xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
10b57cec5SDimitry Andric //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric ///
90b57cec5SDimitry Andric /// \file
100b57cec5SDimitry Andric /// This file implements a pass that removes irreducible control flow.
110b57cec5SDimitry Andric /// Irreducible control flow means multiple-entry loops, which this pass
120b57cec5SDimitry Andric /// transforms to have a single entry.
130b57cec5SDimitry Andric ///
140b57cec5SDimitry Andric /// Note that LLVM has a generic pass that lowers irreducible control flow, but
150b57cec5SDimitry Andric /// it linearizes control flow, turning diamonds into two triangles, which is
160b57cec5SDimitry Andric /// both unnecessary and undesirable for WebAssembly.
170b57cec5SDimitry Andric ///
180b57cec5SDimitry Andric /// The big picture: We recursively process each "region", defined as a group
190b57cec5SDimitry Andric /// of blocks with a single entry and no branches back to that entry. A region
200b57cec5SDimitry Andric /// may be the entire function body, or the inner part of a loop, i.e., the
210b57cec5SDimitry Andric /// loop's body without branches back to the loop entry. In each region we fix
220b57cec5SDimitry Andric /// up multi-entry loops by adding a new block that can dispatch to each of the
230b57cec5SDimitry Andric /// loop entries, based on the value of a label "helper" variable, and we
240b57cec5SDimitry Andric /// replace direct branches to the entries with assignments to the label
250b57cec5SDimitry Andric /// variable and a branch to the dispatch block. Then the dispatch block is the
260b57cec5SDimitry Andric /// single entry in the loop containing the previous multiple entries. After
270b57cec5SDimitry Andric /// ensuring all the loops in a region are reducible, we recurse into them. The
280b57cec5SDimitry Andric /// total time complexity of this pass is:
290b57cec5SDimitry Andric ///
300b57cec5SDimitry Andric ///   O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
310b57cec5SDimitry Andric ///     NumLoops * NumLoops)
320b57cec5SDimitry Andric ///
330b57cec5SDimitry Andric /// This pass is similar to what the Relooper [1] does. Both identify looping
340b57cec5SDimitry Andric /// code that requires multiple entries, and resolve it in a similar way (in
350b57cec5SDimitry Andric /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
360b57cec5SDimitry Andric /// also that like the Relooper, we implement a "minimal" intervention: we only
370b57cec5SDimitry Andric /// use the "label" helper for the blocks we absolutely must and no others. We
380b57cec5SDimitry Andric /// also prioritize code size and do not duplicate code in order to resolve
390b57cec5SDimitry Andric /// irreducibility. The graph algorithms for finding loops and entries and so
400b57cec5SDimitry Andric /// forth are also similar to the Relooper. The main differences between this
410b57cec5SDimitry Andric /// pass and the Relooper are:
420b57cec5SDimitry Andric ///
430b57cec5SDimitry Andric ///  * We just care about irreducibility, so we just look at loops.
440b57cec5SDimitry Andric ///  * The Relooper emits structured control flow (with ifs etc.), while we
450b57cec5SDimitry Andric ///    emit a CFG.
460b57cec5SDimitry Andric ///
470b57cec5SDimitry Andric /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
480b57cec5SDimitry Andric /// Proceedings of the ACM international conference companion on Object oriented
490b57cec5SDimitry Andric /// programming systems languages and applications companion (SPLASH '11). ACM,
500b57cec5SDimitry Andric /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
510b57cec5SDimitry Andric /// http://doi.acm.org/10.1145/2048147.2048224
520b57cec5SDimitry Andric ///
530b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
540b57cec5SDimitry Andric 
550b57cec5SDimitry Andric #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
560b57cec5SDimitry Andric #include "WebAssembly.h"
570b57cec5SDimitry Andric #include "WebAssemblySubtarget.h"
580b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
59*8bcb0991SDimitry Andric #include "llvm/Support/Debug.h"
600b57cec5SDimitry Andric using namespace llvm;
610b57cec5SDimitry Andric 
620b57cec5SDimitry Andric #define DEBUG_TYPE "wasm-fix-irreducible-control-flow"
630b57cec5SDimitry Andric 
640b57cec5SDimitry Andric namespace {
650b57cec5SDimitry Andric 
660b57cec5SDimitry Andric using BlockVector = SmallVector<MachineBasicBlock *, 4>;
670b57cec5SDimitry Andric using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>;
680b57cec5SDimitry Andric 
690b57cec5SDimitry Andric // Calculates reachability in a region. Ignores branches to blocks outside of
700b57cec5SDimitry Andric // the region, and ignores branches to the region entry (for the case where
710b57cec5SDimitry Andric // the region is the inner part of a loop).
