xref: /freebsd/contrib/llvm-project/llvm/lib/Target/VE/VEISelLowering.cpp (revision e9b261f297cac146f0c9f895c16debe1c4cf8978)
1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that VE uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "VEISelLowering.h"
15 #include "MCTargetDesc/VEMCExpr.h"
16 #include "VECustomDAG.h"
17 #include "VEInstrBuilder.h"
18 #include "VEMachineFunctionInfo.h"
19 #include "VERegisterInfo.h"
20 #include "VETargetMachine.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "ve-lower"
40 
41 //===----------------------------------------------------------------------===//
42 // Calling Convention Implementation
43 //===----------------------------------------------------------------------===//
44 
45 #include "VEGenCallingConv.inc"
46 
47 CCAssignFn *getReturnCC(CallingConv::ID CallConv) {
48   switch (CallConv) {
49   default:
50     return RetCC_VE_C;
51   case CallingConv::Fast:
52     return RetCC_VE_Fast;
53   }
54 }
55 
56 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) {
57   if (IsVarArg)
58     return CC_VE2;
59   switch (CallConv) {
60   default:
61     return CC_VE_C;
62   case CallingConv::Fast:
63     return CC_VE_Fast;
64   }
65 }
66 
67 bool VETargetLowering::CanLowerReturn(
68     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
69     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
70   CCAssignFn *RetCC = getReturnCC(CallConv);
71   SmallVector<CCValAssign, 16> RVLocs;
72   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
73   return CCInfo.CheckReturn(Outs, RetCC);
74 }
75 
76 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64,
77                                    MVT::v256f32, MVT::v512f32, MVT::v256f64};
78 
79 static const MVT AllMaskVTs[] = {MVT::v256i1, MVT::v512i1};
80 
81 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32};
82 
83 void VETargetLowering::initRegisterClasses() {
84   // Set up the register classes.
85   addRegisterClass(MVT::i32, &VE::I32RegClass);
86   addRegisterClass(MVT::i64, &VE::I64RegClass);
87   addRegisterClass(MVT::f32, &VE::F32RegClass);
88   addRegisterClass(MVT::f64, &VE::I64RegClass);
89   addRegisterClass(MVT::f128, &VE::F128RegClass);
90 
91   if (Subtarget->enableVPU()) {
92     for (MVT VecVT : AllVectorVTs)
93       addRegisterClass(VecVT, &VE::V64RegClass);
94     addRegisterClass(MVT::v256i1, &VE::VMRegClass);
95     addRegisterClass(MVT::v512i1, &VE::VM512RegClass);
96   }
97 }
98 
99 void VETargetLowering::initSPUActions() {
100   const auto &TM = getTargetMachine();
101   /// Load & Store {
102 
103   // VE doesn't have i1 sign extending load.
104   for (MVT VT : MVT::integer_valuetypes()) {
105     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
106     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
107     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
108     setTruncStoreAction(VT, MVT::i1, Expand);
109   }
110 
111   // VE doesn't have floating point extload/truncstore, so expand them.
112   for (MVT FPVT : MVT::fp_valuetypes()) {
113     for (MVT OtherFPVT : MVT::fp_valuetypes()) {
114       setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand);
115       setTruncStoreAction(FPVT, OtherFPVT, Expand);
116     }
117   }
118 
119   // VE doesn't have fp128 load/store, so expand them in custom lower.
120   setOperationAction(ISD::LOAD, MVT::f128, Custom);
121   setOperationAction(ISD::STORE, MVT::f128, Custom);
122 
123   /// } Load & Store
124 
125   // Custom legalize address nodes into LO/HI parts.
126   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
127   setOperationAction(ISD::BlockAddress, PtrVT, Custom);
128   setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
129   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
130   setOperationAction(ISD::ConstantPool, PtrVT, Custom);
131   setOperationAction(ISD::JumpTable, PtrVT, Custom);
132 
133   /// VAARG handling {
134   setOperationAction(ISD::VASTART, MVT::Other, Custom);
135   // VAARG needs to be lowered to access with 8 bytes alignment.
136   setOperationAction(ISD::VAARG, MVT::Other, Custom);
137   // Use the default implementation.
138   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
139   setOperationAction(ISD::VAEND, MVT::Other, Expand);
140   /// } VAARG handling
141 
142   /// Stack {
143   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
144   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
145 
146   // Use the default implementation.
147   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
148   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
149   /// } Stack
150 
151   /// Branch {
152 
153   // VE doesn't have BRCOND
154   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
155 
156   // BR_JT is not implemented yet.
157   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
158 
159   /// } Branch
160 
161   /// Int Ops {
162   for (MVT IntVT : {MVT::i32, MVT::i64}) {
163     // VE has no REM or DIVREM operations.
164     setOperationAction(ISD::UREM, IntVT, Expand);
165     setOperationAction(ISD::SREM, IntVT, Expand);
166     setOperationAction(ISD::SDIVREM, IntVT, Expand);
167     setOperationAction(ISD::UDIVREM, IntVT, Expand);
168 
169     // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations.
170     setOperationAction(ISD::SHL_PARTS, IntVT, Expand);
171     setOperationAction(ISD::SRA_PARTS, IntVT, Expand);
172     setOperationAction(ISD::SRL_PARTS, IntVT, Expand);
173 
174     // VE has no MULHU/S or U/SMUL_LOHI operations.
175     // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type.
176     setOperationAction(ISD::MULHU, IntVT, Expand);
177     setOperationAction(ISD::MULHS, IntVT, Expand);
178     setOperationAction(ISD::UMUL_LOHI, IntVT, Expand);
179     setOperationAction(ISD::SMUL_LOHI, IntVT, Expand);
180 
181     // VE has no CTTZ, ROTL, ROTR operations.
182     setOperationAction(ISD::CTTZ, IntVT, Expand);
183     setOperationAction(ISD::ROTL, IntVT, Expand);
184     setOperationAction(ISD::ROTR, IntVT, Expand);
185 
186     // VE has 64 bits instruction which works as i64 BSWAP operation.  This
187     // instruction works fine as i32 BSWAP operation with an additional
188     // parameter.  Use isel patterns to lower BSWAP.
189     setOperationAction(ISD::BSWAP, IntVT, Legal);
190 
191     // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP
192     // operations.  Use isel patterns for i64, promote for i32.
193     LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal;
194     setOperationAction(ISD::BITREVERSE, IntVT, Act);
195     setOperationAction(ISD::CTLZ, IntVT, Act);
196     setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act);
197     setOperationAction(ISD::CTPOP, IntVT, Act);
198 
199     // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations.
200     // Use isel patterns for i64, promote for i32.
201     setOperationAction(ISD::AND, IntVT, Act);
202     setOperationAction(ISD::OR, IntVT, Act);
203     setOperationAction(ISD::XOR, IntVT, Act);
204 
205     // Legal smax and smin
206     setOperationAction(ISD::SMAX, IntVT, Legal);
207     setOperationAction(ISD::SMIN, IntVT, Legal);
208   }
209   /// } Int Ops
210 
211   /// Conversion {
212   // VE doesn't have instructions for fp<->uint, so expand them by llvm
213   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64
214   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64
215   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
216   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217 
218   // fp16 not supported
219   for (MVT FPVT : MVT::fp_valuetypes()) {
220     setOperationAction(ISD::FP16_TO_FP, FPVT, Expand);
221     setOperationAction(ISD::FP_TO_FP16, FPVT, Expand);
222   }
223   /// } Conversion
224 
225   /// Floating-point Ops {
226   /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem,
227   ///       and fcmp.
228 
229   // VE doesn't have following floating point operations.
230   for (MVT VT : MVT::fp_valuetypes()) {
231     setOperationAction(ISD::FNEG, VT, Expand);
232     setOperationAction(ISD::FREM, VT, Expand);
233   }
234 
235   // VE doesn't have fdiv of f128.
236   setOperationAction(ISD::FDIV, MVT::f128, Expand);
237 
238   for (MVT FPVT : {MVT::f32, MVT::f64}) {
239     // f32 and f64 uses ConstantFP.  f128 uses ConstantPool.
240     setOperationAction(ISD::ConstantFP, FPVT, Legal);
241   }
242   /// } Floating-point Ops
243 
244   /// Floating-point math functions {
245 
246   // VE doesn't have following floating point math functions.
247   for (MVT VT : MVT::fp_valuetypes()) {
248     setOperationAction(ISD::FABS, VT, Expand);
249     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
250     setOperationAction(ISD::FCOS, VT, Expand);
251     setOperationAction(ISD::FMA, VT, Expand);
252     setOperationAction(ISD::FPOW, VT, Expand);
253     setOperationAction(ISD::FSIN, VT, Expand);
254     setOperationAction(ISD::FSQRT, VT, Expand);
255   }
256 
257   // VE has single and double FMINNUM and FMAXNUM
258   for (MVT VT : {MVT::f32, MVT::f64}) {
259     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, VT, Legal);
260   }
261 
262   /// } Floating-point math functions
263 
264   /// Atomic instructions {
265 
266   setMaxAtomicSizeInBitsSupported(64);
267   setMinCmpXchgSizeInBits(32);
268   setSupportsUnalignedAtomics(false);
269 
270   // Use custom inserter for ATOMIC_FENCE.
271   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
272 
273   // Other atomic instructions.
274   for (MVT VT : MVT::integer_valuetypes()) {
275     // Support i8/i16 atomic swap.
276     setOperationAction(ISD::ATOMIC_SWAP, VT, Custom);
277 
278     // FIXME: Support "atmam" instructions.
279     setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand);
280     setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand);
281     setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand);
282     setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand);
283 
284     // VE doesn't have follwing instructions.
285     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
286     setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand);
287     setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand);
288     setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
289     setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
290     setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
291     setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
292     setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
293   }
294 
295   /// } Atomic instructions
296 
297   /// SJLJ instructions {
298   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
299   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
300   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
301   if (TM.Options.ExceptionModel == ExceptionHandling::SjLj)
302     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
303   /// } SJLJ instructions
304 
305   // Intrinsic instructions
306   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
307 }
308 
309 void VETargetLowering::initVPUActions() {
310   for (MVT LegalMaskVT : AllMaskVTs)
311     setOperationAction(ISD::BUILD_VECTOR, LegalMaskVT, Custom);
312 
313   for (unsigned Opc : {ISD::AND, ISD::OR, ISD::XOR})
314     setOperationAction(Opc, MVT::v512i1, Custom);
315 
316   for (MVT LegalVecVT : AllVectorVTs) {
317     setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom);
318     setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal);
319     setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal);
320     // Translate all vector instructions with legal element types to VVP_*
321     // nodes.
322     // TODO We will custom-widen into VVP_* nodes in the future. While we are
323     // buildling the infrastructure for this, we only do this for legal vector
324     // VTs.
325 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME)                                     \
326   setOperationAction(ISD::VP_OPC, LegalVecVT, Custom);
327 #define ADD_VVP_OP(VVP_NAME, ISD_NAME)                                         \
328   setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom);
329     setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, LegalVecVT, Custom);
330     setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_STORE, LegalVecVT, Custom);
331 #include "VVPNodes.def"
332   }
333 
334   for (MVT LegalPackedVT : AllPackedVTs) {
335     setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom);
336     setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom);
337   }
338 
339   // vNt32, vNt64 ops (legal element types)
340   for (MVT VT : MVT::vector_valuetypes()) {
341     MVT ElemVT = VT.getVectorElementType();
342     unsigned ElemBits = ElemVT.getScalarSizeInBits();
343     if (ElemBits != 32 && ElemBits != 64)
344       continue;
345 
346     for (unsigned MemOpc : {ISD::MLOAD, ISD::MSTORE, ISD::LOAD, ISD::STORE})
347       setOperationAction(MemOpc, VT, Custom);
348 
349     const ISD::NodeType IntReductionOCs[] = {
350         ISD::VECREDUCE_ADD,  ISD::VECREDUCE_MUL,  ISD::VECREDUCE_AND,
351         ISD::VECREDUCE_OR,   ISD::VECREDUCE_XOR,  ISD::VECREDUCE_SMIN,
352         ISD::VECREDUCE_SMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_UMAX};
353 
354     for (unsigned IntRedOpc : IntReductionOCs)
355       setOperationAction(IntRedOpc, VT, Custom);
356   }
357 
358   // v256i1 and v512i1 ops
359   for (MVT MaskVT : AllMaskVTs) {
360     // Custom lower mask ops
361     setOperationAction(ISD::STORE, MaskVT, Custom);
362     setOperationAction(ISD::LOAD, MaskVT, Custom);
363   }
364 }
365 
366 SDValue
367 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
368                               bool IsVarArg,
369                               const SmallVectorImpl<ISD::OutputArg> &Outs,
370                               const SmallVectorImpl<SDValue> &OutVals,
371                               const SDLoc &DL, SelectionDAG &DAG) const {
372   // CCValAssign - represent the assignment of the return value to locations.
373   SmallVector<CCValAssign, 16> RVLocs;
374 
375   // CCState - Info about the registers and stack slot.
376   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
377                  *DAG.getContext());
378 
379   // Analyze return values.
380   CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv));
381 
382   SDValue Glue;
383   SmallVector<SDValue, 4> RetOps(1, Chain);
384 
385   // Copy the result values into the output registers.
386   for (unsigned i = 0; i != RVLocs.size(); ++i) {
387     CCValAssign &VA = RVLocs[i];
388     assert(VA.isRegLoc() && "Can only return in registers!");
389     assert(!VA.needsCustom() && "Unexpected custom lowering");
390     SDValue OutVal = OutVals[i];
391 
392     // Integer return values must be sign or zero extended by the callee.
