1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsWebAssembly.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetOptions.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "wasm-lower" 44 45 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 46 const TargetMachine &TM, const WebAssemblySubtarget &STI) 47 : TargetLowering(TM), Subtarget(&STI) { 48 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 49 50 // Booleans always contain 0 or 1. 51 setBooleanContents(ZeroOrOneBooleanContent); 52 // Except in SIMD vectors 53 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 54 // We don't know the microarchitecture here, so just reduce register pressure. 55 setSchedulingPreference(Sched::RegPressure); 56 // Tell ISel that we have a stack pointer. 57 setStackPointerRegisterToSaveRestore( 58 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 59 // Set up the register classes. 60 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 61 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 62 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 63 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 64 if (Subtarget->hasSIMD128()) { 65 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 71 } 72 if (Subtarget->hasReferenceTypes()) { 73 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 74 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 75 } 76 // Compute derived properties from the register classes. 77 computeRegisterProperties(Subtarget->getRegisterInfo()); 78 79 // Transform loads and stores to pointers in address space 1 to loads and 80 // stores to WebAssembly global variables, outside linear memory. 81 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 82 setOperationAction(ISD::LOAD, T, Custom); 83 setOperationAction(ISD::STORE, T, Custom); 84 } 85 if (Subtarget->hasSIMD128()) { 86 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 87 MVT::v2f64}) { 88 setOperationAction(ISD::LOAD, T, Custom); 89 setOperationAction(ISD::STORE, T, Custom); 90 } 91 } 92 if (Subtarget->hasReferenceTypes()) { 93 // We need custom load and store lowering for both externref, funcref and 94 // Other. The MVT::Other here represents tables of reference types. 95 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 96 setOperationAction(ISD::LOAD, T, Custom); 97 setOperationAction(ISD::STORE, T, Custom); 98 } 99 } 100 101 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 102 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 103 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 104 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 105 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 106 setOperationAction(ISD::BRIND, MVT::Other, Custom); 107 108 // Take the default expansion for va_arg, va_copy, and va_end. There is no 109 // default action for va_start, so we do that custom. 110 setOperationAction(ISD::VASTART, MVT::Other, Custom); 111 setOperationAction(ISD::VAARG, MVT::Other, Expand); 112 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 113 setOperationAction(ISD::VAEND, MVT::Other, Expand); 114 115 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 116 // Don't expand the floating-point types to constant pools. 117 setOperationAction(ISD::ConstantFP, T, Legal); 118 // Expand floating-point comparisons. 119 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 120 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 121 setCondCodeAction(CC, T, Expand); 122 // Expand floating-point library function operators. 123 for (auto Op : 124 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 125 setOperationAction(Op, T, Expand); 126 // Note supported floating-point library function operators that otherwise 127 // default to expand. 128 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 129 ISD::FRINT, ISD::FROUNDEVEN}) 130 setOperationAction(Op, T, Legal); 131 // Support minimum and maximum, which otherwise default to expand. 132 setOperationAction(ISD::FMINIMUM, T, Legal); 133 setOperationAction(ISD::FMAXIMUM, T, Legal); 134 // WebAssembly currently has no builtin f16 support. 135 setOperationAction(ISD::FP16_TO_FP, T, Expand); 136 setOperationAction(ISD::FP_TO_FP16, T, Expand); 137 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 138 setTruncStoreAction(T, MVT::f16, Expand); 139 } 140 141 // Expand unavailable integer operations. 142 for (auto Op : 143 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 144 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 145 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 146 for (auto T : {MVT::i32, MVT::i64}) 147 setOperationAction(Op, T, Expand); 148 if (Subtarget->hasSIMD128()) 149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 150 setOperationAction(Op, T, Expand); 151 } 152 153 if (Subtarget->hasNontrappingFPToInt()) 154 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 155 for (auto T : {MVT::i32, MVT::i64}) 156 setOperationAction(Op, T, Custom); 157 158 // SIMD-specific configuration 159 if (Subtarget->hasSIMD128()) { 160 // Combine vector mask reductions into alltrue/anytrue 161 setTargetDAGCombine(ISD::SETCC); 162 163 // Convert vector to integer bitcasts to bitmask 164 setTargetDAGCombine(ISD::BITCAST); 165 166 // Hoist bitcasts out of shuffles 167 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 168 169 // Combine extends of extract_subvectors into widening ops 170 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}); 171 172 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 173 // conversions ops 174 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND, 175 ISD::EXTRACT_SUBVECTOR}); 176 177 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 178 // into conversion ops 179 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 180 ISD::FP_ROUND, ISD::CONCAT_VECTORS}); 181 182 setTargetDAGCombine(ISD::TRUNCATE); 183 184 // Support saturating add for i8x16 and i16x8 185 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 186 for (auto T : {MVT::v16i8, MVT::v8i16}) 187 setOperationAction(Op, T, Legal); 188 189 // Support integer abs 190 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 191 setOperationAction(ISD::ABS, T, Legal); 192 193 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 194 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 195 MVT::v2f64}) 196 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 197 198 // We have custom shuffle lowering to expose the shuffle mask 199 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 200 MVT::v2f64}) 201 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 202 203 // Support splatting 204 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 205 MVT::v2f64}) 206 setOperationAction(ISD::SPLAT_VECTOR, T, Legal); 207 208 // Custom lowering since wasm shifts must have a scalar shift amount 209 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 210 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 211 setOperationAction(Op, T, Custom); 212 213 // Custom lower lane accesses to expand out variable indices 214 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 215 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 216 MVT::v2f64}) 217 setOperationAction(Op, T, Custom); 218 219 // There is no i8x16.mul instruction 220 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 221 222 // There is no vector conditional select instruction 223 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 224 MVT::v2f64}) 225 setOperationAction(ISD::SELECT_CC, T, Expand); 226 227 // Expand integer operations supported for scalars but not SIMD 228 for (auto Op : 229 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 230 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 231 setOperationAction(Op, T, Expand); 232 233 // But we do have integer min and max operations 234 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 235 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 236 setOperationAction(Op, T, Legal); 237 238 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 239 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 240 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 241 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 242 243 // Custom lower bit counting operations for other types to scalarize them. 244 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 245 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 246 setOperationAction(Op, T, Custom); 247 248 // Expand float operations supported for scalars but not SIMD 249 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 250 ISD::FEXP, ISD::FEXP2}) 251 for (auto T : {MVT::v4f32, MVT::v2f64}) 252 setOperationAction(Op, T, Expand); 253 254 // Unsigned comparison operations are unavailable for i64x2 vectors. 255 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 256 setCondCodeAction(CC, MVT::v2i64, Custom); 257 258 // 64x2 conversions are not in the spec 259 for (auto Op : 260 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 261 for (auto T : {MVT::v2i64, MVT::v2f64}) 262 setOperationAction(Op, T, Expand); 263 264 // But saturating fp_to_int converstions are 265 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 266 setOperationAction(Op, MVT::v4i32, Custom); 267 268 // Support vector extending 269 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) { 270 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom); 271 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom); 272 } 273 } 274 275 // As a special case, these operators use the type to mean the type to 276 // sign-extend from. 277 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 278 if (!Subtarget->hasSignExt()) { 279 // Sign extends are legal only when extending a vector extract 280 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 281 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 282 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 283 } 284 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 285 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 286 287 // Dynamic stack allocation: use the default expansion. 288 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 289 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 290 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 291 292 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 293 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 294 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 295 296 // Expand these forms; we pattern-match the forms that we can handle in isel. 297 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 298 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 299 setOperationAction(Op, T, Expand); 300 301 // We have custom switch handling. 302 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 303 304 // WebAssembly doesn't have: 305 // - Floating-point extending loads. 306 // - Floating-point truncating stores. 307 // - i1 extending loads. 308 // - truncating SIMD stores and most extending loads 309 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 310 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 311 for (auto T : MVT::integer_valuetypes()) 312 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 313 setLoadExtAction(Ext, T, MVT::i1, Promote); 314 if (Subtarget->hasSIMD128()) { 315 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 316 MVT::v2f64}) { 317 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 318 if (MVT(T) != MemT) { 319 setTruncStoreAction(T, MemT, Expand); 320 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 321 setLoadExtAction(Ext, T, MemT, Expand); 322 } 323 } 324 } 325 // But some vector extending loads are legal 326 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 327 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 328 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 329 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 330 } 331 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 332 } 333 334 // Don't do anything clever with build_pairs 335 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 336 337 // Trap lowers to wasm unreachable 338 setOperationAction(ISD::TRAP, MVT::Other, Legal); 339 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 340 341 // Exception handling intrinsics 342 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 343 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 344 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 345 346 setMaxAtomicSizeInBitsSupported(64); 347 348 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 349 // consistent with the f64 and f128 names. 350 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 351 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 352 353 // Define the emscripten name for return address helper. 354 // TODO: when implementing other Wasm backends, make this generic or only do 355 // this on emscripten depending on what they end up doing. 