xref: /freebsd/contrib/llvm-project/llvm/lib/Target/VE/VEInstrInfo.td (revision 5036d9652a5701d00e9e40ea942c278e9f77d33d)
1//===-- VEInstrInfo.td - Target Description for VE Target -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the VE instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// Instruction format superclass
15//===----------------------------------------------------------------------===//
16
17include "VEInstrFormats.td"
18
19//===----------------------------------------------------------------------===//
20// Helper functions to retrieve target constants.
21//
22// VE instructions have a space to hold following immediates
23//   $sy has 7 bits to represent simm7, uimm7, simm7fp, or uimm7fp.
24//   $sz also has 7 bits to represent mimm or mimmfp.
25//   $disp has 32 bits to represent simm32.
26//
27// The mimm is a special immediate value of sequential bit stream of 0 or 1.
28//     `(m)0`: Represents 0 sequence then 1 sequence like 0b00...0011...11,
29//             where `m` is equal to the number of leading zeros.
30//     `(m)1`: Represents 1 sequence then 0 sequence like 0b11...1100...00,
31//             where `m` is equal to the number of leading ones.
32// Each bit of mimm's 7 bits is used like below:
33//     bit 6  : If `(m)0`, this bit is 1.  Otherwise, this bit is 0.
34//     bit 5-0: Represents the m (0-63).
35// Use `!add(m, 64)` to generates an immediate value in pattern matchings.
36//
37// The floating point immediate value is not something like compacted value.
38// It is simple integer representation, so it works rarely.
39//     e.g. 0.0 (0x00000000) or -2.0 (0xC0000000=(2)1).
40//===----------------------------------------------------------------------===//
41
42def ULO7 : SDNodeXForm<imm, [{
43  return CurDAG->getTargetConstant(N->getZExtValue() & 0x7f,
44                                   SDLoc(N), MVT::i32);
45}]>;
46def LO7 : SDNodeXForm<imm, [{
47  return CurDAG->getTargetConstant(SignExtend32(N->getSExtValue(), 7),
48                                   SDLoc(N), MVT::i32);
49}]>;
50def MIMM : SDNodeXForm<imm, [{
51  return CurDAG->getTargetConstant(val2MImm(getImmVal(N)),
52                                   SDLoc(N), MVT::i32);
53}]>;
54def LO32 : SDNodeXForm<imm, [{
55  return CurDAG->getTargetConstant(Lo_32(N->getZExtValue()),
56                                   SDLoc(N), MVT::i32);
57}]>;
58def HI32 : SDNodeXForm<imm, [{
59  // Transformation function: shift the immediate value down into the low bits.
60  return CurDAG->getTargetConstant(Hi_32(N->getZExtValue()),
61                                   SDLoc(N), MVT::i32);
62}]>;
63
64def LO7FP : SDNodeXForm<fpimm, [{
65  uint64_t Val = getFpImmVal(N);
66  return CurDAG->getTargetConstant(SignExtend32(Val, 7), SDLoc(N), MVT::i32);
67}]>;
68def MIMMFP : SDNodeXForm<fpimm, [{
69  return CurDAG->getTargetConstant(val2MImm(getFpImmVal(N)),
70                                   SDLoc(N), MVT::i32);
71}]>;
72def LOFP32 : SDNodeXForm<fpimm, [{
73  return CurDAG->getTargetConstant(Lo_32(getFpImmVal(N) & 0xffffffff),
74                                   SDLoc(N), MVT::i32);
75}]>;
76def HIFP32 : SDNodeXForm<fpimm, [{
77  return CurDAG->getTargetConstant(Hi_32(getFpImmVal(N)), SDLoc(N), MVT::i32);
78}]>;
79
80def icond2cc : SDNodeXForm<cond, [{
81  VECC::CondCode VECC = intCondCode2Icc(N->get());
82  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
83}]>;
84
85def icond2ccSwap : SDNodeXForm<cond, [{
86  ISD::CondCode CC = getSetCCSwappedOperands(N->get());
87  VECC::CondCode VECC = intCondCode2Icc(CC);
88  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
89}]>;
90
91def fcond2cc : SDNodeXForm<cond, [{
92  VECC::CondCode VECC = fpCondCode2Fcc(N->get());
93  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
94}]>;
95
96def fcond2ccSwap : SDNodeXForm<cond, [{
97  ISD::CondCode CC = getSetCCSwappedOperands(N->get());
98  VECC::CondCode VECC = fpCondCode2Fcc(CC);
99  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
100}]>;
101
102def CCOP : SDNodeXForm<imm, [{
103  return CurDAG->getTargetConstant(N->getZExtValue(),
104                                   SDLoc(N), MVT::i32);
105}]>;
106
107//===----------------------------------------------------------------------===//
108// Feature predicates.
109//===----------------------------------------------------------------------===//
110
111//===----------------------------------------------------------------------===//
112// Instruction Pattern Stuff
113//===----------------------------------------------------------------------===//
114
115// zero
116def ZeroAsmOperand : AsmOperandClass {
117  let Name = "Zero";
118}
119def zero : Operand<i32>, PatLeaf<(imm), [{
120    return N->getSExtValue() == 0; }]> {
121  let ParserMatchClass = ZeroAsmOperand;
122}
123
124// uimm0to2 - Special immediate value represents 0, 1, and 2.
125def UImm0to2AsmOperand : AsmOperandClass {
126  let Name = "UImm0to2";
127}
128def uimm0to2 : Operand<i32>, PatLeaf<(imm), [{
129    return N->getZExtValue() < 3; }], ULO7> {
130  let ParserMatchClass = UImm0to2AsmOperand;
131}
132
133// uimm1 - Generic immediate value.
134def UImm1AsmOperand : AsmOperandClass {
135  let Name = "UImm1";
136}
137def uimm1 : Operand<i32>, PatLeaf<(imm), [{
138    return isUInt<1>(N->getZExtValue()); }], ULO7> {
139  let ParserMatchClass = UImm1AsmOperand;
140}
141
142// uimm2 - Generic immediate value.
143def UImm2AsmOperand : AsmOperandClass {
144  let Name = "UImm2";
145}
146def uimm2 : Operand<i32>, PatLeaf<(imm), [{
147    return isUInt<2>(N->getZExtValue()); }], ULO7> {
148  let ParserMatchClass = UImm2AsmOperand;
149}
150
151// uimm3 - Generic immediate value.
152def UImm3AsmOperand : AsmOperandClass {
153  let Name = "UImm3";
154}
155def uimm3 : Operand<i32>, PatLeaf<(imm), [{
156    return isUInt<3>(N->getZExtValue()); }], ULO7> {
157  let ParserMatchClass = UImm3AsmOperand;
158}
159
160// uimm4 - Generic immediate value.
161def UImm4AsmOperand : AsmOperandClass {
162  let Name = "UImm4";
163}
164def uimm4 : Operand<i32>, PatLeaf<(imm), [{
165    return isUInt<4>(N->getZExtValue()); }], ULO7> {
166  let ParserMatchClass = UImm4AsmOperand;
167}
168
169// uimm6 - Generic immediate value.
170def UImm6AsmOperand : AsmOperandClass {
171  let Name = "UImm6";
172}
173def uimm6 : Operand<i32>, PatLeaf<(imm), [{
174    return isUInt<6>(N->getZExtValue()); }], ULO7> {
175  let ParserMatchClass = UImm6AsmOperand;
176}
177
178// uimm7 - Generic immediate value.
179def UImm7AsmOperand : AsmOperandClass {
180  let Name = "UImm7";
181}
182def uimm7 : Operand<i32>, PatLeaf<(imm), [{
183    return isUInt<7>(N->getZExtValue()); }], ULO7> {
184  let ParserMatchClass = UImm7AsmOperand;
185}
186
187// simm7 - Generic immediate value.
188def SImm7AsmOperand : AsmOperandClass {
189  let Name = "SImm7";
190}
191def simm7 : Operand<i32>, PatLeaf<(imm), [{
192    return isInt<7>(N->getSExtValue()); }], LO7> {
193  let ParserMatchClass = SImm7AsmOperand;
194  let DecoderMethod = "DecodeSIMM7";
195}
196
197// mimm - Special immediate value of sequential bit stream of 0 or 1.
198def MImmAsmOperand : AsmOperandClass {
199  let Name = "MImm";
200  let ParserMethod = "parseMImmOperand";
201}
202def mimm : Operand<i32>, PatLeaf<(imm), [{
203    return isMImmVal(getImmVal(N)); }], MIMM> {
204  let ParserMatchClass = MImmAsmOperand;
205  let PrintMethod = "printMImmOperand";
206}
207
208// zerofp - Generic fp immediate zero value.
209def zerofp : Operand<i32>, PatLeaf<(fpimm), [{
210    return getFpImmVal(N) == 0; }]> {
211  let ParserMatchClass = ZeroAsmOperand;
212}
213
214// simm7fp - Generic fp immediate value.
215def simm7fp : Operand<i32>, PatLeaf<(fpimm), [{
216    return isInt<7>(getFpImmVal(N));
217  }], LO7FP> {
218  let ParserMatchClass = SImm7AsmOperand;
219  let DecoderMethod = "DecodeSIMM7";
220}
221
222// mimmfp - Special fp immediate value of sequential bit stream of 0 or 1.
223def mimmfp : Operand<i32>, PatLeaf<(fpimm), [{
224    return isMImmVal(getFpImmVal(N)); }], MIMMFP> {
225  let ParserMatchClass = MImmAsmOperand;
226  let PrintMethod = "printMImmOperand";
227}
228
229// mimmfp32 - 32 bit width mimmfp
230//   Float value places at higher bits, so ignore lower 32 bits.
231def mimmfp32 : Operand<i32>, PatLeaf<(fpimm), [{
232    return isMImm32Val(getFpImmVal(N) >> 32); }], MIMMFP> {
233  let ParserMatchClass = MImmAsmOperand;
234  let PrintMethod = "printMImmOperand";
235}
236
237// other generic patterns to use in pattern matchings
238def simm32      : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>;
239def uimm32      : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
240def lomsbzero   : PatLeaf<(imm), [{ return (N->getZExtValue() & 0x80000000)
241                                      == 0; }]>;
242def lozero      : PatLeaf<(imm), [{ return (N->getZExtValue() & 0xffffffff)
243                                      == 0; }]>;
244def fplomsbzero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0x80000000)
245                                        == 0; }]>;
246def fplozero    : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0xffffffff)
247                                        == 0; }]>;
248def nonzero     : PatLeaf<(imm), [{ return N->getSExtValue() !=0 ; }]>;
249
250def CCSIOp : PatLeaf<(cond), [{
251  switch (N->get()) {
252  default:          return true;
253  case ISD::SETULT:
254  case ISD::SETULE:
255  case ISD::SETUGT:
256  case ISD::SETUGE: return false;
257  }
258}]>;
259
260def CCUIOp : PatLeaf<(cond), [{
261  switch (N->get()) {
262  default:         return true;
263  case ISD::SETLT:
264  case ISD::SETLE:
265  case ISD::SETGT:
266  case ISD::SETGE: return false;
267  }
268}]>;
269
270//===----------------------------------------------------------------------===//
271// Addressing modes.
272// SX-Aurora has following fields.
273//    sz: register or 0
274//    sy: register or immediate (-64 to 63)
275//    disp: immediate (-2147483648 to 2147483647)
276//
277// There are two kinds of instruction.
278//    ASX format uses sz + sy + disp.
279//    AS format uses sz + disp.
280//
281// Moreover, there are four kinds of assembly instruction format.
282//    ASX format uses "disp", "disp(, sz)", "disp(sy)", "disp(sy, sz)",
283//    "(, sz)", "(sy)", or "(sy, sz)".
284//    AS format uses "disp", "disp(, sz)", or "(, sz)" in general.
285//    AS format in RRM format uses "disp", "disp(sz)", or "(sz)".
286//    AS format in RRM format for host memory access uses "sz", "(sz)",
287//    or "disp(sz)".
288//
289// We defined them below.
290//
291// ASX format:
292//    MEMrri, MEMrii, MEMzri, MEMzii
293// AS format:
294//    MEMriASX, MEMziASX    : simple AS format
295//    MEMriRRM, MEMziRRM    : AS format in RRM format
296//    MEMriHM, MEMziHM      : AS format in RRM format for host memory access
297//===----------------------------------------------------------------------===//
298
299// DAG selections for both ASX and AS formats.
300def ADDRrri : ComplexPattern<iPTR, 3, "selectADDRrri", [frameindex], []>;
301def ADDRrii : ComplexPattern<iPTR, 3, "selectADDRrii", [frameindex], []>;
302def ADDRzri : ComplexPattern<iPTR, 3, "selectADDRzri", [], []>;
303def ADDRzii : ComplexPattern<iPTR, 3, "selectADDRzii", [], []>;
304def ADDRri : ComplexPattern<iPTR, 2, "selectADDRri", [frameindex], []>;
305def ADDRzi : ComplexPattern<iPTR, 2, "selectADDRzi", [], []>;
306
307// ASX format.
308def VEMEMrriAsmOperand : AsmOperandClass {
309  let Name = "MEMrri";
310  let ParserMethod = "parseMEMOperand";
311}
312def VEMEMriiAsmOperand : AsmOperandClass {
313  let Name = "MEMrii";
314  let ParserMethod = "parseMEMOperand";
315}
316def VEMEMzriAsmOperand : AsmOperandClass {
317  let Name = "MEMzri";
318  let ParserMethod = "parseMEMOperand";
319}
320def VEMEMziiAsmOperand : AsmOperandClass {
321  let Name = "MEMzii";
322  let ParserMethod = "parseMEMOperand";
323}
324
325// ASX format uses single assembly instruction format.
326def MEMrri : Operand<iPTR> {
327  let PrintMethod = "printMemASXOperand";
328  let MIOperandInfo = (ops ptr_rc, ptr_rc, i64imm);
329  let ParserMatchClass = VEMEMrriAsmOperand;
330}
331def MEMrii : Operand<iPTR> {
332  let PrintMethod = "printMemASXOperand";
333  let MIOperandInfo = (ops ptr_rc, i32imm, i64imm);
334  let ParserMatchClass = VEMEMriiAsmOperand;
335}
336def MEMzri : Operand<iPTR> {
337  let PrintMethod = "printMemASXOperand";
338  let MIOperandInfo = (ops i32imm /* = 0 */, ptr_rc, i64imm);
339  let ParserMatchClass = VEMEMzriAsmOperand;
340}
341def MEMzii : Operand<iPTR> {
342  let PrintMethod = "printMemASXOperand";
343  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm, i64imm);
344  let ParserMatchClass = VEMEMziiAsmOperand;
345}
346
347// AS format.
