1 //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a pass that removes irreducible control flow. 11 /// Irreducible control flow means multiple-entry loops, which this pass 12 /// transforms to have a single entry. 13 /// 14 /// Note that LLVM has a generic pass that lowers irreducible control flow, but 15 /// it linearizes control flow, turning diamonds into two triangles, which is 16 /// both unnecessary and undesirable for WebAssembly. 17 /// 18 /// The big picture: We recursively process each "region", defined as a group 19 /// of blocks with a single entry and no branches back to that entry. A region 20 /// may be the entire function body, or the inner part of a loop, i.e., the 21 /// loop's body without branches back to the loop entry. In each region we fix 22 /// up multi-entry loops by adding a new block that can dispatch to each of the 23 /// loop entries, based on the value of a label "helper" variable, and we 24 /// replace direct branches to the entries with assignments to the label 25 /// variable and a branch to the dispatch block. Then the dispatch block is the 26 /// single entry in the loop containing the previous multiple entries. After 27 /// ensuring all the loops in a region are reducible, we recurse into them. The 28 /// total time complexity of this pass is: 29 /// 30 /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops + 31 /// NumLoops * NumLoops) 32 /// 33 /// This pass is similar to what the Relooper [1] does. Both identify looping 34 /// code that requires multiple entries, and resolve it in a similar way (in 35 /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note 36 /// also that like the Relooper, we implement a "minimal" intervention: we only 37 /// use the "label" helper for the blocks we absolutely must and no others. We 38 /// also prioritize code size and do not duplicate code in order to resolve 39 /// irreducibility. The graph algorithms for finding loops and entries and so 40 /// forth are also similar to the Relooper. The main differences between this 41 /// pass and the Relooper are: 42 /// 43 /// * We just care about irreducibility, so we just look at loops. 44 /// * The Relooper emits structured control flow (with ifs etc.), while we 45 /// emit a CFG. 46 /// 47 /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In 48 /// Proceedings of the ACM international conference companion on Object oriented 49 /// programming systems languages and applications companion (SPLASH '11). ACM, 50 /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 51 /// http://doi.acm.org/10.1145/2048147.2048224 52 /// 53 //===----------------------------------------------------------------------===// 54 55 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 56 #include "WebAssembly.h" 57 #include "WebAssemblySubtarget.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/Support/Debug.h" 60 using namespace llvm; 61 62 #define DEBUG_TYPE "wasm-fix-irreducible-control-flow" 63 64 namespace { 65 66 using BlockVector = SmallVector<MachineBasicBlock *, 4>; 67 using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>; 68 69 // Calculates reachability in a region. Ignores branches to blocks outside of 70 // the region, and ignores branches to the region entry (for the case where 71 // the region is the inner part of a loop). 72 class ReachabilityGraph { 73 public: 74 ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks) 75 : Entry(Entry), Blocks(Blocks) { 76 #ifndef NDEBUG 77 // The region must have a single entry. 78 for (auto *MBB : Blocks) { 79 if (MBB != Entry) { 80 for (auto *Pred : MBB->predecessors()) { 81 assert(inRegion(Pred)); 82 } 83 } 84 } 85 #endif 86 calculate(); 87 } 88 89 bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const { 90 assert(inRegion(From) && inRegion(To)); 91 auto I = Reachable.find(From); 92 if (I == Reachable.end()) 93 return false; 94 return I->second.count(To); 95 } 96 97 // "Loopers" are blocks that are in a loop. We detect these by finding blocks 98 // that can reach themselves. 99 const BlockSet &getLoopers() const { return Loopers; } 100 101 // Get all blocks that are loop entries. 102 const BlockSet &getLoopEntries() const { return LoopEntries; } 103 104 // Get all blocks that enter a particular loop from outside. 105 const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const { 106 assert(inRegion(LoopEntry)); 107 auto I = LoopEnterers.find(LoopEntry); 108 assert(I != LoopEnterers.end()); 109 return I->second; 110 } 111 112 private: 113 MachineBasicBlock *Entry; 114 const BlockSet &Blocks; 115 116 BlockSet Loopers, LoopEntries; 117 DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers; 118 119 bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); } 120 121 // Maps a block to all the other blocks it can reach. 