393     switch (VA.getLocInfo()) {
394     case CCValAssign::Full:
395       break;
396     case CCValAssign::SExt:
397       OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
398       break;
399     case CCValAssign::ZExt:
400       OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
401       break;
402     case CCValAssign::AExt:
403       OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
404       break;
405     case CCValAssign::BCvt: {
406       // Convert a float return value to i64 with padding.
407       //     63     31   0
408       //    +------+------+
409       //    | float|   0  |
410       //    +------+------+
411       assert(VA.getLocVT() == MVT::i64);
412       assert(VA.getValVT() == MVT::f32);
413       SDValue Undef = SDValue(
414           DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0);
415       SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
416       OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
417                                           MVT::i64, Undef, OutVal, Sub_f32),
418                        0);
419       break;
420     }
421     default:
422       llvm_unreachable("Unknown loc info!");
423     }
424 
425     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue);
426 
427     // Guarantee that all emitted copies are stuck together with flags.
428     Glue = Chain.getValue(1);
429     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
430   }
431 
432   RetOps[0] = Chain; // Update chain.
433 
434   // Add the glue if we have it.
435   if (Glue.getNode())
436     RetOps.push_back(Glue);
437 
438   return DAG.getNode(VEISD::RET_GLUE, DL, MVT::Other, RetOps);
439 }
440 
441 SDValue VETargetLowering::LowerFormalArguments(
442     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
443     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
444     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
445   MachineFunction &MF = DAG.getMachineFunction();
446 
447   // Get the base offset of the incoming arguments stack space.
448   unsigned ArgsBaseOffset = Subtarget->getRsaSize();
449   // Get the size of the preserved arguments area
450   unsigned ArgsPreserved = 64;
451 
452   // Analyze arguments according to CC_VE.
453   SmallVector<CCValAssign, 16> ArgLocs;
454   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
455                  *DAG.getContext());
456   // Allocate the preserved area first.
457   CCInfo.AllocateStack(ArgsPreserved, Align(8));
458   // We already allocated the preserved area, so the stack offset computed
459   // by CC_VE would be correct now.
460   CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false));
461 
462   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
463     CCValAssign &VA = ArgLocs[i];
464     assert(!VA.needsCustom() && "Unexpected custom lowering");
465     if (VA.isRegLoc()) {
466       // This argument is passed in a register.
467       // All integer register arguments are promoted by the caller to i64.
468 
469       // Create a virtual register for the promoted live-in value.
470       Register VReg =
471           MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT()));
472       SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
473 
474       // The caller promoted the argument, so insert an Assert?ext SDNode so we
475       // won't promote the value again in this function.
476       switch (VA.getLocInfo()) {
477       case CCValAssign::SExt:
478         Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
479                           DAG.getValueType(VA.getValVT()));
480         break;
481       case CCValAssign::ZExt:
482         Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
483                           DAG.getValueType(VA.getValVT()));
484         break;
485       case CCValAssign::BCvt: {
486         // Extract a float argument from i64 with padding.
487         //     63     31   0
488         //    +------+------+
489         //    | float|   0  |
490         //    +------+------+
491         assert(VA.getLocVT() == MVT::i64);
492         assert(VA.getValVT() == MVT::f32);
493         SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
494         Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
495                                          MVT::f32, Arg, Sub_f32),
496                       0);
497         break;
498       }
499       default:
500         break;
501       }
502 
503       // Truncate the register down to the argument type.
504       if (VA.isExtInLoc())
505         Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
506 
507       InVals.push_back(Arg);
508       continue;
509     }
510 
511     // The registers are exhausted. This argument was passed on the stack.
512     assert(VA.isMemLoc());
513     // The CC_VE_Full/Half functions compute stack offsets relative to the
514     // beginning of the arguments area at %fp + the size of reserved area.
515     unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset;
516     unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
517 
518     // Adjust offset for a float argument by adding 4 since the argument is
519     // stored in 8 bytes buffer with offset like below.  LLVM generates
520     // 4 bytes load instruction, so need to adjust offset here.  This
521     // adjustment is required in only LowerFormalArguments.  In LowerCall,
522     // a float argument is converted to i64 first, and stored as 8 bytes
523     // data, which is required by ABI, so no need for adjustment.
524     //    0      4
525     //    +------+------+
526     //    | empty| float|
527     //    +------+------+
528     if (VA.getValVT() == MVT::f32)
529       Offset += 4;
530 
531     int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
532     InVals.push_back(
533         DAG.getLoad(VA.getValVT(), DL, Chain,
534                     DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
535                     MachinePointerInfo::getFixedStack(MF, FI)));
536   }
537 
538   if (!IsVarArg)
539     return Chain;
540 
541   // This function takes variable arguments, some of which may have been passed
542   // in registers %s0-%s8.
543   //
544   // The va_start intrinsic needs to know the offset to the first variable
545   // argument.
546   // TODO: need to calculate offset correctly once we support f128.
547   unsigned ArgOffset = ArgLocs.size() * 8;
548   VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
549   // Skip the reserved area at the top of stack.
550   FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset);
551 
552   return Chain;
553 }
554 
555 // FIXME? Maybe this could be a TableGen attribute on some registers and
556 // this table could be generated automatically from RegInfo.
557 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT,
558                                              const MachineFunction &MF) const {
559   Register Reg = StringSwitch<Register>(RegName)
560                      .Case("sp", VE::SX11)    // Stack pointer
561                      .Case("fp", VE::SX9)     // Frame pointer
562                      .Case("sl", VE::SX8)     // Stack limit
563                      .Case("lr", VE::SX10)    // Link register
564                      .Case("tp", VE::SX14)    // Thread pointer
565                      .Case("outer", VE::SX12) // Outer regiser
566                      .Case("info", VE::SX17)  // Info area register
567                      .Case("got", VE::SX15)   // Global offset table register
568                      .Case("plt", VE::SX16) // Procedure linkage table register
569                      .Default(0);
570 
571   if (Reg)
572     return Reg;
573 
574   report_fatal_error("Invalid register name global variable");
575 }
576 
577 //===----------------------------------------------------------------------===//
578 // TargetLowering Implementation
579 //===----------------------------------------------------------------------===//
580 
581 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
582                                     SmallVectorImpl<SDValue> &InVals) const {
583   SelectionDAG &DAG = CLI.DAG;
584   SDLoc DL = CLI.DL;
585   SDValue Chain = CLI.Chain;
586   auto PtrVT = getPointerTy(DAG.getDataLayout());
587 
588   // VE target does not yet support tail call optimization.
589   CLI.IsTailCall = false;
590 
591   // Get the base offset of the outgoing arguments stack space.
592   unsigned ArgsBaseOffset = Subtarget->getRsaSize();
593   // Get the size of the preserved arguments area
594   unsigned ArgsPreserved = 8 * 8u;
595 
596   // Analyze operands of the call, assigning locations to each operand.
597   SmallVector<CCValAssign, 16> ArgLocs;
598   CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
599                  *DAG.getContext());
600   // Allocate the preserved area first.
601   CCInfo.AllocateStack(ArgsPreserved, Align(8));
602   // We already allocated the preserved area, so the stack offset computed
603   // by CC_VE would be correct now.
604   CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false));
605 
606   // VE requires to use both register and stack for varargs or no-prototyped
607   // functions.
608   bool UseBoth = CLI.IsVarArg;
609 
610   // Analyze operands again if it is required to store BOTH.
611   SmallVector<CCValAssign, 16> ArgLocs2;
612   CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
613                   ArgLocs2, *DAG.getContext());
614   if (UseBoth)
615     CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true));
616 
617   // Get the size of the outgoing arguments stack space requirement.
618   unsigned ArgsSize = CCInfo.getStackSize();
619 
620   // Keep stack frames 16-byte aligned.
621   ArgsSize = alignTo(ArgsSize, 16);
622 
623   // Adjust the stack pointer to make room for the arguments.
624   // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
625   // with more than 6 arguments.
626   Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
627 
628   // Collect the set of registers to pass to the function and their values.
629   // This will be emitted as a sequence of CopyToReg nodes glued to the call
630   // instruction.
631   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
632 
633   // Collect chains from all the memory opeations that copy arguments to the
634   // stack. They must follow the stack pointer adjustment above and precede the
635   // call instruction itself.
636   SmallVector<SDValue, 8> MemOpChains;
637 
638   // VE needs to get address of callee function in a register
639   // So, prepare to copy it to SX12 here.
640 
641   // If the callee is a GlobalAddress node (quite common, every direct call is)
642   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
643   // Likewise ExternalSymbol -> TargetExternalSymbol.
644   SDValue Callee = CLI.Callee;
645 
646   bool IsPICCall = isPositionIndependent();
647 
648   // PC-relative references to external symbols should go through $stub.
649   // If so, we need to prepare GlobalBaseReg first.
650   const TargetMachine &TM = DAG.getTarget();
651   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
652   const GlobalValue *GV = nullptr;
653   auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee);
654   if (CalleeG)
655     GV = CalleeG->getGlobal();
656   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
657   bool UsePlt = !Local;
658   MachineFunction &MF = DAG.getMachineFunction();
659 
660   // Turn GlobalAddress/ExternalSymbol node into a value node
661   // containing the address of them here.
662   if (CalleeG) {
663     if (IsPICCall) {
664       if (UsePlt)
665         Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
666       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
667       Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
668     } else {
669       Callee =
670           makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
671     }
672   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
673     if (IsPICCall) {
674       if (UsePlt)
675         Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
676       Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
677       Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
678     } else {
679       Callee =
680           makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
681     }
682   }
683 
684   RegsToPass.push_back(std::make_pair(VE::SX12, Callee));
685 
686   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
687     CCValAssign &VA = ArgLocs[i];
688     SDValue Arg = CLI.OutVals[i];
689 
690     // Promote the value if needed.
691     switch (VA.getLocInfo()) {
692     default:
693       llvm_unreachable("Unknown location info!");
694     case CCValAssign::Full:
695       break;
696     case CCValAssign::SExt:
697       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
698       break;
699     case CCValAssign::ZExt:
700       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
701       break;
702     case CCValAssign::AExt:
703       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
704       break;
705     case CCValAssign::BCvt: {
706       // Convert a float argument to i64 with padding.
707       //     63     31   0
708       //    +------+------+
709       //    | float|   0  |
710       //    +------+------+
711       assert(VA.getLocVT() == MVT::i64);
712       assert(VA.getValVT() == MVT::f32);
713       SDValue Undef = SDValue(
714           DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0);
715       SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
716       Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
717                                        MVT::i64, Undef, Arg, Sub_f32),
718                     0);
719       break;
720     }
721     }
722 
723     if (VA.isRegLoc()) {
724       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
725       if (!UseBoth)
726         continue;
727       VA = ArgLocs2[i];
728     }
729 
730     assert(VA.isMemLoc());
731 
732     // Create a store off the stack pointer for this argument.
733     SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT);
734     // The argument area starts at %fp/%sp + the size of reserved area.
735     SDValue PtrOff =
736         DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL);
737     PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
738     MemOpChains.push_back(
739         DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
740   }
741 
742   // Emit all stores, make sure they occur before the call.
743   if (!MemOpChains.empty())
744     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
745 
746   // Build a sequence of CopyToReg nodes glued together with token chain and
747   // glue operands which copy the outgoing args into registers. The InGlue is
748   // necessary since all emitted instructions must be stuck together in order
749   // to pass the live physical registers.
750   SDValue InGlue;
751   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
752     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
753                              RegsToPass[i].second, InGlue);
754     InGlue = Chain.getValue(1);
755   }
756 
757   // Build the operands for the call instruction itself.
758   SmallVector<SDValue, 8> Ops;
759   Ops.push_back(Chain);
760   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
761     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
762                                   RegsToPass[i].second.getValueType()));
763 
764   // Add a register mask operand representing the call-preserved registers.
765   const VERegisterInfo *TRI = Subtarget->getRegisterInfo();
766   const uint32_t *Mask =
767       TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv);
768   assert(Mask && "Missing call preserved mask for calling convention");
769   Ops.push_back(DAG.getRegisterMask(Mask));
770 
771   // Make sure the CopyToReg nodes are glued to the call instruction which
772   // consumes the registers.
773   if (InGlue.getNode())
774     Ops.push_back(InGlue);
775 
776   // Now the call itself.
777   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
778   Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops);
779   InGlue = Chain.getValue(1);
780 
781   // Revert the stack pointer immediately after the call.
782   Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL);
783   InGlue = Chain.getValue(1);
784 
785   // Now extract the return values. This is more or less the same as
786   // LowerFormalArguments.
787 
788   // Assign locations to each value returned by this call.
789   SmallVector<CCValAssign, 16> RVLocs;
790   CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
791                  *DAG.getContext());
792 
793   // Set inreg flag manually for codegen generated library calls that
794   // return float.
795   if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
796     CLI.Ins[0].Flags.setInReg();
797 
798   RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv));
799 
800   // Copy all of the result registers out of their specified physreg.
801   for (unsigned i = 0; i != RVLocs.size(); ++i) {
802     CCValAssign &VA = RVLocs[i];
803     assert(!VA.needsCustom() && "Unexpected custom lowering");
804     Register Reg = VA.getLocReg();
805 
806     // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
807     // reside in the same register in the high and low bits. Reuse the
808     // CopyFromReg previous node to avoid duplicate copies.
809     SDValue RV;
810     if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
811       if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
812         RV = Chain.getValue(0);
813 
814     // But usually we'll create a new CopyFromReg for a different register.
815     if (!RV.getNode()) {
816       RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
817       Chain = RV.getValue(1);
818       InGlue = Chain.getValue(2);
819     }
820 
821     // The callee promoted the return value, so insert an Assert?ext SDNode so
822     // we won't promote the value again in this function.