348def VEMEMriAsmOperand : AsmOperandClass {
349  let Name = "MEMri";
350  let ParserMethod = "parseMEMAsOperand";
351}
352def VEMEMziAsmOperand : AsmOperandClass {
353  let Name = "MEMzi";
354  let ParserMethod = "parseMEMAsOperand";
355}
356
357// AS format uses multiple assembly instruction formats
358//   1. AS generic assembly instruction format:
359def MEMriASX : Operand<iPTR> {
360  let PrintMethod = "printMemASOperandASX";
361  let MIOperandInfo = (ops ptr_rc, i32imm);
362  let ParserMatchClass = VEMEMriAsmOperand;
363}
364def MEMziASX : Operand<iPTR> {
365  let PrintMethod = "printMemASOperandASX";
366  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
367  let ParserMatchClass = VEMEMziAsmOperand;
368}
369
370//   2. AS RRM style assembly instruction format:
371def MEMriRRM : Operand<iPTR> {
372  let PrintMethod = "printMemASOperandRRM";
373  let MIOperandInfo = (ops ptr_rc, i32imm);
374  let ParserMatchClass = VEMEMriAsmOperand;
375}
376def MEMziRRM : Operand<iPTR> {
377  let PrintMethod = "printMemASOperandRRM";
378  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
379  let ParserMatchClass = VEMEMziAsmOperand;
380}
381
382//   3. AS HM style assembly instruction format:
383def MEMriHM : Operand<iPTR> {
384  let PrintMethod = "printMemASOperandHM";
385  let MIOperandInfo = (ops ptr_rc, i32imm);
386  let ParserMatchClass = VEMEMriAsmOperand;
387}
388def MEMziHM : Operand<iPTR> {
389  let PrintMethod = "printMemASOperandHM";
390  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
391  let ParserMatchClass = VEMEMziAsmOperand;
392}
393
394//===----------------------------------------------------------------------===//
395// Other operands.
396//===----------------------------------------------------------------------===//
397
398// Branch targets have OtherVT type.
399def brtarget32 : Operand<OtherVT> {
400  let EncoderMethod = "getBranchTargetOpValue";
401  let DecoderMethod = "DecodeSIMM32";
402}
403
404// Operand for printing out a condition code.
405def CCOpAsmOperand : AsmOperandClass { let Name = "CCOp"; }
406def CCOp : Operand<i32>, ImmLeaf<i32, [{
407    return Imm >= 0 && Imm < 22; }], CCOP> {
408  let PrintMethod = "printCCOperand";
409  let DecoderMethod = "DecodeCCOperand";
410  let EncoderMethod = "getCCOpValue";
411  let ParserMatchClass = CCOpAsmOperand;
412}
413
414// Operand for a rounding mode code.
415def RDOpAsmOperand : AsmOperandClass {
416  let Name = "RDOp";
417}
418def RDOp : Operand<i32> {
419  let PrintMethod = "printRDOperand";
420  let DecoderMethod = "DecodeRDOperand";
421  let EncoderMethod = "getRDOpValue";
422  let ParserMatchClass = RDOpAsmOperand;
423}
424
425def VEhi    : SDNode<"VEISD::Hi", SDTIntUnaryOp>;
426def VElo    : SDNode<"VEISD::Lo", SDTIntUnaryOp>;
427
428//  These are target-independent nodes, but have target-specific formats.
429def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64>,
430                                          SDTCisVT<1, i64> ]>;
431def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i64>,
432                                        SDTCisVT<1, i64> ]>;
433
434def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
435                           [SDNPHasChain, SDNPOutGlue]>;
436def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
437                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
438
439def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i64>]>;
440def call          : SDNode<"VEISD::CALL", SDT_SPCall,
441                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
442                            SDNPVariadic]>;
443
444def retglue       : SDNode<"VEISD::RET_GLUE", SDTNone,
445                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
446
447def getGOT        : Operand<iPTR>;
448
449// Comparisons
450def cmpi          : SDNode<"VEISD::CMPI", SDTIntBinOp>;
451def cmpu          : SDNode<"VEISD::CMPU", SDTIntBinOp>;
452def cmpf          : SDNode<"VEISD::CMPF", SDTFPBinOp>;
453def SDT_Cmpq      : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>, SDTCisFP<0>,
454                                  SDTCisFP<2>]>;
455def cmpq          : SDNode<"VEISD::CMPQ", SDT_Cmpq>;
456
457// res = cmov cmp, t, f, cond
458def SDT_Cmov      : SDTypeProfile<1, 4, [SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>,
459                                  SDTCisVT<4, i32>]>;
460def cmov          : SDNode<"VEISD::CMOV", SDT_Cmov>;
461
462def VEeh_sjlj_setjmp: SDNode<"VEISD::EH_SJLJ_SETJMP",
463                             SDTypeProfile<1, 1, [SDTCisInt<0>,
464                                                  SDTCisPtrTy<1>]>,
465                             [SDNPHasChain, SDNPSideEffect]>;
466def VEeh_sjlj_longjmp: SDNode<"VEISD::EH_SJLJ_LONGJMP",
467                              SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>,
468                              [SDNPHasChain, SDNPSideEffect]>;
469def VEeh_sjlj_setup_dispatch: SDNode<"VEISD::EH_SJLJ_SETUP_DISPATCH",
470                                     SDTypeProfile<0, 0, []>,
471                                     [SDNPHasChain, SDNPSideEffect]>;
472
473// GETFUNPLT for PIC
474def GetFunPLT : SDNode<"VEISD::GETFUNPLT", SDTIntUnaryOp>;
475
476// GETTLSADDR for TLS
477def GetTLSAddr : SDNode<"VEISD::GETTLSADDR", SDT_SPCall,
478                        [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
479                         SDNPVariadic]>;
480
481// GETSTACKTOP
482def GetStackTop : SDNode<"VEISD::GETSTACKTOP", SDTNone,
483                        [SDNPHasChain, SDNPSideEffect]>;
484
485// TS1AM
486def SDT_TS1AM : SDTypeProfile<1, 3, [SDTCisSameAs<0, 3>, SDTCisPtrTy<1>,
487                                     SDTCisVT<2, i32>, SDTCisInt<3>]>;
488def ts1am     : SDNode<"VEISD::TS1AM", SDT_TS1AM,
489                       [SDNPHasChain, SDNPMayStore, SDNPMayLoad,
490                        SDNPMemOperand]>;
491
492//===----------------------------------------------------------------------===//
493// VE Flag Conditions
494//===----------------------------------------------------------------------===//
495
496// Note that these values must be kept in sync with the CCOp::CondCode enum
497// values.
498class CC_VAL<int N> : PatLeaf<(i32 N)>;
499def CC_IG    : CC_VAL< 0>;  // Greater
500def CC_IL    : CC_VAL< 1>;  // Less
501def CC_INE   : CC_VAL< 2>;  // Not Equal
502def CC_IEQ   : CC_VAL< 3>;  // Equal
503def CC_IGE   : CC_VAL< 4>;  // Greater or Equal
504def CC_ILE   : CC_VAL< 5>;  // Less or Equal
505def CC_AF    : CC_VAL< 6>;  // Always false
506def CC_G     : CC_VAL< 7>;  // Greater
507def CC_L     : CC_VAL< 8>;  // Less
508def CC_NE    : CC_VAL< 9>;  // Not Equal
509def CC_EQ    : CC_VAL<10>;  // Equal
510def CC_GE    : CC_VAL<11>;  // Greater or Equal
511def CC_LE    : CC_VAL<12>;  // Less or Equal
512def CC_NUM   : CC_VAL<13>;  // Number
513def CC_NAN   : CC_VAL<14>;  // NaN
514def CC_GNAN  : CC_VAL<15>;  // Greater or NaN
515def CC_LNAN  : CC_VAL<16>;  // Less or NaN
516def CC_NENAN : CC_VAL<17>;  // Not Equal or NaN
517def CC_EQNAN : CC_VAL<18>;  // Equal or NaN
518def CC_GENAN : CC_VAL<19>;  // Greater or Equal or NaN
519def CC_LENAN : CC_VAL<20>;  // Less or Equal or NaN
520def CC_AT    : CC_VAL<21>;  // Always true
521
522//===----------------------------------------------------------------------===//
523// VE Rounding Mode
524//===----------------------------------------------------------------------===//
525
526// Note that these values must be kept in sync with the VERD::RoundingMode enum
527// values.
528class RD_VAL<int N> : PatLeaf<(i32 N)>;
529def RD_NONE  : RD_VAL< 0>;  // According to PSW
530def RD_RZ    : RD_VAL< 8>;  // Round toward Zero
531def RD_RP    : RD_VAL< 9>;  // Round toward Plus infinity
532def RD_RM    : RD_VAL<10>;  // Round toward Minus infinity
533def RD_RN    : RD_VAL<11>;  // Round to Nearest (ties to Even)
534def RD_RA    : RD_VAL<12>;  // Round to Nearest (ties to Away)
535
536//===----------------------------------------------------------------------===//
537// VE Multiclasses for common instruction formats
538//===----------------------------------------------------------------------===//
539
540// Multiclass for generic RR type instructions
541let hasSideEffects = 0 in
542multiclass RRbm<string opcStr, bits<8>opc,
543                RegisterClass RCo, ValueType Tyo,
544                RegisterClass RCi, ValueType Tyi,
545                SDPatternOperator OpNode = null_frag,
546                Operand immOp = simm7, Operand mOp = mimm,
547                bit MoveImm = 0> {
548  def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
549              !strconcat(opcStr, " $sx, $sy, $sz"),
550              [(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
551  // VE calculates (OpNode $sy, $sz), but llvm requires to have immediate
552  // in RHS, so we use following definition.
553  let cy = 0 in
554  def ri : RR<opc, (outs RCo:$sx), (ins RCi:$sz, immOp:$sy),
555              !strconcat(opcStr, " $sx, $sy, $sz"),
556              [(set Tyo:$sx, (OpNode Tyi:$sz, (Tyi immOp:$sy)))]>;
557  let cz = 0 in
558  def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
559              !strconcat(opcStr, " $sx, $sy, $sz"),
560              [(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
561  let cy = 0, cz = 0 in
562  def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
563              !strconcat(opcStr, " $sx, $sy, $sz"),
564              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]> {
565    // VE uses ORim as a move immediate instruction, so declare it here.
566    // An instruction declared as MoveImm will be optimized in FoldImmediate
567    // later.
568    let isMoveImm = MoveImm;
569  }
570}
571
572// Multiclass for non-commutative RR type instructions
573let hasSideEffects = 0 in
574multiclass RRNCbm<string opcStr, bits<8>opc,
575                RegisterClass RCo, ValueType Tyo,
576                RegisterClass RCi, ValueType Tyi,
577                SDPatternOperator OpNode = null_frag,
578                Operand immOp = simm7, Operand mOp = mimm> {
579  def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
580              !strconcat(opcStr, " $sx, $sy, $sz"),
581              [(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
582  let cy = 0 in
583  def ir : RR<opc, (outs RCo:$sx), (ins immOp:$sy, RCi:$sz),
584              !strconcat(opcStr, " $sx, $sy, $sz"),
585              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), Tyi:$sz))]>;
586  let cz = 0 in
587  def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
588              !strconcat(opcStr, " $sx, $sy, $sz"),
589              [(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
590  let cy = 0, cz = 0 in
591  def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
592              !strconcat(opcStr, " $sx, $sy, $sz"),
593              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
594}
595
596// Generic RR multiclass with 2 arguments.
597//   e.g. ADDUL, ADDSWSX, ADDSWZX, and etc.
598multiclass RRm<string opcStr, bits<8>opc,
599               RegisterClass RC, ValueType Ty,
600               SDPatternOperator OpNode = null_frag,
601               Operand immOp = simm7, Operand mOp = mimm, bit MoveImm = 0> :
602  RRbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp, MoveImm>;
603
604// Generic RR multiclass for non-commutative instructions with 2 arguments.
605//   e.g. SUBUL, SUBUW, SUBSWSX, and etc.
606multiclass RRNCm<string opcStr, bits<8>opc,
607                 RegisterClass RC, ValueType Ty,
608                 SDPatternOperator OpNode = null_frag,
609                 Operand immOp = simm7, Operand mOp = mimm> :
610  RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;
611
612// Generic RR multiclass for floating point instructions with 2 arguments.
613//   e.g. FADDD, FADDS, FSUBD, and etc.
614multiclass RRFm<string opcStr, bits<8>opc,
615                RegisterClass RC, ValueType Ty,
616                SDPatternOperator OpNode = null_frag,
617                Operand immOp = simm7fp, Operand mOp = mimmfp> :
618  RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;
619
620// Generic RR multiclass for shift instructions with 2 arguments.
621//   e.g. SLL, SRL, SLAWSX, and etc.
622let hasSideEffects = 0 in
623multiclass RRIm<string opcStr, bits<8>opc,
624                RegisterClass RC, ValueType Ty,
625                SDPatternOperator OpNode = null_frag> {
626  def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, I32:$sy),
627              !strconcat(opcStr, " $sx, $sz, $sy"),
628              [(set Ty:$sx, (OpNode Ty:$sz, i32:$sy))]>;
629  let cz = 0 in
630  def mr : RR<opc, (outs RC:$sx), (ins mimm:$sz, I32:$sy),
631              !strconcat(opcStr, " $sx, $sz, $sy"),
632              [(set Ty:$sx, (OpNode (Ty mimm:$sz), i32:$sy))]>;
633  let cy = 0 in
634  def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm7:$sy),
635              !strconcat(opcStr, " $sx, $sz, $sy"),
636              [(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm7:$sy)))]>;
637  let cy = 0, cz = 0 in
638  def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm7:$sy),
639              !strconcat(opcStr, " $sx, $sz, $sy"),
640              [(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm7:$sy)))]>;
641}
642
643// Special RR multiclass for 128 bits shift left instruction.
644//   e.g. SLD
645let Constraints = "$hi = $sx", DisableEncoding = "$hi", hasSideEffects = 0 in
646multiclass RRILDm<string opcStr, bits<8>opc, RegisterClass RC> {
647  def rrr : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, I32:$sy),
648              !strconcat(opcStr, " $sx, $sz, $sy")>;
649  let cz = 0 in
650  def rmr : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, I32:$sy),
651              !strconcat(opcStr, " $sx, $sz, $sy")>;
652  let cy = 0 in
653  def rri : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, uimm7:$sy),
654              !strconcat(opcStr, " $sx, $sz, $sy")>;
655  let cy = 0, cz = 0 in
656  def rmi : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, uimm7:$sy),
657              !strconcat(opcStr, " $sx, $sz, $sy")>;
658}
659
660// Special RR multiclass for 128 bits shift right instruction.