720b57cec5SDimitry Andric class ReachabilityGraph {
730b57cec5SDimitry Andric public:
740b57cec5SDimitry Andric   ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks)
750b57cec5SDimitry Andric       : Entry(Entry), Blocks(Blocks) {
760b57cec5SDimitry Andric #ifndef NDEBUG
770b57cec5SDimitry Andric     // The region must have a single entry.
780b57cec5SDimitry Andric     for (auto *MBB : Blocks) {
790b57cec5SDimitry Andric       if (MBB != Entry) {
800b57cec5SDimitry Andric         for (auto *Pred : MBB->predecessors()) {
810b57cec5SDimitry Andric           assert(inRegion(Pred));
820b57cec5SDimitry Andric         }
830b57cec5SDimitry Andric       }
840b57cec5SDimitry Andric     }
850b57cec5SDimitry Andric #endif
860b57cec5SDimitry Andric     calculate();
870b57cec5SDimitry Andric   }
880b57cec5SDimitry Andric 
890b57cec5SDimitry Andric   bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const {
900b57cec5SDimitry Andric     assert(inRegion(From) && inRegion(To));
910b57cec5SDimitry Andric     auto I = Reachable.find(From);
920b57cec5SDimitry Andric     if (I == Reachable.end())
930b57cec5SDimitry Andric       return false;
940b57cec5SDimitry Andric     return I->second.count(To);
950b57cec5SDimitry Andric   }
960b57cec5SDimitry Andric 
970b57cec5SDimitry Andric   // "Loopers" are blocks that are in a loop. We detect these by finding blocks
980b57cec5SDimitry Andric   // that can reach themselves.
990b57cec5SDimitry Andric   const BlockSet &getLoopers() const { return Loopers; }
1000b57cec5SDimitry Andric 
1010b57cec5SDimitry Andric   // Get all blocks that are loop entries.
1020b57cec5SDimitry Andric   const BlockSet &getLoopEntries() const { return LoopEntries; }
1030b57cec5SDimitry Andric 
1040b57cec5SDimitry Andric   // Get all blocks that enter a particular loop from outside.
1050b57cec5SDimitry Andric   const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const {
1060b57cec5SDimitry Andric     assert(inRegion(LoopEntry));
1070b57cec5SDimitry Andric     auto I = LoopEnterers.find(LoopEntry);
1080b57cec5SDimitry Andric     assert(I != LoopEnterers.end());
1090b57cec5SDimitry Andric     return I->second;
1100b57cec5SDimitry Andric   }
1110b57cec5SDimitry Andric 
1120b57cec5SDimitry Andric private:
1130b57cec5SDimitry Andric   MachineBasicBlock *Entry;
1140b57cec5SDimitry Andric   const BlockSet &Blocks;
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric   BlockSet Loopers, LoopEntries;
1170b57cec5SDimitry Andric   DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers;
1180b57cec5SDimitry Andric 
1190b57cec5SDimitry Andric   bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); }
1200b57cec5SDimitry Andric 
1210b57cec5SDimitry Andric   // Maps a block to all the other blocks it can reach.
1220b57cec5SDimitry Andric   DenseMap<MachineBasicBlock *, BlockSet> Reachable;
1230b57cec5SDimitry Andric 
1240b57cec5SDimitry Andric   void calculate() {
1250b57cec5SDimitry Andric     // Reachability computation work list. Contains pairs of recent additions
1260b57cec5SDimitry Andric     // (A, B) where we just added a link A => B.
1270b57cec5SDimitry Andric     using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>;
1280b57cec5SDimitry Andric     SmallVector<BlockPair, 4> WorkList;
1290b57cec5SDimitry Andric 
1300b57cec5SDimitry Andric     // Add all relevant direct branches.