356 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 357 358 // Always convert switches to br_tables unless there is only one case, which 359 // is equivalent to a simple branch. This reduces code size for wasm, and we 360 // defer possible jump table optimizations to the VM. 361 setMinimumJumpTableEntries(2); 362 } 363 364 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 365 uint32_t AS) const { 366 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 367 return MVT::externref; 368 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 369 return MVT::funcref; 370 return TargetLowering::getPointerTy(DL, AS); 371 } 372 373 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 374 uint32_t AS) const { 375 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 376 return MVT::externref; 377 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 378 return MVT::funcref; 379 return TargetLowering::getPointerMemTy(DL, AS); 380 } 381 382 TargetLowering::AtomicExpansionKind 383 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 384 // We have wasm instructions for these 385 switch (AI->getOperation()) { 386 case AtomicRMWInst::Add: 387 case AtomicRMWInst::Sub: 388 case AtomicRMWInst::And: 389 case AtomicRMWInst::Or: 390 case AtomicRMWInst::Xor: 391 case AtomicRMWInst::Xchg: 392 return AtomicExpansionKind::None; 393 default: 394 break; 395 } 396 return AtomicExpansionKind::CmpXChg; 397 } 398 399 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 400 // Implementation copied from X86TargetLowering. 401 unsigned Opc = VecOp.getOpcode(); 402 403 // Assume target opcodes can't be scalarized. 404 // TODO - do we have any exceptions? 405 if (Opc >= ISD::BUILTIN_OP_END) 406 return false; 407 408 // If the vector op is not supported, try to convert to scalar. 409 EVT VecVT = VecOp.getValueType(); 410 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 411 return true; 412 413 // If the vector op is supported, but the scalar op is not, the transform may 414 // not be worthwhile. 415 EVT ScalarVT = VecVT.getScalarType(); 416 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 417 } 418 419 FastISel *WebAssemblyTargetLowering::createFastISel( 420 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 421 return WebAssembly::createFastISel(FuncInfo, LibInfo); 422 } 423 424 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 425 EVT VT) const { 426 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 427 if (BitWidth > 1 && BitWidth < 8) 428 BitWidth = 8; 429 430 if (BitWidth > 64) { 431 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 432 // the count to be an i32. 433 BitWidth = 32; 434 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 435 "32-bit shift counts ought to be enough for anyone"); 436 } 437 438 MVT Result = MVT::getIntegerVT(BitWidth); 439 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 440 "Unable to represent scalar shift amount type"); 441 return Result; 442 } 443 444 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 445 // undefined result on invalid/overflow, to the WebAssembly opcode, which 446 // traps on invalid/overflow. 447 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 448 MachineBasicBlock *BB, 449 const TargetInstrInfo &TII, 450 bool IsUnsigned, bool Int64, 451 bool Float64, unsigned LoweredOpcode) { 452 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 453 454 Register OutReg = MI.getOperand(0).getReg(); 455 Register InReg = MI.getOperand(1).getReg(); 456 457 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 458 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 459 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 460 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 461 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 462 unsigned Eqz = WebAssembly::EQZ_I32; 463 unsigned And = WebAssembly::AND_I32; 464 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 465 int64_t Substitute = IsUnsigned ? 0 : Limit; 466 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 467 auto &Context = BB->getParent()->getFunction().getContext(); 468 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 469 470 const BasicBlock *LLVMBB = BB->getBasicBlock(); 471 MachineFunction *F = BB->getParent(); 472 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 473 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 474 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 475 476 MachineFunction::iterator It = ++BB->getIterator(); 477 F->insert(It, FalseMBB); 478 F->insert(It, TrueMBB); 479 F->insert(It, DoneMBB); 480 481 // Transfer the remainder of BB and its successor edges to DoneMBB. 482 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 483 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 484 485 BB->addSuccessor(TrueMBB); 486 BB->addSuccessor(FalseMBB); 487 TrueMBB->addSuccessor(DoneMBB); 488 FalseMBB->addSuccessor(DoneMBB); 489 490 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 491 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 492 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 493 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 494 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 495 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 496 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 497 498 MI.eraseFromParent(); 499 // For signed numbers, we can do a single comparison to determine whether 500 // fabs(x) is within range. 501 if (IsUnsigned) { 502 Tmp0 = InReg; 503 } else { 504 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 505 } 506 BuildMI(BB, DL, TII.get(FConst), Tmp1) 507 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 508 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 509 510 // For unsigned numbers, we have to do a separate comparison with zero. 511 if (IsUnsigned) { 512 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 513 Register SecondCmpReg = 514 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 515 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 516 BuildMI(BB, DL, TII.get(FConst), Tmp1) 517 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 518 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 519 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 520 CmpReg = AndReg; 521 } 522 523 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 524 525 // Create the CFG diamond to select between doing the conversion or using 526 // the substitute value. 527 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 528 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 529 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 530 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 531 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 532 .addReg(FalseReg) 533 .addMBB(FalseMBB) 534 .addReg(TrueReg) 535 .addMBB(TrueMBB); 536 537 return DoneMBB; 538 } 539 540 static MachineBasicBlock * 541 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 542 const WebAssemblySubtarget *Subtarget, 543 const TargetInstrInfo &TII) { 544 MachineInstr &CallParams = *CallResults.getPrevNode(); 545 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 546 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 547 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 548 549 bool IsIndirect = 550 CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI(); 551 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 552 553 bool IsFuncrefCall = false; 554 if (IsIndirect && CallParams.getOperand(0).isReg()) { 555 Register Reg = CallParams.getOperand(0).getReg(); 556 const MachineFunction *MF = BB->getParent(); 557 const MachineRegisterInfo &MRI = MF->getRegInfo(); 558 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 559 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 560 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 561 } 562 563 unsigned CallOp; 564 if (IsIndirect && IsRetCall) { 565 CallOp = WebAssembly::RET_CALL_INDIRECT; 566 } else if (IsIndirect) { 567 CallOp = WebAssembly::CALL_INDIRECT; 568 } else if (IsRetCall) { 569 CallOp = WebAssembly::RET_CALL; 570 } else { 571 CallOp = WebAssembly::CALL; 572 } 573 574 MachineFunction &MF = *BB->getParent(); 575 const MCInstrDesc &MCID = TII.get(CallOp); 576 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 577 578 // See if we must truncate the function pointer. 579 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 580 // as 64-bit for uniformity with other pointer types. 581 // See also: WebAssemblyFastISel::selectCall 582 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 583 Register Reg32 = 584 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 585 auto &FnPtr = CallParams.getOperand(0); 586 BuildMI(*BB, CallResults.getIterator(), DL, 587 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 588 .addReg(FnPtr.getReg()); 589 FnPtr.setReg(Reg32); 590 } 591 592 // Move the function pointer to the end of the arguments for indirect calls 593 if (IsIndirect) { 594 auto FnPtr = CallParams.getOperand(0); 595 CallParams.removeOperand(0); 596 597 // For funcrefs, call_indirect is done through __funcref_call_table and the 598 // funcref is always installed in slot 0 of the table, therefore instead of 599 // having the function pointer added at the end of the params list, a zero 600 // (the index in 601 // __funcref_call_table is added). 602 if (IsFuncrefCall) { 603 Register RegZero = 604 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 605 MachineInstrBuilder MIBC0 = 606 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 607 608 BB->insert(CallResults.getIterator(), MIBC0); 609 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 610 } else 611 CallParams.addOperand(FnPtr); 612 } 613 614 for (auto Def : CallResults.defs()) 615 MIB.add(Def); 616 617 if (IsIndirect) { 618 // Placeholder for the type index. 619 MIB.addImm(0); 620 // The table into which this call_indirect indexes. 621 MCSymbolWasm *Table = IsFuncrefCall 622 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 623 MF.getContext(), Subtarget) 624 : WebAssembly::getOrCreateFunctionTableSymbol( 625 MF.getContext(), Subtarget); 626 if (Subtarget->hasReferenceTypes()) { 627 MIB.addSym(Table); 628 } else { 629 // For the MVP there is at most one table whose number is 0, but we can't 630 // write a table symbol or issue relocations. Instead we just ensure the 631 // table is live and write a zero. 632 Table->setNoStrip(); 633 MIB.addImm(0); 634 } 635 } 636 637 for (auto Use : CallParams.uses()) 638 MIB.add(Use); 639 640 BB->insert(CallResults.getIterator(), MIB); 641 CallParams.eraseFromParent(); 642 CallResults.eraseFromParent(); 643 644 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 645 // table slot with ref.null upon call_indirect return. 646 // 647 // This generates the following code, which comes right after a call_indirect 648 // of a funcref: 649 // 650 // i32.const 0 651 // ref.null func 652 // table.set __funcref_call_table 653 if (IsIndirect && IsFuncrefCall) { 654 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 655 MF.getContext(), Subtarget); 656 Register RegZero = 657 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 658 MachineInstr *Const0 = 659 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 660 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 661 662 Register RegFuncref = 663 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 664 MachineInstr *RefNull = 665 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 666 BB->insertAfter(Const0->getIterator(), RefNull); 667 668 MachineInstr *TableSet = 669 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 670 .addSym(Table) 671 .addReg(RegZero) 672 .addReg(RegFuncref); 673 BB->insertAfter(RefNull->getIterator(), TableSet); 674 } 675 676 return BB; 677 } 678 679 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 680 MachineInstr &MI, MachineBasicBlock *BB) const { 681 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 682 DebugLoc DL = MI.getDebugLoc(); 683 684 switch (MI.getOpcode()) { 685 default: 686 llvm_unreachable("Unexpected instr type to insert"); 687 case WebAssembly::FP_TO_SINT_I32_F32: 688 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 689 WebAssembly::I32_TRUNC_S_F32); 690 case WebAssembly::FP_TO_UINT_I32_F32: 691 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 692 WebAssembly::I32_TRUNC_U_F32); 693 case WebAssembly::FP_TO_SINT_I64_F32: 694 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 695 WebAssembly::I64_TRUNC_S_F32); 696 case WebAssembly::FP_TO_UINT_I64_F32: 697 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 698 WebAssembly::I64_TRUNC_U_F32); 699 case WebAssembly::FP_TO_SINT_I32_F64: 700 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 701 WebAssembly::I32_TRUNC_S_F64); 702 case WebAssembly::FP_TO_UINT_I32_F64: 703 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 704 WebAssembly::I32_TRUNC_U_F64); 705 case WebAssembly::FP_TO_SINT_I64_F64: 706 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 707 WebAssembly::I64_TRUNC_S_F64); 708 case WebAssembly::FP_TO_UINT_I64_F64: 709 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 710 WebAssembly::I64_TRUNC_U_F64); 711 case WebAssembly::CALL_RESULTS: 712 case WebAssembly::RET_CALL_RESULTS: 713 return LowerCallResults(MI, DL, BB, Subtarget, TII); 714 } 715 } 716 717 const char * 718 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 719 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 720 case WebAssemblyISD::FIRST_NUMBER: 721 case WebAssemblyISD::FIRST_MEM_OPCODE: 722 break; 723 #define HANDLE_NODETYPE(NODE) \ 724 case WebAssemblyISD::NODE: \ 725 return "WebAssemblyISD::" #NODE; 726 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 727 #include "WebAssemblyISD.def" 728 #undef HANDLE_MEM_NODETYPE 729 #undef HANDLE_NODETYPE 730 } 731 return nullptr; 732 } 733 734 std::pair<unsigned, const TargetRegisterClass *> 735 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 736 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 737 // First, see if this is a constraint that directly corresponds to a 738 // WebAssembly register class. 