823     switch (VA.getLocInfo()) {
824     case CCValAssign::SExt:
825       RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
826                        DAG.getValueType(VA.getValVT()));
827       break;
828     case CCValAssign::ZExt:
829       RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
830                        DAG.getValueType(VA.getValVT()));
831       break;
832     case CCValAssign::BCvt: {
833       // Extract a float return value from i64 with padding.
834       //     63     31   0
835       //    +------+------+
836       //    | float|   0  |
837       //    +------+------+
838       assert(VA.getLocVT() == MVT::i64);
839       assert(VA.getValVT() == MVT::f32);
840       SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
841       RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
842                                       MVT::f32, RV, Sub_f32),
843                    0);
844       break;
845     }
846     default:
847       break;
848     }
849 
850     // Truncate the register down to the return value type.
851     if (VA.isExtInLoc())
852       RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
853 
854     InVals.push_back(RV);
855   }
856 
857   return Chain;
858 }
859 
860 bool VETargetLowering::isOffsetFoldingLegal(
861     const GlobalAddressSDNode *GA) const {
862   // VE uses 64 bit addressing, so we need multiple instructions to generate
863   // an address.  Folding address with offset increases the number of
864   // instructions, so that we disable it here.  Offsets will be folded in
865   // the DAG combine later if it worth to do so.
866   return false;
867 }
868 
869 /// isFPImmLegal - Returns true if the target can instruction select the
870 /// specified FP immediate natively. If false, the legalizer will
871 /// materialize the FP immediate as a load from a constant pool.
872 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
873                                     bool ForCodeSize) const {
874   return VT == MVT::f32 || VT == MVT::f64;
875 }
876 
877 /// Determine if the target supports unaligned memory accesses.
878 ///
879 /// This function returns true if the target allows unaligned memory accesses
880 /// of the specified type in the given address space. If true, it also returns
881 /// whether the unaligned memory access is "fast" in the last argument by
882 /// reference. This is used, for example, in situations where an array
883 /// copy/move/set is converted to a sequence of store operations. Its use
884 /// helps to ensure that such replacements don't generate code that causes an
885 /// alignment error (trap) on the target machine.
886 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
887                                                       unsigned AddrSpace,
888                                                       Align A,
889                                                       MachineMemOperand::Flags,
890                                                       unsigned *Fast) const {
891   if (Fast) {
892     // It's fast anytime on VE
893     *Fast = 1;
894   }
895   return true;
896 }
897 
898 VETargetLowering::VETargetLowering(const TargetMachine &TM,
899                                    const VESubtarget &STI)
900     : TargetLowering(TM), Subtarget(&STI) {
901   // Instructions which use registers as conditionals examine all the
902   // bits (as does the pseudo SELECT_CC expansion). I don't think it
903   // matters much whether it's ZeroOrOneBooleanContent, or
904   // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
905   // former.
906   setBooleanContents(ZeroOrOneBooleanContent);
907   setBooleanVectorContents(ZeroOrOneBooleanContent);
908 
909   initRegisterClasses();
910   initSPUActions();
911   initVPUActions();
912 
913   setStackPointerRegisterToSaveRestore(VE::SX11);
914 
915   // We have target-specific dag combine patterns for the following nodes:
916   setTargetDAGCombine(ISD::TRUNCATE);
917   setTargetDAGCombine(ISD::SELECT);
918   setTargetDAGCombine(ISD::SELECT_CC);
919 
920   // Set function alignment to 16 bytes
921   setMinFunctionAlignment(Align(16));
922 
923   // VE stores all argument by 8 bytes alignment
924   setMinStackArgumentAlignment(Align(8));
925 
926   computeRegisterProperties(Subtarget->getRegisterInfo());
927 }
928 
929 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const {
930 #define TARGET_NODE_CASE(NAME)                                                 \
931   case VEISD::NAME:                                                            \
932     return "VEISD::" #NAME;
933   switch ((VEISD::NodeType)Opcode) {
934   case VEISD::FIRST_NUMBER:
935     break;
936     TARGET_NODE_CASE(CMPI)
937     TARGET_NODE_CASE(CMPU)
938     TARGET_NODE_CASE(CMPF)
939     TARGET_NODE_CASE(CMPQ)
940     TARGET_NODE_CASE(CMOV)
941     TARGET_NODE_CASE(CALL)
942     TARGET_NODE_CASE(EH_SJLJ_LONGJMP)
943     TARGET_NODE_CASE(EH_SJLJ_SETJMP)
944     TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH)
945     TARGET_NODE_CASE(GETFUNPLT)
946     TARGET_NODE_CASE(GETSTACKTOP)
947     TARGET_NODE_CASE(GETTLSADDR)
948     TARGET_NODE_CASE(GLOBAL_BASE_REG)
949     TARGET_NODE_CASE(Hi)
950     TARGET_NODE_CASE(Lo)
951     TARGET_NODE_CASE(RET_GLUE)
952     TARGET_NODE_CASE(TS1AM)
953     TARGET_NODE_CASE(VEC_UNPACK_LO)
954     TARGET_NODE_CASE(VEC_UNPACK_HI)
955     TARGET_NODE_CASE(VEC_PACK)
956     TARGET_NODE_CASE(VEC_BROADCAST)
957     TARGET_NODE_CASE(REPL_I32)
958     TARGET_NODE_CASE(REPL_F32)
959 
960     TARGET_NODE_CASE(LEGALAVL)
961 
962     // Register the VVP_* SDNodes.
963 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME)
964 #include "VVPNodes.def"
965   }
966 #undef TARGET_NODE_CASE
967   return nullptr;
968 }
969 
970 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
971                                          EVT VT) const {
972   return MVT::i32;
973 }
974 
975 // Convert to a target node and set target flags.
976 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF,
977                                           SelectionDAG &DAG) const {
978   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
979     return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA),
980                                       GA->getValueType(0), GA->getOffset(), TF);
981 
982   if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
983     return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(),
984                                      0, TF);
985 
986   if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
987     return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
988                                      CP->getAlign(), CP->getOffset(), TF);
989 
990   if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
991     return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0),
992                                        TF);
993 
994   if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op))
995     return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF);
996 
997   llvm_unreachable("Unhandled address SDNode");
998 }
999 
1000 // Split Op into high and low parts according to HiTF and LoTF.
1001 // Return an ADD node combining the parts.
1002 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF,
1003                                        SelectionDAG &DAG) const {
1004   SDLoc DL(Op);
1005   EVT VT = Op.getValueType();
1006   SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
1007   SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
1008   return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
1009 }
1010 
1011 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
1012 // or ExternalSymbol SDNode.
1013 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
1014   SDLoc DL(Op);
1015   EVT PtrVT = Op.getValueType();
1016 
1017   // Handle PIC mode first. VE needs a got load for every variable!
1018   if (isPositionIndependent()) {
1019     auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op);
1020 
1021     if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) ||
1022         (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) {
1023       // Create following instructions for local linkage PIC code.
1024       //     lea %reg, label@gotoff_lo
1025       //     and %reg, %reg, (32)0
1026       //     lea.sl %reg, label@gotoff_hi(%reg, %got)
1027       SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32,
1028                                   VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
1029       SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
1030       return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
1031     }
1032     // Create following instructions for not local linkage PIC code.
1033     //     lea %reg, label@got_lo
1034     //     and %reg, %reg, (32)0
1035     //     lea.sl %reg, label@got_hi(%reg)
1036     //     ld %reg, (%reg, %got)
1037     SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32,
1038                                 VEMCExpr::VK_VE_GOT_LO32, DAG);
1039     SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
1040     SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
1041     return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr,
1042                        MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1043   }
1044 
1045   // This is one of the absolute code models.
1046   switch (getTargetMachine().getCodeModel()) {
1047   default:
1048     llvm_unreachable("Unsupported absolute code model");
1049   case CodeModel::Small:
1050   case CodeModel::Medium:
1051   case CodeModel::Large:
1052     // abs64.
1053     return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
1054   }
1055 }
1056 
1057 /// Custom Lower {
1058 
1059 // The mappings for emitLeading/TrailingFence for VE is designed by following
1060 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
1061 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder,
1062                                                 Instruction *Inst,
1063                                                 AtomicOrdering Ord) const {
1064   switch (Ord) {
1065   case AtomicOrdering::NotAtomic:
1066   case AtomicOrdering::Unordered:
1067     llvm_unreachable("Invalid fence: unordered/non-atomic");
1068   case AtomicOrdering::Monotonic:
1069   case AtomicOrdering::Acquire:
1070     return nullptr; // Nothing to do
1071   case AtomicOrdering::Release:
1072   case AtomicOrdering::AcquireRelease:
1073     return Builder.CreateFence(AtomicOrdering::Release);
1074   case AtomicOrdering::SequentiallyConsistent:
1075     if (!Inst->hasAtomicStore())
1076       return nullptr; // Nothing to do
1077     return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent);
1078   }
1079   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
1080 }
1081 
1082 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder,
1083                                                  Instruction *Inst,
1084                                                  AtomicOrdering Ord) const {
1085   switch (Ord) {
1086   case AtomicOrdering::NotAtomic:
1087   case AtomicOrdering::Unordered:
1088     llvm_unreachable("Invalid fence: unordered/not-atomic");
1089   case AtomicOrdering::Monotonic:
1090   case AtomicOrdering::Release:
1091     return nullptr; // Nothing to do
1092   case AtomicOrdering::Acquire:
1093   case AtomicOrdering::AcquireRelease:
1094     return Builder.CreateFence(AtomicOrdering::Acquire);
1095   case AtomicOrdering::SequentiallyConsistent:
1096     return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent);
1097   }
1098   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
1099 }
1100 
1101 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op,
1102                                             SelectionDAG &DAG) const {
1103   SDLoc DL(Op);
1104   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
1105       cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
1106   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
1107       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
1108 
1109   // VE uses Release consistency, so need a fence instruction if it is a
1110   // cross-thread fence.
1111   if (FenceSSID == SyncScope::System) {
1112     switch (FenceOrdering) {
1113     case AtomicOrdering::NotAtomic:
1114     case AtomicOrdering::Unordered:
1115     case AtomicOrdering::Monotonic:
1116       // No need to generate fencem instruction here.
1117       break;
1118     case AtomicOrdering::Acquire:
1119       // Generate "fencem 2" as acquire fence.
1120       return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other,
1121                                         DAG.getTargetConstant(2, DL, MVT::i32),
1122                                         Op.getOperand(0)),
1123                      0);
1124     case AtomicOrdering::Release:
1125       // Generate "fencem 1" as release fence.
1126       return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other,
1127                                         DAG.getTargetConstant(1, DL, MVT::i32),
1128                                         Op.getOperand(0)),
1129                      0);
1130     case AtomicOrdering::AcquireRelease:
1131     case AtomicOrdering::SequentiallyConsistent:
1132       // Generate "fencem 3" as acq_rel and seq_cst fence.
1133       // FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses,
1134       //        so  seq_cst may require more instruction for them.
1135       return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other,
1136                                         DAG.getTargetConstant(3, DL, MVT::i32),
1137                                         Op.getOperand(0)),
1138                      0);
1139     }
1140   }
1141 
1142   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
1143   return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
1144 }
1145 
1146 TargetLowering::AtomicExpansionKind
1147 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
1148   // We have TS1AM implementation for i8/i16/i32/i64, so use it.
1149   if (AI->getOperation() == AtomicRMWInst::Xchg) {
1150     return AtomicExpansionKind::None;
1151   }
1152   // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR.
1153 
1154   // Otherwise, expand it using compare and exchange instruction to not call
1155   // __sync_fetch_and_* functions.
1156   return AtomicExpansionKind::CmpXChg;
1157 }
1158 
1159 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag,
1160                             SDValue &Bits) {
1161   SDLoc DL(Op);
1162   AtomicSDNode *N = cast<AtomicSDNode>(Op);
1163   SDValue Ptr = N->getOperand(1);
1164   SDValue Val = N->getOperand(2);
1165   EVT PtrVT = Ptr.getValueType();
1166   bool Byte = N->getMemoryVT() == MVT::i8;
1167   //   Remainder = AND Ptr, 3
1168   //   Flag = 1 << Remainder  ; If Byte is true (1 byte swap flag)
1169   //   Flag = 3 << Remainder  ; If Byte is false (2 bytes swap flag)
1170   //   Bits = Remainder << 3
1171   //   NewVal = Val << Bits
1172   SDValue Const3 = DAG.getConstant(3, DL, PtrVT);
1173   SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3});
1174   SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32)
1175                       : DAG.getConstant(3, DL, MVT::i32);
1176   Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder});
1177   Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3});
1178   return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits});
1179 }
1180 
1181 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data,
1182                              SDValue Bits) {
1183   SDLoc DL(Op);
1184   EVT VT = Data.getValueType();
1185   bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8;
1186   //   NewData = Data >> Bits
1187   //   Result = NewData & 0xff   ; If Byte is true (1 byte)
1188   //   Result = NewData & 0xffff ; If Byte is false (2 bytes)
1189 
1190   SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits);
1191   return DAG.getNode(ISD::AND, DL, VT,
1192                      {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)});
1193 }
1194 
1195 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op,
1196                                            SelectionDAG &DAG) const {
1197   SDLoc DL(Op);
1198   AtomicSDNode *N = cast<AtomicSDNode>(Op);
1199 
1200   if (N->getMemoryVT() == MVT::i8) {
1201     // For i8, use "ts1am"
1202     //   Input:
1203     //     ATOMIC_SWAP Ptr, Val, Order
1204     //
1205     //   Output:
1206     //     Remainder = AND Ptr, 3
1207     //     Flag = 1 << Remainder   ; 1 byte swap flag for TS1AM inst.