1310b57cec5SDimitry Andric     for (auto *MBB : Blocks) {
1320b57cec5SDimitry Andric       for (auto *Succ : MBB->successors()) {
1330b57cec5SDimitry Andric         if (Succ != Entry && inRegion(Succ)) {
1340b57cec5SDimitry Andric           Reachable[MBB].insert(Succ);
1350b57cec5SDimitry Andric           WorkList.emplace_back(MBB, Succ);
1360b57cec5SDimitry Andric         }
1370b57cec5SDimitry Andric       }
1380b57cec5SDimitry Andric     }
1390b57cec5SDimitry Andric 
1400b57cec5SDimitry Andric     while (!WorkList.empty()) {
1410b57cec5SDimitry Andric       MachineBasicBlock *MBB, *Succ;
1420b57cec5SDimitry Andric       std::tie(MBB, Succ) = WorkList.pop_back_val();
1430b57cec5SDimitry Andric       assert(inRegion(MBB) && Succ != Entry && inRegion(Succ));
1440b57cec5SDimitry Andric       if (MBB != Entry) {
1450b57cec5SDimitry Andric         // We recently added MBB => Succ, and that means we may have enabled
1460b57cec5SDimitry Andric         // Pred => MBB => Succ.
1470b57cec5SDimitry Andric         for (auto *Pred : MBB->predecessors()) {
1480b57cec5SDimitry Andric           if (Reachable[Pred].insert(Succ).second) {
1490b57cec5SDimitry Andric             WorkList.emplace_back(Pred, Succ);
1500b57cec5SDimitry Andric           }
1510b57cec5SDimitry Andric         }
1520b57cec5SDimitry Andric       }
1530b57cec5SDimitry Andric     }
1540b57cec5SDimitry Andric 
1550b57cec5SDimitry Andric     // Blocks that can return to themselves are in a loop.
1560b57cec5SDimitry Andric     for (auto *MBB : Blocks) {
1570b57cec5SDimitry Andric       if (canReach(MBB, MBB)) {
1580b57cec5SDimitry Andric         Loopers.insert(MBB);
1590b57cec5SDimitry Andric       }
1600b57cec5SDimitry Andric     }
1610b57cec5SDimitry Andric     assert(!Loopers.count(Entry));
1620b57cec5SDimitry Andric 
1630b57cec5SDimitry Andric     // Find the loop entries - loopers reachable from blocks not in that loop -
1640b57cec5SDimitry Andric     // and those outside blocks that reach them, the "loop enterers".
1650b57cec5SDimitry Andric     for (auto *Looper : Loopers) {
1660b57cec5SDimitry Andric       for (auto *Pred : Looper->predecessors()) {
1670b57cec5SDimitry Andric         // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
1680b57cec5SDimitry Andric         // otherwise, it is a block that enters into the loop.
1690b57cec5SDimitry Andric         if (!canReach(Looper, Pred)) {
1700b57cec5SDimitry Andric           LoopEntries.insert(Looper);
1710b57cec5SDimitry Andric           LoopEnterers[Looper].insert(Pred);
1720b57cec5SDimitry Andric         }
1730b57cec5SDimitry Andric       }
1740b57cec5SDimitry Andric     }
1750b57cec5SDimitry Andric   }
1760b57cec5SDimitry Andric };
1770b57cec5SDimitry Andric 
1780b57cec5SDimitry Andric // Finds the blocks in a single-entry loop, given the loop entry and the
1790b57cec5SDimitry Andric // list of blocks that enter the loop.
1800b57cec5SDimitry Andric class LoopBlocks {
1810b57cec5SDimitry Andric public:
1820b57cec5SDimitry Andric   LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers)
1830b57cec5SDimitry Andric       : Entry(Entry), Enterers(Enterers) {
1840b57cec5SDimitry Andric     calculate();
1850b57cec5SDimitry Andric   }
1860b57cec5SDimitry Andric 
1870b57cec5SDimitry Andric   BlockSet &getBlocks() { return Blocks; }
1880b57cec5SDimitry Andric 
1890b57cec5SDimitry Andric private:
1900b57cec5SDimitry Andric   MachineBasicBlock *Entry;
1910b57cec5SDimitry Andric   const BlockSet &Enterers;
1920b57cec5SDimitry Andric 
1930b57cec5SDimitry Andric   BlockSet Blocks;
1940b57cec5SDimitry Andric 
1950b57cec5SDimitry Andric   void calculate() {
1960b57cec5SDimitry Andric     // Going backwards from the loop entry, if we ignore the blocks entering
1970b57cec5SDimitry Andric     // from outside, we will traverse all the blocks in the loop.