739 if (Constraint.size() == 1) { 740 switch (Constraint[0]) { 741 case 'r': 742 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 743 if (Subtarget->hasSIMD128() && VT.isVector()) { 744 if (VT.getSizeInBits() == 128) 745 return std::make_pair(0U, &WebAssembly::V128RegClass); 746 } 747 if (VT.isInteger() && !VT.isVector()) { 748 if (VT.getSizeInBits() <= 32) 749 return std::make_pair(0U, &WebAssembly::I32RegClass); 750 if (VT.getSizeInBits() <= 64) 751 return std::make_pair(0U, &WebAssembly::I64RegClass); 752 } 753 if (VT.isFloatingPoint() && !VT.isVector()) { 754 switch (VT.getSizeInBits()) { 755 case 32: 756 return std::make_pair(0U, &WebAssembly::F32RegClass); 757 case 64: 758 return std::make_pair(0U, &WebAssembly::F64RegClass); 759 default: 760 break; 761 } 762 } 763 break; 764 default: 765 break; 766 } 767 } 768 769 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 770 } 771 772 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { 773 // Assume ctz is a relatively cheap operation. 774 return true; 775 } 776 777 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { 778 // Assume clz is a relatively cheap operation. 779 return true; 780 } 781 782 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 783 const AddrMode &AM, 784 Type *Ty, unsigned AS, 785 Instruction *I) const { 786 // WebAssembly offsets are added as unsigned without wrapping. The 787 // isLegalAddressingMode gives us no way to determine if wrapping could be 788 // happening, so we approximate this by accepting only non-negative offsets. 789 if (AM.BaseOffs < 0) 790 return false; 791 792 // WebAssembly has no scale register operands. 793 if (AM.Scale != 0) 794 return false; 795 796 // Everything else is legal. 797 return true; 798 } 799 800 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 801 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 802 MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const { 803 // WebAssembly supports unaligned accesses, though it should be declared 804 // with the p2align attribute on loads and stores which do so, and there 805 // may be a performance impact. We tell LLVM they're "fast" because 806 // for the kinds of things that LLVM uses this for (merging adjacent stores 807 // of constants, etc.), WebAssembly implementations will either want the 808 // unaligned access or they'll split anyway. 809 if (Fast) 810 *Fast = 1; 811 return true; 812 } 813 814 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 815 AttributeList Attr) const { 816 // The current thinking is that wasm engines will perform this optimization, 817 // so we can save on code size. 818 return true; 819 } 820 821 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 822 EVT ExtT = ExtVal.getValueType(); 823 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 824 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 825 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 826 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 827 } 828 829 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 830 const GlobalAddressSDNode *GA) const { 831 // Wasm doesn't support function addresses with offsets 832 const GlobalValue *GV = GA->getGlobal(); 833 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 834 } 835 836 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 837 LLVMContext &C, 838 EVT VT) const { 839 if (VT.isVector()) 840 return VT.changeVectorElementTypeToInteger(); 841 842 // So far, all branch instructions in Wasm take an I32 condition. 843 // The default TargetLowering::getSetCCResultType returns the pointer size, 844 // which would be useful to reduce instruction counts when testing 845 // against 64-bit pointers/values if at some point Wasm supports that. 846 return EVT::getIntegerVT(C, 32); 847 } 848 849 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 850 const CallInst &I, 851 MachineFunction &MF, 852 unsigned Intrinsic) const { 853 switch (Intrinsic) { 854 case Intrinsic::wasm_memory_atomic_notify: 855 Info.opc = ISD::INTRINSIC_W_CHAIN; 856 Info.memVT = MVT::i32; 857 Info.ptrVal = I.getArgOperand(0); 858 Info.offset = 0; 859 Info.align = Align(4); 860 // atomic.notify instruction does not really load the memory specified with 861 // this argument, but MachineMemOperand should either be load or store, so 862 // we set this to a load. 863 // FIXME Volatile isn't really correct, but currently all LLVM atomic 864 // instructions are treated as volatiles in the backend, so we should be 865 // consistent. The same applies for wasm_atomic_wait intrinsics too. 866 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 867 return true; 868 case Intrinsic::wasm_memory_atomic_wait32: 869 Info.opc = ISD::INTRINSIC_W_CHAIN; 870 Info.memVT = MVT::i32; 871 Info.ptrVal = I.getArgOperand(0); 872 Info.offset = 0; 873 Info.align = Align(4); 874 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 875 return true; 876 case Intrinsic::wasm_memory_atomic_wait64: 877 Info.opc = ISD::INTRINSIC_W_CHAIN; 878 Info.memVT = MVT::i64; 879 Info.ptrVal = I.getArgOperand(0); 880 Info.offset = 0; 881 Info.align = Align(8); 882 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 883 return true; 884 default: 885 return false; 886 } 887 } 888 889 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 890 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 891 const SelectionDAG &DAG, unsigned Depth) const { 892 switch (Op.getOpcode()) { 893 default: 894 break; 895 case ISD::INTRINSIC_WO_CHAIN: { 896 unsigned IntNo = Op.getConstantOperandVal(0); 897 switch (IntNo) { 898 default: 899 break; 900 case Intrinsic::wasm_bitmask: { 901 unsigned BitWidth = Known.getBitWidth(); 902 EVT VT = Op.getOperand(1).getSimpleValueType(); 903 unsigned PossibleBits = VT.getVectorNumElements(); 904 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 905 Known.Zero |= ZeroMask; 906 break; 907 } 908 } 909 } 910 } 911 } 912 913 TargetLoweringBase::LegalizeTypeAction 914 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 915 if (VT.isFixedLengthVector()) { 916 MVT EltVT = VT.getVectorElementType(); 917 // We have legal vector types with these lane types, so widening the 918 // vector would let us use some of the lanes directly without having to 919 // extend or truncate values. 920 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 921 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 922 return TypeWidenVector; 923 } 924 925 return TargetLoweringBase::getPreferredVectorAction(VT); 926 } 927 928 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( 929 SDValue Op, const TargetLoweringOpt &TLO) const { 930 // ISel process runs DAGCombiner after legalization; this step is called 931 // SelectionDAG optimization phase. This post-legalization combining process 932 // runs DAGCombiner on each node, and if there was a change to be made, 933 // re-runs legalization again on it and its user nodes to make sure 934 // everythiing is in a legalized state. 935 // 936 // The legalization calls lowering routines, and we do our custom lowering for 937 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements 938 // into zeros. But there is a set of routines in DAGCombiner that turns unused 939 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts 940 // turns unused vector elements into undefs. But this routine does not work 941 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This 942 // combination can result in a infinite loop, in which undefs are converted to 943 // zeros in legalization and back to undefs in combining. 944 // 945 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from 946 // running for build_vectors. 947 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) 948 return false; 949 return true; 950 } 951 952 //===----------------------------------------------------------------------===// 953 // WebAssembly Lowering private implementation. 954 //===----------------------------------------------------------------------===// 955 956 //===----------------------------------------------------------------------===// 957 // Lowering Code 958 //===----------------------------------------------------------------------===// 959 960 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 961 MachineFunction &MF = DAG.getMachineFunction(); 962 DAG.getContext()->diagnose( 963 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 964 } 965 966 // Test whether the given calling convention is supported. 967 static bool callingConvSupported(CallingConv::ID CallConv) { 968 // We currently support the language-independent target-independent 969 // conventions. We don't yet have a way to annotate calls with properties like 970 // "cold", and we don't have any call-clobbered registers, so these are mostly 971 // all handled the same. 972 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 973 CallConv == CallingConv::Cold || 974 CallConv == CallingConv::PreserveMost || 975 CallConv == CallingConv::PreserveAll || 976 CallConv == CallingConv::CXX_FAST_TLS || 977 CallConv == CallingConv::WASM_EmscriptenInvoke || 978 CallConv == CallingConv::Swift; 979 } 980 981 SDValue 982 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 983 SmallVectorImpl<SDValue> &InVals) const { 984 SelectionDAG &DAG = CLI.DAG; 985 SDLoc DL = CLI.DL; 986 SDValue Chain = CLI.Chain; 987 SDValue Callee = CLI.Callee; 988 MachineFunction &MF = DAG.getMachineFunction(); 989 auto Layout = MF.getDataLayout(); 990 991 CallingConv::ID CallConv = CLI.CallConv; 992 if (!callingConvSupported(CallConv)) 993 fail(DL, DAG, 994 "WebAssembly doesn't support language-specific or target-specific " 995 "calling conventions yet"); 996 if (CLI.IsPatchPoint) 997 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 998 999 if (CLI.IsTailCall) { 1000 auto NoTail = [&](const char *Msg) { 1001 if (CLI.CB && CLI.CB->isMustTailCall()) 1002 fail(DL, DAG, Msg); 1003 CLI.IsTailCall = false; 1004 }; 1005 1006 if (!Subtarget->hasTailCall()) 1007 NoTail("WebAssembly 'tail-call' feature not enabled"); 1008 1009 // Varargs calls cannot be tail calls because the buffer is on the stack 1010 if (CLI.IsVarArg) 1011 NoTail("WebAssembly does not support varargs tail calls"); 1012 1013 // Do not tail call unless caller and callee return types match 1014 const Function &F = MF.getFunction(); 1015 const TargetMachine &TM = getTargetMachine(); 1016 Type *RetTy = F.getReturnType(); 1017 SmallVector<MVT, 4> CallerRetTys; 1018 SmallVector<MVT, 4> CalleeRetTys; 1019 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 1020 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 1021 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 1022 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 1023 CalleeRetTys.begin()); 1024 if (!TypesMatch) 1025 NoTail("WebAssembly tail call requires caller and callee return types to " 1026 "match"); 1027 1028 // If pointers to local stack values are passed, we cannot tail call 1029 if (CLI.CB) { 1030 for (auto &Arg : CLI.CB->args()) { 1031 Value *Val = Arg.get(); 1032 // Trace the value back through pointer operations 1033 while (true) { 1034 Value *Src = Val->stripPointerCastsAndAliases(); 1035 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 1036 Src = GEP->getPointerOperand(); 1037 if (Val == Src) 1038 break; 1039 Val = Src; 1040 } 1041 if (isa<AllocaInst>(Val)) { 1042 NoTail( 1043 "WebAssembly does not support tail calling with stack arguments"); 1044 break; 1045 } 1046 } 1047 } 1048 } 1049 1050 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1051 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1052 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1053 1054 // The generic code may have added an sret argument. If we're lowering an 1055 // invoke function, the ABI requires that the function pointer be the first 1056 // argument, so we may have to swap the arguments. 