661//   e.g. SRD
662let Constraints = "$low = $sx", DisableEncoding = "$low", hasSideEffects = 0 in
663multiclass RRIRDm<string opcStr, bits<8>opc, RegisterClass RC> {
664  def rrr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, I32:$sy),
665              !strconcat(opcStr, " $sx, $sz, $sy")>;
666  let cz = 0 in
667  def mrr : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, I32:$sy),
668              !strconcat(opcStr, " $sx, $sz, $sy")>;
669  let cy = 0 in
670  def rri : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, uimm7:$sy),
671              !strconcat(opcStr, " $sx, $sz, $sy")>;
672  let cy = 0, cz = 0 in
673  def mri : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, uimm7:$sy),
674              !strconcat(opcStr, " $sx, $sz, $sy")>;
675}
676
677// Generic RR multiclass with an argument.
678//   e.g. LDZ, PCNT, and  BRV
679let cy = 0, sy = 0, hasSideEffects = 0 in
680multiclass RRI1m<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
681                 SDPatternOperator OpNode = null_frag> {
682  def r : RR<opc, (outs RC:$sx), (ins RC:$sz), !strconcat(opcStr, " $sx, $sz"),
683             [(set Ty:$sx, (OpNode Ty:$sz))]>;
684  let cz = 0 in
685  def m : RR<opc, (outs RC:$sx), (ins mimm:$sz),
686             !strconcat(opcStr, " $sx, $sz"),
687             [(set Ty:$sx, (OpNode (Ty mimm:$sz)))]>;
688}
689
690// Special RR multiclass for MRG instruction.
691//   e.g. MRG
692let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0 in
693multiclass RRMRGm<string opcStr, bits<8>opc, RegisterClass RC> {
694  def rr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, RC:$sd),
695              !strconcat(opcStr, " $sx, $sy, $sz")>;
696  let cy = 0 in
697  def ir : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz, RC:$sd),
698              !strconcat(opcStr, " $sx, $sy, $sz")>;
699  let cz = 0 in
700  def rm : RR<opc, (outs RC:$sx), (ins RC:$sy, mimm:$sz, RC:$sd),
701              !strconcat(opcStr, " $sx, $sy, $sz")>;
702  let cy = 0, cz = 0 in
703  def im : RR<opc, (outs RC:$sx), (ins simm7:$sy, mimm:$sz, RC:$sd),
704              !strconcat(opcStr, " $sx, $sy, $sz")>;
705}
706
707// Special RR multiclass for BSWP instruction.
708//   e.g. BSWP
709let hasSideEffects = 0 in
710multiclass RRSWPm<string opcStr, bits<8>opc,
711                  RegisterClass RC, ValueType Ty,
712                  SDPatternOperator OpNode = null_frag> {
713  let cy = 0 in
714  def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm1:$sy),
715              !strconcat(opcStr, " $sx, $sz, $sy"),
716              [(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm1:$sy)))]>;
717  let cy = 0, cz = 0 in
718  def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm1:$sy),
719              !strconcat(opcStr, " $sx, $sz, $sy"),
720              [(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm1:$sy)))]>;
721}
722
723// Multiclass for CMOV instructions.
724//   e.g. CMOVL, CMOVW, CMOVD, and etc.
725let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0,
726    cfw = ? in
727multiclass RRCMOVm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
728                   SDPatternOperator OpNode = null_frag,
729                   Operand immOp = simm7> {
730  def rr : RR<opc, (outs I64:$sx), (ins CCOp:$cfw, RC:$sy, I64:$sz, I64:$sd),
731              !strconcat(opcStr, " $sx, $sz, $sy"),
732              [(set i64:$sx, (OpNode Ty:$sy, i64:$sz, i64:$sd,
733                                     (i32 CCOp:$cfw)))]>;
734  let cy = 0 in
735  def ir : RR<opc, (outs I64:$sx),
736              (ins CCOp:$cfw, immOp:$sy, I64:$sz, I64:$sd),
737              !strconcat(opcStr, " $sx, $sz, $sy"),
738              [(set i64:$sx, (OpNode (Ty immOp:$sy), i64:$sz, i64:$sd,
739                                     (i32 CCOp:$cfw)))]>;
740  let cz = 0 in
741  def rm : RR<opc, (outs I64:$sx),
742              (ins CCOp:$cfw, RC:$sy, mimm:$sz, I64:$sd),
743              !strconcat(opcStr, " $sx, $sz, $sy"),
744              [(set i64:$sx, (OpNode Ty:$sy, (i64 mimm:$sz), i64:$sd,
745                                     (i32 CCOp:$cfw)))]>;
746  let cy = 0, cz = 0 in
747  def im : RR<opc, (outs I64:$sx),
748              (ins CCOp:$cfw, immOp:$sy, mimm:$sz, I64:$sd),
749              !strconcat(opcStr, " $sx, $sz, $sy"),
750              [(set i64:$sx, (OpNode (Ty immOp:$sy), (i64 mimm:$sz), i64:$sd,
751                                     (i32 CCOp:$cfw)))]>;
752}
753
754// Multiclass for floating point conversion instructions.
755//   e.g. CVTWDSX, CVTWDZX, CVTWSSX, and etc.
756// sz{3-0} = rounding mode
757let cz = 0, hasSideEffects = 0 in
758multiclass CVTRDm<string opcStr, bits<8> opc, RegisterClass RCo,
759                  RegisterClass RCi> {
760  def r : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, RCi:$sy),
761             !strconcat(opcStr, "${rd} $sx, $sy")> {
762    bits<4> rd;
763    let sz{6-4} = 0;
764    let sz{3-0} = rd;
765  }
766  let cy = 0 in
767  def i : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, simm7:$sy),
768             !strconcat(opcStr, "${rd} $sx, $sy")> {
769    bits<4> rd;
770    let sz{6-4} = 0;
771    let sz{3-0} = rd;
772  }
773}
774
775// Multiclass for floating point conversion instructions.
776//   e.g. CVTDW, CVTSW, CVTDL, and etc.
777let cz = 0, sz = 0, hasSideEffects = 0 in
778multiclass CVTm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
779                RegisterClass RCi, ValueType Tyi,
780                SDPatternOperator OpNode = null_frag> {
781  def r : RR<opc, (outs RCo:$sx), (ins RCi:$sy),
782             !strconcat(opcStr, " $sx, $sy"),
783             [(set Tyo:$sx, (OpNode Tyi:$sy))]>;
784  let cy = 0 in
785  def i : RR<opc, (outs RCo:$sx), (ins simm7:$sy),
786             !strconcat(opcStr, " $sx, $sy")>;
787}
788
789// Multiclass for PFCH instructions.
790//   e.g. PFCH
791let sx = 0, hasSideEffects = 0 in
792multiclass PFCHm<string opcStr, bits<8>opc> {
793  def rri : RM<opc, (outs), (ins (MEMrri $sz, $sy, $imm32):$addr), !strconcat(opcStr, " $addr"),
794               [(prefetch ADDRrri:$addr, imm, imm, (i32 1))]>;
795  let cy = 0 in
796  def rii : RM<opc, (outs), (ins (MEMrii $sz, $sy, $imm32):$addr), !strconcat(opcStr, " $addr"),
797               [(prefetch ADDRrii:$addr, imm, imm, (i32 1))]>;
798  let cz = 0 in
799  def zri : RM<opc, (outs), (ins (MEMzri $sz, $sy, $imm32):$addr), !strconcat(opcStr, " $addr"),
800               [(prefetch ADDRzri:$addr, imm, imm, (i32 1))]>;
801  let cy = 0, cz = 0 in
802  def zii : RM<opc, (outs), (ins (MEMzii $sz, $sy, $imm32):$addr), !strconcat(opcStr, " $addr"),
803               [(prefetch ADDRzii:$addr, imm, imm, (i32 1))]>;
804}
805
806// Multiclass for CAS instructions.
807//   e.g. TS1AML, TS1AMW, TS2AM, and etc.
808let Constraints = "$sx = $sd", DisableEncoding = "$sd",
809    mayStore=1, mayLoad = 1, hasSideEffects = 0 in
810multiclass RRCAStgm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
811                    Operand immOp, Operand MEM, ComplexPattern ADDR,
812                    SDPatternOperator OpNode = null_frag> {
813  def r : RRM<opc, (outs RC:$sx), (ins (MEM $sz, $imm32):$addr, RC:$sy, RC:$sd),
814              !strconcat(opcStr, " $sx, $addr, $sy"),
815              [(set Ty:$sx, (OpNode ADDR:$addr, Ty:$sy, Ty:$sd))]>;
816  let cy = 0 in
817  def i : RRM<opc, (outs RC:$sx), (ins (MEM $sz, $imm32):$addr, immOp:$sy, RC:$sd),
818              !strconcat(opcStr, " $sx, $addr, $sy"),
819              [(set Ty:$sx, (OpNode ADDR:$addr, (Ty immOp:$sy), Ty:$sd))]>;
820}
821multiclass RRCASm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
822                  Operand immOp, SDPatternOperator OpNode = null_frag> {
823  defm ri : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMriRRM, ADDRri, OpNode>;
824  let cz = 0 in
825  defm zi : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMziRRM, ADDRzi, OpNode>;
826}
827
828// Multiclass for branch instructions
829//   e.g. BCFL, BCFW, BCFD, and etc.
830let isBranch = 1, isTerminator = 1, isIndirectBranch = 1, hasSideEffects = 0 in
831multiclass BCbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond,
832                  Operand ADDR> {
833  let bpf = 0 /* NONE */ in
834  def "" : CF<opc, (outs), !con(cond, (ins (ADDR $sz, $imm32):$addr)),
835              !strconcat(opcStr, " ", cmpStr, "$addr")>;
836  let bpf = 2 /* NOT TAKEN */ in
837  def _nt : CF<opc, (outs), !con(cond, (ins (ADDR $sz, $imm32):$addr)),
838               !strconcat(opcStr, ".nt ", cmpStr, "$addr")>;
839  let bpf = 3 /* TAKEN */ in
840  def _t : CF<opc, (outs), !con(cond, (ins (ADDR $sz, $imm32):$addr)),
841              !strconcat(opcStr, ".t ", cmpStr, "$addr")>;
842}
843multiclass BCtgm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
844  defm ri : BCbpfm<opcStr, cmpStr, opc, cond, MEMriASX>;
845  let cz = 0 in defm zi : BCbpfm<opcStr, cmpStr, opc, cond, MEMziASX>;
846}
847multiclass BCm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
848               RegisterClass RC, Operand immOp> {
849  let DecoderMethod = "DecodeBranchCondition" in
850  defm r : BCtgm<opcStr, "$sy, ", opc, (ins CCOp:$cond, RC:$sy)>;
851  let DecoderMethod = "DecodeBranchCondition", cy = 0 in
852  defm i : BCtgm<opcStr, "$sy, ", opc, (ins CCOp:$cond, immOp:$sy)>;
853  let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
854      cond = 15 /* AT */, isBarrier = 1 in
855  defm a : BCtgm<opcStrAt, "", opc, (ins)>;
856  let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
857      cond = 0 /* AF */ in
858  defm na : BCtgm<opcStrAf, "", opc, (ins)>;
859}
860
861// Multiclass for relative branch instructions
862//   e.g. BRCFL, BRCFW, BRCFD, and etc.
863let isBranch = 1, isTerminator = 1, hasSideEffects = 0 in
864multiclass BCRbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
865  let bpf = 0 /* NONE */ in
866  def "" : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
867              !strconcat(opcStr, " ", cmpStr, "$imm32")>;
868  let bpf = 2 /* NOT TAKEN */ in
869  def _nt : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
870               !strconcat(opcStr, ".nt ", cmpStr, "$imm32")>;
871  let bpf = 3 /* TAKEN */ in
872  def _t : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
873              !strconcat(opcStr, ".t ", cmpStr, "$imm32")>;
874}
875multiclass BCRm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
876               RegisterClass RC, Operand immOp, Operand zeroOp> {
877  defm rr : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cond, RC:$sy, RC:$sz)>;
878  let cy = 0 in
879  defm ir : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cond, immOp:$sy,
880                                                    RC:$sz)>;
881  let cz = 0 in
882  defm rz : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cond, RC:$sy,
883                                                    zeroOp:$sz)>;
884  let cy = 0, cz = 0 in
885  defm iz : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cond, immOp:$sy,
886                                                    zeroOp:$sz)>;
887  let cy = 0, sy = 0, cz = 0, sz = 0, cond = 15 /* AT */, isBarrier = 1 in
888  defm a : BCRbpfm<opcStrAt, "", opc, (ins)>;
889  let cy = 0, sy = 0, cz = 0, sz = 0, cond = 0 /* AF */ in
890  defm na : BCRbpfm<opcStrAf, "", opc, (ins)>;
891}
892
893// Multiclass for communication register instructions.
894//   e.g. LCR
895let hasSideEffects = 1 in
896multiclass LOADCRm<string opcStr, bits<8>opc, RegisterClass RC> {
897  def rr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz),
898              !strconcat(opcStr, " $sx, $sy, $sz")>;
899  let cy = 0 in def ir : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz),
900                            !strconcat(opcStr, " $sx, $sy, $sz")>;
901  let cz = 0 in def rz : RR<opc, (outs RC:$sx), (ins RC:$sy, zero:$sz),
902                            !strconcat(opcStr, " $sx, $sy, $sz")>;
903  let cy = 0, cz = 0 in
904  def iz : RR<opc, (outs RC:$sx), (ins simm7:$sy, zero:$sz),
905              !strconcat(opcStr, " $sx, $sy, $sz")>;
906}
907
908// Multiclass for communication register instructions.
909//   e.g. SCR
910let hasSideEffects = 1 in
911multiclass STORECRm<string opcStr, bits<8>opc, RegisterClass RC> {
912  def rrr : RR<opc, (outs), (ins RC:$sy, RC:$sz, RC:$sx),
913              !strconcat(opcStr, " $sx, $sy, $sz")>;
914  let cy = 0 in def irr : RR<opc, (outs), (ins simm7:$sy, RC:$sz, RC:$sx),
915                             !strconcat(opcStr, " $sx, $sy, $sz")>;
916  let cz = 0 in def rzr : RR<opc, (outs), (ins RC:$sy, zero:$sz, RC:$sx),
917                             !strconcat(opcStr, " $sx, $sy, $sz")>;
918  let cy = 0, cz = 0 in
919  def izr : RR<opc, (outs), (ins simm7:$sy, zero:$sz, RC:$sx),
920               !strconcat(opcStr, " $sx, $sy, $sz")>;
921}
922
923let hasSideEffects = 1, Constraints = "$sx = $sx_in", DisableEncoding = "$sx_in" in
924multiclass TSCRm<string opcStr, bits<8>opc, RegisterClass RC> {
925  def rrr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, RC:$sx_in),
926               !strconcat(opcStr, " $sx, $sy, $sz")>;
927  let cy = 0 in def irr : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz, RC:$sx_in),
928                             !strconcat(opcStr, " $sx, $sy, $sz")>;
929  let cz = 0 in def rzr : RR<opc, (outs RC:$sx), (ins RC:$sy, zero:$sz, RC:$sx_in),
930                             !strconcat(opcStr, " $sx, $sy, $sz")>;
931  let cy = 0, cz = 0 in
932  def izr : RR<opc, (outs RC:$sx), (ins simm7:$sy, zero:$sz, RC:$sx_in),
933               !strconcat(opcStr, " $sx, $sy, $sz")>;
934}
935
936
937// Multiclass for communication register instructions.