1980b57cec5SDimitry Andric     BlockVector WorkList;
1990b57cec5SDimitry Andric     BlockSet AddedToWorkList;
2000b57cec5SDimitry Andric     Blocks.insert(Entry);
2010b57cec5SDimitry Andric     for (auto *Pred : Entry->predecessors()) {
2020b57cec5SDimitry Andric       if (!Enterers.count(Pred)) {
2030b57cec5SDimitry Andric         WorkList.push_back(Pred);
2040b57cec5SDimitry Andric         AddedToWorkList.insert(Pred);
2050b57cec5SDimitry Andric       }
2060b57cec5SDimitry Andric     }
2070b57cec5SDimitry Andric 
2080b57cec5SDimitry Andric     while (!WorkList.empty()) {
2090b57cec5SDimitry Andric       auto *MBB = WorkList.pop_back_val();
2100b57cec5SDimitry Andric       assert(!Enterers.count(MBB));
2110b57cec5SDimitry Andric       if (Blocks.insert(MBB).second) {
2120b57cec5SDimitry Andric         for (auto *Pred : MBB->predecessors()) {
2130b57cec5SDimitry Andric           if (!AddedToWorkList.count(Pred)) {
2140b57cec5SDimitry Andric             WorkList.push_back(Pred);
2150b57cec5SDimitry Andric             AddedToWorkList.insert(Pred);
2160b57cec5SDimitry Andric           }
2170b57cec5SDimitry Andric         }
2180b57cec5SDimitry Andric       }
2190b57cec5SDimitry Andric     }
2200b57cec5SDimitry Andric   }
2210b57cec5SDimitry Andric };
2220b57cec5SDimitry Andric 
2230b57cec5SDimitry Andric class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass {
2240b57cec5SDimitry Andric   StringRef getPassName() const override {
2250b57cec5SDimitry Andric     return "WebAssembly Fix Irreducible Control Flow";
2260b57cec5SDimitry Andric   }
2270b57cec5SDimitry Andric 
2280b57cec5SDimitry Andric   bool runOnMachineFunction(MachineFunction &MF) override;
2290b57cec5SDimitry Andric 
2300b57cec5SDimitry Andric   bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks,
2310b57cec5SDimitry Andric                      MachineFunction &MF);
2320b57cec5SDimitry Andric 
2330b57cec5SDimitry Andric   void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks,
2340b57cec5SDimitry Andric                            MachineFunction &MF, const ReachabilityGraph &Graph);
2350b57cec5SDimitry Andric 
2360b57cec5SDimitry Andric public:
2370b57cec5SDimitry Andric   static char ID; // Pass identification, replacement for typeid
2380b57cec5SDimitry Andric   WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {}
2390b57cec5SDimitry Andric };
2400b57cec5SDimitry Andric 
2410b57cec5SDimitry Andric bool WebAssemblyFixIrreducibleControlFlow::processRegion(
2420b57cec5SDimitry Andric     MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) {
2430b57cec5SDimitry Andric   bool Changed = false;
2440b57cec5SDimitry Andric 
2450b57cec5SDimitry Andric   // Remove irreducibility before processing child loops, which may take
2460b57cec5SDimitry Andric   // multiple iterations.
2470b57cec5SDimitry Andric   while (true) {
2480b57cec5SDimitry Andric     ReachabilityGraph Graph(Entry, Blocks);
2490b57cec5SDimitry Andric 
2500b57cec5SDimitry Andric     bool FoundIrreducibility = false;
2510b57cec5SDimitry Andric 
2520b57cec5SDimitry Andric     for (auto *LoopEntry : Graph.getLoopEntries()) {
2530b57cec5SDimitry Andric       // Find mutual entries - all entries which can reach this one, and
2540b57cec5SDimitry Andric       // are reached by it (that always includes LoopEntry itself). All mutual
2550b57cec5SDimitry Andric       // entries must be in the same loop, so if we have more than one, then we
2560b57cec5SDimitry Andric       // have irreducible control flow.
2570b57cec5SDimitry Andric       //
2580b57cec5SDimitry Andric       // Note that irreducibility may involve inner loops, e.g. imagine A
2590b57cec5SDimitry Andric       // starts one loop, and it has B inside it which starts an inner loop.
