: 2440 llvm_unreachable("unexpected op"); 2441 } 2442 2443 if (N->getValueType(0) != ResVT) 2444 return SDValue(); 2445 2446 auto Concat = N->getOperand(0); 2447 if (Concat.getValueType() != MVT::v4f64) 2448 return SDValue(); 2449 2450 auto Source = Concat.getOperand(0); 2451 if (Source.getValueType() != MVT::v2f64) 2452 return SDValue(); 2453 2454 if (!IsZeroSplat(Concat.getOperand(1)) || 2455 Concat.getOperand(1).getValueType() != MVT::v2f64) 2456 return SDValue(); 2457 2458 unsigned Op = GetWasmConversionOp(ConversionOp); 2459 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2460 } 2461 2462 SDValue 2463 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2464 DAGCombinerInfo &DCI) const { 2465 switch (N->getOpcode()) { 2466 default: 2467 return SDValue(); 2468 case ISD::VECTOR_SHUFFLE: 2469 return performVECTOR_SHUFFLECombine(N, DCI); 2470 case ISD::SIGN_EXTEND: 2471 case ISD::ZERO_EXTEND: 2472 return performVectorExtendCombine(N, DCI); 2473 case ISD::SINT_TO_FP: 2474 case ISD::UINT_TO_FP: 2475 case ISD::FP_EXTEND: 2476 case ISD::EXTRACT_SUBVECTOR: 2477 return performVectorConvertLowCombine(N, DCI); 2478 case ISD::FP_TO_SINT_SAT: 2479 case ISD::FP_TO_UINT_SAT: 2480 case ISD::FP_ROUND: 2481 case ISD::CONCAT_VECTORS: 2482 return performVectorTruncZeroCombine(N, DCI); 2483 } 2484 } 2485