938//   e.g. FIDCR
939let cz = 0, hasSideEffects = 1 in
940multiclass FIDCRm<string opcStr, bits<8>opc, RegisterClass RC> {
941  def ri : RR<opc, (outs RC:$sx), (ins RC:$sy, uimm3:$sz),
942              !strconcat(opcStr, " $sx, $sy, $sz")>;
943  let cy = 0 in def ii : RR<opc, (outs RC:$sx), (ins simm7:$sy, uimm3:$sz),
944                            !strconcat(opcStr, " $sx, $sy, $sz")>;
945}
946
947// Multiclass for LHM instruction.
948let mayLoad = 1, hasSideEffects = 0 in
949multiclass LHMm<string opcStr, bits<8> opc, RegisterClass RC> {
950  def ri : RRMHM<opc, (outs RC:$sx), (ins (MEMriHM $sz, $imm32):$addr),
951                 !strconcat(opcStr, " $sx, $addr")>;
952  let cz = 0 in
953  def zi : RRMHM<opc, (outs RC:$sx), (ins (MEMziHM $sz, $imm32):$addr),
954                 !strconcat(opcStr, " $sx, $addr")>;
955}
956
957// Multiclass for SHM instruction.
958let mayStore = 1, hasSideEffects = 0 in
959multiclass SHMm<string opcStr, bits<8> opc, RegisterClass RC> {
960  def ri : RRMHM<opc, (outs), (ins (MEMriHM $sz, $imm32):$addr, RC:$sx),
961                 !strconcat(opcStr, " $sx, $addr")>;
962  let cz = 0 in
963  def zi : RRMHM<opc, (outs), (ins (MEMziHM $sz, $imm32):$addr, RC:$sx),
964                 !strconcat(opcStr, " $sx, $addr")>;
965}
966
967//===----------------------------------------------------------------------===//
968// Instructions
969//
970// Define all scalar instructions defined in SX-Aurora TSUBASA Architecture
971// Guide here.  As those mnemonics, we use mnemonics defined in Vector Engine
972// Assembly Language Reference Manual.
973//===----------------------------------------------------------------------===//
974
975//-----------------------------------------------------------------------------
976// Section 8.2 - Load/Store instructions
977//-----------------------------------------------------------------------------
978
979// Multiclass for generic RM instructions
980multiclass RMm<string opcStr, bits<8>opc, RegisterClass RC, bit MoveImm = 0> {
981  def rri : RM<opc, (outs RC:$sx), (ins (MEMrri $sz, $sy, $imm32):$addr),
982               !strconcat(opcStr, " $sx, $addr"), []>;
983  let cy = 0 in
984  def rii : RM<opc, (outs RC:$sx), (ins (MEMrii $sz, $sy, $imm32):$addr),
985               !strconcat(opcStr, " $sx, $addr"), []>;
986  let cz = 0 in
987  def zri : RM<opc, (outs RC:$sx), (ins (MEMzri $sz, $sy, $imm32):$addr),
988               !strconcat(opcStr, " $sx, $addr"), []>;
989  let cy = 0, cz = 0 in
990  def zii : RM<opc, (outs RC:$sx), (ins (MEMzii $sz, $sy, $imm32):$addr),
991               !strconcat(opcStr, " $sx, $addr"), []> {
992    // VE uses LEAzii and LEASLzii as a move immediate instruction, so declare
993    // it here.  An instruction declared as MoveImm will be optimized in
994    // FoldImmediate later.
995    let isMoveImm = MoveImm;
996  }
997}
998
999// Section 8.2.1 - LEA
1000let isReMaterializable = 1, isAsCheapAsAMove = 1,
1001    DecoderMethod = "DecodeLoadI64" in {
1002  let cx = 0 in defm LEA : RMm<"lea", 0x06, I64, /* MoveImm */ 1>;
1003  let cx = 1 in defm LEASL : RMm<"lea.sl", 0x06, I64, /* MoveImm */ 1>;
1004}
1005
1006// LEA basic patterns.
1007//   Need to be defined here to prioritize LEA over ADX.
1008def : Pat<(iPTR ADDRrri:$addr), (LEArri MEMrri:$addr)>;
1009def : Pat<(iPTR ADDRrii:$addr), (LEArii MEMrii:$addr)>;
1010def : Pat<(add I64:$base, simm32:$disp), (LEArii $base, 0, (LO32 $disp))>;
1011def : Pat<(add I64:$base, lozero:$disp), (LEASLrii $base, 0, (HI32 $disp))>;
1012
1013// Multiclass for load instructions.
1014let mayLoad = 1, hasSideEffects = 0 in
1015multiclass LOADm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
1016                 SDPatternOperator OpNode = null_frag> {
1017  def rri : RM<opc, (outs RC:$sx), (ins (MEMrri $sz, $sy, $imm32):$addr),
1018               !strconcat(opcStr, " $sx, $addr"),
1019               [(set Ty:$sx, (OpNode ADDRrri:$addr))]>;
1020  let cy = 0 in
1021  def rii : RM<opc, (outs RC:$sx), (ins (MEMrii $sz, $sy, $imm32):$addr),
1022               !strconcat(opcStr, " $sx, $addr"),
1023               [(set Ty:$sx, (OpNode ADDRrii:$addr))]>;
1024  let cz = 0 in
1025  def zri : RM<opc, (outs RC:$sx), (ins (MEMzri $sz, $sy, $imm32):$addr),
1026               !strconcat(opcStr, " $sx, $addr"),
1027               [(set Ty:$sx, (OpNode ADDRzri:$addr))]>;
1028  let cy = 0, cz = 0 in
1029  def zii : RM<opc, (outs RC:$sx), (ins (MEMzii $sz, $sy, $imm32):$addr),
1030               !strconcat(opcStr, " $sx, $addr"),
1031               [(set Ty:$sx, (OpNode ADDRzii:$addr))]>;
1032}
1033
1034// Section 8.2.2 - LDS
1035let DecoderMethod = "DecodeLoadI64" in
1036defm LD : LOADm<"ld", 0x01, I64, i64, load>;
1037def : Pat<(f64 (load ADDRrri:$addr)), (LDrri MEMrri:$addr)>;
1038def : Pat<(f64 (load ADDRrii:$addr)), (LDrii MEMrii:$addr)>;
1039def : Pat<(f64 (load ADDRzri:$addr)), (LDzri MEMzri:$addr)>;
1040def : Pat<(f64 (load ADDRzii:$addr)), (LDzii MEMzii:$addr)>;
1041
1042// Section 8.2.3 - LDU
1043let DecoderMethod = "DecodeLoadF32" in
1044defm LDU : LOADm<"ldu", 0x02, F32, f32, load>;
1045
1046// Section 8.2.4 - LDL
1047let DecoderMethod = "DecodeLoadI32" in
1048defm LDLSX : LOADm<"ldl.sx", 0x03, I32, i32, load>;
1049let cx = 1, DecoderMethod = "DecodeLoadI32" in
1050defm LDLZX : LOADm<"ldl.zx", 0x03, I32, i32, load>;
1051
1052// Section 8.2.5 - LD2B
1053let DecoderMethod = "DecodeLoadI32" in
1054defm LD2BSX : LOADm<"ld2b.sx", 0x04, I32, i32, sextloadi16>;
1055let cx = 1, DecoderMethod = "DecodeLoadI32" in
1056defm LD2BZX : LOADm<"ld2b.zx", 0x04, I32, i32, zextloadi16>;
1057
1058// Section 8.2.6 - LD1B
1059let DecoderMethod = "DecodeLoadI32" in
1060defm LD1BSX : LOADm<"ld1b.sx", 0x05, I32, i32, sextloadi8>;
1061let cx = 1, DecoderMethod = "DecodeLoadI32" in
1062defm LD1BZX : LOADm<"ld1b.zx", 0x05, I32, i32, zextloadi8>;
1063
1064// LDQ pseudo instructions
1065let mayLoad = 1, hasSideEffects = 0 in {
1066  def LDQrii : Pseudo<(outs F128:$dest), (ins MEMrii:$addr),
1067                      "# pseudo ldq $dest, $addr",
1068                      [(set f128:$dest, (load ADDRrii:$addr))]>;
1069}
1070
1071// Multiclass for store instructions.
1072let mayStore = 1 in
1073multiclass STOREm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
1074                  SDPatternOperator OpNode = null_frag> {
1075  def rri : RM<opc, (outs), (ins (MEMrri $sz, $sy, $imm32):$addr, RC:$sx),
1076               !strconcat(opcStr, " $sx, $addr"),
1077               [(OpNode Ty:$sx, ADDRrri:$addr)]>;
1078  let cy = 0 in
1079  def rii : RM<opc, (outs), (ins (MEMrii $sz, $sy, $imm32):$addr, RC:$sx),
1080               !strconcat(opcStr, " $sx, $addr"),
1081               [(OpNode Ty:$sx, ADDRrii:$addr)]>;
1082  let cz = 0 in
1083  def zri : RM<opc, (outs), (ins (MEMzri $sz, $sy, $imm32):$addr, RC:$sx),
1084               !strconcat(opcStr, " $sx, $addr"),
1085               [(OpNode Ty:$sx, ADDRzri:$addr)]>;
1086  let cy = 0, cz = 0 in
1087  def zii : RM<opc, (outs), (ins (MEMzii $sz, $sy, $imm32):$addr, RC:$sx),
1088               !strconcat(opcStr, " $sx, $addr"),
1089               [(OpNode Ty:$sx, ADDRzii:$addr)]>;
1090}
1091
1092// Section 8.2.7 - STS
1093let DecoderMethod = "DecodeStoreI64" in
1094defm ST : STOREm<"st", 0x11, I64, i64, store>;
1095def : Pat<(store f64:$src, ADDRrri:$addr), (STrri MEMrri:$addr, $src)>;
1096def : Pat<(store f64:$src, ADDRrii:$addr), (STrii MEMrii:$addr, $src)>;
1097def : Pat<(store f64:$src, ADDRzri:$addr), (STzri MEMzri:$addr, $src)>;
1098def : Pat<(store f64:$src, ADDRzii:$addr), (STzii MEMzii:$addr, $src)>;
1099
1100// Section 8.2.8 - STU
1101let DecoderMethod = "DecodeStoreF32" in
1102defm STU : STOREm<"stu", 0x12, F32, f32, store>;
1103
1104// Section 8.2.9 - STL
1105let DecoderMethod = "DecodeStoreI32" in
1106defm STL : STOREm<"stl", 0x13, I32, i32, store>;
1107
1108// Section 8.2.10 - ST2B
1109let DecoderMethod = "DecodeStoreI32" in
1110defm ST2B : STOREm<"st2b", 0x14, I32, i32, truncstorei16>;
1111
1112// Section 8.2.11 - ST1B
1113let DecoderMethod = "DecodeStoreI32" in
1114defm ST1B : STOREm<"st1b", 0x15, I32, i32, truncstorei8>;
1115
1116// STQ pseudo instructions
1117let mayStore = 1, hasSideEffects = 0 in {
1118  def STQrii : Pseudo<(outs), (ins MEMrii:$addr, F128:$sx),
1119                      "# pseudo stq $sx, $addr",
1120                      [(store f128:$sx, ADDRrii:$addr)]>;
1121}
1122
1123// Section 8.2.12 - DLDS
1124let DecoderMethod = "DecodeLoadI64" in
1125defm DLD : LOADm<"dld", 0x09, I64, i64, load>;
1126
1127// Section 8.2.13 - DLDU
1128let DecoderMethod = "DecodeLoadF32" in
1129defm DLDU : LOADm<"dldu", 0x0a, F32, f32, load>;
1130
1131// Section 8.2.14 - DLDL
1132let DecoderMethod = "DecodeLoadI32" in
1133defm DLDLSX : LOADm<"dldl.sx", 0x0b, I32, i32, load>;
1134let cx = 1, DecoderMethod = "DecodeLoadI32" in
1135defm DLDLZX : LOADm<"dldl.zx", 0x0b, I32, i32, load>;
1136
1137// Section 8.2.15 - PFCH
1138let DecoderMethod = "DecodeASX" in
1139defm PFCH : PFCHm<"pfch", 0x0c>;
1140
1141// Section 8.2.16 - TS1AM (Test and Set 1 AM)
1142let DecoderMethod = "DecodeTS1AMI64" in
1143defm TS1AML : RRCASm<"ts1am.l", 0x42, I64, i64, uimm7>;
1144let DecoderMethod = "DecodeTS1AMI32", cx = 1 in
1145defm TS1AMW : RRCASm<"ts1am.w", 0x42, I32, i32, uimm7>;
1146
1147// Section 8.2.17 - TS2AM (Test and Set 2 AM)
1148let DecoderMethod = "DecodeTS1AMI64" in
1149defm TS2AM : RRCASm<"ts2am", 0x43, I64, i64, uimm7>;
1150
1151// Section 8.2.18 - TS3AM (Test and Set 3 AM)
1152let DecoderMethod = "DecodeTS1AMI64" in
1153defm TS3AM : RRCASm<"ts3am", 0x52, I64, i64, uimm1>;
1154
1155// Section 8.2.19 - ATMAM (Atomic AM)
1156let DecoderMethod = "DecodeTS1AMI64" in
1157defm ATMAM : RRCASm<"atmam", 0x53, I64, i64, uimm0to2>;
1158
1159// Section 8.2.20 - CAS (Compare and Swap)
1160let DecoderMethod = "DecodeCASI64" in
1161defm CASL : RRCASm<"cas.l", 0x62, I64, i64, simm7, atomic_cmp_swap_i64>;
1162let DecoderMethod = "DecodeCASI32", cx = 1 in
1163defm CASW : RRCASm<"cas.w", 0x62, I32, i32, simm7, atomic_cmp_swap_i32>;
1164
1165//-----------------------------------------------------------------------------
1166// Section 8.3 - Transfer Control Instructions
1167//-----------------------------------------------------------------------------
1168
1169// Section 8.3.1 - FENCE (Fence)
1170let hasSideEffects = 1 in {
1171  let avo = 1 in def FENCEI : RRFENCE<0x20, (outs), (ins), "fencei">;
1172  def FENCEM : RRFENCE<0x20, (outs), (ins uimm2:$kind), "fencem $kind"> {
1173    bits<2> kind;
1174    let lf = kind{1};
1175    let sf = kind{0};
1176  }
1177  def FENCEC : RRFENCE<0x20, (outs), (ins uimm3:$kind), "fencec $kind"> {
1178    bits<3> kind;
1179    let c2 = kind{2};
1180    let c1 = kind{1};
1181    let c0 = kind{0};
1182  }
1183}
1184
1185// Section 8.3.2 - SVOB (Set Vector Out-of-order memory access Boundary)
1186let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in
1187def SVOB : RR<0x30, (outs), (ins), "svob">;
1188
1189//-----------------------------------------------------------------------------
1190// Section 8.4 - Fixed-point Operation Instructions
1191//-----------------------------------------------------------------------------
1192
1193// Section 8.4.1 - ADD (Add)
1194defm ADDUL : RRm<"addu.l", 0x48, I64, i64>;
1195let cx = 1 in defm ADDUW : RRm<"addu.w", 0x48, I32, i32>;
1196