1057 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1058 Outs[0].Flags.isSRet()) { 1059 std::swap(Outs[0], Outs[1]); 1060 std::swap(OutVals[0], OutVals[1]); 1061 } 1062 1063 bool HasSwiftSelfArg = false; 1064 bool HasSwiftErrorArg = false; 1065 unsigned NumFixedArgs = 0; 1066 for (unsigned I = 0; I < Outs.size(); ++I) { 1067 const ISD::OutputArg &Out = Outs[I]; 1068 SDValue &OutVal = OutVals[I]; 1069 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1070 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1071 if (Out.Flags.isNest()) 1072 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1073 if (Out.Flags.isInAlloca()) 1074 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1075 if (Out.Flags.isInConsecutiveRegs()) 1076 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1077 if (Out.Flags.isInConsecutiveRegsLast()) 1078 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1079 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1080 auto &MFI = MF.getFrameInfo(); 1081 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1082 Out.Flags.getNonZeroByValAlign(), 1083 /*isSS=*/false); 1084 SDValue SizeNode = 1085 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1086 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1087 Chain = DAG.getMemcpy( 1088 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1089 /*isVolatile*/ false, /*AlwaysInline=*/false, 1090 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1091 OutVal = FINode; 1092 } 1093 // Count the number of fixed args *after* legalization. 1094 NumFixedArgs += Out.IsFixed; 1095 } 1096 1097 bool IsVarArg = CLI.IsVarArg; 1098 auto PtrVT = getPointerTy(Layout); 1099 1100 // For swiftcc, emit additional swiftself and swifterror arguments 1101 // if there aren't. These additional arguments are also added for callee 1102 // signature They are necessary to match callee and caller signature for 1103 // indirect call. 1104 if (CallConv == CallingConv::Swift) { 1105 if (!HasSwiftSelfArg) { 1106 NumFixedArgs++; 1107 ISD::OutputArg Arg; 1108 Arg.Flags.setSwiftSelf(); 1109 CLI.Outs.push_back(Arg); 1110 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1111 CLI.OutVals.push_back(ArgVal); 1112 } 1113 if (!HasSwiftErrorArg) { 1114 NumFixedArgs++; 1115 ISD::OutputArg Arg; 1116 Arg.Flags.setSwiftError(); 1117 CLI.Outs.push_back(Arg); 1118 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1119 CLI.OutVals.push_back(ArgVal); 1120 } 1121 } 1122 1123 // Analyze operands of the call, assigning locations to each operand. 1124 SmallVector<CCValAssign, 16> ArgLocs; 1125 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1126 1127 if (IsVarArg) { 1128 // Outgoing non-fixed arguments are placed in a buffer. First 1129 // compute their offsets and the total amount of buffer space needed. 1130 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1131 const ISD::OutputArg &Out = Outs[I]; 1132 SDValue &Arg = OutVals[I]; 1133 EVT VT = Arg.getValueType(); 1134 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1135 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1136 Align Alignment = 1137 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1138 unsigned Offset = 1139 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1140 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1141 Offset, VT.getSimpleVT(), 1142 CCValAssign::Full)); 1143 } 1144 } 1145 1146 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1147 1148 SDValue FINode; 1149 if (IsVarArg && NumBytes) { 1150 // For non-fixed arguments, next emit stores to store the argument values 1151 // to the stack buffer at the offsets computed above. 1152 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1153 Layout.getStackAlignment(), 1154 /*isSS=*/false); 1155 unsigned ValNo = 0; 1156 SmallVector<SDValue, 8> Chains; 1157 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1158 assert(ArgLocs[ValNo].getValNo() == ValNo && 1159 "ArgLocs should remain in order and only hold varargs args"); 1160 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1161 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1162 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1163 DAG.getConstant(Offset, DL, PtrVT)); 1164 Chains.push_back( 1165 DAG.getStore(Chain, DL, Arg, Add, 1166 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1167 } 1168 if (!Chains.empty()) 1169 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1170 } else if (IsVarArg) { 1171 FINode = DAG.getIntPtrConstant(0, DL); 1172 } 1173 1174 if (Callee->getOpcode() == ISD::GlobalAddress) { 1175 // If the callee is a GlobalAddress node (quite common, every direct call 1176 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1177 // doesn't at MO_GOT which is not needed for direct calls. 1178 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee); 1179 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1180 getPointerTy(DAG.getDataLayout()), 1181 GA->getOffset()); 1182 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1183 getPointerTy(DAG.getDataLayout()), Callee); 1184 } 1185 1186 // Compute the operands for the CALLn node. 1187 SmallVector<SDValue, 16> Ops; 1188 Ops.push_back(Chain); 1189 Ops.push_back(Callee); 1190 1191 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1192 // isn't reliable. 1193 Ops.append(OutVals.begin(), 1194 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1195 // Add a pointer to the vararg buffer. 1196 if (IsVarArg) 1197 Ops.push_back(FINode); 1198 1199 SmallVector<EVT, 8> InTys; 1200 for (const auto &In : Ins) { 1201 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1202 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1203 if (In.Flags.isInAlloca()) 1204 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1205 if (In.Flags.isInConsecutiveRegs()) 1206 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1207 if (In.Flags.isInConsecutiveRegsLast()) 1208 fail(DL, DAG, 1209 "WebAssembly hasn't implemented cons regs last return values"); 1210 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1211 // registers. 1212 InTys.push_back(In.VT); 1213 } 1214 1215 // Lastly, if this is a call to a funcref we need to add an instruction 1216 // table.set to the chain and transform the call. 1217 if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType( 1218 CLI.CB->getCalledOperand()->getType())) { 1219 // In the absence of function references proposal where a funcref call is 1220 // lowered to call_ref, using reference types we generate a table.set to set 1221 // the funcref to a special table used solely for this purpose, followed by 1222 // a call_indirect. Here we just generate the table set, and return the 1223 // SDValue of the table.set so that LowerCall can finalize the lowering by 1224 // generating the call_indirect. 1225 SDValue Chain = Ops[0]; 1226 1227 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1228 MF.getContext(), Subtarget); 1229 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1230 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1231 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1232 SDValue TableSet = DAG.getMemIntrinsicNode( 1233 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1234 MVT::funcref, 1235 // Machine Mem Operand args 1236 MachinePointerInfo( 1237 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1238 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1239 MachineMemOperand::MOStore); 1240 1241 Ops[0] = TableSet; // The new chain is the TableSet itself 1242 } 1243 1244 if (CLI.IsTailCall) { 1245 // ret_calls do not return values to the current frame 1246 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1247 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1248 } 1249 1250 InTys.push_back(MVT::Other); 1251 SDVTList InTyList = DAG.getVTList(InTys); 1252 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1253 1254 for (size_t I = 0; I < Ins.size(); ++I) 1255 InVals.push_back(Res.getValue(I)); 1256 1257 // Return the chain 1258 return Res.getValue(Ins.size()); 1259 } 1260 1261 bool WebAssemblyTargetLowering::CanLowerReturn( 1262 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1263 const SmallVectorImpl<ISD::OutputArg> &Outs, 1264 LLVMContext & /*Context*/) const { 1265 // WebAssembly can only handle returning tuples with multivalue enabled 1266 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1267 } 1268 1269 SDValue WebAssemblyTargetLowering::LowerReturn( 1270 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1271 const SmallVectorImpl<ISD::OutputArg> &Outs, 1272 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1273 SelectionDAG &DAG) const { 1274 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1275 "MVP WebAssembly can only return up to one value"); 1276 if (!callingConvSupported(CallConv)) 1277 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1278 1279 SmallVector<SDValue, 4> RetOps(1, Chain); 1280 RetOps.append(OutVals.begin(), OutVals.end()); 1281 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1282 1283 // Record the number and types of the return values. 1284 for (const ISD::OutputArg &Out : Outs) { 1285 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1286 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1287 assert(Out.IsFixed && "non-fixed return value is not valid"); 1288 if (Out.Flags.isInAlloca()) 1289 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1290 if (Out.Flags.isInConsecutiveRegs()) 1291 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1292 if (Out.Flags.isInConsecutiveRegsLast()) 1293 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1294 } 1295 1296 return Chain; 1297 } 1298 1299 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1300 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1301 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1302 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1303 if (!callingConvSupported(CallConv)) 1304 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1305 1306 MachineFunction &MF = DAG.getMachineFunction(); 1307 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1308 1309 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1310 // of the incoming values before they're represented by virtual registers. 1311 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1312 1313 bool HasSwiftErrorArg = false; 1314 bool HasSwiftSelfArg = false; 1315 for (const ISD::InputArg &In : Ins) { 1316 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1317 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1318 if (In.Flags.isInAlloca()) 1319 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1320 if (In.Flags.isNest()) 1321 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1322 if (In.Flags.isInConsecutiveRegs()) 1323 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1324 if (In.Flags.isInConsecutiveRegsLast()) 1325 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1326 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1327 // registers. 1328 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1329 DAG.getTargetConstant(InVals.size(), 1330 DL, MVT::i32)) 1331 : DAG.getUNDEF(In.VT)); 1332 1333 // Record the number and types of arguments. 1334 MFI->addParam(In.VT); 1335 } 1336 1337 // For swiftcc, emit additional swiftself and swifterror arguments 1338 // if there aren't. These additional arguments are also added for callee 1339 // signature They are necessary to match callee and caller signature for 1340 // indirect call. 1341 auto PtrVT = getPointerTy(MF.getDataLayout()); 1342 if (CallConv == CallingConv::Swift) { 1343 if (!HasSwiftSelfArg) { 1344 MFI->addParam(PtrVT); 1345 } 1346 if (!HasSwiftErrorArg) { 1347 MFI->addParam(PtrVT); 1348 } 1349 } 1350 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1351 // the buffer is passed as an argument. 1352 if (IsVarArg) { 1353 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1354 Register VarargVreg = 1355 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1356 MFI->setVarargBufferVreg(VarargVreg); 1357 Chain = DAG.getCopyToReg( 1358 Chain, DL, VarargVreg, 1359 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1360 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1361 MFI->addParam(PtrVT); 1362 } 1363 1364 // Record the number and types of arguments and results. 1365 SmallVector<MVT, 4> Params; 1366 SmallVector<MVT, 4> Results; 1367 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1368 MF.getFunction(), DAG.getTarget(), Params, Results); 1369 for (MVT VT : Results) 1370 MFI->addResult(VT); 1371 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1372 // the param logic here with ComputeSignatureVTs 1373 assert(MFI->getParams().size() == Params.size() && 1374 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1375 Params.begin())); 1376 1377 return Chain; 1378 } 1379 1380 void WebAssemblyTargetLowering::ReplaceNodeResults( 1381 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1382 switch (N->getOpcode()) { 1383 case ISD::SIGN_EXTEND_INREG: 1384 // Do not add any results, signifying that N should not be custom lowered 1385 // after all. This happens because simd128 turns on custom lowering for 1386 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1387 // illegal type. 1388 break; 1389 case ISD::SIGN_EXTEND_VECTOR_INREG: 1390 case ISD::ZERO_EXTEND_VECTOR_INREG: 1391 // Do not add any results, signifying that N should not be custom lowered. 