1208     //     Bits = Remainder << 3
1209     //     NewVal = Val << Bits
1210     //
1211     //     Aligned = AND Ptr, -4
1212     //     Data = TS1AM Aligned, Flag, NewVal
1213     //
1214     //     NewData = Data >> Bits
1215     //     Result = NewData & 0xff ; 1 byte result
1216     SDValue Flag;
1217     SDValue Bits;
1218     SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits);
1219 
1220     SDValue Ptr = N->getOperand(1);
1221     SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(),
1222                                   {Ptr, DAG.getConstant(-4, DL, MVT::i64)});
1223     SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(),
1224                                   DAG.getVTList(Op.getNode()->getValueType(0),
1225                                                 Op.getNode()->getValueType(1)),
1226                                   {N->getChain(), Aligned, Flag, NewVal},
1227                                   N->getMemOperand());
1228 
1229     SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits);
1230     SDValue Chain = TS1AM.getValue(1);
1231     return DAG.getMergeValues({Result, Chain}, DL);
1232   }
1233   if (N->getMemoryVT() == MVT::i16) {
1234     // For i16, use "ts1am"
1235     SDValue Flag;
1236     SDValue Bits;
1237     SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits);
1238 
1239     SDValue Ptr = N->getOperand(1);
1240     SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(),
1241                                   {Ptr, DAG.getConstant(-4, DL, MVT::i64)});
1242     SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(),
1243                                   DAG.getVTList(Op.getNode()->getValueType(0),
1244                                                 Op.getNode()->getValueType(1)),
1245                                   {N->getChain(), Aligned, Flag, NewVal},
1246                                   N->getMemOperand());
1247 
1248     SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits);
1249     SDValue Chain = TS1AM.getValue(1);
1250     return DAG.getMergeValues({Result, Chain}, DL);
1251   }
1252   // Otherwise, let llvm legalize it.
1253   return Op;
1254 }
1255 
1256 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op,
1257                                              SelectionDAG &DAG) const {
1258   return makeAddress(Op, DAG);
1259 }
1260 
1261 SDValue VETargetLowering::lowerBlockAddress(SDValue Op,
1262                                             SelectionDAG &DAG) const {
1263   return makeAddress(Op, DAG);
1264 }
1265 
1266 SDValue VETargetLowering::lowerConstantPool(SDValue Op,
1267                                             SelectionDAG &DAG) const {
1268   return makeAddress(Op, DAG);
1269 }
1270 
1271 SDValue
1272 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op,
1273                                                 SelectionDAG &DAG) const {
1274   SDLoc DL(Op);
1275 
1276   // Generate the following code:
1277   //   t1: ch,glue = callseq_start t0, 0, 0
1278   //   t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1
1279   //   t3: ch,glue = callseq_end t2, 0, 0, t2:2
1280   //   t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1
1281   SDValue Label = withTargetFlags(Op, 0, DAG);
1282   EVT PtrVT = Op.getValueType();
1283 
1284   // Lowering the machine isd will make sure everything is in the right
1285   // location.
1286   SDValue Chain = DAG.getEntryNode();
1287   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1288   const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
1289       DAG.getMachineFunction(), CallingConv::C);
1290   Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL);
1291   SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)};
1292   Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args);
1293   Chain = DAG.getCALLSEQ_END(Chain, 64, 0, Chain.getValue(1), DL);
1294   Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1));
1295 
1296   // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls.
1297   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1298   MFI.setHasCalls(true);
1299 
1300   // Also generate code to prepare a GOT register if it is PIC.
1301   if (isPositionIndependent()) {
1302     MachineFunction &MF = DAG.getMachineFunction();
1303     Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
1304   }
1305 
1306   return Chain;
1307 }
1308 
1309 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op,
1310                                                 SelectionDAG &DAG) const {
1311   // The current implementation of nld (2.26) doesn't allow local exec model
1312   // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always
1313   // generate the general dynamic model code sequence.
1314   //
1315   // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf
1316   return lowerToTLSGeneralDynamicModel(Op, DAG);
1317 }
1318 
1319 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1320   return makeAddress(Op, DAG);
1321 }
1322 
1323 // Lower a f128 load into two f64 loads.
1324 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) {
1325   SDLoc DL(Op);
1326   LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
1327   assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type");
1328   Align Alignment = LdNode->getAlign();
1329   if (Alignment > 8)
1330     Alignment = Align(8);
1331 
1332   SDValue Lo64 =
1333       DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(),
1334                   LdNode->getPointerInfo(), Alignment,
1335                   LdNode->isVolatile() ? MachineMemOperand::MOVolatile
1336                                        : MachineMemOperand::MONone);
1337   EVT AddrVT = LdNode->getBasePtr().getValueType();
1338   SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(),
1339                               DAG.getConstant(8, DL, AddrVT));
1340   SDValue Hi64 =
1341       DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr,
1342                   LdNode->getPointerInfo(), Alignment,
1343                   LdNode->isVolatile() ? MachineMemOperand::MOVolatile
1344                                        : MachineMemOperand::MONone);
1345 
1346   SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32);
1347   SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32);
1348 
1349   // VE stores Hi64 to 8(addr) and Lo64 to 0(addr)
1350   SDNode *InFP128 =
1351       DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128);
1352   InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128,
1353                                SDValue(InFP128, 0), Hi64, SubRegEven);
1354   InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128,
1355                                SDValue(InFP128, 0), Lo64, SubRegOdd);
1356   SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1),
1357                           SDValue(Hi64.getNode(), 1)};
1358   SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1359   SDValue Ops[2] = {SDValue(InFP128, 0), OutChain};
1360   return DAG.getMergeValues(Ops, DL);
1361 }
1362 
1363 // Lower a vXi1 load into following instructions
1364 //   LDrii %1, (,%addr)
1365 //   LVMxir  %vm, 0, %1
1366 //   LDrii %2, 8(,%addr)
1367 //   LVMxir  %vm, 0, %2
1368 //   ...
1369 static SDValue lowerLoadI1(SDValue Op, SelectionDAG &DAG) {
1370   SDLoc DL(Op);
1371   LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
1372   assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type");
1373 
1374   SDValue BasePtr = LdNode->getBasePtr();
1375   Align Alignment = LdNode->getAlign();
1376   if (Alignment > 8)
1377     Alignment = Align(8);
1378 
1379   EVT AddrVT = BasePtr.getValueType();
1380   EVT MemVT = LdNode->getMemoryVT();
1381   if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) {
1382     SDValue OutChains[4];
1383     SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT);
1384     for (int i = 0; i < 4; ++i) {
1385       // Generate load dag and prepare chains.
1386       SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr,
1387                                  DAG.getConstant(8 * i, DL, AddrVT));
1388       SDValue Val =
1389           DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr,
1390                       LdNode->getPointerInfo(), Alignment,
1391                       LdNode->isVolatile() ? MachineMemOperand::MOVolatile
1392                                            : MachineMemOperand::MONone);
1393       OutChains[i] = SDValue(Val.getNode(), 1);
1394 
1395       VM = DAG.getMachineNode(VE::LVMir_m, DL, MVT::i64,
1396                               DAG.getTargetConstant(i, DL, MVT::i64), Val,
1397                               SDValue(VM, 0));
1398     }
1399     SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1400     SDValue Ops[2] = {SDValue(VM, 0), OutChain};
1401     return DAG.getMergeValues(Ops, DL);
1402   } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) {
1403     SDValue OutChains[8];
1404     SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT);
1405     for (int i = 0; i < 8; ++i) {
1406       // Generate load dag and prepare chains.
1407       SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr,
1408                                  DAG.getConstant(8 * i, DL, AddrVT));
1409       SDValue Val =
1410           DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr,
1411                       LdNode->getPointerInfo(), Alignment,
1412                       LdNode->isVolatile() ? MachineMemOperand::MOVolatile
1413                                            : MachineMemOperand::MONone);
1414       OutChains[i] = SDValue(Val.getNode(), 1);
1415 
1416       VM = DAG.getMachineNode(VE::LVMyir_y, DL, MVT::i64,
1417                               DAG.getTargetConstant(i, DL, MVT::i64), Val,
1418                               SDValue(VM, 0));
1419     }
1420     SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1421     SDValue Ops[2] = {SDValue(VM, 0), OutChain};
1422     return DAG.getMergeValues(Ops, DL);
1423   } else {
1424     // Otherwise, ask llvm to expand it.
1425     return SDValue();
1426   }
1427 }
1428 
1429 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1430   LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
1431 
1432   EVT MemVT = LdNode->getMemoryVT();
1433 
1434   // Dispatch to vector isel.
1435   if (MemVT.isVector() && !isMaskType(MemVT))
1436     return lowerToVVP(Op, DAG);
1437 
1438   SDValue BasePtr = LdNode->getBasePtr();
1439   if (isa<FrameIndexSDNode>(BasePtr.getNode())) {
1440     // Do not expand store instruction with frame index here because of
1441     // dependency problems.  We expand it later in eliminateFrameIndex().
1442     return Op;
1443   }
1444 
1445   if (MemVT == MVT::f128)
1446     return lowerLoadF128(Op, DAG);
1447   if (isMaskType(MemVT))
1448     return lowerLoadI1(Op, DAG);
1449 
1450   return Op;
1451 }
1452 
1453 // Lower a f128 store into two f64 stores.
1454 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) {
1455   SDLoc DL(Op);
1456   StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
1457   assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type");
1458 
1459   SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32);
1460   SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32);
1461 
1462   SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64,
1463                                     StNode->getValue(), SubRegEven);
1464   SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64,
1465                                     StNode->getValue(), SubRegOdd);
1466 
1467   Align Alignment = StNode->getAlign();
1468   if (Alignment > 8)
1469     Alignment = Align(8);
1470 
1471   // VE stores Hi64 to 8(addr) and Lo64 to 0(addr)
1472   SDValue OutChains[2];
1473   OutChains[0] =
1474       DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0),
1475                    StNode->getBasePtr(), MachinePointerInfo(), Alignment,
1476                    StNode->isVolatile() ? MachineMemOperand::MOVolatile
1477                                         : MachineMemOperand::MONone);
1478   EVT AddrVT = StNode->getBasePtr().getValueType();
1479   SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(),
1480                               DAG.getConstant(8, DL, AddrVT));
1481   OutChains[1] =
1482       DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr,
1483                    MachinePointerInfo(), Alignment,
1484                    StNode->isVolatile() ? MachineMemOperand::MOVolatile
1485                                         : MachineMemOperand::MONone);
1486   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1487 }
1488 
1489 // Lower a vXi1 store into following instructions
1490 //   SVMi  %1, %vm, 0
1491 //   STrii %1, (,%addr)
1492 //   SVMi  %2, %vm, 1
1493 //   STrii %2, 8(,%addr)
1494 //   ...
1495 static SDValue lowerStoreI1(SDValue Op, SelectionDAG &DAG) {
1496   SDLoc DL(Op);
1497   StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
1498   assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type");
1499 
1500   SDValue BasePtr = StNode->getBasePtr();
1501   Align Alignment = StNode->getAlign();
1502   if (Alignment > 8)
1503     Alignment = Align(8);
1504   EVT AddrVT = BasePtr.getValueType();
1505   EVT MemVT = StNode->getMemoryVT();
1506   if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) {
1507     SDValue OutChains[4];
1508     for (int i = 0; i < 4; ++i) {
1509       SDNode *V =
1510           DAG.getMachineNode(VE::SVMmi, DL, MVT::i64, StNode->getValue(),
1511                              DAG.getTargetConstant(i, DL, MVT::i64));
1512       SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr,
1513                                  DAG.getConstant(8 * i, DL, AddrVT));
1514       OutChains[i] =
1515           DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr,
1516                        MachinePointerInfo(), Alignment,
1517                        StNode->isVolatile() ? MachineMemOperand::MOVolatile
1518                                             : MachineMemOperand::MONone);
1519     }
1520     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1521   } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) {
1522     SDValue OutChains[8];
1523     for (int i = 0; i < 8; ++i) {
1524       SDNode *V =
1525           DAG.getMachineNode(VE::SVMyi, DL, MVT::i64, StNode->getValue(),
1526                              DAG.getTargetConstant(i, DL, MVT::i64));
1527       SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr,
1528                                  DAG.getConstant(8 * i, DL, AddrVT));
1529       OutChains[i] =
1530           DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr,
1531                        MachinePointerInfo(), Alignment,
1532                        StNode->isVolatile() ? MachineMemOperand::MOVolatile
1533                                             : MachineMemOperand::MONone);
1534     }
1535     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1536   } else {
1537     // Otherwise, ask llvm to expand it.
1538     return SDValue();
1539   }
1540 }
1541 
1542 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1543   StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode());
1544   assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type");
1545 
1546   // always expand non-mask vector loads to VVP
1547   EVT MemVT = StNode->getMemoryVT();
1548   if (MemVT.isVector() && !isMaskType(MemVT))
1549     return lowerToVVP(Op, DAG);
1550 
1551   SDValue BasePtr = StNode->getBasePtr();
1552   if (isa<FrameIndexSDNode>(BasePtr.getNode())) {
1553     // Do not expand store instruction with frame index here because of
1554     // dependency problems.  We expand it later in eliminateFrameIndex().
1555     return Op;
1556   }
1557 
1558   if (MemVT == MVT::f128)
1559     return lowerStoreF128(Op, DAG);
1560   if (isMaskType(MemVT))
1561     return lowerStoreI1(Op, DAG);
1562 
1563   // Otherwise, ask llvm to expand it.
1564   return SDValue();
1565 }
1566 
1567 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1568   MachineFunction &MF = DAG.getMachineFunction();
1569   VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
1570   auto PtrVT = getPointerTy(DAG.getDataLayout());
1571 
1572   // Need frame address to find the address of VarArgsFrameIndex.