1197// Section 8.4.2 - ADS (Add Single)
1198defm ADDSWSX : RRm<"adds.w.sx", 0x4A, I32, i32, add>;
1199let cx = 1 in defm ADDSWZX : RRm<"adds.w.zx", 0x4A, I32, i32>;
1200
1201// Section 8.4.3 - ADX (Add)
1202defm ADDSL : RRm<"adds.l", 0x59, I64, i64, add>;
1203
1204// Section 8.4.4 - SUB (Subtract)
1205defm SUBUL : RRNCm<"subu.l", 0x58, I64, i64>;
1206let cx = 1 in defm SUBUW : RRNCm<"subu.w", 0x58, I32, i32>;
1207
1208// Section 8.4.5 - SBS (Subtract Single)
1209defm SUBSWSX : RRNCm<"subs.w.sx", 0x5A, I32, i32, sub>;
1210let cx = 1 in defm SUBSWZX : RRNCm<"subs.w.zx", 0x5A, I32, i32>;
1211
1212// Section 8.4.6 - SBX (Subtract)
1213defm SUBSL : RRNCm<"subs.l", 0x5B, I64, i64, sub>;
1214
1215// Section 8.4.7 - MPY (Multiply)
1216defm MULUL : RRm<"mulu.l", 0x49, I64, i64>;
1217let cx = 1 in defm MULUW : RRm<"mulu.w", 0x49, I32, i32>;
1218
1219// Section 8.4.8 - MPS (Multiply Single)
1220defm MULSWSX : RRm<"muls.w.sx", 0x4B, I32, i32, mul>;
1221let cx = 1 in defm MULSWZX : RRm<"muls.w.zx", 0x4B, I32, i32>;
1222
1223// Section 8.4.9 - MPX (Multiply)
1224defm MULSL : RRm<"muls.l", 0x6E, I64, i64, mul>;
1225
1226// Section 8.4.10 - MPD (Multiply)
1227defm MULSLW : RRbm<"muls.l.w", 0x6B, I64, i64, I32, i32>;
1228
1229// Section 8.4.11 - DIV (Divide)
1230defm DIVUL : RRNCm<"divu.l", 0x6F, I64, i64, udiv>;
1231let cx = 1 in defm DIVUW : RRNCm<"divu.w", 0x6F, I32, i32, udiv>;
1232
1233// Section 8.4.12 - DVS (Divide Single)
1234defm DIVSWSX : RRNCm<"divs.w.sx", 0x7B, I32, i32, sdiv>;
1235let cx = 1 in defm DIVSWZX : RRNCm<"divs.w.zx", 0x7B, I32, i32>;
1236
1237// Section 8.4.13 - DVX (Divide)
1238defm DIVSL : RRNCm<"divs.l", 0x7F, I64, i64, sdiv>;
1239
1240// Section 8.4.14 - CMP (Compare)
1241defm CMPUL : RRNCm<"cmpu.l", 0x55, I64, i64, cmpu>;
1242let cx = 1 in defm CMPUW : RRNCm<"cmpu.w", 0x55, I32, i32, cmpu>;
1243
1244// Section 8.4.15 - CPS (Compare Single)
1245defm CMPSWSX : RRNCm<"cmps.w.sx", 0x7A, I32, i32>;
1246let cx = 1 in defm CMPSWZX : RRNCm<"cmps.w.zx", 0x7A, I32, i32, cmpi>;
1247
1248// Section 8.4.16 - CPX (Compare)
1249defm CMPSL : RRNCm<"cmps.l", 0x6A, I64, i64, cmpi>;
1250
1251// Section 8.4.17 - CMS (Compare and Select Maximum/Minimum Single)
1252// cx: sx/zx, cw: max/min
1253defm MAXSWSX : RRm<"maxs.w.sx", 0x78, I32, i32, smax>;
1254let cx = 1 in defm MAXSWZX : RRm<"maxs.w.zx", 0x78, I32, i32>;
1255let cw = 1 in defm MINSWSX : RRm<"mins.w.sx", 0x78, I32, i32, smin>;
1256let cx = 1, cw = 1 in defm MINSWZX : RRm<"mins.w.zx", 0x78, I32, i32>;
1257
1258// Section 8.4.18 - CMX (Compare and Select Maximum/Minimum)
1259defm MAXSL : RRm<"maxs.l", 0x68, I64, i64, smax>;
1260let cw = 1 in defm MINSL : RRm<"mins.l", 0x68, I64, i64, smin>;
1261
1262//-----------------------------------------------------------------------------
1263// Section 8.5 - Logical Operation Instructions
1264//-----------------------------------------------------------------------------
1265
1266// Section 8.5.1 - AND (AND)
1267defm AND : RRm<"and", 0x44, I64, i64, and>;
1268
1269// Section 8.5.2 - OR (OR)
1270let isReMaterializable = 1, isAsCheapAsAMove = 1 in
1271defm OR : RRm<"or", 0x45, I64, i64, or, simm7, mimm, /* MoveImm */ 1>;
1272
1273// Section 8.5.3 - XOR (Exclusive OR)
1274defm XOR : RRm<"xor", 0x46, I64, i64, xor>;
1275
1276// Section 8.5.4 - EQV (Equivalence)
1277defm EQV : RRm<"eqv", 0x47, I64, i64>;
1278
1279// Section 8.5.5 - NND (Negate AND)
1280def and_not : PatFrags<(ops node:$x, node:$y),
1281                       [(and (not node:$x), node:$y)]>;
1282defm NND : RRNCm<"nnd", 0x54, I64, i64, and_not>;
1283
1284// Section 8.5.6 - MRG (Merge)
1285defm MRG : RRMRGm<"mrg", 0x56, I64>;
1286
1287// Section 8.5.7 - LDZ (Leading Zero Count)
1288def ctlz_pat : PatFrags<(ops node:$src),
1289                        [(ctlz node:$src),
1290                         (ctlz_zero_undef node:$src)]>;
1291defm LDZ : RRI1m<"ldz", 0x67, I64, i64, ctlz_pat>;
1292
1293// Section 8.5.8 - PCNT (Population Count)
1294defm PCNT : RRI1m<"pcnt", 0x38, I64, i64, ctpop>;
1295
1296// Section 8.5.9 - BRV (Bit Reverse)
1297defm BRV : RRI1m<"brv", 0x39, I64, i64, bitreverse>;
1298
1299// Section 8.5.10 - BSWP (Byte Swap)
1300defm BSWP : RRSWPm<"bswp", 0x2B, I64, i64>;
1301
1302def : Pat<(i64 (bswap i64:$src)),
1303          (BSWPri $src, 0)>;
1304def : Pat<(i64 (bswap (i64 mimm:$src))),
1305          (BSWPmi (MIMM $src), 0)>;
1306def : Pat<(i32 (bswap i32:$src)),
1307          (EXTRACT_SUBREG
1308              (BSWPri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub_i32), 1),
1309              sub_i32)>;
1310def : Pat<(i32 (bswap (i32 mimm:$src))),
1311          (EXTRACT_SUBREG (BSWPmi (MIMM $src), 1), sub_i32)>;
1312
1313// Section 8.5.11 - CMOV (Conditional Move)
1314let cw = 0, cw2 = 0 in
1315defm CMOVL : RRCMOVm<"cmov.l.${cfw}", 0x3B, I64, i64, cmov>;
1316let cw = 1, cw2 = 0 in
1317defm CMOVW : RRCMOVm<"cmov.w.${cfw}", 0x3B, I32, i32, cmov>;
1318let cw = 0, cw2 = 1 in
1319defm CMOVD : RRCMOVm<"cmov.d.${cfw}", 0x3B, I64, f64, cmov, simm7fp>;
1320let cw = 1, cw2 = 1 in
1321defm CMOVS : RRCMOVm<"cmov.s.${cfw}", 0x3B, F32, f32, cmov, simm7fp>;
1322def : MnemonicAlias<"cmov.l", "cmov.l.at">;
1323def : MnemonicAlias<"cmov.w", "cmov.w.at">;
1324def : MnemonicAlias<"cmov.d", "cmov.d.at">;
1325def : MnemonicAlias<"cmov.s", "cmov.s.at">;
1326
1327//-----------------------------------------------------------------------------
1328// Section 8.6 - Shift Operation Instructions
1329//-----------------------------------------------------------------------------
1330
1331// Section 8.6.1 - SLL (Shift Left Logical)
1332defm SLL : RRIm<"sll", 0x65, I64, i64, shl>;
1333
1334// Section 8.6.2 - SLD (Shift Left Double)
1335defm SLD : RRILDm<"sld", 0x64, I64>;
1336
1337// Section 8.6.3 - SRL (Shift Right Logical)
1338defm SRL : RRIm<"srl", 0x75, I64, i64, srl>;
1339
1340// Section 8.6.4 - SRD (Shift Right Double)
1341defm SRD : RRIRDm<"srd", 0x74, I64>;
1342
1343// Section 8.6.5 - SLA (Shift Left Arithmetic)
1344defm SLAWSX : RRIm<"sla.w.sx", 0x66, I32, i32, shl>;
1345let cx = 1 in defm SLAWZX : RRIm<"sla.w.zx", 0x66, I32, i32>;
1346
1347// Section 8.6.6 - SLAX (Shift Left Arithmetic)
1348defm SLAL : RRIm<"sla.l", 0x57, I64, i64>;
1349
1350// Section 8.6.7 - SRA (Shift Right Arithmetic)
1351defm SRAWSX : RRIm<"sra.w.sx", 0x76, I32, i32, sra>;
1352let cx = 1 in defm SRAWZX : RRIm<"sra.w.zx", 0x76, I32, i32>;
1353
1354// Section 8.6.8 - SRAX (Shift Right Arithmetic)
1355defm SRAL : RRIm<"sra.l", 0x77, I64, i64, sra>;
1356
1357def : Pat<(i32 (srl i32:$src, (i32 simm7:$val))),
1358          (EXTRACT_SUBREG (SRLri (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
1359            $src, sub_i32), !add(32, 64)), imm:$val), sub_i32)>;
1360def : Pat<(i32 (srl i32:$src, i32:$val)),
1361          (EXTRACT_SUBREG (SRLrr (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
1362            $src, sub_i32), !add(32, 64)), $val), sub_i32)>;
1363
1364//-----------------------------------------------------------------------------
1365// Section 8.7 - Floating-point Arithmetic Instructions
1366//-----------------------------------------------------------------------------
1367
1368// Section 8.7.1 - FAD (Floating Add)
1369defm FADDD : RRFm<"fadd.d", 0x4C, I64, f64, fadd>;
1370let cx = 1 in
1371defm FADDS : RRFm<"fadd.s", 0x4C, F32, f32, fadd, simm7fp, mimmfp32>;
1372
1373// Section 8.7.2 - FSB (Floating Subtract)
1374defm FSUBD : RRFm<"fsub.d", 0x5C, I64, f64, fsub>;
1375let cx = 1 in
1376defm FSUBS : RRFm<"fsub.s", 0x5C, F32, f32, fsub, simm7fp, mimmfp32>;
1377
1378// Section 8.7.3 - FMP (Floating Multiply)
1379defm FMULD : RRFm<"fmul.d", 0x4D, I64, f64, fmul>;
1380let cx = 1 in
1381defm FMULS : RRFm<"fmul.s", 0x4D, F32, f32, fmul, simm7fp, mimmfp32>;
1382
1383// Section 8.7.4 - FDV (Floating Divide)
1384defm FDIVD : RRFm<"fdiv.d", 0x5D, I64, f64, fdiv>;
1385let cx = 1 in
1386defm FDIVS : RRFm<"fdiv.s", 0x5D, F32, f32, fdiv, simm7fp, mimmfp32>;
1387
1388// Section 8.7.5 - FCP (Floating Compare)
1389defm FCMPD : RRFm<"fcmp.d", 0x7E, I64, f64, cmpf>;
1390let cx = 1 in
1391defm FCMPS : RRFm<"fcmp.s", 0x7E, F32, f32, cmpf, simm7fp, mimmfp32>;
1392
1393// Section 8.7.6 - CMS (Compare and Select Maximum/Minimum Single)
1394// cx: double/float, cw: max/min
1395let cw = 0, cx = 0 in
1396defm FMAXD : RRFm<"fmax.d", 0x3E, I64, f64, fmaxnum>;
1397let cw = 0, cx = 1 in
1398defm FMAXS : RRFm<"fmax.s", 0x3E, F32, f32, fmaxnum, simm7fp, mimmfp32>;
1399let cw = 1, cx = 0 in
1400defm FMIND : RRFm<"fmin.d", 0x3E, I64, f64, fminnum>;
1401let cw = 1, cx = 1 in
1402defm FMINS : RRFm<"fmin.s", 0x3E, F32, f32, fminnum, simm7fp, mimmfp32>;
1403
1404// Section 8.7.7 - FAQ (Floating Add Quadruple)
1405defm FADDQ : RRFm<"fadd.q", 0x6C, F128, f128, fadd>;
1406
1407// Section 8.7.8 - FSQ (Floating Subtract Quadruple)
1408defm FSUBQ : RRFm<"fsub.q", 0x7C, F128, f128, fsub>;
1409
1410// Section 8.7.9 - FMQ (Floating Subtract Quadruple)
1411defm FMULQ : RRFm<"fmul.q", 0x6D, F128, f128, fmul>;
1412
1413// Section 8.7.10 - FCQ (Floating Compare Quadruple)
1414defm FCMPQ : RRNCbm<"fcmp.q", 0x7D, I64, f64, F128, f128, cmpq, simm7fp,
1415                    mimmfp>;
1416
1417// Section 8.7.11 - FIX (Convert to Fixed Point)
1418// cx: double/float, cw: sx/zx, sz{0-3} = round
1419let cx = 0, cw = 0 /* sign extend */ in
1420defm CVTWDSX : CVTRDm<"cvt.w.d.sx", 0x4E, I32, I64>;
1421let cx = 0, cw = 1 /* zero extend */ in
1422defm CVTWDZX : CVTRDm<"cvt.w.d.zx", 0x4E, I32, I64>;
1423let cx = 1, cw = 0 /* sign extend */ in
1424defm CVTWSSX : CVTRDm<"cvt.w.s.sx", 0x4E, I32, F32>;
1425let cx = 1, cw = 1 /* zero extend */ in
1426defm CVTWSZX : CVTRDm<"cvt.w.s.zx", 0x4E, I32, F32>;
1427
1428// Section 8.7.12 - FIXX (Convert to Fixed Point)
1429defm CVTLD : CVTRDm<"cvt.l.d", 0x4F, I64, I64>;
1430
1431// Section 8.7.13 - FLT (Convert to Floating Point)
1432defm CVTDW : CVTm<"cvt.d.w", 0x5E, I64, f64, I32, i32, sint_to_fp>;
1433let cx = 1 in
1434defm CVTSW : CVTm<"cvt.s.w", 0x5E, F32, f32, I32, i32, sint_to_fp>;
1435
1436// Section 8.7.14 - FLTX (Convert to Floating Point)
1437defm CVTDL : CVTm<"cvt.d.l", 0x5F, I64, f64, I64, i64, sint_to_fp>;
1438
1439// Section 8.7.15 - CVS (Convert to Single-format)
1440defm CVTSD : CVTm<"cvt.s.d", 0x1F, F32, f32, I64, f64, fpround>;
1441let cx = 1 in
1442defm CVTSQ : CVTm<"cvt.s.q", 0x1F, F32, f32, F128, f128, fpround>;
1443
1444// Section 8.7.16 - CVD (Convert to Double-format)
1445defm CVTDS : CVTm<"cvt.d.s", 0x0F, I64, f64, F32, f32, fpextend>;
1446let cx = 1 in
1447defm CVTDQ : CVTm<"cvt.d.q", 0x0F, I64, f64, F128, f128, fpround>;
1448
1449// Section 8.7.17 - CVQ (Convert to Single-format)
1450defm CVTQD : CVTm<"cvt.q.d", 0x2D, F128, f128, I64, f64, fpextend>;
1451let cx = 1 in
1452defm CVTQS : CVTm<"cvt.q.s", 0x2D, F128, f128, F32, f32, fpextend>;
1453
1454//-----------------------------------------------------------------------------
1455// Section 8.8 - Branch instructions
1456//-----------------------------------------------------------------------------
1457
1458// Section 8.8.1 - BC (Branch on Codition)
1459defm BCFL : BCm<"b${cond}.l", "b.l", "baf.l", 0x19, I64, simm7>;
1460
1461// Indirect branch aliases
1462def : Pat<(brind I64:$reg), (BCFLari_t $reg, 0)>;
1463def : Pat<(brind tblockaddress:$imm), (BCFLazi_t 0, $imm)>;
1464
1465// Return instruction is a special case of jump.
