1 //===-- WebAssemblyFixFunctionBitcasts.cpp - Fix function bitcasts --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Fix bitcasted functions. 11 /// 12 /// WebAssembly requires caller and callee signatures to match, however in LLVM, 13 /// some amount of slop is vaguely permitted. Detect mismatch by looking for 14 /// bitcasts of functions and rewrite them to use wrapper functions instead. 15 /// 16 /// This doesn't catch all cases, such as when a function's address is taken in 17 /// one place and casted in another, but it works for many common cases. 18 /// 19 /// Note that LLVM already optimizes away function bitcasts in common cases by 20 /// dropping arguments as needed, so this pass only ends up getting used in less 21 /// common cases. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "WebAssembly.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "wasm-fix-function-bitcasts" 36 37 namespace { 38 class FixFunctionBitcasts final : public ModulePass { 39 StringRef getPassName() const override { 40 return "WebAssembly Fix Function Bitcasts"; 41 } 42 43 void getAnalysisUsage(AnalysisUsage &AU) const override { 44 AU.setPreservesCFG(); 45 ModulePass::getAnalysisUsage(AU); 46 } 47 48 bool runOnModule(Module &M) override; 49 50 public: 51 static char ID; 52 FixFunctionBitcasts() : ModulePass(ID) {} 53 }; 54 } // End anonymous namespace 55 56 char FixFunctionBitcasts::ID = 0; 57 INITIALIZE_PASS(FixFunctionBitcasts, DEBUG_TYPE, 58 "Fix mismatching bitcasts for WebAssembly", false, false) 59 60 ModulePass *llvm::createWebAssemblyFixFunctionBitcasts() { 61 return new FixFunctionBitcasts(); 62 } 63 64 // Recursively descend the def-use lists from V to find non-bitcast users of 65 // bitcasts of V. 66 static void findUses(Value *V, Function &F, 67 SmallVectorImpl<std::pair<CallBase *, Function *>> &Uses) { 68 for (User *U : V->users()) { 69 if (auto *BC = dyn_cast<BitCastOperator>(U)) 70 findUses(BC, F, Uses); 71 else if (auto *A = dyn_cast<GlobalAlias>(U)) 72 findUses(A, F, Uses); 73 else if (auto *CB = dyn_cast<CallBase>(U)) { 74 Value *Callee = CB->getCalledOperand(); 75 if (Callee != V) 76 // Skip calls where the function isn't the callee 77 continue; 78 if (CB->getFunctionType() == F.getValueType()) 79 // Skip uses that are immediately called 80 continue; 81 Uses.push_back(std::make_pair(CB, &F)); 82 } 83 } 84 } 85 86 // Create a wrapper function with type Ty that calls F (which may have a 87 // different type). Attempt to support common bitcasted function idioms: 88 // - Call with more arguments than needed: arguments are dropped 89 // - Call with fewer arguments than needed: arguments are filled in with undef 90 // - Return value is not needed: drop it 91 // - Return value needed but not present: supply an undef 92 // 93 // If the all the argument types of trivially castable to one another (i.e. 94 // I32 vs pointer type) then we don't create a wrapper at all (return nullptr 95 // instead). 96 // 97 // If there is a type mismatch that we know would result in an invalid wasm 98 // module then generate wrapper that contains unreachable (i.e. abort at 99 // runtime). Such programs are deep into undefined behaviour territory, 100 // but we choose to fail at runtime rather than generate and invalid module 101 // or fail at compiler time. The reason we delay the error is that we want 102 // to support the CMake which expects to be able to compile and link programs 103 // that refer to functions with entirely incorrect signatures (this is how 104 // CMake detects the existence of a function in a toolchain). 105 // 106 // For bitcasts that involve struct types we don't know at this stage if they 107 // would be equivalent at the wasm level and so we can't know if we need to 108 // generate a wrapper. 