1573   MF.getFrameInfo().setFrameAddressIsTaken(true);
1574 
1575   // vastart just stores the address of the VarArgsFrameIndex slot into the
1576   // memory location argument.
1577   SDLoc DL(Op);
1578   SDValue Offset =
1579       DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT),
1580                   DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
1581   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1582   return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
1583                       MachinePointerInfo(SV));
1584 }
1585 
1586 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
1587   SDNode *Node = Op.getNode();
1588   EVT VT = Node->getValueType(0);
1589   SDValue InChain = Node->getOperand(0);
1590   SDValue VAListPtr = Node->getOperand(1);
1591   EVT PtrVT = VAListPtr.getValueType();
1592   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1593   SDLoc DL(Node);
1594   SDValue VAList =
1595       DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
1596   SDValue Chain = VAList.getValue(1);
1597   SDValue NextPtr;
1598 
1599   if (VT == MVT::f128) {
1600     // VE f128 values must be stored with 16 bytes alignment.  We don't
1601     // know the actual alignment of VAList, so we take alignment of it
1602     // dynamically.
1603     int Align = 16;
1604     VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
1605                          DAG.getConstant(Align - 1, DL, PtrVT));
1606     VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
1607                          DAG.getConstant(-Align, DL, PtrVT));
1608     // Increment the pointer, VAList, by 16 to the next vaarg.
1609     NextPtr =
1610         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL));
1611   } else if (VT == MVT::f32) {
1612     // float --> need special handling like below.
1613     //    0      4
1614     //    +------+------+
1615     //    | empty| float|
1616     //    +------+------+
1617     // Increment the pointer, VAList, by 8 to the next vaarg.
1618     NextPtr =
1619         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL));
1620     // Then, adjust VAList.
1621     unsigned InternalOffset = 4;
1622     VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
1623                          DAG.getConstant(InternalOffset, DL, PtrVT));
1624   } else {
1625     // Increment the pointer, VAList, by 8 to the next vaarg.
1626     NextPtr =
1627         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL));
1628   }
1629 
1630   // Store the incremented VAList to the legalized pointer.
1631   InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV));
1632 
1633   // Load the actual argument out of the pointer VAList.
1634   // We can't count on greater alignment than the word size.
1635   return DAG.getLoad(
1636       VT, DL, InChain, VAList, MachinePointerInfo(),
1637       Align(std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8));
1638 }
1639 
1640 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
1641                                                   SelectionDAG &DAG) const {
1642   // Generate following code.
1643   //   (void)__llvm_grow_stack(size);
1644   //   ret = GETSTACKTOP;        // pseudo instruction
1645   SDLoc DL(Op);
1646 
1647   // Get the inputs.
1648   SDNode *Node = Op.getNode();
1649   SDValue Chain = Op.getOperand(0);
1650   SDValue Size = Op.getOperand(1);
1651   MaybeAlign Alignment(Op.getConstantOperandVal(2));
1652   EVT VT = Node->getValueType(0);
1653 
1654   // Chain the dynamic stack allocation so that it doesn't modify the stack
1655   // pointer when other instructions are using the stack.
1656   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
1657 
1658   const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
1659   Align StackAlign = TFI.getStackAlign();
1660   bool NeedsAlign = Alignment.valueOrOne() > StackAlign;
1661 
1662   // Prepare arguments
1663   TargetLowering::ArgListTy Args;
1664   TargetLowering::ArgListEntry Entry;
1665   Entry.Node = Size;
1666   Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1667   Args.push_back(Entry);
1668   if (NeedsAlign) {
1669     Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT);
1670     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1671     Args.push_back(Entry);
1672   }
1673   Type *RetTy = Type::getVoidTy(*DAG.getContext());
1674 
1675   EVT PtrVT = Op.getValueType();
1676   SDValue Callee;
1677   if (NeedsAlign) {
1678     Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0);
1679   } else {
1680     Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0);
1681   }
1682 
1683   TargetLowering::CallLoweringInfo CLI(DAG);
1684   CLI.setDebugLoc(DL)
1685       .setChain(Chain)
1686       .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args))
1687       .setDiscardResult(true);
1688   std::pair<SDValue, SDValue> pair = LowerCallTo(CLI);
1689   Chain = pair.second;
1690   SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain);
1691   if (NeedsAlign) {
1692     Result = DAG.getNode(ISD::ADD, DL, VT, Result,
1693                          DAG.getConstant((Alignment->value() - 1ULL), DL, VT));
1694     Result = DAG.getNode(ISD::AND, DL, VT, Result,
1695                          DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT));
1696   }
1697   //  Chain = Result.getValue(1);
1698   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), DL);
1699 
1700   SDValue Ops[2] = {Result, Chain};
1701   return DAG.getMergeValues(Ops, DL);
1702 }
1703 
1704 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
1705                                                SelectionDAG &DAG) const {
1706   SDLoc DL(Op);
1707   return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0),
1708                      Op.getOperand(1));
1709 }
1710 
1711 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
1712                                               SelectionDAG &DAG) const {
1713   SDLoc DL(Op);
1714   return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL,
1715                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
1716                      Op.getOperand(1));
1717 }
1718 
1719 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
1720                                                       SelectionDAG &DAG) const {
1721   SDLoc DL(Op);
1722   return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other,
1723                      Op.getOperand(0));
1724 }
1725 
1726 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
1727                               const VETargetLowering &TLI,
1728                               const VESubtarget *Subtarget) {
1729   SDLoc DL(Op);
1730   MachineFunction &MF = DAG.getMachineFunction();
1731   EVT PtrVT = TLI.getPointerTy(MF.getDataLayout());
1732 
1733   MachineFrameInfo &MFI = MF.getFrameInfo();
1734   MFI.setFrameAddressIsTaken(true);
1735 
1736   unsigned Depth = Op.getConstantOperandVal(0);
1737   const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo();
1738   Register FrameReg = RegInfo->getFrameRegister(MF);
1739   SDValue FrameAddr =
1740       DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT);
1741   while (Depth--)
1742     FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(),
1743                             FrameAddr, MachinePointerInfo());
1744   return FrameAddr;
1745 }
1746 
1747 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
1748                                const VETargetLowering &TLI,
1749                                const VESubtarget *Subtarget) {
1750   MachineFunction &MF = DAG.getMachineFunction();
1751   MachineFrameInfo &MFI = MF.getFrameInfo();
1752   MFI.setReturnAddressIsTaken(true);
1753 
1754   if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
1755     return SDValue();
1756 
1757   SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget);
1758 
1759   SDLoc DL(Op);
1760   EVT VT = Op.getValueType();
1761   SDValue Offset = DAG.getConstant(8, DL, VT);
1762   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
1763                      DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
1764                      MachinePointerInfo());
1765 }
1766 
1767 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1768                                                   SelectionDAG &DAG) const {
1769   SDLoc DL(Op);
1770   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1771   switch (IntNo) {
1772   default: // Don't custom lower most intrinsics.
1773     return SDValue();
1774   case Intrinsic::eh_sjlj_lsda: {
1775     MachineFunction &MF = DAG.getMachineFunction();
1776     MVT VT = Op.getSimpleValueType();
1777     const VETargetMachine *TM =
1778         static_cast<const VETargetMachine *>(&DAG.getTarget());
1779 
1780     // Create GCC_except_tableXX string.  The real symbol for that will be
1781     // generated in EHStreamer::emitExceptionTable() later.  So, we just
1782     // borrow it's name here.
1783     TM->getStrList()->push_back(std::string(
1784         (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str()));
1785     SDValue Addr =
1786         DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0);
1787     if (isPositionIndependent()) {
1788       Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32,
1789                           VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
1790       SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT);
1791       return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr);
1792     }
1793     return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
1794   }
1795   }
1796 }
1797 
1798 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) {
1799   if (!isa<BuildVectorSDNode>(N))
1800     return false;
1801   const auto *BVN = cast<BuildVectorSDNode>(N);
1802 
1803   // Find first non-undef insertion.
1804   unsigned Idx;
1805   for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) {
1806     auto ElemV = BVN->getOperand(Idx);
1807     if (!ElemV->isUndef())
1808       break;
1809   }
1810   // Catch the (hypothetical) all-undef case.
1811   if (Idx == BVN->getNumOperands())
1812     return false;
1813   // Remember insertion.
1814   UniqueIdx = Idx++;
1815   // Verify that all other insertions are undef.
1816   for (; Idx < BVN->getNumOperands(); ++Idx) {
1817     auto ElemV = BVN->getOperand(Idx);
1818     if (!ElemV->isUndef())
1819       return false;
1820   }
1821   return true;
1822 }
1823 
1824 static SDValue getSplatValue(SDNode *N) {
1825   if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) {
1826     return BuildVec->getSplatValue();
1827   }
1828   return SDValue();
1829 }
1830 
1831 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op,
1832                                             SelectionDAG &DAG) const {
1833   VECustomDAG CDAG(DAG, Op);
1834   MVT ResultVT = Op.getSimpleValueType();
1835 
1836   // If there is just one element, expand to INSERT_VECTOR_ELT.
1837   unsigned UniqueIdx;
1838   if (getUniqueInsertion(Op.getNode(), UniqueIdx)) {
1839     SDValue AccuV = CDAG.getUNDEF(Op.getValueType());
1840     auto ElemV = Op->getOperand(UniqueIdx);
1841     SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64);
1842     return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV});
1843   }
1844 
1845   // Else emit a broadcast.
1846   if (SDValue ScalarV = getSplatValue(Op.getNode())) {
1847     unsigned NumEls = ResultVT.getVectorNumElements();
1848     auto AVL = CDAG.getConstant(NumEls, MVT::i32);
1849     return CDAG.getBroadcast(ResultVT, ScalarV, AVL);
1850   }
1851 
1852   // Expand
1853   return SDValue();
1854 }
1855 
1856 TargetLowering::LegalizeAction
1857 VETargetLowering::getCustomOperationAction(SDNode &Op) const {
1858   // Custom legalization on VVP_* and VEC_* opcodes is required to pack-legalize
1859   // these operations (transform nodes such that their AVL parameter refers to
1860   // packs of 64bit, instead of number of elements.
1861 
1862   // Packing opcodes are created with a pack-legal AVL (LEGALAVL). No need to
1863   // re-visit them.
1864   if (isPackingSupportOpcode(Op.getOpcode()))
1865     return Legal;
1866 
1867   // Custom lower to legalize AVL for packed mode.
1868   if (isVVPOrVEC(Op.getOpcode()))
1869     return Custom;
1870   return Legal;
1871 }
1872 
1873 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1874   LLVM_DEBUG(dbgs() << "::LowerOperation"; Op->print(dbgs()););
1875   unsigned Opcode = Op.getOpcode();
1876 
1877   /// Scalar isel.
1878   switch (Opcode) {
1879   case ISD::ATOMIC_FENCE:
1880     return lowerATOMIC_FENCE(Op, DAG);
1881   case ISD::ATOMIC_SWAP:
1882     return lowerATOMIC_SWAP(Op, DAG);
1883   case ISD::BlockAddress:
1884     return lowerBlockAddress(Op, DAG);
1885   case ISD::ConstantPool:
1886     return lowerConstantPool(Op, DAG);
1887   case ISD::DYNAMIC_STACKALLOC:
1888     return lowerDYNAMIC_STACKALLOC(Op, DAG);
1889   case ISD::EH_SJLJ_LONGJMP:
1890     return lowerEH_SJLJ_LONGJMP(Op, DAG);
1891   case ISD::EH_SJLJ_SETJMP:
1892     return lowerEH_SJLJ_SETJMP(Op, DAG);
1893   case ISD::EH_SJLJ_SETUP_DISPATCH:
1894     return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
1895   case ISD::FRAMEADDR:
1896     return lowerFRAMEADDR(Op, DAG, *this, Subtarget);
1897   case ISD::GlobalAddress:
1898     return lowerGlobalAddress(Op, DAG);
1899   case ISD::GlobalTLSAddress:
1900     return lowerGlobalTLSAddress(Op, DAG);
1901   case ISD::INTRINSIC_WO_CHAIN:
1902     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
1903   case ISD::JumpTable:
1904     return lowerJumpTable(Op, DAG);
1905   case ISD::LOAD:
1906     return lowerLOAD(Op, DAG);
1907   case ISD::RETURNADDR:
1908     return lowerRETURNADDR(Op, DAG, *this, Subtarget);
1909   case ISD::BUILD_VECTOR:
1910     return lowerBUILD_VECTOR(Op, DAG);
1911   case ISD::STORE:
1912     return lowerSTORE(Op, DAG);
1913   case ISD::VASTART:
1914     return lowerVASTART(Op, DAG);
1915   case ISD::VAARG:
1916     return lowerVAARG(Op, DAG);
1917 
1918   case ISD::INSERT_VECTOR_ELT:
1919     return lowerINSERT_VECTOR_ELT(Op, DAG);
1920   case ISD::EXTRACT_VECTOR_ELT:
1921     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
1922   }
1923 
1924   /// Vector isel.
1925   LLVM_DEBUG(dbgs() << "::LowerOperation_VVP"; Op->print(dbgs()););
1926   if (ISD::isVPOpcode(Opcode))
1927     return lowerToVVP(Op, DAG);
1928 
1929   switch (Opcode) {
1930   default:
1931     llvm_unreachable("Should not custom lower this!");
1932 
1933   // Legalize the AVL of this internal node.
1934   case VEISD::VEC_BROADCAST:
1935 #define ADD_VVP_OP(VVP_NAME, ...) case VEISD::VVP_NAME:
1936 #include "VVPNodes.def"
1937     // AVL already legalized.