1466let Uses = [SX10], bpf = 3 /* TAKEN */, cond = 15 /* AT */, cy = 0, sy = 0,
1467    sz = 10 /* SX10 */, imm32 = 0, isReturn = 1, isTerminator = 1,
1468    isBarrier = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
1469def RET : CF<0x19, (outs), (ins), "b.l.t (, %s10)", [(retglue)]>;
1470
1471// Section 8.8.2 - BCS (Branch on Condition Single)
1472defm BCFW : BCm<"b${cond}.w", "b.w", "baf.w", 0x1B, I32, simm7>;
1473
1474// Section 8.8.3 - BCF (Branch on Condition Floating Point)
1475defm BCFD : BCm<"b${cond}.d", "b.d", "baf.d", 0x1C, I64, simm7fp>;
1476let cx = 1 in
1477defm BCFS : BCm<"b${cond}.s", "b.s", "baf.s", 0x1C, F32, simm7fp>;
1478
1479// Section 8.8.4 - BCR (Branch on Condition Relative)
1480let cx = 0, cx2 = 0 in
1481defm BRCFL : BCRm<"br${cond}.l", "br.l", "braf.l", 0x18, I64, simm7, zero>;
1482let cx = 1, cx2 = 0 in
1483defm BRCFW : BCRm<"br${cond}.w", "br.w", "braf.w", 0x18, I32, simm7, zero>;
1484let cx = 0, cx2 = 1 in
1485defm BRCFD : BCRm<"br${cond}.d", "br.d", "braf.d", 0x18, I64, simm7fp, zerofp>;
1486let cx = 1, cx2 = 1 in
1487defm BRCFS : BCRm<"br${cond}.s", "br.s", "braf.s", 0x18, F32, simm7fp, zerofp>;
1488
1489// Section 8.8.5 - BSIC (Branch and Save IC)
1490let isCall = 1, hasSideEffects = 0, DecoderMethod = "DecodeCall" in
1491defm BSIC : RMm<"bsic", 0x08, I64>;
1492
1493// Call instruction is a special case of BSIC.
1494let Defs = [SX10], sx = 10 /* SX10 */, cy = 0, sy = 0, imm32 = 0,
1495    isCall = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
1496def CALLr : RM<0x08, (outs), (ins I64:$sz, variable_ops),
1497               "bsic %s10, (, $sz)", [(call i64:$sz)]>;
1498
1499//-----------------------------------------------------------------------------
1500// Section 8.19 - Control Instructions
1501//-----------------------------------------------------------------------------
1502
1503// Section 8.19.1 - SIC (Save Instruction Counter)
1504let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [IC] in
1505def SIC : RR<0x28, (outs I32:$sx), (ins), "sic $sx">;
1506
1507// Section 8.19.2 - LPM (Load Program Mode Flags)
1508let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in
1509def LPM : RR<0x3a, (outs), (ins I64:$sy), "lpm $sy">;
1510
1511// Section 8.19.3 - SPM (Save Program Mode Flags)
1512let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
1513def SPM : RR<0x2a, (outs I64:$sx), (ins), "spm $sx">;
1514
1515// Section 8.19.4 - LFR (Load Flag Register)
1516let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in {
1517  def LFRr : RR<0x69, (outs), (ins I64:$sy), "lfr $sy">;
1518  let cy = 0 in def LFRi : RR<0x69, (outs), (ins uimm6:$sy), "lfr $sy">;
1519}
1520
1521// Section 8.19.5 - SFR (Save Flag Register)
1522let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
1523def SFR : RR<0x29, (outs I64:$sx), (ins), "sfr $sx">;
1524
1525// Section 8.19.6 - SMIR (Save Miscellaneous Register)
1526let cy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
1527  def SMIR : RR<0x22, (outs I64:$sx), (ins MISC:$sy), "smir $sx, $sy">;
1528}
1529
1530// Section 8.19.7 - NOP (No Operation)
1531let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 in
1532def NOP : RR<0x79, (outs), (ins), "nop">;
1533
1534// Section 8.19.8 - MONC (Monitor Call)
1535let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
1536  def MONC : RR<0x3F, (outs), (ins), "monc">;
1537  let cx = 1, isTrap = 1 in def MONCHDB : RR<0x3F, (outs), (ins), "monc.hdb">;
1538}
1539
1540// Section 8.19.9 - LCR (Load Communication Register)
1541defm LCR : LOADCRm<"lcr", 0x40, I64>;
1542
1543// Section 8.19.10 - SCR (Save Communication Register)
1544defm SCR : STORECRm<"scr", 0x50, I64>;
1545
1546// Section 8.19.11 - TSCR (Test & Set Communication Register)
1547defm TSCR : TSCRm<"tscr", 0x41, I64>;
1548
1549// Section 8.19.12 - FIDCR (Fetch & Increment/Decrement CR)
1550defm FIDCR : FIDCRm<"fidcr", 0x51, I64>;
1551
1552//-----------------------------------------------------------------------------
1553// Section 8.20 - Host Memory Access Instructions
1554//-----------------------------------------------------------------------------
1555
1556// Section 8.20.1 - LHM (Load Host Memory)
1557let ry = 3, DecoderMethod = "DecodeLoadASI64" in
1558defm LHML : LHMm<"lhm.l", 0x21, I64>;
1559let ry = 2, DecoderMethod = "DecodeLoadASI64" in
1560defm LHMW : LHMm<"lhm.w", 0x21, I64>;
1561let ry = 1, DecoderMethod = "DecodeLoadASI64" in
1562defm LHMH : LHMm<"lhm.h", 0x21, I64>;
1563let ry = 0, DecoderMethod = "DecodeLoadASI64" in
1564defm LHMB : LHMm<"lhm.b", 0x21, I64>;
1565
1566// Section 8.20.2 - SHM (Store Host Memory)
1567let ry = 3, DecoderMethod = "DecodeStoreASI64" in
1568defm SHML : SHMm<"shm.l", 0x31, I64>;
1569let ry = 2, DecoderMethod = "DecodeStoreASI64" in
1570defm SHMW : SHMm<"shm.w", 0x31, I64>;
1571let ry = 1, DecoderMethod = "DecodeStoreASI64" in
1572defm SHMH : SHMm<"shm.h", 0x31, I64>;
1573let ry = 0, DecoderMethod = "DecodeStoreASI64" in
1574defm SHMB : SHMm<"shm.b", 0x31, I64>;
1575
1576//===----------------------------------------------------------------------===//
1577// Instructions for CodeGenOnly
1578//===----------------------------------------------------------------------===//
1579
1580//===----------------------------------------------------------------------===//
1581// Pattern Matchings
1582//===----------------------------------------------------------------------===//
1583
1584// Basic cast between registers.  This is often used in ISel patterns, so make
1585// them as OutPatFrag.
1586def i2l : OutPatFrag<(ops node:$exp),
1587                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $exp, sub_i32)>;
1588def l2i : OutPatFrag<(ops node:$exp),
1589                     (EXTRACT_SUBREG $exp, sub_i32)>;
1590def f2l : OutPatFrag<(ops node:$exp),
1591                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $exp, sub_f32)>;
1592def l2f : OutPatFrag<(ops node:$exp),
1593                     (EXTRACT_SUBREG $exp, sub_f32)>;
1594
1595// Zero out subregisters.
1596def zero_i32 : OutPatFrag<(ops node:$expr),
1597                          (ANDrm $expr, 32)>;
1598def zero_f32 : OutPatFrag<(ops node:$expr),
1599                          (ANDrm $expr, !add(32, 64))>;
1600
1601// Small immediates.
1602def : Pat<(i32 simm7:$val), (l2i (ORim (LO7 $val), 0))>;
1603def : Pat<(i64 simm7:$val), (ORim (LO7 $val), 0)>;
1604// Medium immediates.
1605def : Pat<(i32 simm32:$val), (l2i (LEAzii 0, 0, (LO32 $val)))>;
1606def : Pat<(i64 simm32:$val), (LEAzii 0, 0, (LO32 $val))>;
1607def : Pat<(i64 uimm32:$val), (zero_f32 (LEAzii 0, 0, (LO32 $val)))>;
1608// Arbitrary immediates.
1609def : Pat<(i64 lozero:$val),
1610          (LEASLzii 0, 0, (HI32 imm:$val))>;
1611def : Pat<(i64 lomsbzero:$val),
1612          (LEASLrii (LEAzii 0, 0, (LO32 imm:$val)), 0, (HI32 imm:$val))>;
1613def : Pat<(i64 imm:$val),
1614          (LEASLrii (ANDrm (LEAzii 0, 0, (LO32 imm:$val)), !add(32, 64)), 0,
1615                    (HI32 imm:$val))>;
1616
1617// LEA patterns
1618def lea_add : PatFrags<(ops node:$base, node:$idx, node:$disp),
1619                       [(add (add node:$base, node:$idx), node:$disp),
1620                        (add (add node:$base, node:$disp), node:$idx),
1621                        (add node:$base, (add $idx, $disp))]>;
1622def : Pat<(lea_add I64:$base, simm7:$idx, simm32:$disp),
1623          (LEArii $base, (LO7 $idx), (LO32 $disp))>;
1624def : Pat<(lea_add I64:$base, I64:$idx, simm32:$disp),
1625          (LEArri $base, $idx, (LO32 $disp))>;
1626def : Pat<(lea_add I64:$base, simm7:$idx, lozero:$disp),
1627          (LEASLrii $base, (LO7 $idx), (HI32 $disp))>;
1628def : Pat<(lea_add I64:$base, I64:$idx, lozero:$disp),
1629          (LEASLrri $base, $idx, (HI32 $disp))>;
1630
1631// Address calculation patterns and optimizations
1632//
1633// Generate following instructions:
1634//   1. LEA %reg, label@LO32
1635//      AND %reg, %reg, (32)0
1636//   2. LEASL %reg, label@HI32
1637//   3. (LEA %reg, label@LO32)
1638//      (AND %reg, %reg, (32)0)
1639//      LEASL %reg, label@HI32(, %reg)
1640//   4. (LEA %reg, label@LO32)
1641//      (AND %reg, %reg, (32)0)
1642//      LEASL %reg, label@HI32(%reg, %got)
1643//
1644def velo_only : OutPatFrag<(ops node:$lo),
1645                           (ANDrm (LEAzii 0, 0, $lo), !add(32, 64))>;
1646def vehi_only : OutPatFrag<(ops node:$hi),
1647                           (LEASLzii 0, 0, $hi)>;
1648def vehi_lo : OutPatFrag<(ops node:$hi, node:$lo),
1649                         (LEASLrii $lo, 0, $hi)>;
1650def vehi_lo_imm : OutPatFrag<(ops node:$hi, node:$lo, node:$idx),
1651                             (LEASLrii $lo, $idx, $hi)>;
1652def vehi_baselo : OutPatFrag<(ops node:$base, node:$hi, node:$lo),
1653                             (LEASLrri $base, $lo, $hi)>;
1654foreach type = [ "tblockaddress", "tconstpool", "texternalsym", "tglobaladdr",
1655                 "tglobaltlsaddr", "tjumptable" ] in {
1656  def : Pat<(VElo !cast<SDNode>(type):$lo), (velo_only $lo)>;
1657  def : Pat<(VEhi !cast<SDNode>(type):$hi), (vehi_only $hi)>;
1658  def : Pat<(add (VEhi !cast<SDNode>(type):$hi), I64:$lo), (vehi_lo $hi, $lo)>;
1659  def : Pat<(add (add (VEhi !cast<SDNode>(type):$hi), I64:$lo), simm7:$val),
1660            (vehi_lo_imm $hi, $lo, (LO7 $val))>;
1661  def : Pat<(add I64:$base, (add (VEhi !cast<SDNode>(type):$hi), I64:$lo)),
1662            (vehi_baselo $base, $hi, $lo)>;
1663}
1664
1665// floating point
1666def : Pat<(f32 fpimm:$val),
1667          (EXTRACT_SUBREG (LEASLzii 0, 0, (HIFP32 $val)), sub_f32)>;
1668def : Pat<(f64 fplozero:$val),
1669          (LEASLzii 0, 0, (HIFP32 $val))>;
1670def : Pat<(f64 fplomsbzero:$val),
1671          (LEASLrii (LEAzii 0, 0, (LOFP32 $val)), 0, (HIFP32 $val))>;
1672def : Pat<(f64 fpimm:$val),
1673          (LEASLrii (ANDrm (LEAzii 0, 0, (LOFP32 $val)), !add(32, 64)), 0,
1674                    (HIFP32 $val))>;
1675
1676// The same integer registers are used for i32 and i64 values.