1392 // EXTEND_VECTOR_INREG is implemented for some vectors, but not all. 1393 break; 1394 default: 1395 llvm_unreachable( 1396 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1397 } 1398 } 1399 1400 //===----------------------------------------------------------------------===// 1401 // Custom lowering hooks. 1402 //===----------------------------------------------------------------------===// 1403 1404 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1405 SelectionDAG &DAG) const { 1406 SDLoc DL(Op); 1407 switch (Op.getOpcode()) { 1408 default: 1409 llvm_unreachable("unimplemented operation lowering"); 1410 return SDValue(); 1411 case ISD::FrameIndex: 1412 return LowerFrameIndex(Op, DAG); 1413 case ISD::GlobalAddress: 1414 return LowerGlobalAddress(Op, DAG); 1415 case ISD::GlobalTLSAddress: 1416 return LowerGlobalTLSAddress(Op, DAG); 1417 case ISD::ExternalSymbol: 1418 return LowerExternalSymbol(Op, DAG); 1419 case ISD::JumpTable: 1420 return LowerJumpTable(Op, DAG); 1421 case ISD::BR_JT: 1422 return LowerBR_JT(Op, DAG); 1423 case ISD::VASTART: 1424 return LowerVASTART(Op, DAG); 1425 case ISD::BlockAddress: 1426 case ISD::BRIND: 1427 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1428 return SDValue(); 1429 case ISD::RETURNADDR: 1430 return LowerRETURNADDR(Op, DAG); 1431 case ISD::FRAMEADDR: 1432 return LowerFRAMEADDR(Op, DAG); 1433 case ISD::CopyToReg: 1434 return LowerCopyToReg(Op, DAG); 1435 case ISD::EXTRACT_VECTOR_ELT: 1436 case ISD::INSERT_VECTOR_ELT: 1437 return LowerAccessVectorElement(Op, DAG); 1438 case ISD::INTRINSIC_VOID: 1439 case ISD::INTRINSIC_WO_CHAIN: 1440 case ISD::INTRINSIC_W_CHAIN: 1441 return LowerIntrinsic(Op, DAG); 1442 case ISD::SIGN_EXTEND_INREG: 1443 return LowerSIGN_EXTEND_INREG(Op, DAG); 1444 case ISD::ZERO_EXTEND_VECTOR_INREG: 1445 case ISD::SIGN_EXTEND_VECTOR_INREG: 1446 return LowerEXTEND_VECTOR_INREG(Op, DAG); 1447 case ISD::BUILD_VECTOR: 1448 return LowerBUILD_VECTOR(Op, DAG); 1449 case ISD::VECTOR_SHUFFLE: 1450 return LowerVECTOR_SHUFFLE(Op, DAG); 1451 case ISD::SETCC: 1452 return LowerSETCC(Op, DAG); 1453 case ISD::SHL: 1454 case ISD::SRA: 1455 case ISD::SRL: 1456 return LowerShift(Op, DAG); 1457 case ISD::FP_TO_SINT_SAT: 1458 case ISD::FP_TO_UINT_SAT: 1459 return LowerFP_TO_INT_SAT(Op, DAG); 1460 case ISD::LOAD: 1461 return LowerLoad(Op, DAG); 1462 case ISD::STORE: 1463 return LowerStore(Op, DAG); 1464 case ISD::CTPOP: 1465 case ISD::CTLZ: 1466 case ISD::CTTZ: 1467 return DAG.UnrollVectorOp(Op.getNode()); 1468 } 1469 } 1470 1471 static bool IsWebAssemblyGlobal(SDValue Op) { 1472 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1473 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1474 1475 return false; 1476 } 1477 1478 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op, 1479 SelectionDAG &DAG) { 1480 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1481 if (!FI) 1482 return std::nullopt; 1483 1484 auto &MF = DAG.getMachineFunction(); 1485 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1486 } 1487 1488 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1489 SelectionDAG &DAG) const { 1490 SDLoc DL(Op); 1491 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1492 const SDValue &Value = SN->getValue(); 1493 const SDValue &Base = SN->getBasePtr(); 1494 const SDValue &Offset = SN->getOffset(); 1495 1496 if (IsWebAssemblyGlobal(Base)) { 1497 if (!Offset->isUndef()) 1498 report_fatal_error("unexpected offset when storing to webassembly global", 1499 false); 1500 1501 SDVTList Tys = DAG.getVTList(MVT::Other); 1502 SDValue Ops[] = {SN->getChain(), Value, Base}; 1503 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1504 SN->getMemoryVT(), SN->getMemOperand()); 1505 } 1506 1507 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1508 if (!Offset->isUndef()) 1509 report_fatal_error("unexpected offset when storing to webassembly local", 1510 false); 1511 1512 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1513 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1514 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1515 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1516 } 1517 1518 if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace())) 1519 report_fatal_error( 1520 "Encountered an unlowerable store to the wasm_var address space", 1521 false); 1522 1523 return Op; 1524 } 1525 1526 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1527 SelectionDAG &DAG) const { 1528 SDLoc DL(Op); 1529 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1530 const SDValue &Base = LN->getBasePtr(); 1531 const SDValue &Offset = LN->getOffset(); 1532 1533 if (IsWebAssemblyGlobal(Base)) { 1534 if (!Offset->isUndef()) 1535 report_fatal_error( 1536 "unexpected offset when loading from webassembly global", false); 1537 1538 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1539 SDValue Ops[] = {LN->getChain(), Base}; 1540 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1541 LN->getMemoryVT(), LN->getMemOperand()); 1542 } 1543 1544 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1545 if (!Offset->isUndef()) 1546 report_fatal_error( 1547 "unexpected offset when loading from webassembly local", false); 1548 1549 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1550 EVT LocalVT = LN->getValueType(0); 1551 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1552 {LN->getChain(), Idx}); 1553 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1554 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1555 return Result; 1556 } 1557 1558 if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace())) 1559 report_fatal_error( 1560 "Encountered an unlowerable load from the wasm_var address space", 1561 false); 1562 1563 return Op; 1564 } 1565 1566 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1567 SelectionDAG &DAG) const { 1568 SDValue Src = Op.getOperand(2); 1569 if (isa<FrameIndexSDNode>(Src.getNode())) { 1570 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1571 // the FI to some LEA-like instruction, but since we don't have that, we 1572 // need to insert some kind of instruction that can take an FI operand and 1573 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1574 // local.copy between Op and its FI operand. 1575 SDValue Chain = Op.getOperand(0); 1576 SDLoc DL(Op); 1577 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1578 EVT VT = Src.getValueType(); 1579 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1580 : WebAssembly::COPY_I64, 1581 DL, VT, Src), 1582 0); 1583 return Op.getNode()->getNumValues() == 1 1584 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1585 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1586 Op.getNumOperands() == 4 ? Op.getOperand(3) 1587 : SDValue()); 1588 } 1589 return SDValue(); 1590 } 1591 1592 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1593 SelectionDAG &DAG) const { 1594 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1595 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1596 } 1597 1598 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1599 SelectionDAG &DAG) const { 1600 SDLoc DL(Op); 1601 1602 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1603 fail(DL, DAG, 1604 "Non-Emscripten WebAssembly hasn't implemented " 1605 "__builtin_return_address"); 1606 return SDValue(); 1607 } 1608 1609 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1610 return SDValue(); 1611 1612 unsigned Depth = Op.getConstantOperandVal(0); 1613 MakeLibCallOptions CallOptions; 1614 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1615 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1616 .first; 1617 } 1618 1619 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1620 SelectionDAG &DAG) const { 1621 // Non-zero depths are not supported by WebAssembly currently. Use the 1622 // legalizer's default expansion, which is to return 0 (what this function is 1623 // documented to do). 1624 if (Op.getConstantOperandVal(0) > 0) 1625 return SDValue(); 1626 1627 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1628 EVT VT = Op.getValueType(); 1629 Register FP = 1630 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1631 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1632 } 1633 1634 SDValue 1635 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1636 SelectionDAG &DAG) const { 1637 SDLoc DL(Op); 1638 const auto *GA = cast<GlobalAddressSDNode>(Op); 1639 1640 MachineFunction &MF = DAG.getMachineFunction(); 1641 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1642 report_fatal_error("cannot use thread-local storage without bulk memory", 1643 false); 1644 1645 const GlobalValue *GV = GA->getGlobal(); 1646 1647 // Currently only Emscripten supports dynamic linking with threads. Therefore, 1648 // on other targets, if we have thread-local storage, only the local-exec 1649 // model is possible. 1650 auto model = Subtarget->getTargetTriple().isOSEmscripten() 1651 ? GV->getThreadLocalMode() 1652 : GlobalValue::LocalExecTLSModel; 1653 1654 // Unsupported TLS modes 1655 assert(model != GlobalValue::NotThreadLocal); 1656 assert(model != GlobalValue::InitialExecTLSModel); 1657 1658 if (model == GlobalValue::LocalExecTLSModel || 1659 model == GlobalValue::LocalDynamicTLSModel || 1660 (model == GlobalValue::GeneralDynamicTLSModel && 1661 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1662 // For DSO-local TLS variables we use offset from __tls_base 1663 1664 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1665 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1666 : WebAssembly::GLOBAL_GET_I32; 1667 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1668 1669 SDValue BaseAddr( 1670 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1671 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1672 0); 1673 1674 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1675 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1676 SDValue SymOffset = 1677 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1678 1679 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1680 } 1681 1682 assert(model == GlobalValue::GeneralDynamicTLSModel); 1683 1684 EVT VT = Op.getValueType(); 1685 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1686 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1687 GA->getOffset(), 1688 WebAssemblyII::MO_GOT_TLS)); 1689 } 1690 1691 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1692 SelectionDAG &DAG) const { 1693 SDLoc DL(Op); 1694 const auto *GA = cast<GlobalAddressSDNode>(Op); 1695 EVT VT = Op.getValueType(); 1696 assert(GA->getTargetFlags() == 0 && 1697 "Unexpected target flags on generic GlobalAddressSDNode"); 1698 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1699 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1700 1701 unsigned OperandFlags = 0; 1702 if (isPositionIndependent()) { 1703 const GlobalValue *GV = GA->getGlobal(); 1704 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1705 MachineFunction &MF = DAG.getMachineFunction(); 1706 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1707 const char *BaseName; 1708 if (GV->getValueType()->isFunctionTy()) { 1709 BaseName = MF.createExternalSymbolName("__table_base"); 1710 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1711 } else { 1712 BaseName = MF.createExternalSymbolName("__memory_base"); 1713 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1714 } 1715 SDValue BaseAddr = 1716 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1717 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1718 1719 SDValue SymAddr = DAG.getNode( 1720 WebAssemblyISD::WrapperREL, DL, VT, 1721 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1722 OperandFlags)); 1723 1724 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1725 } 1726 OperandFlags = WebAssemblyII::MO_GOT; 1727 } 1728 1729 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1730 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1731 GA->getOffset(), OperandFlags)); 1732 } 1733 1734 SDValue 1735 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1736 SelectionDAG &DAG) const { 1737 SDLoc DL(Op); 1738 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1739 EVT VT = Op.getValueType(); 1740 assert(ES->getTargetFlags() == 0 && 1741 "Unexpected target flags on generic ExternalSymbolSDNode"); 1742 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1743 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1744 } 1745 1746 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1747 SelectionDAG &DAG) const { 1748 // There's no need for a Wrapper node because we always incorporate a jump 1749 // table operand into a BR_TABLE instruction, rather than ever 1750 // materializing it in a register. 