xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a pass that removes irreducible control flow.
11 /// Irreducible control flow means multiple-entry loops, which this pass
12 /// transforms to have a single entry.
13 ///
14 /// Note that LLVM has a generic pass that lowers irreducible control flow, but
15 /// it linearizes control flow, turning diamonds into two triangles, which is
16 /// both unnecessary and undesirable for WebAssembly.
17 ///
18 /// The big picture: We recursively process each "region", defined as a group
19 /// of blocks with a single entry and no branches back to that entry. A region
20 /// may be the entire function body, or the inner part of a loop, i.e., the
21 /// loop's body without branches back to the loop entry. In each region we fix
22 /// up multi-entry loops by adding a new block that can dispatch to each of the
23 /// loop entries, based on the value of a label "helper" variable, and we
24 /// replace direct branches to the entries with assignments to the label
25 /// variable and a branch to the dispatch block. Then the dispatch block is the
26 /// single entry in the loop containing the previous multiple entries. After
27 /// ensuring all the loops in a region are reducible, we recurse into them. The
28 /// total time complexity of this pass is:
29 ///
30 ///   O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
31 ///     NumLoops * NumLoops)
32 ///
33 /// This pass is similar to what the Relooper [1] does. Both identify looping
34 /// code that requires multiple entries, and resolve it in a similar way (in
35 /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
36 /// also that like the Relooper, we implement a "minimal" intervention: we only
37 /// use the "label" helper for the blocks we absolutely must and no others. We
38 /// also prioritize code size and do not duplicate code in order to resolve
39 /// irreducibility. The graph algorithms for finding loops and entries and so
40 /// forth are also similar to the Relooper. The main differences between this
41 /// pass and the Relooper are:
42 ///
43 ///  * We just care about irreducibility, so we just look at loops.
44 ///  * The Relooper emits structured control flow (with ifs etc.), while we
45 ///    emit a CFG.
46 ///
47 /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
48 /// Proceedings of the ACM international conference companion on Object oriented
49 /// programming systems languages and applications companion (SPLASH '11). ACM,
50 /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
51 /// http://doi.acm.org/10.1145/2048147.2048224
52 ///
53 //===----------------------------------------------------------------------===//
54 
55 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
56 #include "WebAssembly.h"
57 #include "WebAssemblySubtarget.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/Support/Debug.h"
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "wasm-fix-irreducible-control-flow"
63 
64 namespace {
65 
66 using BlockVector = SmallVector<MachineBasicBlock *, 4>;
67 using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>;
68 
69 static BlockVector getSortedEntries(const BlockSet &Entries) {
70   BlockVector SortedEntries(Entries.begin(), Entries.end());
71   llvm::sort(SortedEntries,
72              [](const MachineBasicBlock *A, const MachineBasicBlock *B) {
73                auto ANum = A->getNumber();
74                auto BNum = B->getNumber();
75                return ANum < BNum;
76              });
77   return SortedEntries;
78 }
79 
80 // Calculates reachability in a region. Ignores branches to blocks outside of
81 // the region, and ignores branches to the region entry (for the case where
82 // the region is the inner part of a loop).
83 class ReachabilityGraph {
84 public:
85   ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks)
86       : Entry(Entry), Blocks(Blocks) {
87 #ifndef NDEBUG
88     // The region must have a single entry.
89     for (auto *MBB : Blocks) {
90       if (MBB != Entry) {
91         for (auto *Pred : MBB->predecessors()) {
92           assert(inRegion(Pred));
93         }
94       }
95     }
96 #endif
97     calculate();
98   }
99 
100   bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const {
101     assert(inRegion(From) && inRegion(To));
102     auto I = Reachable.find(From);
103     if (I == Reachable.end())
104       return false;
105     return I->second.count(To);
106   }
107 
108   // "Loopers" are blocks that are in a loop. We detect these by finding blocks
109   // that can reach themselves.
110   const BlockSet &getLoopers() const { return Loopers; }
111 
112   // Get all blocks that are loop entries.
113   const BlockSet &getLoopEntries() const { return LoopEntries; }
114 
115   // Get all blocks that enter a particular loop from outside.
116   const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const {
117     assert(inRegion(LoopEntry));
118     auto I = LoopEnterers.find(LoopEntry);
119     assert(I != LoopEnterers.end());
120     return I->second;
121   }
122 
123 private:
124   MachineBasicBlock *Entry;
125   const BlockSet &Blocks;
126 
127   BlockSet Loopers, LoopEntries;
128   DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers;
129 
130   bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); }
131 
132   // Maps a block to all the other blocks it can reach.