1938     if (getAnnotatedNodeAVL(Op).second)
1939       return Op;
1940     return legalizeInternalVectorOp(Op, DAG);
1941 
1942     // Translate into a VEC_*/VVP_* layer operation.
1943   case ISD::MLOAD:
1944   case ISD::MSTORE:
1945 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME:
1946 #include "VVPNodes.def"
1947     if (isMaskArithmetic(Op) && isPackedVectorType(Op.getValueType()))
1948       return splitMaskArithmetic(Op, DAG);
1949     return lowerToVVP(Op, DAG);
1950   }
1951 }
1952 /// } Custom Lower
1953 
1954 void VETargetLowering::ReplaceNodeResults(SDNode *N,
1955                                           SmallVectorImpl<SDValue> &Results,
1956                                           SelectionDAG &DAG) const {
1957   switch (N->getOpcode()) {
1958   case ISD::ATOMIC_SWAP:
1959     // Let LLVM expand atomic swap instruction through LowerOperation.
1960     return;
1961   default:
1962     LLVM_DEBUG(N->dumpr(&DAG));
1963     llvm_unreachable("Do not know how to custom type legalize this operation!");
1964   }
1965 }
1966 
1967 /// JumpTable for VE.
1968 ///
1969 ///   VE cannot generate relocatable symbol in jump table.  VE cannot
1970 ///   generate expressions using symbols in both text segment and data
1971 ///   segment like below.
1972 ///             .4byte  .LBB0_2-.LJTI0_0
1973 ///   So, we generate offset from the top of function like below as
1974 ///   a custom label.
1975 ///             .4byte  .LBB0_2-<function name>
1976 
1977 unsigned VETargetLowering::getJumpTableEncoding() const {
1978   // Use custom label for PIC.
1979   if (isPositionIndependent())
1980     return MachineJumpTableInfo::EK_Custom32;
1981 
1982   // Otherwise, use the normal jump table encoding heuristics.
1983   return TargetLowering::getJumpTableEncoding();
1984 }
1985 
1986 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry(
1987     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
1988     unsigned Uid, MCContext &Ctx) const {
1989   assert(isPositionIndependent());
1990 
1991   // Generate custom label for PIC like below.
1992   //    .4bytes  .LBB0_2-<function name>
1993   const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
1994   MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data());
1995   const auto *Base = MCSymbolRefExpr::create(Sym, Ctx);
1996   return MCBinaryExpr::createSub(Value, Base, Ctx);
1997 }
1998 
1999 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table,
2000                                                    SelectionDAG &DAG) const {
2001   assert(isPositionIndependent());
2002   SDLoc DL(Table);
2003   Function *Function = &DAG.getMachineFunction().getFunction();
2004   assert(Function != nullptr);
2005   auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace());
2006 
2007   // In the jump table, we have following values in PIC mode.
2008   //    .4bytes  .LBB0_2-<function name>
2009   // We need to add this value and the address of this function to generate
2010   // .LBB0_2 label correctly under PIC mode.  So, we want to generate following
2011   // instructions:
2012   //     lea %reg, fun@gotoff_lo
2013   //     and %reg, %reg, (32)0
2014   //     lea.sl %reg, fun@gotoff_hi(%reg, %got)
2015   // In order to do so, we need to genarate correctly marked DAG node using
2016   // makeHiLoPair.
2017   SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy);
2018   SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32,
2019                               VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
2020   SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy);
2021   return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo);
2022 }
2023 
2024 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB,
2025                                       MachineBasicBlock::iterator I,
2026                                       MachineBasicBlock *TargetBB,
2027                                       const DebugLoc &DL) const {
2028   MachineFunction *MF = MBB.getParent();
2029   MachineRegisterInfo &MRI = MF->getRegInfo();
2030   const VEInstrInfo *TII = Subtarget->getInstrInfo();
2031 
2032   const TargetRegisterClass *RC = &VE::I64RegClass;
2033   Register Tmp1 = MRI.createVirtualRegister(RC);
2034   Register Tmp2 = MRI.createVirtualRegister(RC);
2035   Register Result = MRI.createVirtualRegister(RC);
2036 
2037   if (isPositionIndependent()) {
2038     // Create following instructions for local linkage PIC code.
2039     //     lea %Tmp1, TargetBB@gotoff_lo
2040     //     and %Tmp2, %Tmp1, (32)0
2041     //     lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT
2042     BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
2043         .addImm(0)
2044         .addImm(0)
2045         .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32);
2046     BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
2047         .addReg(Tmp1, getKillRegState(true))
2048         .addImm(M0(32));
2049     BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result)
2050         .addReg(VE::SX15)
2051         .addReg(Tmp2, getKillRegState(true))
2052         .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32);
2053   } else {
2054     // Create following instructions for non-PIC code.
2055     //     lea     %Tmp1, TargetBB@lo
2056     //     and     %Tmp2, %Tmp1, (32)0
2057     //     lea.sl  %Result, TargetBB@hi(%Tmp2)
2058     BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
2059         .addImm(0)
2060         .addImm(0)
2061         .addMBB(TargetBB, VEMCExpr::VK_VE_LO32);
2062     BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
2063         .addReg(Tmp1, getKillRegState(true))
2064         .addImm(M0(32));
2065     BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result)
2066         .addReg(Tmp2, getKillRegState(true))
2067         .addImm(0)
2068         .addMBB(TargetBB, VEMCExpr::VK_VE_HI32);
2069   }
2070   return Result;
2071 }
2072 
2073 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB,
2074                                          MachineBasicBlock::iterator I,
2075                                          StringRef Symbol, const DebugLoc &DL,
2076                                          bool IsLocal = false,
2077                                          bool IsCall = false) const {
2078   MachineFunction *MF = MBB.getParent();
2079   MachineRegisterInfo &MRI = MF->getRegInfo();
2080   const VEInstrInfo *TII = Subtarget->getInstrInfo();
2081 
2082   const TargetRegisterClass *RC = &VE::I64RegClass;
2083   Register Result = MRI.createVirtualRegister(RC);
2084 
2085   if (isPositionIndependent()) {
2086     if (IsCall && !IsLocal) {
2087       // Create following instructions for non-local linkage PIC code function
2088       // calls.  These instructions uses IC and magic number -24, so we expand
2089       // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction.
2090       //     lea %Reg, Symbol@plt_lo(-24)
2091       //     and %Reg, %Reg, (32)0
2092       //     sic %s16
2093       //     lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT
2094       BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result)
2095           .addExternalSymbol("abort");
2096     } else if (IsLocal) {
2097       Register Tmp1 = MRI.createVirtualRegister(RC);
2098       Register Tmp2 = MRI.createVirtualRegister(RC);
2099       // Create following instructions for local linkage PIC code.
2100       //     lea %Tmp1, Symbol@gotoff_lo
2101       //     and %Tmp2, %Tmp1, (32)0
2102       //     lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT
2103       BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
2104           .addImm(0)
2105           .addImm(0)
2106           .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32);
2107       BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
2108           .addReg(Tmp1, getKillRegState(true))
2109           .addImm(M0(32));
2110       BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result)
2111           .addReg(VE::SX15)
2112           .addReg(Tmp2, getKillRegState(true))
2113           .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32);
2114     } else {
2115       Register Tmp1 = MRI.createVirtualRegister(RC);
2116       Register Tmp2 = MRI.createVirtualRegister(RC);
2117       // Create following instructions for not local linkage PIC code.
2118       //     lea %Tmp1, Symbol@got_lo
2119       //     and %Tmp2, %Tmp1, (32)0
2120       //     lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT
2121       //     ld %Result, 0(%Tmp3)
2122       Register Tmp3 = MRI.createVirtualRegister(RC);
2123       BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
2124           .addImm(0)
2125           .addImm(0)
2126           .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32);
2127       BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
2128           .addReg(Tmp1, getKillRegState(true))
2129           .addImm(M0(32));
2130       BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3)
2131           .addReg(VE::SX15)
2132           .addReg(Tmp2, getKillRegState(true))
2133           .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32);
2134       BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result)
2135           .addReg(Tmp3, getKillRegState(true))
2136           .addImm(0)
2137           .addImm(0);
2138     }
2139   } else {
2140     Register Tmp1 = MRI.createVirtualRegister(RC);
2141     Register Tmp2 = MRI.createVirtualRegister(RC);
2142     // Create following instructions for non-PIC code.
2143     //     lea     %Tmp1, Symbol@lo
2144     //     and     %Tmp2, %Tmp1, (32)0
2145     //     lea.sl  %Result, Symbol@hi(%Tmp2)
2146     BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
2147         .addImm(0)
2148         .addImm(0)
2149         .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32);
2150     BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
2151         .addReg(Tmp1, getKillRegState(true))
2152         .addImm(M0(32));
2153     BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result)
2154         .addReg(Tmp2, getKillRegState(true))
2155         .addImm(0)
2156         .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32);
2157   }
2158   return Result;
2159 }
2160 
2161 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI,
2162                                               MachineBasicBlock *MBB,
2163                                               MachineBasicBlock *DispatchBB,
2164                                               int FI, int Offset) const {
2165   DebugLoc DL = MI.getDebugLoc();
2166   const VEInstrInfo *TII = Subtarget->getInstrInfo();
2167 
2168   Register LabelReg =
2169       prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL);
2170 
2171   // Store an address of DispatchBB to a given jmpbuf[1] where has next IC
2172   // referenced by longjmp (throw) later.
2173   MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii));
2174   addFrameReference(MIB, FI, Offset); // jmpbuf[1]
2175   MIB.addReg(LabelReg, getKillRegState(true));
2176 }
2177 
2178 MachineBasicBlock *
2179 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
2180                                    MachineBasicBlock *MBB) const {
2181   DebugLoc DL = MI.getDebugLoc();
2182   MachineFunction *MF = MBB->getParent();
2183   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2184   const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
2185   MachineRegisterInfo &MRI = MF->getRegInfo();
2186 
2187   const BasicBlock *BB = MBB->getBasicBlock();
2188   MachineFunction::iterator I = ++MBB->getIterator();
2189 
2190   // Memory Reference.
2191   SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
2192                                            MI.memoperands_end());
2193   Register BufReg = MI.getOperand(1).getReg();
2194 
2195   Register DstReg;
2196 
2197   DstReg = MI.getOperand(0).getReg();
2198   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
2199   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
2200   (void)TRI;
2201   Register MainDestReg = MRI.createVirtualRegister(RC);
2202   Register RestoreDestReg = MRI.createVirtualRegister(RC);
2203 
2204   // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following
2205   // instructions.  SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`.
2206   //
2207   // ThisMBB:
2208   //   buf[3] = %s17 iff %s17 is used as BP
2209   //   buf[1] = RestoreMBB as IC after longjmp
2210   //   # SjLjSetup RestoreMBB
2211   //
2212   // MainMBB:
2213   //   v_main = 0
2214   //
2215   // SinkMBB:
2216   //   v = phi(v_main, MainMBB, v_restore, RestoreMBB)
2217   //   ...
2218   //
2219   // RestoreMBB:
2220   //   %s17 = buf[3] = iff %s17 is used as BP
2221   //   v_restore = 1
2222   //   goto SinkMBB
2223 
2224   MachineBasicBlock *ThisMBB = MBB;
2225   MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB);
2226   MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB);
2227   MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB);
2228   MF->insert(I, MainMBB);
2229   MF->insert(I, SinkMBB);
2230   MF->push_back(RestoreMBB);
2231   RestoreMBB->setMachineBlockAddressTaken();
2232 
2233   // Transfer the remainder of BB and its successor edges to SinkMBB.
2234   SinkMBB->splice(SinkMBB->begin(), MBB,
2235                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
2236   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
2237 
2238   // ThisMBB:
2239   Register LabelReg =
2240       prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL);
2241 
2242   // Store BP in buf[3] iff this function is using BP.
2243   const VEFrameLowering *TFI = Subtarget->getFrameLowering();
2244   if (TFI->hasBP(*MF)) {
2245     MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii));
2246     MIB.addReg(BufReg);
2247     MIB.addImm(0);
2248     MIB.addImm(24);
2249     MIB.addReg(VE::SX17);
2250     MIB.setMemRefs(MMOs);
2251   }
2252 
2253   // Store IP in buf[1].
2254   MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii));
2255   MIB.add(MI.getOperand(1)); // we can preserve the kill flags here.
2256   MIB.addImm(0);
2257   MIB.addImm(8);
2258   MIB.addReg(LabelReg, getKillRegState(true));
2259   MIB.setMemRefs(MMOs);
2260 
2261   // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`.
2262 
2263   // Insert setup.
2264   MIB =
2265       BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB);
2266 
2267   const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2268   MIB.addRegMask(RegInfo->getNoPreservedMask());
2269   ThisMBB->addSuccessor(MainMBB);
2270   ThisMBB->addSuccessor(RestoreMBB);
2271 
2272   // MainMBB:
2273   BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg)
2274       .addImm(0)
2275       .addImm(0)
2276       .addImm(0);
2277   MainMBB->addSuccessor(SinkMBB);
2278 
2279   // SinkMBB:
2280   BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg)
2281       .addReg(MainDestReg)
2282       .addMBB(MainMBB)
2283       .addReg(RestoreDestReg)
2284       .addMBB(RestoreMBB);
2285 
2286   // RestoreMBB:
2287   // Restore BP from buf[3] iff this function is using BP.  The address of
2288   // buf is in SX10.