109 static Function *createWrapper(Function *F, FunctionType *Ty) { 110 Module *M = F->getParent(); 111 112 Function *Wrapper = Function::Create(Ty, Function::PrivateLinkage, 113 F->getName() + "_bitcast", M); 114 BasicBlock *BB = BasicBlock::Create(M->getContext(), "body", Wrapper); 115 const DataLayout &DL = BB->getModule()->getDataLayout(); 116 117 // Determine what arguments to pass. 118 SmallVector<Value *, 4> Args; 119 Function::arg_iterator AI = Wrapper->arg_begin(); 120 Function::arg_iterator AE = Wrapper->arg_end(); 121 FunctionType::param_iterator PI = F->getFunctionType()->param_begin(); 122 FunctionType::param_iterator PE = F->getFunctionType()->param_end(); 123 bool TypeMismatch = false; 124 bool WrapperNeeded = false; 125 126 Type *ExpectedRtnType = F->getFunctionType()->getReturnType(); 127 Type *RtnType = Ty->getReturnType(); 128 129 if ((F->getFunctionType()->getNumParams() != Ty->getNumParams()) || 130 (F->getFunctionType()->isVarArg() != Ty->isVarArg()) || 131 (ExpectedRtnType != RtnType)) 132 WrapperNeeded = true; 133 134 for (; AI != AE && PI != PE; ++AI, ++PI) { 135 Type *ArgType = AI->getType(); 136 Type *ParamType = *PI; 137 138 if (ArgType == ParamType) { 139 Args.push_back(&*AI); 140 } else { 141 if (CastInst::isBitOrNoopPointerCastable(ArgType, ParamType, DL)) { 142 Instruction *PtrCast = 143 CastInst::CreateBitOrPointerCast(AI, ParamType, "cast"); 144 BB->getInstList().push_back(PtrCast); 145 Args.push_back(PtrCast); 146 } else if (ArgType->isStructTy() || ParamType->isStructTy()) { 147 LLVM_DEBUG(dbgs() << "createWrapper: struct param type in bitcast: " 148 << F->getName() << "\n"); 149 WrapperNeeded = false; 150 } else { 151 LLVM_DEBUG(dbgs() << "createWrapper: arg type mismatch calling: " 152 << F->getName() << "\n"); 153 LLVM_DEBUG(dbgs() << "Arg[" << Args.size() << "] Expected: " 154 << *ParamType << " Got: " << *ArgType << "\n"); 155 TypeMismatch = true; 156 break; 157 } 158 } 159 } 160 161 if (WrapperNeeded && !TypeMismatch) { 162 for (; PI != PE; ++PI) 163 Args.push_back(UndefValue::get(*PI)); 164 if (F->isVarArg()) 165 for (; AI != AE; ++AI) 166 Args.push_back(&*AI); 167 168 CallInst *Call = CallInst::Create(F, Args, "", BB); 169 170 Type *ExpectedRtnType = F->getFunctionType()->getReturnType(); 171 Type *RtnType = Ty->getReturnType(); 172 // Determine what value to return. 173 if (RtnType->isVoidTy()) { 174 ReturnInst::Create(M->getContext(), BB); 175 } else if (ExpectedRtnType->isVoidTy()) { 176 LLVM_DEBUG(dbgs() << "Creating dummy return: " << *RtnType << "\n"); 177 ReturnInst::Create(M->getContext(), UndefValue::get(RtnType), BB); 178 } else if (RtnType == ExpectedRtnType) { 179 ReturnInst::Create(M->getContext(), Call, BB); 180 } else if (CastInst::isBitOrNoopPointerCastable(ExpectedRtnType, RtnType, 181 DL)) { 182 Instruction *Cast = 183 CastInst::CreateBitOrPointerCast(Call, RtnType, "cast"); 184 BB->getInstList().push_back(Cast); 185 ReturnInst::Create(M->getContext(), Cast, BB); 186 } else if (RtnType->isStructTy() || ExpectedRtnType->isStructTy()) { 187 LLVM_DEBUG(dbgs() << "createWrapper: struct return type in bitcast: " 188 << F->getName() << "\n"); 189 WrapperNeeded = false; 190 } else { 191 LLVM_DEBUG(dbgs() << "createWrapper: return type mismatch calling: " 192 << F->getName() << "\n"); 193 LLVM_DEBUG(dbgs() << "Expected: " << *ExpectedRtnType 194 << " Got: " << *RtnType << "\n"); 195 TypeMismatch = true; 196 } 197 } 198 199 if (TypeMismatch) { 200 // Create a new wrapper that simply contains `unreachable`. 