122 DenseMap<MachineBasicBlock *, BlockSet> Reachable; 123 124 void calculate() { 125 // Reachability computation work list. Contains pairs of recent additions 126 // (A, B) where we just added a link A => B. 127 using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>; 128 SmallVector<BlockPair, 4> WorkList; 129 130 // Add all relevant direct branches. 131 for (auto *MBB : Blocks) { 132 for (auto *Succ : MBB->successors()) { 133 if (Succ != Entry && inRegion(Succ)) { 134 Reachable[MBB].insert(Succ); 135 WorkList.emplace_back(MBB, Succ); 136 } 137 } 138 } 139 140 while (!WorkList.empty()) { 141 MachineBasicBlock *MBB, *Succ; 142 std::tie(MBB, Succ) = WorkList.pop_back_val(); 143 assert(inRegion(MBB) && Succ != Entry && inRegion(Succ)); 144 if (MBB != Entry) { 145 // We recently added MBB => Succ, and that means we may have enabled 146 // Pred => MBB => Succ. 147 for (auto *Pred : MBB->predecessors()) { 148 if (Reachable[Pred].insert(Succ).second) { 149 WorkList.emplace_back(Pred, Succ); 150 } 151 } 152 } 153 } 154 155 // Blocks that can return to themselves are in a loop. 156 for (auto *MBB : Blocks) { 157 if (canReach(MBB, MBB)) { 158 Loopers.insert(MBB); 159 } 160 } 161 assert(!Loopers.count(Entry)); 162 163 // Find the loop entries - loopers reachable from blocks not in that loop - 164 // and those outside blocks that reach them, the "loop enterers". 165 for (auto *Looper : Loopers) { 166 for (auto *Pred : Looper->predecessors()) { 167 // Pred can reach Looper. If Looper can reach Pred, it is in the loop; 168 // otherwise, it is a block that enters into the loop. 169 if (!canReach(Looper, Pred)) { 170 LoopEntries.insert(Looper); 171 LoopEnterers[Looper].insert(Pred); 172 } 173 } 174 } 175 } 176 }; 177 178 // Finds the blocks in a single-entry loop, given the loop entry and the 179 // list of blocks that enter the loop. 180 class LoopBlocks { 181 public: 182 LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers) 183 : Entry(Entry), Enterers(Enterers) { 184 calculate(); 185 } 186 187 BlockSet &getBlocks() { return Blocks; } 188 189 private: 190 MachineBasicBlock *Entry; 191 const BlockSet &Enterers; 192 193 BlockSet Blocks; 194 195 void calculate() { 196 // Going backwards from the loop entry, if we ignore the blocks entering 197 // from outside, we will traverse all the blocks in the loop. 198 BlockVector WorkList; 199 BlockSet AddedToWorkList; 200 Blocks.insert(Entry); 201 for (auto *Pred : Entry->predecessors()) { 202 if (!Enterers.count(Pred)) { 203 WorkList.push_back(Pred); 204 AddedToWorkList.insert(Pred); 205 } 206 } 207 208 while (!WorkList.empty()) { 209 auto *MBB = WorkList.pop_back_val(); 210 assert(!Enterers.count(MBB)); 211 if (Blocks.insert(MBB).second) { 212 for (auto *Pred : MBB->predecessors()) { 213 if (!AddedToWorkList.count(Pred)) { 214 WorkList.push_back(Pred); 215 AddedToWorkList.insert(Pred); 216 } 217 } 218 } 219 } 220 } 221 }; 222 223 class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass { 224 StringRef getPassName() const override { 225 return "WebAssembly Fix Irreducible Control Flow"; 226 } 227 228 bool runOnMachineFunction(MachineFunction &MF) override; 229 230 bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks, 231 MachineFunction &MF); 232 233 void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks, 234 MachineFunction &MF, const ReachabilityGraph &Graph); 235 236 public: 237 static char ID; // Pass identification, replacement for typeid 238 WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {} 239 }; 240 241 bool WebAssemblyFixIrreducibleControlFlow::processRegion( 242 MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) { 243 bool Changed = false; 244 245 // Remove irreducibility before processing child loops, which may take 246 // multiple iterations. 247 while (true) { 248 ReachabilityGraph Graph(Entry, Blocks); 249 250 bool FoundIrreducibility = false; 251 252 for (auto *LoopEntry : Graph.getLoopEntries()) { 253 // Find mutual entries - all entries which can reach this one, and 254 // are reached by it (that always includes LoopEntry itself). All mutual 255 // entries must be in the same loop, so if we have more than one, then we 256 // have irreducible control flow. 257 // 258 // Note that irreducibility may involve inner loops, e.g. imagine A 259 // starts one loop, and it has B inside it which starts an inner loop. 260 // If we add a branch from all the way on the outside to B, then in a 261 // sense B is no longer an "inner" loop, semantically speaking. We will 262 // fix that irreducibility by adding a block that dispatches to either 263 // either A or B, so B will no longer be an inner loop in our output. 