1751 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1752 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1753 JT->getTargetFlags()); 1754 } 1755 1756 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1757 SelectionDAG &DAG) const { 1758 SDLoc DL(Op); 1759 SDValue Chain = Op.getOperand(0); 1760 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1761 SDValue Index = Op.getOperand(2); 1762 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1763 1764 SmallVector<SDValue, 8> Ops; 1765 Ops.push_back(Chain); 1766 Ops.push_back(Index); 1767 1768 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1769 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1770 1771 // Add an operand for each case. 1772 for (auto *MBB : MBBs) 1773 Ops.push_back(DAG.getBasicBlock(MBB)); 1774 1775 // Add the first MBB as a dummy default target for now. This will be replaced 1776 // with the proper default target (and the preceding range check eliminated) 1777 // if possible by WebAssemblyFixBrTableDefaults. 1778 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1779 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1780 } 1781 1782 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1783 SelectionDAG &DAG) const { 1784 SDLoc DL(Op); 1785 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1786 1787 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1788 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1789 1790 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1791 MFI->getVarargBufferVreg(), PtrVT); 1792 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1793 MachinePointerInfo(SV)); 1794 } 1795 1796 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1797 SelectionDAG &DAG) const { 1798 MachineFunction &MF = DAG.getMachineFunction(); 1799 unsigned IntNo; 1800 switch (Op.getOpcode()) { 1801 case ISD::INTRINSIC_VOID: 1802 case ISD::INTRINSIC_W_CHAIN: 1803 IntNo = Op.getConstantOperandVal(1); 1804 break; 1805 case ISD::INTRINSIC_WO_CHAIN: 1806 IntNo = Op.getConstantOperandVal(0); 1807 break; 1808 default: 1809 llvm_unreachable("Invalid intrinsic"); 1810 } 1811 SDLoc DL(Op); 1812 1813 switch (IntNo) { 1814 default: 1815 return SDValue(); // Don't custom lower most intrinsics. 1816 1817 case Intrinsic::wasm_lsda: { 1818 auto PtrVT = getPointerTy(MF.getDataLayout()); 1819 const char *SymName = MF.createExternalSymbolName( 1820 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1821 if (isPositionIndependent()) { 1822 SDValue Node = DAG.getTargetExternalSymbol( 1823 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1824 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1825 SDValue BaseAddr = 1826 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1827 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1828 SDValue SymAddr = 1829 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1830 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1831 } 1832 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1833 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1834 } 1835 1836 case Intrinsic::wasm_shuffle: { 1837 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1838 SDValue Ops[18]; 1839 size_t OpIdx = 0; 1840 Ops[OpIdx++] = Op.getOperand(1); 1841 Ops[OpIdx++] = Op.getOperand(2); 1842 while (OpIdx < 18) { 1843 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1844 if (MaskIdx.isUndef() || 1845 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1846 bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant; 1847 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget); 1848 } else { 1849 Ops[OpIdx++] = MaskIdx; 1850 } 1851 } 1852 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1853 } 1854 } 1855 } 1856 1857 SDValue 1858 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1859 SelectionDAG &DAG) const { 1860 SDLoc DL(Op); 1861 // If sign extension operations are disabled, allow sext_inreg only if operand 1862 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1863 // extension operations, but allowing sext_inreg in this context lets us have 1864 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1865 // everywhere would be simpler in this file, but would necessitate large and 1866 // brittle patterns to undo the expansion and select extract_lane_s 1867 // instructions. 1868 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1869 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1870 return SDValue(); 1871 1872 const SDValue &Extract = Op.getOperand(0); 1873 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1874 if (VecT.getVectorElementType().getSizeInBits() > 32) 1875 return SDValue(); 1876 MVT ExtractedLaneT = 1877 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1878 MVT ExtractedVecT = 1879 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1880 if (ExtractedVecT == VecT) 1881 return Op; 1882 1883 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1884 const SDNode *Index = Extract.getOperand(1).getNode(); 1885 if (!isa<ConstantSDNode>(Index)) 1886 return SDValue(); 1887 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1888 unsigned Scale = 1889 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1890 assert(Scale > 1); 1891 SDValue NewIndex = 1892 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1893 SDValue NewExtract = DAG.getNode( 1894 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1895 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1896 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1897 Op.getOperand(1)); 1898 } 1899 1900 SDValue 1901 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op, 1902 SelectionDAG &DAG) const { 1903 SDLoc DL(Op); 1904 EVT VT = Op.getValueType(); 1905 SDValue Src = Op.getOperand(0); 1906 EVT SrcVT = Src.getValueType(); 1907 1908 if (SrcVT.getVectorElementType() == MVT::i1 || 1909 SrcVT.getVectorElementType() == MVT::i64) 1910 return SDValue(); 1911 1912 assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 && 1913 "Unexpected extension factor."); 1914 unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits(); 1915 1916 if (Scale != 2 && Scale != 4 && Scale != 8) 1917 return SDValue(); 1918 1919 unsigned Ext; 1920 switch (Op.getOpcode()) { 1921 case ISD::ZERO_EXTEND_VECTOR_INREG: 1922 Ext = WebAssemblyISD::EXTEND_LOW_U; 1923 break; 1924 case ISD::SIGN_EXTEND_VECTOR_INREG: 1925 Ext = WebAssemblyISD::EXTEND_LOW_S; 1926 break; 1927 } 1928 1929 SDValue Ret = Src; 1930 while (Scale != 1) { 1931 Ret = DAG.getNode(Ext, DL, 1932 Ret.getValueType() 1933 .widenIntegerVectorElementType(*DAG.getContext()) 1934 .getHalfNumVectorElementsVT(*DAG.getContext()), 1935 Ret); 1936 Scale /= 2; 1937 } 1938 assert(Ret.getValueType() == VT); 1939 return Ret; 1940 } 1941 1942 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1943 SDLoc DL(Op); 1944 if (Op.getValueType() != MVT::v2f64) 1945 return SDValue(); 1946 1947 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1948 unsigned &Index) -> bool { 1949 switch (Op.getOpcode()) { 1950 case ISD::SINT_TO_FP: 1951 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1952 break; 1953 case ISD::UINT_TO_FP: 1954 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1955 break; 1956 case ISD::FP_EXTEND: 1957 Opcode = WebAssemblyISD::PROMOTE_LOW; 1958 break; 1959 default: 1960 return false; 1961 } 1962 1963 auto ExtractVector = Op.getOperand(0); 1964 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1965 return false; 1966 1967 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 1968 return false; 1969 1970 SrcVec = ExtractVector.getOperand(0); 1971 Index = ExtractVector.getConstantOperandVal(1); 1972 return true; 1973 }; 1974 1975 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 1976 SDValue LHSSrcVec, RHSSrcVec; 1977 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 1978 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 1979 return SDValue(); 1980 1981 if (LHSOpcode != RHSOpcode) 1982 return SDValue(); 1983 1984 MVT ExpectedSrcVT; 1985 switch (LHSOpcode) { 1986 case WebAssemblyISD::CONVERT_LOW_S: 1987 case WebAssemblyISD::CONVERT_LOW_U: 1988 ExpectedSrcVT = MVT::v4i32; 1989 break; 1990 case WebAssemblyISD::PROMOTE_LOW: 1991 ExpectedSrcVT = MVT::v4f32; 1992 break; 1993 } 1994 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 1995 return SDValue(); 1996 1997 auto Src = LHSSrcVec; 1998 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 1999 // Shuffle the source vector so that the converted lanes are the low lanes. 2000 Src = DAG.getVectorShuffle( 2001 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2002 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2003 } 2004 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2005 } 2006 2007 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2008 SelectionDAG &DAG) const { 2009 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2010 return ConvertLow; 2011 2012 SDLoc DL(Op); 2013 const EVT VecT = Op.getValueType(); 2014 const EVT LaneT = Op.getOperand(0).getValueType(); 2015 const size_t Lanes = Op.getNumOperands(); 2016 bool CanSwizzle = VecT == MVT::v16i8; 2017 2018 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2019 // possible number of lanes at once followed by a sequence of replace_lane 2020 // instructions to individually initialize any remaining lanes. 2021 2022 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2023 // swizzled lanes should be given greater weight. 2024 2025 // TODO: Investigate looping rather than always extracting/replacing specific 2026 // lanes to fill gaps. 2027 2028 auto IsConstant = [](const SDValue &V) { 2029 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2030 }; 2031 2032 // Returns the source vector and index vector pair if they exist. Checks for: 2033 // (extract_vector_elt 2034 // $src, 2035 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2036 // ) 2037 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2038 auto Bail = std::make_pair(SDValue(), SDValue()); 2039 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2040 return Bail; 2041 const SDValue &SwizzleSrc = Lane->getOperand(0); 2042 const SDValue &IndexExt = Lane->getOperand(1); 2043 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2044 return Bail; 2045 const SDValue &Index = IndexExt->getOperand(0); 2046 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2047 return Bail; 2048 const SDValue &SwizzleIndices = Index->getOperand(0); 2049 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2050 SwizzleIndices.getValueType() != MVT::v16i8 || 2051 Index->getOperand(1)->getOpcode() != ISD::Constant || 2052 Index->getConstantOperandVal(1) != I) 2053 return Bail; 2054 return std::make_pair(SwizzleSrc, SwizzleIndices); 2055 }; 2056 2057 // If the lane is extracted from another vector at a constant index, return 2058 // that vector. The source vector must not have more lanes than the dest 2059 // because the shufflevector indices are in terms of the destination lanes and 2060 // would not be able to address the smaller individual source lanes. 2061 auto GetShuffleSrc = [&](const SDValue &Lane) { 2062 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2063 return SDValue(); 2064 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2065 return SDValue(); 2066 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2067 VecT.getVectorNumElements()) 2068 return SDValue(); 2069 return Lane->getOperand(0); 2070 }; 2071 2072 using ValueEntry = std::pair<SDValue, size_t>; 2073 SmallVector<ValueEntry, 16> SplatValueCounts; 2074 2075 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2076 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2077 2078 using ShuffleEntry = std::pair<SDValue, size_t>; 2079 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2080 2081 auto AddCount = [](auto &Counts, const auto &Val) { 2082 auto CountIt = 2083 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2084 if (CountIt == Counts.end()) { 2085 Counts.emplace_back(Val, 1); 2086 } else { 2087 CountIt->second++; 2088 } 2089 }; 2090 2091 auto GetMostCommon = [](auto &Counts) { 2092 auto CommonIt = 2093 std::max_element(Counts.begin(), Counts.end(), llvm::less_second()); 2094 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2095 return *CommonIt; 2096 }; 2097 2098 size_t NumConstantLanes = 0; 2099 2100 // Count eligible lanes for each type of vector creation op 2101 for (size_t I = 0; I < Lanes; ++I) { 2102 const SDValue &Lane = Op->getOperand(I); 2103 if (Lane.isUndef()) 2104 continue; 2105 2106 AddCount(SplatValueCounts, Lane); 2107 2108 if (IsConstant(Lane)) 2109 NumConstantLanes++; 2110 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2111 AddCount(ShuffleCounts, ShuffleSrc); 2112 if (CanSwizzle) { 2113 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2114 if (SwizzleSrcs.first) 2115 AddCount(SwizzleCounts, SwizzleSrcs); 2116 } 2117 } 2118 2119 SDValue SplatValue; 2120 size_t NumSplatLanes; 2121 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2122 2123 SDValue SwizzleSrc; 2124 SDValue SwizzleIndices; 2125 size_t NumSwizzleLanes = 0; 2126 if (SwizzleCounts.size()) 2127 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2128 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2129 2130 // Shuffles can draw from up to two vectors, so find the two most common 2131 // sources. 