201 Wrapper->eraseFromParent(); 202 Wrapper = Function::Create(Ty, Function::PrivateLinkage, 203 F->getName() + "_bitcast_invalid", M); 204 BasicBlock *BB = BasicBlock::Create(M->getContext(), "body", Wrapper); 205 new UnreachableInst(M->getContext(), BB); 206 Wrapper->setName(F->getName() + "_bitcast_invalid"); 207 } else if (!WrapperNeeded) { 208 LLVM_DEBUG(dbgs() << "createWrapper: no wrapper needed: " << F->getName() 209 << "\n"); 210 Wrapper->eraseFromParent(); 211 return nullptr; 212 } 213 LLVM_DEBUG(dbgs() << "createWrapper: " << F->getName() << "\n"); 214 return Wrapper; 215 } 216 217 // Test whether a main function with type FuncTy should be rewritten to have 218 // type MainTy. 219 static bool shouldFixMainFunction(FunctionType *FuncTy, FunctionType *MainTy) { 220 // Only fix the main function if it's the standard zero-arg form. That way, 221 // the standard cases will work as expected, and users will see signature 222 // mismatches from the linker for non-standard cases. 223 return FuncTy->getReturnType() == MainTy->getReturnType() && 224 FuncTy->getNumParams() == 0 && 225 !FuncTy->isVarArg(); 226 } 227 228 bool FixFunctionBitcasts::runOnModule(Module &M) { 229 LLVM_DEBUG(dbgs() << "********** Fix Function Bitcasts **********\n"); 230 231 Function *Main = nullptr; 232 CallInst *CallMain = nullptr; 233 SmallVector<std::pair<CallBase *, Function *>, 0> Uses; 234 235 // Collect all the places that need wrappers. 236 for (Function &F : M) { 237 // Skip to fix when the function is swiftcc because swiftcc allows 238 // bitcast type difference for swiftself and swifterror. 239 if (F.getCallingConv() == CallingConv::Swift) 240 continue; 241 findUses(&F, F, Uses); 242 243 // If we have a "main" function, and its type isn't 244 // "int main(int argc, char *argv[])", create an artificial call with it 245 // bitcasted to that type so that we generate a wrapper for it, so that 246 // the C runtime can call it. 247 if (F.getName() == "main") { 248 Main = &F; 249 LLVMContext &C = M.getContext(); 250 Type *MainArgTys[] = {Type::getInt32Ty(C), 251 PointerType::get(Type::getInt8PtrTy(C), 0)}; 252 FunctionType *MainTy = FunctionType::get(Type::getInt32Ty(C), MainArgTys, 253 /*isVarArg=*/false); 254 if (shouldFixMainFunction(F.getFunctionType(), MainTy)) { 255 LLVM_DEBUG(dbgs() << "Found `main` function with incorrect type: " 256 << *F.getFunctionType() << "\n"); 257 Value *Args[] = {UndefValue::get(MainArgTys[0]), 258 UndefValue::get(MainArgTys[1])}; 259 Value *Casted = 260 ConstantExpr::getBitCast(Main, PointerType::get(MainTy, 0)); 261 CallMain = CallInst::Create(MainTy, Casted, Args, "call_main"); 262 Uses.push_back(std::make_pair(CallMain, &F)); 263 } 264 } 265 } 266 267 DenseMap<std::pair<Function *, FunctionType *>, Function *> Wrappers; 268 269 for (auto &UseFunc : Uses) { 270 CallBase *CB = UseFunc.first; 271 Function *F = UseFunc.second; 272 FunctionType *Ty = CB->getFunctionType(); 273 274 auto Pair = Wrappers.insert(std::make_pair(std::make_pair(F, Ty), nullptr)); 275 if (Pair.second) 276 Pair.first->second = createWrapper(F, Ty); 277 278 Function *Wrapper = Pair.first->second; 279 if (!Wrapper) 280 continue; 281 282 CB->setCalledOperand(Wrapper); 283 } 284 285 // If we created a wrapper for main, rename the wrapper so that it's the 286 // one that gets called from startup. 287 if (CallMain) { 288 Main->setName("__original_main"); 289 auto *MainWrapper = 290 cast<Function>(CallMain->getCalledOperand()->stripPointerCasts()); 291 delete CallMain; 292 if (Main->isDeclaration()) { 293 // The wrapper is not needed in this case as we don't need to export 294 // it to anyone else. 295 MainWrapper->eraseFromParent(); 296 } else { 297 // Otherwise give the wrapper the same linkage as the original main 298 // function, so that it can be called from the same places. 299 MainWrapper->setName("main"); 300 MainWrapper->setLinkage(Main->getLinkage()); 301 MainWrapper->setVisibility(Main->getVisibility()); 302 } 303 } 304 305 return true; 306 } 307