1677// When registers hold i32 values, the high bits are unused.
1678
1679// TODO Use standard expansion for shift-based lowering of sext_inreg
1680
1681// Cast to i1
1682def : Pat<(sext_inreg I32:$src, i1),
1683          (SRAWSXri (SLAWSXri $src, 31), 31)>;
1684def : Pat<(sext_inreg I64:$src, i1),
1685          (SRALri (SLLri $src, 63), 63)>;
1686
1687// Cast to i8
1688def : Pat<(sext_inreg I32:$src, i8),
1689          (SRAWSXri (SLAWSXri $src, 24), 24)>;
1690def : Pat<(sext_inreg I64:$src, i8),
1691          (SRALri (SLLri $src, 56), 56)>;
1692def : Pat<(sext_inreg (i32 (trunc i64:$src)), i8),
1693          (EXTRACT_SUBREG (SRALri (SLLri $src, 56), 56), sub_i32)>;
1694def : Pat<(i32 (and (trunc i64:$src), 0xff)),
1695          (EXTRACT_SUBREG (ANDrm $src, !add(56, 64)), sub_i32)>;
1696
1697// Cast to i16
1698def : Pat<(sext_inreg I32:$src, i16),
1699          (SRAWSXri (SLAWSXri $src, 16), 16)>;
1700def : Pat<(sext_inreg I64:$src, i16),
1701          (SRALri (SLLri $src, 48), 48)>;
1702def : Pat<(sext_inreg (i32 (trunc i64:$src)), i16),
1703          (EXTRACT_SUBREG (SRALri (SLLri $src, 48), 48), sub_i32)>;
1704def : Pat<(i32 (and (trunc i64:$src), 0xffff)),
1705          (EXTRACT_SUBREG (ANDrm $src, !add(48, 64)), sub_i32)>;
1706
1707// Cast to i32
1708def : Pat<(i32 (trunc i64:$src)), (l2i (zero_f32 $src))>;
1709def : Pat<(i32 (fp_to_sint f32:$src)), (CVTWSSXr RD_RZ, $src)>;
1710def : Pat<(i32 (fp_to_sint f64:$src)), (CVTWDSXr RD_RZ, $src)>;
1711def : Pat<(i32 (fp_to_sint f128:$src)), (CVTWDSXr RD_RZ, (CVTDQr $src))>;
1712
1713// Cast to i64
1714def : Pat<(sext_inreg i64:$src, i32), (i2l (ADDSWSXrm (l2i $src), 0))>;
1715def : Pat<(i64 (sext i32:$src)), (i2l (ADDSWSXrm $src, 0))>;
1716def : Pat<(i64 (zext i32:$src)), (i2l (ADDSWZXrm $src, 0))>;
1717def : Pat<(i64 (anyext i32:$sy)), (i2l $sy)>;
1718def : Pat<(i64 (fp_to_sint f32:$src)), (CVTLDr RD_RZ, (CVTDSr $src))>;
1719def : Pat<(i64 (fp_to_sint f64:$src)), (CVTLDr RD_RZ, $src)>;
1720def : Pat<(i64 (fp_to_sint f128:$src)), (CVTLDr RD_RZ, (CVTDQr $src))>;
1721
1722// Cast to f32
1723def : Pat<(f32 (sint_to_fp i64:$src)), (CVTSDr (CVTDLr i64:$src))>;
1724
1725// Cast to f128
1726def : Pat<(f128 (sint_to_fp i32:$src)), (CVTQDr (CVTDWr $src))>;
1727def : Pat<(f128 (sint_to_fp i64:$src)), (CVTQDr (CVTDLr $src))>;
1728
1729
1730// extload, sextload and zextload stuff
1731multiclass EXT64m<SDPatternOperator from,
1732                  RM torri,
1733                  RM torii,
1734                  RM tozri,
1735                  RM tozii> {
1736  def : Pat<(i64 (from ADDRrri:$addr)),
1737            (i2l (torri MEMrri:$addr))>;
1738  def : Pat<(i64 (from ADDRrii:$addr)),
1739            (i2l (torii MEMrii:$addr))>;
1740  def : Pat<(i64 (from ADDRzri:$addr)),
1741            (i2l (tozri MEMzri:$addr))>;
1742  def : Pat<(i64 (from ADDRzii:$addr)),
1743            (i2l (tozii MEMzii:$addr))>;
1744}
1745defm : EXT64m<sextloadi8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>;
1746defm : EXT64m<zextloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
1747defm : EXT64m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
1748defm : EXT64m<sextloadi16, LD2BSXrri, LD2BSXrii, LD2BSXzri, LD2BSXzii>;
1749defm : EXT64m<zextloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
1750defm : EXT64m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
1751defm : EXT64m<sextloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
1752defm : EXT64m<zextloadi32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
1753defm : EXT64m<extloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
1754
1755// anyextload
1756multiclass EXT32m<SDPatternOperator from,
1757                  RM torri,
1758                  RM torii,
1759                  RM tozri,
1760                  RM tozii> {
1761  def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>;
1762  def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>;
1763  def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>;
1764  def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>;
1765}
1766defm : EXT32m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
1767defm : EXT32m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
1768
1769// truncstore
1770multiclass TRUNC64m<SDPatternOperator from,
1771                    RM torri,
1772                    RM torii,
1773                    RM tozri,
1774                    RM tozii> {
1775  def : Pat<(from i64:$src, ADDRrri:$addr),
1776            (torri MEMrri:$addr, (l2i $src))>;
1777  def : Pat<(from i64:$src, ADDRrii:$addr),
1778            (torii MEMrii:$addr, (l2i $src))>;
1779  def : Pat<(from i64:$src, ADDRzri:$addr),
1780            (tozri MEMzri:$addr, (l2i $src))>;
1781  def : Pat<(from i64:$src, ADDRzii:$addr),
1782            (tozii MEMzii:$addr, (l2i $src))>;
1783}
1784defm : TRUNC64m<truncstorei8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
1785defm : TRUNC64m<truncstorei16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
1786defm : TRUNC64m<truncstorei32, STLrri, STLrii, STLzri, ST1Bzii>;
1787
1788// Atomic loads (FIXME: replace iAny with the correct integer VT:)
1789multiclass ATMLDm<SDPatternOperator from,
1790                  RM torri, RM torii,
1791                  RM tozri, RM tozii> {
1792  def : Pat<(iAny (from ADDRrri:$addr)), (torri MEMrri:$addr)>;
1793  def : Pat<(iAny (from ADDRrii:$addr)), (torii MEMrii:$addr)>;
1794  def : Pat<(iAny (from ADDRzri:$addr)), (tozri MEMzri:$addr)>;
1795  def : Pat<(iAny (from ADDRzii:$addr)), (tozii MEMzii:$addr)>;
1796}
1797defm : ATMLDm<atomic_load_8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
1798defm : ATMLDm<atomic_load_16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
1799defm : ATMLDm<atomic_load_32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
1800defm : ATMLDm<atomic_load_64, LDrri, LDrii, LDzri, LDzii>;
1801
1802// Optimized atomic loads with sext
1803multiclass SXATMLDm<SDPatternOperator from, ValueType TY,
1804                    RM torri, RM torii,
1805                    RM tozri, RM tozii> {
1806  def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRrri:$addr))), TY)),
1807            (i2l (torri MEMrri:$addr))>;
1808  def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRrii:$addr))), TY)),
1809            (i2l (torii MEMrii:$addr))>;
1810  def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRzri:$addr))), TY)),
1811            (i2l (tozri MEMzri:$addr))>;
1812  def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRzii:$addr))), TY)),
1813            (i2l (tozii MEMzii:$addr))>;
1814}
1815multiclass SXATMLD32m<SDPatternOperator from,
1816                      RM torri, RM torii,
1817                      RM tozri, RM tozii> {
1818  def : Pat<(i64 (sext (from ADDRrri:$addr))),
1819            (i2l (torri MEMrri:$addr))>;
1820  def : Pat<(i64 (sext (from ADDRrii:$addr))),
1821            (i2l (torii MEMrii:$addr))>;
1822  def : Pat<(i64 (sext (from ADDRzri:$addr))),
1823            (i2l (tozri MEMzri:$addr))>;
1824  def : Pat<(i64 (sext (from ADDRzii:$addr))),
1825            (i2l (tozii MEMzii:$addr))>;
1826}
1827defm : SXATMLDm<atomic_load_8, i8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>;
1828defm : SXATMLDm<atomic_load_16, i16, LD2BSXrri, LD2BSXrii, LD2BSXzri,
1829                LD2BSXzii>;
1830defm : SXATMLD32m<atomic_load_32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
1831
1832// Optimized atomic loads with zext
1833multiclass ZXATMLDm<SDPatternOperator from, int VAL,
1834                    RM torri, RM torii,
1835                    RM tozri, RM tozii> {
1836  def : Pat<(i64 (and (anyext (from ADDRrri:$addr)), VAL)),
1837            (i2l (torri MEMrri:$addr))>;
1838  def : Pat<(i64 (and (anyext (from ADDRrii:$addr)), VAL)),
1839            (i2l (torii MEMrii:$addr))>;
1840  def : Pat<(i64 (and (anyext (from ADDRzri:$addr)), VAL)),
1841            (i2l (tozri MEMzri:$addr))>;
1842  def : Pat<(i64 (and (anyext (from ADDRzii:$addr)), VAL)),
1843            (i2l (tozii MEMzii:$addr))>;
1844}
1845multiclass ZXATMLD32m<SDPatternOperator from,
1846                      RM torri, RM torii,
1847                      RM tozri, RM tozii> {
1848  def : Pat<(i64 (zext (from ADDRrri:$addr))),
1849            (i2l (torri MEMrri:$addr))>;
1850  def : Pat<(i64 (zext (from ADDRrii:$addr))),
1851            (i2l (torii MEMrii:$addr))>;
1852  def : Pat<(i64 (zext (from ADDRzri:$addr))),
1853            (i2l (tozri MEMzri:$addr))>;
1854  def : Pat<(i64 (zext (from ADDRzii:$addr))),
1855            (i2l (tozii MEMzii:$addr))>;
1856}
1857defm : ZXATMLDm<atomic_load_8, 0xFF, LD1BZXrri, LD1BZXrii, LD1BZXzri,
1858                LD1BZXzii>;
1859defm : ZXATMLDm<atomic_load_16, 0xFFFF, LD2BZXrri, LD2BZXrii, LD2BZXzri,
1860                LD2BZXzii>;
1861defm : ZXATMLD32m<atomic_load_32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
1862
1863// Atomic stores
1864multiclass ATMSTm<SDPatternOperator from, ValueType ty,
1865                  RM torri, RM torii,
1866                  RM tozri, RM tozii> {
1867  def : Pat<(from ty:$src, ADDRrri:$addr), (torri MEMrri:$addr, $src)>;
1868  def : Pat<(from ty:$src, ADDRrii:$addr), (torii MEMrii:$addr, $src)>;
1869  def : Pat<(from ty:$src, ADDRzri:$addr), (tozri MEMzri:$addr, $src)>;
1870  def : Pat<(from ty:$src, ADDRzii:$addr), (tozii MEMzii:$addr, $src)>;
1871}
1872defm : ATMSTm<atomic_store_8, i32, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
1873defm : ATMSTm<atomic_store_16, i32, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
1874defm : ATMSTm<atomic_store_32, i32, STLrri, STLrii, STLzri, STLzii>;
1875defm : ATMSTm<atomic_store_64, i64, STrri, STrii, STzri, STzii>;
1876
1877// Optimized atomic stores with truncate
1878multiclass TRATMSTm<SDPatternOperator from,
1879                  RM torri,
1880                  RM torii,
1881                  RM tozri,
1882                  RM tozii> {
1883  def : Pat<(from (i32 (trunc i64:$src)), ADDRrri:$addr),
1884            (torri MEMrri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
1885  def : Pat<(from (i32 (trunc i64:$src)), ADDRrii:$addr),
1886            (torii MEMrii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
1887  def : Pat<(from (i32 (trunc i64:$src)), ADDRzri:$addr),
1888            (tozri MEMzri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
1889  def : Pat<(from (i32 (trunc i64:$src)), ADDRzii:$addr),
1890            (tozii MEMzii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
1891}
1892defm : TRATMSTm<atomic_store_8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
1893defm : TRATMSTm<atomic_store_16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
1894defm : TRATMSTm<atomic_store_32, STLrri, STLrii, STLzri, STLzii>;
1895
1896// Atomic swaps
1897def : Pat<(i32 (ts1am i64:$src, i32:$flag, i32:$new)),
1898          (TS1AMWrir $src, 0, $flag, $new)>;
1899def : Pat<(i32 (atomic_swap_i32 ADDRri:$src, i32:$new)),
1900          (TS1AMWrii MEMriRRM:$src, 15, $new)>;
1901def : Pat<(i64 (atomic_swap_i64 ADDRri:$src, i64:$new)),
1902          (TS1AMLrir MEMriRRM:$src, (LEAzii 0, 0, 255), i64:$new)>;
1903
1904//===----------------------------------------------------------------------===//
1905// SJLJ Exception handling patterns
1906//===----------------------------------------------------------------------===//
1907
1908let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
1909    usesCustomInserter = 1 in {
1910  let isTerminator = 1 in
1911  def EH_SjLj_LongJmp : Pseudo<(outs), (ins I64:$buf),
1912                               "# EH_SJLJ_LONGJMP",
1913                               [(VEeh_sjlj_longjmp I64:$buf)]>;
1914
1915  def EH_SjLj_SetJmp  : Pseudo<(outs I32:$dst), (ins I64:$buf),
1916                               "# EH_SJLJ_SETJMP",
1917                               [(set I32:$dst, (VEeh_sjlj_setjmp I64:$buf))]>;
1918
1919  def EH_SjLj_Setup_Dispatch : Pseudo<(outs), (ins), "# EH_SJLJ_SETUP_DISPATCH",
1920                                      [(VEeh_sjlj_setup_dispatch)]>;
1921}
1922
1923let isTerminator = 1, isBranch = 1, isCodeGenOnly = 1 in