2132 SDValue ShuffleSrc1, ShuffleSrc2; 2133 size_t NumShuffleLanes = 0; 2134 if (ShuffleCounts.size()) { 2135 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2136 llvm::erase_if(ShuffleCounts, 2137 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2138 } 2139 if (ShuffleCounts.size()) { 2140 size_t AdditionalShuffleLanes; 2141 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2142 GetMostCommon(ShuffleCounts); 2143 NumShuffleLanes += AdditionalShuffleLanes; 2144 } 2145 2146 // Predicate returning true if the lane is properly initialized by the 2147 // original instruction 2148 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2149 SDValue Result; 2150 // Prefer swizzles over shuffles over vector consts over splats 2151 if (NumSwizzleLanes >= NumShuffleLanes && 2152 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2153 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2154 SwizzleIndices); 2155 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2156 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2157 return Swizzled == GetSwizzleSrcs(I, Lane); 2158 }; 2159 } else if (NumShuffleLanes >= NumConstantLanes && 2160 NumShuffleLanes >= NumSplatLanes) { 2161 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2162 size_t DestLaneCount = VecT.getVectorNumElements(); 2163 size_t Scale1 = 1; 2164 size_t Scale2 = 1; 2165 SDValue Src1 = ShuffleSrc1; 2166 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2167 if (Src1.getValueType() != VecT) { 2168 size_t LaneSize = 2169 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2170 assert(LaneSize > DestLaneSize); 2171 Scale1 = LaneSize / DestLaneSize; 2172 Src1 = DAG.getBitcast(VecT, Src1); 2173 } 2174 if (Src2.getValueType() != VecT) { 2175 size_t LaneSize = 2176 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2177 assert(LaneSize > DestLaneSize); 2178 Scale2 = LaneSize / DestLaneSize; 2179 Src2 = DAG.getBitcast(VecT, Src2); 2180 } 2181 2182 int Mask[16]; 2183 assert(DestLaneCount <= 16); 2184 for (size_t I = 0; I < DestLaneCount; ++I) { 2185 const SDValue &Lane = Op->getOperand(I); 2186 SDValue Src = GetShuffleSrc(Lane); 2187 if (Src == ShuffleSrc1) { 2188 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2189 } else if (Src && Src == ShuffleSrc2) { 2190 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2191 } else { 2192 Mask[I] = -1; 2193 } 2194 } 2195 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2196 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2197 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2198 auto Src = GetShuffleSrc(Lane); 2199 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2200 }; 2201 } else if (NumConstantLanes >= NumSplatLanes) { 2202 SmallVector<SDValue, 16> ConstLanes; 2203 for (const SDValue &Lane : Op->op_values()) { 2204 if (IsConstant(Lane)) { 2205 // Values may need to be fixed so that they will sign extend to be 2206 // within the expected range during ISel. Check whether the value is in 2207 // bounds based on the lane bit width and if it is out of bounds, lop 2208 // off the extra bits and subtract 2^n to reflect giving the high bit 2209 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2210 // cannot possibly be out of range. 2211 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2212 int64_t Val = Const ? Const->getSExtValue() : 0; 2213 uint64_t LaneBits = 128 / Lanes; 2214 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2215 "Unexpected out of bounds negative value"); 2216 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2217 uint64_t Mask = (1ll << LaneBits) - 1; 2218 auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask; 2219 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2220 } else { 2221 ConstLanes.push_back(Lane); 2222 } 2223 } else if (LaneT.isFloatingPoint()) { 2224 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2225 } else { 2226 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2227 } 2228 } 2229 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2230 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2231 return IsConstant(Lane); 2232 }; 2233 } else { 2234 // Use a splat (which might be selected as a load splat) 2235 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2236 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2237 return Lane == SplatValue; 2238 }; 2239 } 2240 2241 assert(Result); 2242 assert(IsLaneConstructed); 2243 2244 // Add replace_lane instructions for any unhandled values 2245 for (size_t I = 0; I < Lanes; ++I) { 2246 const SDValue &Lane = Op->getOperand(I); 2247 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2248 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2249 DAG.getConstant(I, DL, MVT::i32)); 2250 } 2251 2252 return Result; 2253 } 2254 2255 SDValue 2256 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2257 SelectionDAG &DAG) const { 2258 SDLoc DL(Op); 2259 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2260 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2261 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2262 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2263 2264 // Space for two vector args and sixteen mask indices 2265 SDValue Ops[18]; 2266 size_t OpIdx = 0; 2267 Ops[OpIdx++] = Op.getOperand(0); 2268 Ops[OpIdx++] = Op.getOperand(1); 2269 2270 // Expand mask indices to byte indices and materialize them as operands 2271 for (int M : Mask) { 2272 for (size_t J = 0; J < LaneBytes; ++J) { 2273 // Lower undefs (represented by -1 in mask) to {0..J}, which use a 2274 // whole lane of vector input, to allow further reduction at VM. E.g. 2275 // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle. 2276 uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J; 2277 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2278 } 2279 } 2280 2281 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2282 } 2283 2284 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2285 SelectionDAG &DAG) const { 2286 SDLoc DL(Op); 2287 // The legalizer does not know how to expand the unsupported comparison modes 2288 // of i64x2 vectors, so we manually unroll them here. 2289 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2290 SmallVector<SDValue, 2> LHS, RHS; 2291 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2292 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2293 const SDValue &CC = Op->getOperand(2); 2294 auto MakeLane = [&](unsigned I) { 2295 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2296 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2297 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2298 }; 2299 return DAG.getBuildVector(Op->getValueType(0), DL, 2300 {MakeLane(0), MakeLane(1)}); 2301 } 2302 2303 SDValue 2304 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2305 SelectionDAG &DAG) const { 2306 // Allow constant lane indices, expand variable lane indices 2307 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2308 if (isa<ConstantSDNode>(IdxNode)) { 2309 // Ensure the index type is i32 to match the tablegen patterns 2310 uint64_t Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 2311 SmallVector<SDValue, 3> Ops(Op.getNode()->ops()); 2312 Ops[Op.getNumOperands() - 1] = 2313 DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32); 2314 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops); 2315 } 2316 // Perform default expansion 2317 return SDValue(); 2318 } 2319 2320 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2321 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2322 // 32-bit and 64-bit unrolled shifts will have proper semantics 2323 if (LaneT.bitsGE(MVT::i32)) 2324 return DAG.UnrollVectorOp(Op.getNode()); 2325 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2326 SDLoc DL(Op); 2327 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2328 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2329 unsigned ShiftOpcode = Op.getOpcode(); 2330 SmallVector<SDValue, 16> ShiftedElements; 2331 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2332 SmallVector<SDValue, 16> ShiftElements; 2333 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2334 SmallVector<SDValue, 16> UnrolledOps; 2335 for (size_t i = 0; i < NumLanes; ++i) { 2336 SDValue MaskedShiftValue = 2337 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2338 SDValue ShiftedValue = ShiftedElements[i]; 2339 if (ShiftOpcode == ISD::SRA) 2340 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2341 ShiftedValue, DAG.getValueType(LaneT)); 2342 UnrolledOps.push_back( 2343 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2344 } 2345 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2346 } 2347 2348 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2349 SelectionDAG &DAG) const { 2350 SDLoc DL(Op); 2351 2352 // Only manually lower vector shifts 2353 assert(Op.getSimpleValueType().isVector()); 2354 2355 uint64_t LaneBits = Op.getValueType().getScalarSizeInBits(); 2356 auto ShiftVal = Op.getOperand(1); 2357 2358 // Try to skip bitmask operation since it is implied inside shift instruction 2359 auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) { 2360 if (MaskOp.getOpcode() != ISD::AND) 2361 return MaskOp; 2362 SDValue LHS = MaskOp.getOperand(0); 2363 SDValue RHS = MaskOp.getOperand(1); 2364 if (MaskOp.getValueType().isVector()) { 2365 APInt MaskVal; 2366 if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal)) 2367 std::swap(LHS, RHS); 2368 2369 if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) && 2370 MaskVal == MaskBits) 2371 MaskOp = LHS; 2372 } else { 2373 if (!isa<ConstantSDNode>(RHS.getNode())) 2374 std::swap(LHS, RHS); 2375 2376 auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode()); 2377 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits) 2378 MaskOp = LHS; 2379 } 2380 2381 return MaskOp; 2382 }; 2383 2384 // Skip vector and operation 2385 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2386 ShiftVal = DAG.getSplatValue(ShiftVal); 2387 if (!ShiftVal) 2388 return unrollVectorShift(Op, DAG); 2389 2390 // Skip scalar and operation 2391 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2392 // Use anyext because none of the high bits can affect the shift 2393 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2394 2395 unsigned Opcode; 2396 switch (Op.getOpcode()) { 2397 case ISD::SHL: 2398 Opcode = WebAssemblyISD::VEC_SHL; 2399 break; 2400 case ISD::SRA: 2401 Opcode = WebAssemblyISD::VEC_SHR_S; 2402 break; 2403 case ISD::SRL: 2404 Opcode = WebAssemblyISD::VEC_SHR_U; 2405 break; 2406 default: 2407 llvm_unreachable("unexpected opcode"); 2408 } 2409 2410 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2411 } 2412 2413 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2414 SelectionDAG &DAG) const { 2415 SDLoc DL(Op); 2416 EVT ResT = Op.getValueType(); 2417 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2418 2419 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2420 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2421 return Op; 2422 2423 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2424 return Op; 2425 2426 return SDValue(); 2427 } 2428 2429 //===----------------------------------------------------------------------===// 2430 // Custom DAG combine hooks 2431 //===----------------------------------------------------------------------===// 2432 static SDValue 2433 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2434 auto &DAG = DCI.DAG; 2435 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2436 2437 // Hoist vector bitcasts that don't change the number of lanes out of unary 2438 // shuffles, where they are less likely to get in the way of other combines. 2439 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2440 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2441 SDValue Bitcast = N->getOperand(0); 2442 if (Bitcast.getOpcode() != ISD::BITCAST) 2443 return SDValue(); 2444 if (!N->getOperand(1).isUndef()) 2445 return SDValue(); 2446 SDValue CastOp = Bitcast.getOperand(0); 2447 MVT SrcType = CastOp.getSimpleValueType(); 2448 MVT DstType = Bitcast.getSimpleValueType(); 2449 if (!SrcType.is128BitVector() || 2450 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2451 return SDValue(); 2452 SDValue NewShuffle = DAG.getVectorShuffle( 2453 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2454 return DAG.getBitcast(DstType, NewShuffle); 2455 } 2456 2457 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get 2458 /// split up into scalar instructions during legalization, and the vector 2459 /// extending instructions are selected in performVectorExtendCombine below. 2460 static SDValue 2461 performVectorExtendToFPCombine(SDNode *N, 2462 TargetLowering::DAGCombinerInfo &DCI) { 2463 auto &DAG = DCI.DAG; 2464 assert(N->getOpcode() == ISD::UINT_TO_FP || 2465 N->getOpcode() == ISD::SINT_TO_FP); 2466 2467 EVT InVT = N->getOperand(0)->getValueType(0); 2468 EVT ResVT = N->getValueType(0); 2469 MVT ExtVT; 2470 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8)) 2471 ExtVT = MVT::v4i32; 2472 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8)) 2473 ExtVT = MVT::v2i32; 2474 else 2475 return SDValue(); 2476 2477 unsigned Op = 2478 N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 2479 SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0)); 2480 return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv); 2481 } 2482 2483 static SDValue 2484 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2485 auto &DAG = DCI.DAG; 2486 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2487 N->getOpcode() == ISD::ZERO_EXTEND); 2488 2489 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2490 // possible before the extract_subvector can be expanded. 