2600b57cec5SDimitry Andric       // If we add a branch from all the way on the outside to B, then in a
2610b57cec5SDimitry Andric       // sense B is no longer an "inner" loop, semantically speaking. We will
2620b57cec5SDimitry Andric       // fix that irreducibility by adding a block that dispatches to either
2630b57cec5SDimitry Andric       // either A or B, so B will no longer be an inner loop in our output.
2640b57cec5SDimitry Andric       // (A fancier approach might try to keep it as such.)
2650b57cec5SDimitry Andric       //
2660b57cec5SDimitry Andric       // Note that we still need to recurse into inner loops later, to handle
2670b57cec5SDimitry Andric       // the case where the irreducibility is entirely nested - we would not
2680b57cec5SDimitry Andric       // be able to identify that at this point, since the enclosing loop is
2690b57cec5SDimitry Andric       // a group of blocks all of whom can reach each other. (We'll see the
2700b57cec5SDimitry Andric       // irreducibility after removing branches to the top of that enclosing
2710b57cec5SDimitry Andric       // loop.)
2720b57cec5SDimitry Andric       BlockSet MutualLoopEntries;
2730b57cec5SDimitry Andric       MutualLoopEntries.insert(LoopEntry);
2740b57cec5SDimitry Andric       for (auto *OtherLoopEntry : Graph.getLoopEntries()) {
2750b57cec5SDimitry Andric         if (OtherLoopEntry != LoopEntry &&
2760b57cec5SDimitry Andric             Graph.canReach(LoopEntry, OtherLoopEntry) &&
2770b57cec5SDimitry Andric             Graph.canReach(OtherLoopEntry, LoopEntry)) {
2780b57cec5SDimitry Andric           MutualLoopEntries.insert(OtherLoopEntry);
2790b57cec5SDimitry Andric         }
2800b57cec5SDimitry Andric       }
2810b57cec5SDimitry Andric 
2820b57cec5SDimitry Andric       if (MutualLoopEntries.size() > 1) {
2830b57cec5SDimitry Andric         makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph);
2840b57cec5SDimitry Andric         FoundIrreducibility = true;
2850b57cec5SDimitry Andric         Changed = true;
2860b57cec5SDimitry Andric         break;
2870b57cec5SDimitry Andric       }
2880b57cec5SDimitry Andric     }
2890b57cec5SDimitry Andric     // Only go on to actually process the inner loops when we are done
2900b57cec5SDimitry Andric     // removing irreducible control flow and changing the graph. Modifying
2910b57cec5SDimitry Andric     // the graph as we go is possible, and that might let us avoid looking at
2920b57cec5SDimitry Andric     // the already-fixed loops again if we are careful, but all that is
2930b57cec5SDimitry Andric     // complex and bug-prone. Since irreducible loops are rare, just starting
2940b57cec5SDimitry Andric     // another iteration is best.
2950b57cec5SDimitry Andric     if (FoundIrreducibility) {
2960b57cec5SDimitry Andric       continue;
2970b57cec5SDimitry Andric     }
2980b57cec5SDimitry Andric 
2990b57cec5SDimitry Andric     for (auto *LoopEntry : Graph.getLoopEntries()) {
3000b57cec5SDimitry Andric       LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry));
3010b57cec5SDimitry Andric       // Each of these calls to processRegion may change the graph, but are
3020b57cec5SDimitry Andric       // guaranteed not to interfere with each other. The only changes we make
3030b57cec5SDimitry Andric       // to the graph are to add blocks on the way to a loop entry. As the
3040b57cec5SDimitry Andric       // loops are disjoint, that means we may only alter branches that exit
3050b57cec5SDimitry Andric       // another loop, which are ignored when recursing into that other loop
3060b57cec5SDimitry Andric       // anyhow.
3070b57cec5SDimitry Andric       if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) {
3080b57cec5SDimitry Andric         Changed = true;
3090b57cec5SDimitry Andric       }
3100b57cec5SDimitry Andric     }
3110b57cec5SDimitry Andric 
3120b57cec5SDimitry Andric     return Changed;
3130b57cec5SDimitry Andric   }
3140b57cec5SDimitry Andric }
3150b57cec5SDimitry Andric 
3160b57cec5SDimitry Andric // Given a set of entries to a single loop, create a single entry for that
3170b57cec5SDimitry Andric // loop by creating a dispatch block for them, routing control flow using
3180b57cec5SDimitry Andric // a helper variable. Also updates Blocks with any new blocks created, so
3190b57cec5SDimitry Andric // that we properly track all the blocks in the region. But this does not update
3200b57cec5SDimitry Andric // ReachabilityGraph; this will be updated in the caller of this function as
3210b57cec5SDimitry Andric // needed.