133   DenseMap<MachineBasicBlock *, BlockSet> Reachable;
134 
135   void calculate() {
136     // Reachability computation work list. Contains pairs of recent additions
137     // (A, B) where we just added a link A => B.
138     using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>;
139     SmallVector<BlockPair, 4> WorkList;
140 
141     // Add all relevant direct branches.
142     for (auto *MBB : Blocks) {
143       for (auto *Succ : MBB->successors()) {
144         if (Succ != Entry && inRegion(Succ)) {
145           Reachable[MBB].insert(Succ);
146           WorkList.emplace_back(MBB, Succ);
147         }
148       }
149     }
150 
151     while (!WorkList.empty()) {
152       MachineBasicBlock *MBB, *Succ;
153       std::tie(MBB, Succ) = WorkList.pop_back_val();
154       assert(inRegion(MBB) && Succ != Entry && inRegion(Succ));
155       if (MBB != Entry) {
156         // We recently added MBB => Succ, and that means we may have enabled
157         // Pred => MBB => Succ.
158         for (auto *Pred : MBB->predecessors()) {
159           if (Reachable[Pred].insert(Succ).second) {
160             WorkList.emplace_back(Pred, Succ);
161           }
162         }
163       }
164     }
165 
166     // Blocks that can return to themselves are in a loop.
167     for (auto *MBB : Blocks) {
168       if (canReach(MBB, MBB)) {
169         Loopers.insert(MBB);
170       }
171     }
172     assert(!Loopers.count(Entry));
173 
174     // Find the loop entries - loopers reachable from blocks not in that loop -
175     // and those outside blocks that reach them, the "loop enterers".
176     for (auto *Looper : Loopers) {
177       for (auto *Pred : Looper->predecessors()) {
178         // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
179         // otherwise, it is a block that enters into the loop.
180         if (!canReach(Looper, Pred)) {
181           LoopEntries.insert(Looper);
182           LoopEnterers[Looper].insert(Pred);
183         }
184       }
185     }
186   }
187 };
188 
189 // Finds the blocks in a single-entry loop, given the loop entry and the
190 // list of blocks that enter the loop.
191 class LoopBlocks {
192 public:
193   LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers)
194       : Entry(Entry), Enterers(Enterers) {
195     calculate();
196   }
197 
198   BlockSet &getBlocks() { return Blocks; }
199 
200 private:
201   MachineBasicBlock *Entry;
202   const BlockSet &Enterers;
203 
204   BlockSet Blocks;
205 
206   void calculate() {
207     // Going backwards from the loop entry, if we ignore the blocks entering
208     // from outside, we will traverse all the blocks in the loop.
209     BlockVector WorkList;
210     BlockSet AddedToWorkList;
211     Blocks.insert(Entry);
212     for (auto *Pred : Entry->predecessors()) {
213       if (!Enterers.count(Pred)) {
214         WorkList.push_back(Pred);
215         AddedToWorkList.insert(Pred);
216       }
217     }
218 
219     while (!WorkList.empty()) {
220       auto *MBB = WorkList.pop_back_val();
221       assert(!Enterers.count(MBB));
222       if (Blocks.insert(MBB).second) {
223         for (auto *Pred : MBB->predecessors()) {
224           if (!AddedToWorkList.count(Pred)) {
225             WorkList.push_back(Pred);
226             AddedToWorkList.insert(Pred);
227           }
228         }
229       }
230     }
231   }
232 };
233 
234 class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass {
235   StringRef getPassName() const override {
236     return "WebAssembly Fix Irreducible Control Flow";
237   }
238 
239   bool runOnMachineFunction(MachineFunction &MF) override;
240 
241   bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks,
242                      MachineFunction &MF);
243 
244   void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks,
245                            MachineFunction &MF, const ReachabilityGraph &Graph);
246 
247 public:
248   static char ID; // Pass identification, replacement for typeid
249   WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {}
250 };
251 
252 bool WebAssemblyFixIrreducibleControlFlow::processRegion(
253     MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) {
254   bool Changed = false;
255   // Remove irreducibility before processing child loops, which may take
256   // multiple iterations.
257   while (true) {
258     ReachabilityGraph Graph(Entry, Blocks);
259 
260     bool FoundIrreducibility = false;
261 
262     for (auto *LoopEntry : getSortedEntries(Graph.getLoopEntries())) {
263       // Find mutual entries - all entries which can reach this one, and
264       // are reached by it (that always includes LoopEntry itself). All mutual
265       // entries must be in the same loop, so if we have more than one, then we
266       // have irreducible control flow.