2289   // FIXME: Better to not use SX10 here
2290   if (TFI->hasBP(*MF)) {
2291     MachineInstrBuilder MIB =
2292         BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17);
2293     MIB.addReg(VE::SX10);
2294     MIB.addImm(0);
2295     MIB.addImm(24);
2296     MIB.setMemRefs(MMOs);
2297   }
2298   BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg)
2299       .addImm(0)
2300       .addImm(0)
2301       .addImm(1);
2302   BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB);
2303   RestoreMBB->addSuccessor(SinkMBB);
2304 
2305   MI.eraseFromParent();
2306   return SinkMBB;
2307 }
2308 
2309 MachineBasicBlock *
2310 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
2311                                     MachineBasicBlock *MBB) const {
2312   DebugLoc DL = MI.getDebugLoc();
2313   MachineFunction *MF = MBB->getParent();
2314   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2315   MachineRegisterInfo &MRI = MF->getRegInfo();
2316 
2317   // Memory Reference.
2318   SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
2319                                            MI.memoperands_end());
2320   Register BufReg = MI.getOperand(0).getReg();
2321 
2322   Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass);
2323   // Since FP is only updated here but NOT referenced, it's treated as GPR.
2324   Register FP = VE::SX9;
2325   Register SP = VE::SX11;
2326 
2327   MachineInstrBuilder MIB;
2328 
2329   MachineBasicBlock *ThisMBB = MBB;
2330 
2331   // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions.
2332   //
2333   // ThisMBB:
2334   //   %fp = load buf[0]
2335   //   %jmp = load buf[1]
2336   //   %s10 = buf        ; Store an address of buf to SX10 for RestoreMBB
2337   //   %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp.
2338   //   jmp %jmp
2339 
2340   // Reload FP.
2341   MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP);
2342   MIB.addReg(BufReg);
2343   MIB.addImm(0);
2344   MIB.addImm(0);
2345   MIB.setMemRefs(MMOs);
2346 
2347   // Reload IP.
2348   MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp);
2349   MIB.addReg(BufReg);
2350   MIB.addImm(0);
2351   MIB.addImm(8);
2352   MIB.setMemRefs(MMOs);
2353 
2354   // Copy BufReg to SX10 for later use in setjmp.
2355   // FIXME: Better to not use SX10 here
2356   BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10)
2357       .addReg(BufReg)
2358       .addImm(0);
2359 
2360   // Reload SP.
2361   MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP);
2362   MIB.add(MI.getOperand(0)); // we can preserve the kill flags here.
2363   MIB.addImm(0);
2364   MIB.addImm(16);
2365   MIB.setMemRefs(MMOs);
2366 
2367   // Jump.
2368   BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t))
2369       .addReg(Tmp, getKillRegState(true))
2370       .addImm(0);
2371 
2372   MI.eraseFromParent();
2373   return ThisMBB;
2374 }
2375 
2376 MachineBasicBlock *
2377 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI,
2378                                         MachineBasicBlock *BB) const {
2379   DebugLoc DL = MI.getDebugLoc();
2380   MachineFunction *MF = BB->getParent();
2381   MachineFrameInfo &MFI = MF->getFrameInfo();
2382   MachineRegisterInfo &MRI = MF->getRegInfo();
2383   const VEInstrInfo *TII = Subtarget->getInstrInfo();
2384   int FI = MFI.getFunctionContextIndex();
2385 
2386   // Get a mapping of the call site numbers to all of the landing pads they're
2387   // associated with.
2388   DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad;
2389   unsigned MaxCSNum = 0;
2390   for (auto &MBB : *MF) {
2391     if (!MBB.isEHPad())
2392       continue;
2393 
2394     MCSymbol *Sym = nullptr;
2395     for (const auto &MI : MBB) {
2396       if (MI.isDebugInstr())
2397         continue;
2398 
2399       assert(MI.isEHLabel() && "expected EH_LABEL");
2400       Sym = MI.getOperand(0).getMCSymbol();
2401       break;
2402     }
2403 
2404     if (!MF->hasCallSiteLandingPad(Sym))
2405       continue;
2406 
2407     for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) {
2408       CallSiteNumToLPad[CSI].push_back(&MBB);
2409       MaxCSNum = std::max(MaxCSNum, CSI);
2410     }
2411   }
2412 
2413   // Get an ordered list of the machine basic blocks for the jump table.
2414   std::vector<MachineBasicBlock *> LPadList;
2415   SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs;
2416   LPadList.reserve(CallSiteNumToLPad.size());
2417 
2418   for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) {
2419     for (auto &LP : CallSiteNumToLPad[CSI]) {
2420       LPadList.push_back(LP);
2421       InvokeBBs.insert(LP->pred_begin(), LP->pred_end());
2422     }
2423   }
2424 
2425   assert(!LPadList.empty() &&
2426          "No landing pad destinations for the dispatch jump table!");
2427 
2428   // The %fn_context is allocated like below (from --print-after=sjljehprepare):
2429   //   %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] }
2430   //
2431   // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72.
2432   // First `i64` is callsite, so callsite is FI+8.
2433   static const int OffsetIC = 72;
2434   static const int OffsetCS = 8;
2435 
2436   // Create the MBBs for the dispatch code like following:
2437   //
2438   // ThisMBB:
2439   //   Prepare DispatchBB address and store it to buf[1].
2440   //   ...
2441   //
2442   // DispatchBB:
2443   //   %s15 = GETGOT iff isPositionIndependent
2444   //   %callsite = load callsite
2445   //   brgt.l.t #size of callsites, %callsite, DispContBB
2446   //
2447   // TrapBB:
2448   //   Call abort.
2449   //
2450   // DispContBB:
2451   //   %breg = address of jump table
2452   //   %pc = load and calculate next pc from %breg and %callsite
2453   //   jmp %pc
2454 
2455   // Shove the dispatch's address into the return slot in the function context.
2456   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
2457   DispatchBB->setIsEHPad(true);
2458 
2459   // Trap BB will causes trap like `assert(0)`.
2460   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
2461   DispatchBB->addSuccessor(TrapBB);
2462 
2463   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
2464   DispatchBB->addSuccessor(DispContBB);
2465 
2466   // Insert MBBs.
2467   MF->push_back(DispatchBB);
2468   MF->push_back(DispContBB);
2469   MF->push_back(TrapBB);
2470 
2471   // Insert code to call abort in the TrapBB.
2472   Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL,
2473                                  /* Local */ false, /* Call */ true);
2474   BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10)
2475       .addReg(Abort, getKillRegState(true))
2476       .addImm(0)
2477       .addImm(0);
2478 
2479   // Insert code into the entry block that creates and registers the function
2480   // context.
2481   setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC);
2482 
2483   // Create the jump table and associated information
2484   unsigned JTE = getJumpTableEncoding();
2485   MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE);
2486   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
2487 
2488   const VERegisterInfo &RI = TII->getRegisterInfo();
2489   // Add a register mask with no preserved registers.  This results in all
2490   // registers being marked as clobbered.
2491   BuildMI(DispatchBB, DL, TII->get(VE::NOP))
2492       .addRegMask(RI.getNoPreservedMask());
2493 
2494   if (isPositionIndependent()) {
2495     // Force to generate GETGOT, since current implementation doesn't store GOT
2496     // register.
2497     BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15);
2498   }
2499 
2500   // IReg is used as an index in a memory operand and therefore can't be SP
2501   const TargetRegisterClass *RC = &VE::I64RegClass;
2502   Register IReg = MRI.createVirtualRegister(RC);
2503   addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI,
2504                     OffsetCS);
2505   if (LPadList.size() < 64) {
2506     BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t))
2507         .addImm(VECC::CC_ILE)
2508         .addImm(LPadList.size())
2509         .addReg(IReg)
2510         .addMBB(TrapBB);
2511   } else {
2512     assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!");
2513     Register TmpReg = MRI.createVirtualRegister(RC);
2514     BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg)
2515         .addImm(0)
2516         .addImm(0)
2517         .addImm(LPadList.size());
2518     BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t))
2519         .addImm(VECC::CC_ILE)
2520         .addReg(TmpReg, getKillRegState(true))
2521         .addReg(IReg)
2522         .addMBB(TrapBB);
2523   }
2524 
2525   Register BReg = MRI.createVirtualRegister(RC);
2526   Register Tmp1 = MRI.createVirtualRegister(RC);
2527   Register Tmp2 = MRI.createVirtualRegister(RC);
2528 
2529   if (isPositionIndependent()) {
2530     // Create following instructions for local linkage PIC code.
2531     //     lea    %Tmp1, .LJTI0_0@gotoff_lo
2532     //     and    %Tmp2, %Tmp1, (32)0
2533     //     lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT
2534     BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1)
2535         .addImm(0)
2536         .addImm(0)
2537         .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32);
2538     BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2)
2539         .addReg(Tmp1, getKillRegState(true))
2540         .addImm(M0(32));
2541     BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg)
2542         .addReg(VE::SX15)
2543         .addReg(Tmp2, getKillRegState(true))
2544         .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32);
2545   } else {
2546     // Create following instructions for non-PIC code.
2547     //     lea     %Tmp1, .LJTI0_0@lo
2548     //     and     %Tmp2, %Tmp1, (32)0
2549     //     lea.sl  %BReg, .LJTI0_0@hi(%Tmp2)
2550     BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1)
2551         .addImm(0)
2552         .addImm(0)
2553         .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32);
2554     BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2)
2555         .addReg(Tmp1, getKillRegState(true))
2556         .addImm(M0(32));
2557     BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg)
2558         .addReg(Tmp2, getKillRegState(true))
2559         .addImm(0)
2560         .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32);
2561   }
2562 
2563   switch (JTE) {
2564   case MachineJumpTableInfo::EK_BlockAddress: {
2565     // Generate simple block address code for no-PIC model.
2566     //     sll %Tmp1, %IReg, 3
2567     //     lds %TReg, 0(%Tmp1, %BReg)
2568     //     bcfla %TReg
2569 
2570     Register TReg = MRI.createVirtualRegister(RC);
2571     Register Tmp1 = MRI.createVirtualRegister(RC);
2572 
2573     BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1)
2574         .addReg(IReg, getKillRegState(true))
2575         .addImm(3);
2576     BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg)
2577         .addReg(BReg, getKillRegState(true))
2578         .addReg(Tmp1, getKillRegState(true))
2579         .addImm(0);
2580     BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t))
2581         .addReg(TReg, getKillRegState(true))
2582         .addImm(0);
2583     break;
2584   }
2585   case MachineJumpTableInfo::EK_Custom32: {
2586     // Generate block address code using differences from the function pointer
2587     // for PIC model.
2588     //     sll %Tmp1, %IReg, 2
2589     //     ldl.zx %OReg, 0(%Tmp1, %BReg)
2590     //     Prepare function address in BReg2.
2591     //     adds.l %TReg, %BReg2, %OReg
2592     //     bcfla %TReg
2593 
2594     assert(isPositionIndependent());
2595     Register OReg = MRI.createVirtualRegister(RC);
2596     Register TReg = MRI.createVirtualRegister(RC);
2597     Register Tmp1 = MRI.createVirtualRegister(RC);
2598 
2599     BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1)
2600         .addReg(IReg, getKillRegState(true))
2601         .addImm(2);
2602     BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg)
2603         .addReg(BReg, getKillRegState(true))
2604         .addReg(Tmp1, getKillRegState(true))
2605         .addImm(0);
2606     Register BReg2 =
2607         prepareSymbol(*DispContBB, DispContBB->end(),
2608                       DispContBB->getParent()->getName(), DL, /* Local */ true);
2609     BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg)
2610         .addReg(OReg, getKillRegState(true))
2611         .addReg(BReg2, getKillRegState(true));
2612     BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t))
2613         .addReg(TReg, getKillRegState(true))
2614         .addImm(0);
2615     break;
2616   }
2617   default:
2618     llvm_unreachable("Unexpected jump table encoding");
2619   }
2620 
2621   // Add the jump table entries as successors to the MBB.
2622   SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs;
2623   for (auto &LP : LPadList)
2624     if (SeenMBBs.insert(LP).second)
2625       DispContBB->addSuccessor(LP);
2626 
2627   // N.B. the order the invoke BBs are processed in doesn't matter here.
2628   SmallVector<MachineBasicBlock *, 64> MBBLPads;
2629   const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs();
2630   for (MachineBasicBlock *MBB : InvokeBBs) {
2631     // Remove the landing pad successor from the invoke block and replace it
2632     // with the new dispatch block.
2633     // Keep a copy of Successors since it's modified inside the loop.
2634     SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(),
2635                                                    MBB->succ_rend());
2636     // FIXME: Avoid quadratic complexity.
2637     for (auto *MBBS : Successors) {
2638       if (MBBS->isEHPad()) {
2639         MBB->removeSuccessor(MBBS);
2640         MBBLPads.push_back(MBBS);
2641       }
2642     }
2643 
2644     MBB->addSuccessor(DispatchBB);
2645 
2646     // Find the invoke call and mark all of the callee-saved registers as
2647     // 'implicit defined' so that they're spilled.  This prevents code from
2648     // moving instructions to before the EH block, where they will never be
2649     // executed.
2650     for (auto &II : reverse(*MBB)) {
2651       if (!II.isCall())
2652         continue;
2653 
2654       DenseMap<Register, bool> DefRegs;
2655       for (auto &MOp : II.operands())
2656         if (MOp.isReg())
2657           DefRegs[MOp.getReg()] = true;
2658 
2659       MachineInstrBuilder MIB(*MF, &II);
2660       for (unsigned RI = 0; SavedRegs[RI]; ++RI) {
2661         Register Reg = SavedRegs[RI];
2662         if (!DefRegs[Reg])
2663           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
2664       }
2665 
2666       break;
2667     }
2668   }
2669 
2670   // Mark all former landing pads as non-landing pads.  The dispatch is the only
2671   // landing pad now.
2672   for (auto &LP : MBBLPads)
2673     LP->setIsEHPad(false);
2674 
2675   // The instruction is gone now.