3220b57cec5SDimitry Andric void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
3230b57cec5SDimitry Andric     BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF,
3240b57cec5SDimitry Andric     const ReachabilityGraph &Graph) {
3250b57cec5SDimitry Andric   assert(Entries.size() >= 2);
3260b57cec5SDimitry Andric 
3270b57cec5SDimitry Andric   // Sort the entries to ensure a deterministic build.
3280b57cec5SDimitry Andric   BlockVector SortedEntries(Entries.begin(), Entries.end());
3290b57cec5SDimitry Andric   llvm::sort(SortedEntries,
3300b57cec5SDimitry Andric              [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
3310b57cec5SDimitry Andric                auto ANum = A->getNumber();
3320b57cec5SDimitry Andric                auto BNum = B->getNumber();
3330b57cec5SDimitry Andric                return ANum < BNum;
3340b57cec5SDimitry Andric              });
3350b57cec5SDimitry Andric 
3360b57cec5SDimitry Andric #ifndef NDEBUG
3370b57cec5SDimitry Andric   for (auto Block : SortedEntries)
3380b57cec5SDimitry Andric     assert(Block->getNumber() != -1);
3390b57cec5SDimitry Andric   if (SortedEntries.size() > 1) {
3400b57cec5SDimitry Andric     for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E;
3410b57cec5SDimitry Andric          ++I) {
3420b57cec5SDimitry Andric       auto ANum = (*I)->getNumber();
3430b57cec5SDimitry Andric       auto BNum = (*(std::next(I)))->getNumber();
3440b57cec5SDimitry Andric       assert(ANum != BNum);
3450b57cec5SDimitry Andric     }
3460b57cec5SDimitry Andric   }
3470b57cec5SDimitry Andric #endif
3480b57cec5SDimitry Andric 
3490b57cec5SDimitry Andric   // Create a dispatch block which will contain a jump table to the entries.
3500b57cec5SDimitry Andric   MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
3510b57cec5SDimitry Andric   MF.insert(MF.end(), Dispatch);
3520b57cec5SDimitry Andric   Blocks.insert(Dispatch);
3530b57cec5SDimitry Andric 
3540b57cec5SDimitry Andric   // Add the jump table.
3550b57cec5SDimitry Andric   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
3560b57cec5SDimitry Andric   MachineInstrBuilder MIB =
3570b57cec5SDimitry Andric       BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32));
3580b57cec5SDimitry Andric 
3590b57cec5SDimitry Andric   // Add the register which will be used to tell the jump table which block to
3600b57cec5SDimitry Andric   // jump to.
3610b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
362*8bcb0991SDimitry Andric   Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
3630b57cec5SDimitry Andric   MIB.addReg(Reg);
3640b57cec5SDimitry Andric 
3650b57cec5SDimitry Andric   // Compute the indices in the superheader, one for each bad block, and
3660b57cec5SDimitry Andric   // add them as successors.
3670b57cec5SDimitry Andric   DenseMap<MachineBasicBlock *, unsigned> Indices;
3680b57cec5SDimitry Andric   for (auto *Entry : SortedEntries) {
3690b57cec5SDimitry Andric     auto Pair = Indices.insert(std::make_pair(Entry, 0));
3700b57cec5SDimitry Andric     assert(Pair.second);
3710b57cec5SDimitry Andric 
3720b57cec5SDimitry Andric     unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
3730b57cec5SDimitry Andric     Pair.first->second = Index;
3740b57cec5SDimitry Andric 
3750b57cec5SDimitry Andric     MIB.addMBB(Entry);
3760b57cec5SDimitry Andric     Dispatch->addSuccessor(Entry);
3770b57cec5SDimitry Andric   }
3780b57cec5SDimitry Andric 
3790b57cec5SDimitry Andric   // Rewrite the problematic successors for every block that wants to reach
3800b57cec5SDimitry Andric   // the bad blocks. For simplicity, we just introduce a new block for every
3810b57cec5SDimitry Andric   // edge we need to rewrite. (Fancier things are possible.)