264 // (A fancier approach might try to keep it as such.) 265 // 266 // Note that we still need to recurse into inner loops later, to handle 267 // the case where the irreducibility is entirely nested - we would not 268 // be able to identify that at this point, since the enclosing loop is 269 // a group of blocks all of whom can reach each other. (We'll see the 270 // irreducibility after removing branches to the top of that enclosing 271 // loop.) 272 BlockSet MutualLoopEntries; 273 MutualLoopEntries.insert(LoopEntry); 274 for (auto *OtherLoopEntry : Graph.getLoopEntries()) { 275 if (OtherLoopEntry != LoopEntry && 276 Graph.canReach(LoopEntry, OtherLoopEntry) && 277 Graph.canReach(OtherLoopEntry, LoopEntry)) { 278 MutualLoopEntries.insert(OtherLoopEntry); 279 } 280 } 281 282 if (MutualLoopEntries.size() > 1) { 283 makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph); 284 FoundIrreducibility = true; 285 Changed = true; 286 break; 287 } 288 } 289 // Only go on to actually process the inner loops when we are done 290 // removing irreducible control flow and changing the graph. Modifying 291 // the graph as we go is possible, and that might let us avoid looking at 292 // the already-fixed loops again if we are careful, but all that is 293 // complex and bug-prone. Since irreducible loops are rare, just starting 294 // another iteration is best. 295 if (FoundIrreducibility) { 296 continue; 297 } 298 299 for (auto *LoopEntry : Graph.getLoopEntries()) { 300 LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry)); 301 // Each of these calls to processRegion may change the graph, but are 302 // guaranteed not to interfere with each other. The only changes we make 303 // to the graph are to add blocks on the way to a loop entry. As the 304 // loops are disjoint, that means we may only alter branches that exit 305 // another loop, which are ignored when recursing into that other loop 306 // anyhow. 307 if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) { 308 Changed = true; 309 } 310 } 311 312 return Changed; 313 } 314 } 315 316 // Given a set of entries to a single loop, create a single entry for that 317 // loop by creating a dispatch block for them, routing control flow using 318 // a helper variable. Also updates Blocks with any new blocks created, so 319 // that we properly track all the blocks in the region. But this does not update 320 // ReachabilityGraph; this will be updated in the caller of this function as 321 // needed. 322 void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop( 323 BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF, 324 const ReachabilityGraph &Graph) { 325 assert(Entries.size() >= 2); 326 327 // Sort the entries to ensure a deterministic build. 328 BlockVector SortedEntries(Entries.begin(), Entries.end()); 329 llvm::sort(SortedEntries, 330 [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 331 auto ANum = A->getNumber(); 332 auto BNum = B->getNumber(); 333 return ANum < BNum; 334 }); 335 336 #ifndef NDEBUG 337 for (auto Block : SortedEntries) 338 assert(Block->getNumber() != -1); 339 if (SortedEntries.size() > 1) { 340 for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E; 341 ++I) { 342 auto ANum = (*I)->getNumber(); 343 auto BNum = (*(std::next(I)))->getNumber(); 344 assert(ANum != BNum); 345 } 346 } 347 #endif 348 349 // Create a dispatch block which will contain a jump table to the entries. 350 MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock(); 351 MF.insert(MF.end(), Dispatch); 352 Blocks.insert(Dispatch); 353 354 // Add the jump table. 355 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 356 MachineInstrBuilder MIB = 357 BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32)); 358 359 // Add the register which will be used to tell the jump table which block to 360 // jump to. 361 MachineRegisterInfo &MRI = MF.getRegInfo(); 362 Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 363 MIB.addReg(Reg); 364 365 // Compute the indices in the superheader, one for each bad block, and 366 // add them as successors. 