2491 auto Extract = N->getOperand(0); 2492 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2493 return SDValue(); 2494 auto Source = Extract.getOperand(0); 2495 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2496 if (IndexNode == nullptr) 2497 return SDValue(); 2498 auto Index = IndexNode->getZExtValue(); 2499 2500 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2501 // extracted subvector is the low or high half of its source. 2502 EVT ResVT = N->getValueType(0); 2503 if (ResVT == MVT::v8i16) { 2504 if (Extract.getValueType() != MVT::v8i8 || 2505 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2506 return SDValue(); 2507 } else if (ResVT == MVT::v4i32) { 2508 if (Extract.getValueType() != MVT::v4i16 || 2509 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2510 return SDValue(); 2511 } else if (ResVT == MVT::v2i64) { 2512 if (Extract.getValueType() != MVT::v2i32 || 2513 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2514 return SDValue(); 2515 } else { 2516 return SDValue(); 2517 } 2518 2519 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2520 bool IsLow = Index == 0; 2521 2522 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2523 : WebAssemblyISD::EXTEND_HIGH_S) 2524 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2525 : WebAssemblyISD::EXTEND_HIGH_U); 2526 2527 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2528 } 2529 2530 static SDValue 2531 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2532 auto &DAG = DCI.DAG; 2533 2534 auto GetWasmConversionOp = [](unsigned Op) { 2535 switch (Op) { 2536 case ISD::FP_TO_SINT_SAT: 2537 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2538 case ISD::FP_TO_UINT_SAT: 2539 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2540 case ISD::FP_ROUND: 2541 return WebAssemblyISD::DEMOTE_ZERO; 2542 } 2543 llvm_unreachable("unexpected op"); 2544 }; 2545 2546 auto IsZeroSplat = [](SDValue SplatVal) { 2547 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2548 APInt SplatValue, SplatUndef; 2549 unsigned SplatBitSize; 2550 bool HasAnyUndefs; 2551 return Splat && 2552 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2553 HasAnyUndefs) && 2554 SplatValue == 0; 2555 }; 2556 2557 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2558 // Combine this: 2559 // 2560 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2561 // 2562 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2563 // 2564 // Or this: 2565 // 2566 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2567 // 2568 // into (f32x4.demote_zero_f64x2 $x). 2569 EVT ResVT; 2570 EVT ExpectedConversionType; 2571 auto Conversion = N->getOperand(0); 2572 auto ConversionOp = Conversion.getOpcode(); 2573 switch (ConversionOp) { 2574 case ISD::FP_TO_SINT_SAT: 2575 case ISD::FP_TO_UINT_SAT: 2576 ResVT = MVT::v4i32; 2577 ExpectedConversionType = MVT::v2i32; 2578 break; 2579 case ISD::FP_ROUND: 2580 ResVT = MVT::v4f32; 2581 ExpectedConversionType = MVT::v2f32; 2582 break; 2583 default: 2584 return SDValue(); 2585 } 2586 2587 if (N->getValueType(0) != ResVT) 2588 return SDValue(); 2589 2590 if (Conversion.getValueType() != ExpectedConversionType) 2591 return SDValue(); 2592 2593 auto Source = Conversion.getOperand(0); 2594 if (Source.getValueType() != MVT::v2f64) 2595 return SDValue(); 2596 2597 if (!IsZeroSplat(N->getOperand(1)) || 2598 N->getOperand(1).getValueType() != ExpectedConversionType) 2599 return SDValue(); 2600 2601 unsigned Op = GetWasmConversionOp(ConversionOp); 2602 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2603 } 2604 2605 // Combine this: 2606 // 2607 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2608 // 2609 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2610 // 2611 // Or this: 2612 // 2613 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2614 // 2615 // into (f32x4.demote_zero_f64x2 $x). 2616 EVT ResVT; 2617 auto ConversionOp = N->getOpcode(); 2618 switch (ConversionOp) { 2619 case ISD::FP_TO_SINT_SAT: 2620 case ISD::FP_TO_UINT_SAT: 2621 ResVT = MVT::v4i32; 2622 break; 2623 case ISD::FP_ROUND: 2624 ResVT = MVT::v4f32; 2625 break; 2626 default: 2627 llvm_unreachable("unexpected op"); 2628 } 2629 2630 if (N->getValueType(0) != ResVT) 2631 return SDValue(); 2632 2633 auto Concat = N->getOperand(0); 2634 if (Concat.getValueType() != MVT::v4f64) 2635 return SDValue(); 2636 2637 auto Source = Concat.getOperand(0); 2638 if (Source.getValueType() != MVT::v2f64) 2639 return SDValue(); 2640 2641 if (!IsZeroSplat(Concat.getOperand(1)) || 2642 Concat.getOperand(1).getValueType() != MVT::v2f64) 2643 return SDValue(); 2644 2645 unsigned Op = GetWasmConversionOp(ConversionOp); 2646 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2647 } 2648 2649 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2650 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2651 const SDLoc &DL, unsigned VectorWidth) { 2652 EVT VT = Vec.getValueType(); 2653 EVT ElVT = VT.getVectorElementType(); 2654 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2655 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2656 VT.getVectorNumElements() / Factor); 2657 2658 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2659 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2660 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2661 2662 // This is the index of the first element of the VectorWidth-bit chunk 2663 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2664 IdxVal &= ~(ElemsPerChunk - 1); 2665 2666 // If the input is a buildvector just emit a smaller one. 2667 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2668 return DAG.getBuildVector(ResultVT, DL, 2669 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2670 2671 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2672 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2673 } 2674 2675 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2676 // is the expected destination value type after recursion. In is the initial 2677 // input. Note that the input should have enough leading zero bits to prevent 2678 // NARROW_U from saturating results. 2679 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2680 SelectionDAG &DAG) { 2681 EVT SrcVT = In.getValueType(); 2682 2683 // No truncation required, we might get here due to recursive calls. 2684 if (SrcVT == DstVT) 2685 return In; 2686 2687 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2688 unsigned NumElems = SrcVT.getVectorNumElements(); 2689 if (!isPowerOf2_32(NumElems)) 2690 return SDValue(); 2691 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2692 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2693 2694 LLVMContext &Ctx = *DAG.getContext(); 2695 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2696 2697 // Narrow to the largest type possible: 2698 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2699 EVT InVT = MVT::i16, OutVT = MVT::i8; 2700 if (SrcVT.getScalarSizeInBits() > 16) { 2701 InVT = MVT::i32; 2702 OutVT = MVT::i16; 2703 } 2704 unsigned SubSizeInBits = SrcSizeInBits / 2; 2705 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2706 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2707 2708 // Split lower/upper subvectors. 2709 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2710 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2711 2712 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2713 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2714 Lo = DAG.getBitcast(InVT, Lo); 2715 Hi = DAG.getBitcast(InVT, Hi); 2716 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2717 return DAG.getBitcast(DstVT, Res); 2718 } 2719 2720 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2721 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2722 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2723 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2724 2725 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2726 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2727 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2728 } 2729 2730 static SDValue performTruncateCombine(SDNode *N, 2731 TargetLowering::DAGCombinerInfo &DCI) { 2732 auto &DAG = DCI.DAG; 2733 2734 SDValue In = N->getOperand(0); 2735 EVT InVT = In.getValueType(); 2736 if (!InVT.isSimple()) 2737 return SDValue(); 2738 2739 EVT OutVT = N->getValueType(0); 2740 if (!OutVT.isVector()) 2741 return SDValue(); 2742 2743 EVT OutSVT = OutVT.getVectorElementType(); 2744 EVT InSVT = InVT.getVectorElementType(); 2745 // Currently only cover truncate to v16i8 or v8i16. 2746 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 2747 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 2748 return SDValue(); 2749 2750 SDLoc DL(N); 2751 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 2752 OutVT.getScalarSizeInBits()); 2753 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 2754 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 2755 } 2756 2757 static SDValue performBitcastCombine(SDNode *N, 2758 TargetLowering::DAGCombinerInfo &DCI) { 2759 auto &DAG = DCI.DAG; 2760 SDLoc DL(N); 2761 SDValue Src = N->getOperand(0); 2762 EVT VT = N->getValueType(0); 2763 EVT SrcVT = Src.getValueType(); 2764 2765 // bitcast <N x i1> to iN 2766 // ==> bitmask 2767 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 2768 SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) { 2769 unsigned NumElts = SrcVT.getVectorNumElements(); 2770 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2771 return SDValue(); 2772 EVT Width = MVT::getIntegerVT(128 / NumElts); 2773 return DAG.getZExtOrTrunc( 2774 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 2775 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32), 2776 DAG.getSExtOrTrunc(N->getOperand(0), DL, 2777 SrcVT.changeVectorElementType(Width))}), 2778 DL, VT); 2779 } 2780 2781 return SDValue(); 2782 } 2783 2784 static SDValue performSETCCCombine(SDNode *N, 2785 TargetLowering::DAGCombinerInfo &DCI) { 2786 auto &DAG = DCI.DAG; 2787 2788 SDValue LHS = N->getOperand(0); 2789 SDValue RHS = N->getOperand(1); 2790 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2791 SDLoc DL(N); 2792 EVT VT = N->getValueType(0); 2793 2794 // setcc (iN (bitcast (vNi1 X))), 0, ne 2795 // ==> any_true (vNi1 X) 2796 // setcc (iN (bitcast (vNi1 X))), 0, eq 2797 // ==> xor (any_true (vNi1 X)), -1 2798 // setcc (iN (bitcast (vNi1 X))), -1, eq 2799 // ==> all_true (vNi1 X) 2800 // setcc (iN (bitcast (vNi1 X))), -1, ne 2801 // ==> xor (all_true (vNi1 X)), -1 2802 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 2803 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2804 (isNullConstant(RHS) || isAllOnesConstant(RHS)) && 2805 LHS->getOpcode() == ISD::BITCAST) { 2806 EVT FromVT = LHS->getOperand(0).getValueType(); 2807 if (FromVT.isFixedLengthVector() && 2808 FromVT.getVectorElementType() == MVT::i1) { 2809 int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue 2810 : Intrinsic::wasm_alltrue; 2811 unsigned NumElts = FromVT.getVectorNumElements(); 2812 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2813 return SDValue(); 2814 EVT Width = MVT::getIntegerVT(128 / NumElts); 2815 SDValue Ret = DAG.getZExtOrTrunc( 2816 DAG.getNode( 2817 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 2818 {DAG.getConstant(Intrin, DL, MVT::i32), 2819 DAG.getSExtOrTrunc(LHS->getOperand(0), DL, 2820 FromVT.changeVectorElementType(Width))}), 2821 DL, MVT::i1); 2822 if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) || 2823 (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) { 2824 Ret = DAG.getNOT(DL, Ret, MVT::i1); 2825 } 2826 return DAG.getZExtOrTrunc(Ret, DL, VT); 2827 } 2828 } 2829 2830 return SDValue(); 2831 } 2832 2833 SDValue 2834 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2835 DAGCombinerInfo &DCI) const { 2836 switch (N->getOpcode()) { 2837 default: 2838 return SDValue(); 2839 case ISD::BITCAST: 2840 return performBitcastCombine(N, DCI); 2841 case ISD::SETCC: 2842 return performSETCCCombine(N, DCI); 2843 case ISD::VECTOR_SHUFFLE: 2844 return performVECTOR_SHUFFLECombine(N, DCI); 2845 case ISD::SIGN_EXTEND: 2846 case ISD::ZERO_EXTEND: 2847 return performVectorExtendCombine(N, DCI); 2848 case ISD::UINT_TO_FP: 2849 case ISD::SINT_TO_FP: 2850 return performVectorExtendToFPCombine(N, DCI); 2851 case ISD::FP_TO_SINT_SAT: 2852 case ISD::FP_TO_UINT_SAT: 2853 case ISD::FP_ROUND: 2854 case ISD::CONCAT_VECTORS: 2855 return performVectorTruncZeroCombine(N, DCI); 2856 case ISD::TRUNCATE: 2857 return performTruncateCombine(N, DCI); 2858 } 2859 } 2860