267       //
268       // (Note that we need to sort the entries here, as otherwise the order can
269       // matter: being mutual is a symmetric relationship, and each set of
270       // mutuals will be handled properly no matter which we see first. However,
271       // there can be multiple disjoint sets of mutuals, and which we process
272       // first changes the output.)
273       //
274       // Note that irreducibility may involve inner loops, e.g. imagine A
275       // starts one loop, and it has B inside it which starts an inner loop.
276       // If we add a branch from all the way on the outside to B, then in a
277       // sense B is no longer an "inner" loop, semantically speaking. We will
278       // fix that irreducibility by adding a block that dispatches to either
279       // either A or B, so B will no longer be an inner loop in our output.
280       // (A fancier approach might try to keep it as such.)
281       //
282       // Note that we still need to recurse into inner loops later, to handle
283       // the case where the irreducibility is entirely nested - we would not
284       // be able to identify that at this point, since the enclosing loop is
285       // a group of blocks all of whom can reach each other. (We'll see the
286       // irreducibility after removing branches to the top of that enclosing
287       // loop.)
288       BlockSet MutualLoopEntries;
289       MutualLoopEntries.insert(LoopEntry);
290       for (auto *OtherLoopEntry : Graph.getLoopEntries()) {
291         if (OtherLoopEntry != LoopEntry &&
292             Graph.canReach(LoopEntry, OtherLoopEntry) &&
293             Graph.canReach(OtherLoopEntry, LoopEntry)) {
294           MutualLoopEntries.insert(OtherLoopEntry);
295         }
296       }
297 
298       if (MutualLoopEntries.size() > 1) {
299         makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph);
300         FoundIrreducibility = true;
301         Changed = true;
302         break;
303       }
304     }
305     // Only go on to actually process the inner loops when we are done
306     // removing irreducible control flow and changing the graph. Modifying
307     // the graph as we go is possible, and that might let us avoid looking at
308     // the already-fixed loops again if we are careful, but all that is
309     // complex and bug-prone. Since irreducible loops are rare, just starting
310     // another iteration is best.
311     if (FoundIrreducibility) {
312       continue;
313     }
314 
315     for (auto *LoopEntry : Graph.getLoopEntries()) {
316       LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry));
317       // Each of these calls to processRegion may change the graph, but are
318       // guaranteed not to interfere with each other. The only changes we make
319       // to the graph are to add blocks on the way to a loop entry. As the
320       // loops are disjoint, that means we may only alter branches that exit
321       // another loop, which are ignored when recursing into that other loop
322       // anyhow.
323       if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) {
324         Changed = true;
325       }
326     }
327 
328     return Changed;
329   }
330 }
331 
332 // Given a set of entries to a single loop, create a single entry for that
333 // loop by creating a dispatch block for them, routing control flow using
334 // a helper variable. Also updates Blocks with any new blocks created, so
335 // that we properly track all the blocks in the region. But this does not update
336 // ReachabilityGraph; this will be updated in the caller of this function as
337 // needed.
338 void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
339     BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF,
340     const ReachabilityGraph &Graph) {
341   assert(Entries.size() >= 2);
342 
343   // Sort the entries to ensure a deterministic build.
344   BlockVector SortedEntries = getSortedEntries(Entries);
345 
346 #ifndef NDEBUG
347   for (auto Block : SortedEntries)
348     assert(Block->getNumber() != -1);
349   if (SortedEntries.size() > 1) {
350     for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E;
351          ++I) {
352       auto ANum = (*I)->getNumber();
353       auto BNum = (*(std::next(I)))->getNumber();
354       assert(ANum != BNum);
355     }
356   }
357 #endif
358 
359   // Create a dispatch block which will contain a jump table to the entries.
360   MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
361   MF.insert(MF.end(), Dispatch);
362   Blocks.insert(Dispatch);
363 
364   // Add the jump table.
365   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
366   MachineInstrBuilder MIB =
367       BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32));
368 
369   // Add the register which will be used to tell the jump table which block to
370   // jump to.
371   MachineRegisterInfo &MRI = MF.getRegInfo();
372   Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
373   MIB.addReg(Reg);
374 
375   // Compute the indices in the superheader, one for each bad block, and
376   // add them as successors.
377   DenseMap<MachineBasicBlock *, unsigned> Indices;
378   for (auto *Entry : SortedEntries) {
379     auto Pair = Indices.insert(std::make_pair(Entry, 0));
380     assert(Pair.second);
381 
382     unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
383     Pair.first->second = Index;
384 
385     MIB.addMBB(Entry);
386     Dispatch->addSuccessor(Entry);
387   }
388 
389   // Rewrite the problematic successors for every block that wants to reach
390   // the bad blocks. For simplicity, we just introduce a new block for every
391   // edge we need to rewrite. (Fancier things are possible.)