367 DenseMap<MachineBasicBlock *, unsigned> Indices; 368 for (auto *Entry : SortedEntries) { 369 auto Pair = Indices.insert(std::make_pair(Entry, 0)); 370 assert(Pair.second); 371 372 unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1; 373 Pair.first->second = Index; 374 375 MIB.addMBB(Entry); 376 Dispatch->addSuccessor(Entry); 377 } 378 379 // Rewrite the problematic successors for every block that wants to reach 380 // the bad blocks. For simplicity, we just introduce a new block for every 381 // edge we need to rewrite. (Fancier things are possible.) 382 383 BlockVector AllPreds; 384 for (auto *Entry : SortedEntries) { 385 for (auto *Pred : Entry->predecessors()) { 386 if (Pred != Dispatch) { 387 AllPreds.push_back(Pred); 388 } 389 } 390 } 391 392 // This set stores predecessors within this loop. 393 DenseSet<MachineBasicBlock *> InLoop; 394 for (auto *Pred : AllPreds) { 395 for (auto *Entry : Pred->successors()) { 396 if (!Entries.count(Entry)) 397 continue; 398 if (Graph.canReach(Entry, Pred)) { 399 InLoop.insert(Pred); 400 break; 401 } 402 } 403 } 404 405 // Record if each entry has a layout predecessor. This map stores 406 // <<Predecessor is within the loop?, loop entry>, layout predecessor> 407 std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> 408 EntryToLayoutPred; 409 for (auto *Pred : AllPreds) 410 for (auto *Entry : Pred->successors()) 411 if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry)) 412 EntryToLayoutPred[std::make_pair(InLoop.count(Pred), Entry)] = Pred; 413 414 // We need to create at most two routing blocks per entry: one for 415 // predecessors outside the loop and one for predecessors inside the loop. 416 // This map stores 417 // <<Predecessor is within the loop?, loop entry>, routing block> 418 std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> Map; 419 for (auto *Pred : AllPreds) { 420 bool PredInLoop = InLoop.count(Pred); 421 for (auto *Entry : Pred->successors()) { 422 if (!Entries.count(Entry) || 423 Map.count(std::make_pair(InLoop.count(Pred), Entry))) 424 continue; 425 // If there exists a layout predecessor of this entry and this predecessor 426 // is not that, we rather create a routing block after that layout 427 // predecessor to save a branch. 428 if (EntryToLayoutPred.count(std::make_pair(PredInLoop, Entry)) && 429 EntryToLayoutPred[std::make_pair(PredInLoop, Entry)] != Pred) 430 continue; 431 432 // This is a successor we need to rewrite. 433 MachineBasicBlock *Routing = MF.CreateMachineBasicBlock(); 434 MF.insert(Pred->isLayoutSuccessor(Entry) 435 ? MachineFunction::iterator(Entry) 436 : MF.end(), 437 Routing); 438 Blocks.insert(Routing); 439 440 // Set the jump table's register of the index of the block we wish to 441 // jump to, and jump to the jump table. 442 BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg) 443 .addImm(Indices[Entry]); 444 BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch); 445 Routing->addSuccessor(Dispatch); 446 Map[std::make_pair(PredInLoop, Entry)] = Routing; 447 } 448 } 449 450 for (auto *Pred : AllPreds) { 451 bool PredInLoop = InLoop.count(Pred); 452 // Remap the terminator operands and the successor list. 453 for (MachineInstr &Term : Pred->terminators()) 454 for (auto &Op : Term.explicit_uses()) 455 if (Op.isMBB() && Indices.count(Op.getMBB())) 456 Op.setMBB(Map[std::make_pair(PredInLoop, Op.getMBB())]); 457 458 for (auto *Succ : Pred->successors()) { 459 if (!Entries.count(Succ)) 460 continue; 461 auto *Routing = Map[std::make_pair(PredInLoop, Succ)]; 462 Pred->replaceSuccessor(Succ, Routing); 463 } 464 } 465 466 // Create a fake default label, because br_table requires one. 467 MIB.addMBB(MIB.getInstr() 468 ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1) 469 .getMBB()); 470 } 471 472 } // end anonymous namespace 473 474 char WebAssemblyFixIrreducibleControlFlow::ID = 0; 475 INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE, 476 "Removes irreducible control flow", false, false) 477 478 FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() { 479 return new WebAssemblyFixIrreducibleControlFlow(); 480 } 481 482 bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction( 483 MachineFunction &MF) { 484 LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n" 485 "********** Function: " 486 << MF.getName() << '\n'); 487 488 // Start the recursive process on the entire function body. 489 BlockSet AllBlocks; 490 for (auto &MBB : MF) { 491 AllBlocks.insert(&MBB); 492 } 493 494 if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) { 495 // We rewrote part of the function; recompute relevant things. 496 MF.getRegInfo().invalidateLiveness(); 497 MF.RenumberBlocks(); 498 return true; 499 } 500 501 return false; 502 } 503