3820b57cec5SDimitry Andric 
3830b57cec5SDimitry Andric   BlockVector AllPreds;
3840b57cec5SDimitry Andric   for (auto *Entry : SortedEntries) {
3850b57cec5SDimitry Andric     for (auto *Pred : Entry->predecessors()) {
3860b57cec5SDimitry Andric       if (Pred != Dispatch) {
3870b57cec5SDimitry Andric         AllPreds.push_back(Pred);
3880b57cec5SDimitry Andric       }
3890b57cec5SDimitry Andric     }
3900b57cec5SDimitry Andric   }
3910b57cec5SDimitry Andric 
3920b57cec5SDimitry Andric   // This set stores predecessors within this loop.
3930b57cec5SDimitry Andric   DenseSet<MachineBasicBlock *> InLoop;
3940b57cec5SDimitry Andric   for (auto *Pred : AllPreds) {
3950b57cec5SDimitry Andric     for (auto *Entry : Pred->successors()) {
3960b57cec5SDimitry Andric       if (!Entries.count(Entry))
3970b57cec5SDimitry Andric         continue;
3980b57cec5SDimitry Andric       if (Graph.canReach(Entry, Pred)) {
3990b57cec5SDimitry Andric         InLoop.insert(Pred);
4000b57cec5SDimitry Andric         break;
4010b57cec5SDimitry Andric       }
4020b57cec5SDimitry Andric     }
4030b57cec5SDimitry Andric   }
4040b57cec5SDimitry Andric 
4050b57cec5SDimitry Andric   // Record if each entry has a layout predecessor. This map stores
4060b57cec5SDimitry Andric   // <<Predecessor is within the loop?, loop entry>, layout predecessor>
4070b57cec5SDimitry Andric   std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *>
4080b57cec5SDimitry Andric       EntryToLayoutPred;
4090b57cec5SDimitry Andric   for (auto *Pred : AllPreds)
4100b57cec5SDimitry Andric     for (auto *Entry : Pred->successors())
4110b57cec5SDimitry Andric       if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry))
4120b57cec5SDimitry Andric         EntryToLayoutPred[std::make_pair(InLoop.count(Pred), Entry)] = Pred;
4130b57cec5SDimitry Andric 
4140b57cec5SDimitry Andric   // We need to create at most two routing blocks per entry: one for
4150b57cec5SDimitry Andric   // predecessors outside the loop and one for predecessors inside the loop.
4160b57cec5SDimitry Andric   // This map stores
4170b57cec5SDimitry Andric   // <<Predecessor is within the loop?, loop entry>, routing block>
4180b57cec5SDimitry Andric   std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> Map;
4190b57cec5SDimitry Andric   for (auto *Pred : AllPreds) {
4200b57cec5SDimitry Andric     bool PredInLoop = InLoop.count(Pred);
4210b57cec5SDimitry Andric     for (auto *Entry : Pred->successors()) {
4220b57cec5SDimitry Andric       if (!Entries.count(Entry) ||
4230b57cec5SDimitry Andric           Map.count(std::make_pair(InLoop.count(Pred), Entry)))
4240b57cec5SDimitry Andric         continue;
4250b57cec5SDimitry Andric       // If there exists a layout predecessor of this entry and this predecessor
4260b57cec5SDimitry Andric       // is not that, we rather create a routing block after that layout
4270b57cec5SDimitry Andric       // predecessor to save a branch.
4280b57cec5SDimitry Andric       if (EntryToLayoutPred.count(std::make_pair(PredInLoop, Entry)) &&
4290b57cec5SDimitry Andric           EntryToLayoutPred[std::make_pair(PredInLoop, Entry)] != Pred)
4300b57cec5SDimitry Andric         continue;
4310b57cec5SDimitry Andric 
4320b57cec5SDimitry Andric       // This is a successor we need to rewrite.
4330b57cec5SDimitry Andric       MachineBasicBlock *Routing = MF.CreateMachineBasicBlock();
4340b57cec5SDimitry Andric       MF.insert(Pred->isLayoutSuccessor(Entry)
4350b57cec5SDimitry Andric                     ? MachineFunction::iterator(Entry)
4360b57cec5SDimitry Andric                     : MF.end(),
4370b57cec5SDimitry Andric                 Routing);
4380b57cec5SDimitry Andric       Blocks.insert(Routing);
4390b57cec5SDimitry Andric 
4400b57cec5SDimitry Andric       // Set the jump table's register of the index of the block we wish to
4410b57cec5SDimitry Andric       // jump to, and jump to the jump table.