392 
393   BlockVector AllPreds;
394   for (auto *Entry : SortedEntries) {
395     for (auto *Pred : Entry->predecessors()) {
396       if (Pred != Dispatch) {
397         AllPreds.push_back(Pred);
398       }
399     }
400   }
401 
402   // This set stores predecessors within this loop.
403   DenseSet<MachineBasicBlock *> InLoop;
404   for (auto *Pred : AllPreds) {
405     for (auto *Entry : Pred->successors()) {
406       if (!Entries.count(Entry))
407         continue;
408       if (Graph.canReach(Entry, Pred)) {
409         InLoop.insert(Pred);
410         break;
411       }
412     }
413   }
414 
415   // Record if each entry has a layout predecessor. This map stores
416   // <<loop entry, Predecessor is within the loop?>, layout predecessor>
417   DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *>
418       EntryToLayoutPred;
419   for (auto *Pred : AllPreds) {
420     bool PredInLoop = InLoop.count(Pred);
421     for (auto *Entry : Pred->successors())
422       if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry))
423         EntryToLayoutPred[{Entry, PredInLoop}] = Pred;
424   }
425 
426   // We need to create at most two routing blocks per entry: one for
427   // predecessors outside the loop and one for predecessors inside the loop.
428   // This map stores
429   // <<loop entry, Predecessor is within the loop?>, routing block>
430   DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *>
431       Map;
432   for (auto *Pred : AllPreds) {
433     bool PredInLoop = InLoop.count(Pred);
434     for (auto *Entry : Pred->successors()) {
435       if (!Entries.count(Entry) || Map.count({Entry, PredInLoop}))
436         continue;
437       // If there exists a layout predecessor of this entry and this predecessor
438       // is not that, we rather create a routing block after that layout
439       // predecessor to save a branch.
440       if (auto *OtherPred = EntryToLayoutPred.lookup({Entry, PredInLoop}))
441         if (OtherPred != Pred)
442           continue;
443 
444       // This is a successor we need to rewrite.
445       MachineBasicBlock *Routing = MF.CreateMachineBasicBlock();
446       MF.insert(Pred->isLayoutSuccessor(Entry)
447                     ? MachineFunction::iterator(Entry)
448                     : MF.end(),
449                 Routing);
450       Blocks.insert(Routing);
451 
452       // Set the jump table's register of the index of the block we wish to
453       // jump to, and jump to the jump table.
454       BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg)
455           .addImm(Indices[Entry]);
456       BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch);
457       Routing->addSuccessor(Dispatch);
458       Map[{Entry, PredInLoop}] = Routing;
459     }
460   }
461 
462   for (auto *Pred : AllPreds) {
463     bool PredInLoop = InLoop.count(Pred);
464     // Remap the terminator operands and the successor list.
465     for (MachineInstr &Term : Pred->terminators())
466       for (auto &Op : Term.explicit_uses())
467         if (Op.isMBB() && Indices.count(Op.getMBB()))
468           Op.setMBB(Map[{Op.getMBB(), PredInLoop}]);
469 
470     for (auto *Succ : Pred->successors()) {
471       if (!Entries.count(Succ))
472         continue;
473       auto *Routing = Map[{Succ, PredInLoop}];
474       Pred->replaceSuccessor(Succ, Routing);
475     }
476   }
477 
478   // Create a fake default label, because br_table requires one.
479   MIB.addMBB(MIB.getInstr()
480                  ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1)
481                  .getMBB());
482 }
483 
484 } // end anonymous namespace
485 
486 char WebAssemblyFixIrreducibleControlFlow::ID = 0;
487 INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE,
488                 "Removes irreducible control flow", false, false)
489 
490 FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() {
491   return new WebAssemblyFixIrreducibleControlFlow();
492 }
493 
494 bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
495     MachineFunction &MF) {
496   LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
497                        "********** Function: "
498                     << MF.getName() << '\n');
499 
500   // Start the recursive process on the entire function body.
501   BlockSet AllBlocks;
502   for (auto &MBB : MF) {
503     AllBlocks.insert(&MBB);
504   }
505 
506   if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) {
507     // We rewrote part of the function; recompute relevant things.
508     MF.getRegInfo().invalidateLiveness();
509     MF.RenumberBlocks();
510     return true;
511   }
512 
513   return false;
514 }
515