1924  def EH_SjLj_Setup : Pseudo<(outs), (ins brtarget32:$dst),
1925                             "# EH_SJlJ_SETUP $dst">;
1926
1927//===----------------------------------------------------------------------===//
1928// Branch related patterns
1929//===----------------------------------------------------------------------===//
1930
1931// Branches
1932def : Pat<(br bb:$addr), (BRCFLa bb:$addr)>;
1933
1934// brcc
1935// integer brcc
1936multiclass BRCCIm<ValueType ty, CF BrOpNode1,
1937                 CF BrOpNode2,
1938                 RR CmpOpNode1,
1939                 RR CmpOpNode2> {
1940  def : Pat<(brcc CCSIOp:$cond, ty:$l, simm7:$r, bb:$addr),
1941            (BrOpNode2 (icond2ccSwap $cond), (LO7 $r), $l, bb:$addr)>;
1942  def : Pat<(brcc CCSIOp:$cond, ty:$l, ty:$r, bb:$addr),
1943            (BrOpNode1 (icond2cc $cond), $l, $r, bb:$addr)>;
1944  def : Pat<(brcc CCUIOp:$cond, ty:$l, simm7:$r, bb:$addr),
1945            (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode2 (LO7 $r), $l),
1946                       bb:$addr)>;
1947  def : Pat<(brcc CCUIOp:$cond, ty:$l, ty:$r, bb:$addr),
1948            (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode1 $r, $l), bb:$addr)>;
1949}
1950defm : BRCCIm<i32, BRCFWrr, BRCFWir, CMPUWrr, CMPUWir>;
1951defm : BRCCIm<i64, BRCFLrr, BRCFLir, CMPULrr, CMPULir>;
1952
1953// floating point brcc
1954multiclass BRCCFm<ValueType ty, CF BrOpNode1, CF BrOpNode2> {
1955  def : Pat<(brcc cond:$cond, ty:$l, simm7fp:$r, bb:$addr),
1956            (BrOpNode2 (fcond2ccSwap $cond), (LO7FP $r), $l, bb:$addr)>;
1957  def : Pat<(brcc cond:$cond, ty:$l, ty:$r, bb:$addr),
1958            (BrOpNode1 (fcond2cc $cond), $l, $r, bb:$addr)>;
1959}
1960defm : BRCCFm<f32, BRCFSrr, BRCFSir>;
1961defm : BRCCFm<f64, BRCFDrr, BRCFDir>;
1962def : Pat<(brcc cond:$cond, f128:$l, f128:$r, bb:$addr),
1963          (BRCFDir (fcond2cc $cond), 0, (FCMPQrr $r, $l), bb:$addr)>;
1964
1965//===----------------------------------------------------------------------===//
1966// Pseudo Instructions
1967//===----------------------------------------------------------------------===//
1968
1969// GETGOT for PIC
1970let Defs = [SX15 /* %got */, SX16 /* %plt */], hasSideEffects = 0 in {
1971  def GETGOT : Pseudo<(outs getGOT:$getpcseq), (ins), "$getpcseq">;
1972}
1973
1974// GETFUNPLT for PIC
1975let hasSideEffects = 0 in
1976def GETFUNPLT : Pseudo<(outs I64:$dst), (ins i64imm:$addr),
1977                       "$dst, $addr",
1978                       [(set iPTR:$dst, (GetFunPLT tglobaladdr:$addr))] >;
1979
1980def : Pat<(GetFunPLT tglobaladdr:$dst),
1981          (GETFUNPLT tglobaladdr:$dst)>;
1982def : Pat<(GetFunPLT texternalsym:$dst),
1983          (GETFUNPLT texternalsym:$dst)>;
1984
1985// GETTLSADDR for TLS
1986let Defs = [SX0, SX10, SX12], hasSideEffects = 0 in
1987def GETTLSADDR : Pseudo<(outs), (ins i64imm:$addr),
1988                        "# GETTLSADDR $addr",
1989                        [(GetTLSAddr tglobaltlsaddr:$addr)] >;
1990
1991def : Pat<(GetTLSAddr tglobaltlsaddr:$dst),
1992          (GETTLSADDR tglobaltlsaddr:$dst)>;
1993
1994let Defs = [SX11], Uses = [SX11], hasSideEffects = 0 in {
1995def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt, i64imm:$amt2),
1996                              "# ADJCALLSTACKDOWN $amt, $amt2",
1997                              [(callseq_start timm:$amt, timm:$amt2)]>;
1998def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
1999                            "# ADJCALLSTACKUP $amt1",
2000                            [(callseq_end timm:$amt1, timm:$amt2)]>;
2001}
2002
2003let Defs = [SX8], Uses = [SX8, SX11], hasSideEffects = 0 in
2004def EXTEND_STACK : Pseudo<(outs), (ins),
2005                          "# EXTEND STACK",
2006                          []>;
2007let  hasSideEffects = 0 in
2008def EXTEND_STACK_GUARD : Pseudo<(outs), (ins),
2009                                "# EXTEND STACK GUARD",
2010                                []>;
2011
2012// Dynamic stack allocation yields a __llvm_grow_stack for VE targets.
2013// These calls are needed to probe the stack when allocating more over
2014// %s8 (%sl - stack limit).
2015
2016let Uses = [SX11], hasSideEffects = 1 in
2017def GETSTACKTOP : Pseudo<(outs I64:$dst), (ins),
2018                         "# GET STACK TOP",
2019                         [(set iPTR:$dst, (GetStackTop))]>;
2020
2021//===----------------------------------------------------------------------===//
2022// Other patterns
2023//===----------------------------------------------------------------------===//
2024
2025// SETCC pattern matches
2026//
2027//   CMP  %tmp, lhs, rhs     ; compare lhs and rhs
2028//   or   %res, 0, (0)1      ; initialize by 0
2029//   CMOV %res, (63)0, %tmp  ; set 1 if %tmp is true
2030
2031class setccrr<Instruction INSN> :
2032    OutPatFrag<(ops node:$cond, node:$comp),
2033               (EXTRACT_SUBREG
2034                   (INSN $cond, $comp,
2035                         !add(63, 64), // means (63)0 == 1
2036                         (ORim 0, 0)), sub_i32)>;
2037
2038def : Pat<(i32 (setcc i32:$l, i32:$r, CCSIOp:$cond)),
2039          (setccrr<CMOVWrm> (icond2cc $cond), (CMPSWSXrr $l, $r))>;
2040def : Pat<(i32 (setcc i32:$l, i32:$r, CCUIOp:$cond)),
2041          (setccrr<CMOVWrm> (icond2cc $cond), (CMPUWrr $l, $r))>;
2042def : Pat<(i32 (setcc i64:$l, i64:$r, CCSIOp:$cond)),
2043          (setccrr<CMOVLrm> (icond2cc $cond), (CMPSLrr $l, $r))>;
2044def : Pat<(i32 (setcc i64:$l, i64:$r, CCUIOp:$cond)),
2045          (setccrr<CMOVLrm> (icond2cc $cond), (CMPULrr $l, $r))>;
2046def : Pat<(i32 (setcc f32:$l, f32:$r, cond:$cond)),
2047          (setccrr<CMOVSrm> (fcond2cc $cond), (FCMPSrr $l, $r))>;
2048def : Pat<(i32 (setcc f64:$l, f64:$r, cond:$cond)),
2049          (setccrr<CMOVDrm> (fcond2cc $cond), (FCMPDrr $l, $r))>;
2050def : Pat<(i32 (setcc f128:$l, f128:$r, cond:$cond)),
2051          (setccrr<CMOVDrm> (fcond2cc $cond), (FCMPQrr $l, $r))>;
2052
2053// Generic CMOV pattern matches
2054//   CMOV accepts i64 $t, $f, and result.  So, we extend it to support
2055//   i32/f32/f64/f128 $t, $f, and result.
2056
2057// CMOV for i32
2058multiclass CMOVI32m<ValueType TY, string Insn> {
2059  def : Pat<(i32 (cmov TY:$cmp, i32:$t, i32:$f, (i32 CCOp:$cond))),
2060            (EXTRACT_SUBREG
2061                (!cast<Instruction>(Insn#"rr") (CCOP $cond), $cmp,
2062                           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
2063                           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
2064                sub_i32)>;
2065  def : Pat<(i32 (cmov TY:$cmp, (i32 mimm:$t), i32:$f, (i32 CCOp:$cond))),
2066            (EXTRACT_SUBREG
2067                (!cast<Instruction>(Insn#"rm") (CCOP $cond), $cmp,
2068                           (MIMM $t),
2069                           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
2070                sub_i32)>;
2071}
2072defm : CMOVI32m<i64, "CMOVL">;
2073defm : CMOVI32m<i32, "CMOVW">;
2074defm : CMOVI32m<f64, "CMOVD">;
2075defm : CMOVI32m<f32, "CMOVS">;
2076
2077// CMOV for f32
2078multiclass CMOVF32m<ValueType TY, string Insn> {
2079  def : Pat<(f32 (cmov TY:$cmp, f32:$t, f32:$f, (i32 CCOp:$cond))),
2080            (EXTRACT_SUBREG
2081                (!cast<Instruction>(Insn#"rr")
2082                    (CCOP $cond), $cmp,
2083                    (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_f32),
2084                    (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)),
2085                sub_f32)>;
2086  def : Pat<(f32 (cmov TY:$cmp, (f32 mimmfp:$t), f32:$f, (i32 CCOp:$cond))),
2087            (EXTRACT_SUBREG
2088                (!cast<Instruction>(Insn#"rm")
2089                    (CCOP $cond), $cmp, (MIMMFP $t),
2090                    (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)),
2091                sub_f32)>;
2092}
2093defm : CMOVF32m<i64, "CMOVL">;
2094defm : CMOVF32m<i32, "CMOVW">;
2095defm : CMOVF32m<f64, "CMOVD">;
2096defm : CMOVF32m<f32, "CMOVS">;
2097
2098// CMOV for f64
2099multiclass CMOVF64m<ValueType TY, string Insn> {
2100  def : Pat<(f64 (cmov TY:$cmp, f64:$t, f64:$f, (i32 CCOp:$cond))),
2101            (!cast<Instruction>(Insn#"rr") (CCOP $cond), $cmp, $t, $f)>;
2102  def : Pat<(f64 (cmov TY:$cmp, (f64 mimmfp:$t), f64:$f, (i32 CCOp:$cond))),
2103            (!cast<Instruction>(Insn#"rm") (CCOP $cond), $cmp, (MIMMFP $t),
2104                                           $f)>;
2105}
2106defm : CMOVF64m<i64, "CMOVL">;
2107defm : CMOVF64m<i32, "CMOVW">;
2108defm : CMOVF64m<f64, "CMOVD">;
2109defm : CMOVF64m<f32, "CMOVS">;
2110
2111// CMOV for f128
2112multiclass CMOVF128m<ValueType TY, string Insn> {
2113  def : Pat<(f128 (cmov TY:$cmp, f128:$t, f128:$f, (i32 CCOp:$cond))),
2114            (INSERT_SUBREG
2115              (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
2116                (!cast<Instruction>(Insn#"rr") (CCOP $cond), $cmp,
2117                  (EXTRACT_SUBREG $t, sub_odd),
2118                  (EXTRACT_SUBREG $f, sub_odd)), sub_odd),
2119              (!cast<Instruction>(Insn#"rr") (CCOP $cond), $cmp,
2120                (EXTRACT_SUBREG $t, sub_even),
2121                (EXTRACT_SUBREG $f, sub_even)), sub_even)>;
2122}
2123defm : CMOVF128m<i64, "CMOVL">;
2124defm : CMOVF128m<i32, "CMOVW">;
2125defm : CMOVF128m<f64, "CMOVD">;
2126defm : CMOVF128m<f32, "CMOVS">;
2127
2128// bitconvert
2129def : Pat<(f64 (bitconvert i64:$src)), (COPY_TO_REGCLASS $src, I64)>;
2130def : Pat<(i64 (bitconvert f64:$src)), (COPY_TO_REGCLASS $src, I64)>;
2131
2132def : Pat<(i32 (bitconvert f32:$op)), (l2i (SRALri (f2l $op), 32))>;
2133def : Pat<(f32 (bitconvert i32:$op)), (l2f (SLLri (i2l $op), 32))>;
2134
2135//===----------------------------------------------------------------------===//
2136// Vector Instruction Pattern Stuff
2137//===----------------------------------------------------------------------===//
2138
2139// Custom intermediate ISDs.
2140class IsVLVT<int OpIdx> : SDTCisVT<OpIdx,i32>;
2141def vec_broadcast       : SDNode<"VEISD::VEC_BROADCAST", SDTypeProfile<1, 2,
2142                                 [SDTCisVec<0>, IsVLVT<2>]>>;
2143
2144///// Packed mode Support /////
2145// unpack the lo part of this vector
2146def vec_unpack_lo   : SDNode<"VEISD::VEC_UNPACK_LO", SDTypeProfile<1, 2,
2147                             [SDTCisVec<0>, SDTCisVec<1>, IsVLVT<2>]>>;
2148// unpack the hipart of this vector
2149def vec_unpack_hi   : SDNode<"VEISD::VEC_UNPACK_HI", SDTypeProfile<1, 2,
2150                             [SDTCisVec<0>, SDTCisVec<1>, IsVLVT<2>]>>;
2151// re-pack v256i32, v256f32 back into tone v512.32
2152def vec_pack        : SDNode<"VEISD::VEC_PACK", SDTypeProfile<1, 3,
2153                             [SDTCisVec<0>, SDTCisVec<1>, SDTCisVec<2>,
2154                              SDTCisSameNumEltsAs<1,2>, IsVLVT<3>]>>;
2155
2156// replicate lower 32bit to upper 32bit (f32 scalar replication).
2157def repl_f32            : SDNode<"VEISD::REPL_F32",
2158                            SDTypeProfile<1, 1,
2159                              [SDTCisInt<0>, SDTCisFP<1>]>>;
2160// replicate upper 32bit to lower 32 bit (i32 scalar replication).
2161def repl_i32            : SDNode<"VEISD::REPL_I32",
2162                            SDTypeProfile<1, 1,
2163                              [SDTCisInt<0>, SDTCisInt<1>]>>;
2164
2165
2166// Whether this is an all-true mask (assuming undef-bits above VL are all-true).
2167def true_mask           : PatLeaf<
2168                            (vec_broadcast (i32 nonzero), (i32 srcvalue))>;
2169// Match any broadcast (ignoring VL).
2170def any_broadcast       : PatFrag<(ops node:$sx),
2171                                  (vec_broadcast node:$sx, (i32 srcvalue))>;
2172
2173// Vector instructions.
2174include "VEInstrVec.td"
2175
2176// The vevlintrin
2177include "VEInstrIntrinsicVL.td"
2178
2179// Patterns and intermediate SD nodes (VEC_*).
2180include "VEInstrPatternsVec.td"
2181
2182// Patterns and intermediate SD nodes (VVP_*).
2183include "VVPInstrPatternsVec.td"
2184