4420b57cec5SDimitry Andric       BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg)
4430b57cec5SDimitry Andric           .addImm(Indices[Entry]);
4440b57cec5SDimitry Andric       BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch);
4450b57cec5SDimitry Andric       Routing->addSuccessor(Dispatch);
4460b57cec5SDimitry Andric       Map[std::make_pair(PredInLoop, Entry)] = Routing;
4470b57cec5SDimitry Andric     }
4480b57cec5SDimitry Andric   }
4490b57cec5SDimitry Andric 
4500b57cec5SDimitry Andric   for (auto *Pred : AllPreds) {
4510b57cec5SDimitry Andric     bool PredInLoop = InLoop.count(Pred);
4520b57cec5SDimitry Andric     // Remap the terminator operands and the successor list.
4530b57cec5SDimitry Andric     for (MachineInstr &Term : Pred->terminators())
4540b57cec5SDimitry Andric       for (auto &Op : Term.explicit_uses())
4550b57cec5SDimitry Andric         if (Op.isMBB() && Indices.count(Op.getMBB()))
4560b57cec5SDimitry Andric           Op.setMBB(Map[std::make_pair(PredInLoop, Op.getMBB())]);
4570b57cec5SDimitry Andric 
4580b57cec5SDimitry Andric     for (auto *Succ : Pred->successors()) {
4590b57cec5SDimitry Andric       if (!Entries.count(Succ))
4600b57cec5SDimitry Andric         continue;
4610b57cec5SDimitry Andric       auto *Routing = Map[std::make_pair(PredInLoop, Succ)];
4620b57cec5SDimitry Andric       Pred->replaceSuccessor(Succ, Routing);
4630b57cec5SDimitry Andric     }
4640b57cec5SDimitry Andric   }
4650b57cec5SDimitry Andric 
4660b57cec5SDimitry Andric   // Create a fake default label, because br_table requires one.
4670b57cec5SDimitry Andric   MIB.addMBB(MIB.getInstr()
4680b57cec5SDimitry Andric                  ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1)
4690b57cec5SDimitry Andric                  .getMBB());
4700b57cec5SDimitry Andric }
4710b57cec5SDimitry Andric 
4720b57cec5SDimitry Andric } // end anonymous namespace
4730b57cec5SDimitry Andric 
4740b57cec5SDimitry Andric char WebAssemblyFixIrreducibleControlFlow::ID = 0;
4750b57cec5SDimitry Andric INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE,
4760b57cec5SDimitry Andric                 "Removes irreducible control flow", false, false)
4770b57cec5SDimitry Andric 
4780b57cec5SDimitry Andric FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() {
4790b57cec5SDimitry Andric   return new WebAssemblyFixIrreducibleControlFlow();
4800b57cec5SDimitry Andric }
4810b57cec5SDimitry Andric 
4820b57cec5SDimitry Andric bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
4830b57cec5SDimitry Andric     MachineFunction &MF) {
4840b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
4850b57cec5SDimitry Andric                        "********** Function: "
4860b57cec5SDimitry Andric                     << MF.getName() << '\n');
4870b57cec5SDimitry Andric 
4880b57cec5SDimitry Andric   // Start the recursive process on the entire function body.
4890b57cec5SDimitry Andric   BlockSet AllBlocks;
4900b57cec5SDimitry Andric   for (auto &MBB : MF) {
4910b57cec5SDimitry Andric     AllBlocks.insert(&MBB);
4920b57cec5SDimitry Andric   }
4930b57cec5SDimitry Andric 
4940b57cec5SDimitry Andric   if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) {
4950b57cec5SDimitry Andric     // We rewrote part of the function; recompute relevant things.
4960b57cec5SDimitry Andric     MF.getRegInfo().invalidateLiveness();
4970b57cec5SDimitry Andric     MF.RenumberBlocks();
4980b57cec5SDimitry Andric     return true;
4990b57cec5SDimitry Andric   }
5000b57cec5SDimitry Andric 
5010b57cec5SDimitry Andric   return false;
5020b57cec5SDimitry Andric }
503