2676   MI.eraseFromParent();
2677   return BB;
2678 }
2679 
2680 MachineBasicBlock *
2681 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
2682                                               MachineBasicBlock *BB) const {
2683   switch (MI.getOpcode()) {
2684   default:
2685     llvm_unreachable("Unknown Custom Instruction!");
2686   case VE::EH_SjLj_LongJmp:
2687     return emitEHSjLjLongJmp(MI, BB);
2688   case VE::EH_SjLj_SetJmp:
2689     return emitEHSjLjSetJmp(MI, BB);
2690   case VE::EH_SjLj_Setup_Dispatch:
2691     return emitSjLjDispatchBlock(MI, BB);
2692   }
2693 }
2694 
2695 static bool isSimm7(SDValue V) {
2696   EVT VT = V.getValueType();
2697   if (VT.isVector())
2698     return false;
2699 
2700   if (VT.isInteger()) {
2701     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(V))
2702       return isInt<7>(C->getSExtValue());
2703   } else if (VT.isFloatingPoint()) {
2704     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(V)) {
2705       if (VT == MVT::f32 || VT == MVT::f64) {
2706         const APInt &Imm = C->getValueAPF().bitcastToAPInt();
2707         uint64_t Val = Imm.getSExtValue();
2708         if (Imm.getBitWidth() == 32)
2709           Val <<= 32; // Immediate value of float place at higher bits on VE.
2710         return isInt<7>(Val);
2711       }
2712     }
2713   }
2714   return false;
2715 }
2716 
2717 static bool isMImm(SDValue V) {
2718   EVT VT = V.getValueType();
2719   if (VT.isVector())
2720     return false;
2721 
2722   if (VT.isInteger()) {
2723     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(V))
2724       return isMImmVal(getImmVal(C));
2725   } else if (VT.isFloatingPoint()) {
2726     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(V)) {
2727       if (VT == MVT::f32) {
2728         // Float value places at higher bits, so ignore lower 32 bits.
2729         return isMImm32Val(getFpImmVal(C) >> 32);
2730       } else if (VT == MVT::f64) {
2731         return isMImmVal(getFpImmVal(C));
2732       }
2733     }
2734   }
2735   return false;
2736 }
2737 
2738 static unsigned decideComp(EVT SrcVT, ISD::CondCode CC) {
2739   if (SrcVT.isFloatingPoint()) {
2740     if (SrcVT == MVT::f128)
2741       return VEISD::CMPQ;
2742     return VEISD::CMPF;
2743   }
2744   return isSignedIntSetCC(CC) ? VEISD::CMPI : VEISD::CMPU;
2745 }
2746 
2747 static EVT decideCompType(EVT SrcVT) {
2748   if (SrcVT == MVT::f128)
2749     return MVT::f64;
2750   return SrcVT;
2751 }
2752 
2753 static bool safeWithoutCompWithNull(EVT SrcVT, ISD::CondCode CC,
2754                                     bool WithCMov) {
2755   if (SrcVT.isFloatingPoint()) {
2756     // For the case of floating point setcc, only unordered comparison
2757     // or general comparison with -enable-no-nans-fp-math option reach
2758     // here, so it is safe even if values are NaN.  Only f128 doesn't
2759     // safe since VE uses f64 result of f128 comparison.
2760     return SrcVT != MVT::f128;
2761   }
2762   if (isIntEqualitySetCC(CC)) {
2763     // For the case of equal or not equal, it is safe without comparison with 0.
2764     return true;
2765   }
2766   if (WithCMov) {
2767     // For the case of integer setcc with cmov, all signed comparison with 0
2768     // are safe.
2769     return isSignedIntSetCC(CC);
2770   }
2771   // For the case of integer setcc, only signed 64 bits comparison is safe.
2772   // For unsigned, "CMPU 0x80000000, 0" has to be greater than 0, but it becomes
2773   // less than 0 witout CMPU.  For 32 bits, other half of 32 bits are
2774   // uncoditional, so it is not safe too without CMPI..
2775   return isSignedIntSetCC(CC) && SrcVT == MVT::i64;
2776 }
2777 
2778 static SDValue generateComparison(EVT VT, SDValue LHS, SDValue RHS,
2779                                   ISD::CondCode CC, bool WithCMov,
2780                                   const SDLoc &DL, SelectionDAG &DAG) {
2781   // Compare values.  If RHS is 0 and it is safe to calculate without
2782   // comparison, we don't generate an instruction for comparison.
2783   EVT CompVT = decideCompType(VT);
2784   if (CompVT == VT && safeWithoutCompWithNull(VT, CC, WithCMov) &&
2785       (isNullConstant(RHS) || isNullFPConstant(RHS))) {
2786     return LHS;
2787   }
2788   return DAG.getNode(decideComp(VT, CC), DL, CompVT, LHS, RHS);
2789 }
2790 
2791 SDValue VETargetLowering::combineSelect(SDNode *N,
2792                                         DAGCombinerInfo &DCI) const {
2793   assert(N->getOpcode() == ISD::SELECT &&
2794          "Should be called with a SELECT node");
2795   ISD::CondCode CC = ISD::CondCode::SETNE;
2796   SDValue Cond = N->getOperand(0);
2797   SDValue True = N->getOperand(1);
2798   SDValue False = N->getOperand(2);
2799 
2800   // We handle only scalar SELECT.
2801   EVT VT = N->getValueType(0);
2802   if (VT.isVector())
2803     return SDValue();
2804 
2805   // Peform combineSelect after leagalize DAG.
2806   if (!DCI.isAfterLegalizeDAG())
2807     return SDValue();
2808 
2809   EVT VT0 = Cond.getValueType();
2810   if (isMImm(True)) {
2811     // VE's condition move can handle MImm in True clause, so nothing to do.
2812   } else if (isMImm(False)) {
2813     // VE's condition move can handle MImm in True clause, so swap True and
2814     // False clauses if False has MImm value.  And, update condition code.
2815     std::swap(True, False);
2816     CC = getSetCCInverse(CC, VT0);
2817   }
2818 
2819   SDLoc DL(N);
2820   SelectionDAG &DAG = DCI.DAG;
2821   VECC::CondCode VECCVal;
2822   if (VT0.isFloatingPoint()) {
2823     VECCVal = fpCondCode2Fcc(CC);
2824   } else {
2825     VECCVal = intCondCode2Icc(CC);
2826   }
2827   SDValue Ops[] = {Cond, True, False,
2828                    DAG.getConstant(VECCVal, DL, MVT::i32)};
2829   return DAG.getNode(VEISD::CMOV, DL, VT, Ops);
2830 }
2831 
2832 SDValue VETargetLowering::combineSelectCC(SDNode *N,
2833                                           DAGCombinerInfo &DCI) const {
2834   assert(N->getOpcode() == ISD::SELECT_CC &&
2835          "Should be called with a SELECT_CC node");
2836   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
2837   SDValue LHS = N->getOperand(0);
2838   SDValue RHS = N->getOperand(1);
2839   SDValue True = N->getOperand(2);
2840   SDValue False = N->getOperand(3);
2841 
2842   // We handle only scalar SELECT_CC.
2843   EVT VT = N->getValueType(0);
2844   if (VT.isVector())
2845     return SDValue();
2846 
2847   // Peform combineSelectCC after leagalize DAG.
2848   if (!DCI.isAfterLegalizeDAG())
2849     return SDValue();
2850 
2851   // We handle only i32/i64/f32/f64/f128 comparisons.
2852   EVT LHSVT = LHS.getValueType();
2853   assert(LHSVT == RHS.getValueType());
2854   switch (LHSVT.getSimpleVT().SimpleTy) {
2855   case MVT::i32:
2856   case MVT::i64:
2857   case MVT::f32:
2858   case MVT::f64:
2859   case MVT::f128:
2860     break;
2861   default:
2862     // Return SDValue to let llvm handle other types.
2863     return SDValue();
2864   }
2865 
2866   if (isMImm(RHS)) {
2867     // VE's comparison can handle MImm in RHS, so nothing to do.
2868   } else if (isSimm7(RHS)) {
2869     // VE's comparison can handle Simm7 in LHS, so swap LHS and RHS, and
2870     // update condition code.
2871     std::swap(LHS, RHS);
2872     CC = getSetCCSwappedOperands(CC);
2873   }
2874   if (isMImm(True)) {
2875     // VE's condition move can handle MImm in True clause, so nothing to do.
2876   } else if (isMImm(False)) {
2877     // VE's condition move can handle MImm in True clause, so swap True and
2878     // False clauses if False has MImm value.  And, update condition code.
2879     std::swap(True, False);
2880     CC = getSetCCInverse(CC, LHSVT);
2881   }
2882 
2883   SDLoc DL(N);
2884   SelectionDAG &DAG = DCI.DAG;
2885 
2886   bool WithCMov = true;
2887   SDValue CompNode = generateComparison(LHSVT, LHS, RHS, CC, WithCMov, DL, DAG);
2888 
2889   VECC::CondCode VECCVal;
2890   if (LHSVT.isFloatingPoint()) {
2891     VECCVal = fpCondCode2Fcc(CC);
2892   } else {
2893     VECCVal = intCondCode2Icc(CC);
2894   }
2895   SDValue Ops[] = {CompNode, True, False,
2896                    DAG.getConstant(VECCVal, DL, MVT::i32)};
2897   return DAG.getNode(VEISD::CMOV, DL, VT, Ops);
2898 }
2899 
2900 static bool isI32InsnAllUses(const SDNode *User, const SDNode *N);
2901 static bool isI32Insn(const SDNode *User, const SDNode *N) {
2902   switch (User->getOpcode()) {
2903   default:
2904     return false;
2905   case ISD::ADD:
2906   case ISD::SUB:
2907   case ISD::MUL:
2908   case ISD::SDIV:
2909   case ISD::UDIV:
2910   case ISD::SETCC:
2911   case ISD::SMIN:
2912   case ISD::SMAX:
2913   case ISD::SHL:
2914   case ISD::SRA:
2915   case ISD::BSWAP:
2916   case ISD::SINT_TO_FP:
2917   case ISD::UINT_TO_FP:
2918   case ISD::BR_CC:
2919   case ISD::BITCAST:
2920   case ISD::ATOMIC_CMP_SWAP:
2921   case ISD::ATOMIC_SWAP:
2922   case VEISD::CMPU:
2923   case VEISD::CMPI:
2924     return true;
2925   case ISD::SRL:
2926     if (N->getOperand(0).getOpcode() != ISD::SRL)
2927       return true;
2928     // (srl (trunc (srl ...))) may be optimized by combining srl, so
2929     // doesn't optimize trunc now.
2930     return false;
2931   case ISD::SELECT_CC:
2932     if (User->getOperand(2).getNode() != N &&
2933         User->getOperand(3).getNode() != N)
2934       return true;
2935     return isI32InsnAllUses(User, N);
2936   case VEISD::CMOV:
2937     // CMOV in (cmov (trunc ...), true, false, int-comparison) is safe.
2938     // However, trunc in true or false clauses is not safe.
2939     if (User->getOperand(1).getNode() != N &&
2940         User->getOperand(2).getNode() != N &&
2941         isa<ConstantSDNode>(User->getOperand(3))) {
2942       VECC::CondCode VECCVal = static_cast<VECC::CondCode>(
2943           cast<ConstantSDNode>(User->getOperand(3))->getZExtValue());
2944       return isIntVECondCode(VECCVal);
2945     }
2946     [[fallthrough]];
2947   case ISD::AND:
2948   case ISD::OR:
2949   case ISD::XOR:
2950   case ISD::SELECT:
2951   case ISD::CopyToReg:
2952     // Check all use of selections, bit operations, and copies.  If all of them
2953     // are safe, optimize truncate to extract_subreg.
2954     return isI32InsnAllUses(User, N);
2955   }
2956 }
2957 
2958 static bool isI32InsnAllUses(const SDNode *User, const SDNode *N) {
2959   // Check all use of User node.  If all of them are safe, optimize
2960   // truncate to extract_subreg.
2961   for (const SDNode *U : User->uses()) {
2962     switch (U->getOpcode()) {
2963     default:
2964       // If the use is an instruction which treats the source operand as i32,
2965       // it is safe to avoid truncate here.
2966       if (isI32Insn(U, N))
2967         continue;
2968       break;
2969     case ISD::ANY_EXTEND:
2970     case ISD::SIGN_EXTEND:
2971     case ISD::ZERO_EXTEND: {
2972       // Special optimizations to the combination of ext and trunc.
2973       // (ext ... (select ... (trunc ...))) is safe to avoid truncate here
2974       // since this truncate instruction clears higher 32 bits which is filled
2975       // by one of ext instructions later.
2976       assert(N->getValueType(0) == MVT::i32 &&
2977              "find truncate to not i32 integer");
2978       if (User->getOpcode() == ISD::SELECT_CC ||
2979           User->getOpcode() == ISD::SELECT || User->getOpcode() == VEISD::CMOV)
2980         continue;
2981       break;
2982     }
2983     }
2984     return false;
2985   }
2986   return true;
2987 }
2988 
2989 // Optimize TRUNCATE in DAG combining.  Optimizing it in CUSTOM lower is
2990 // sometime too early.  Optimizing it in DAG pattern matching in VEInstrInfo.td
2991 // is sometime too late.  So, doing it at here.
2992 SDValue VETargetLowering::combineTRUNCATE(SDNode *N,
2993                                           DAGCombinerInfo &DCI) const {
2994   assert(N->getOpcode() == ISD::TRUNCATE &&
2995          "Should be called with a TRUNCATE node");
2996 
2997   SelectionDAG &DAG = DCI.DAG;
2998   SDLoc DL(N);
2999   EVT VT = N->getValueType(0);
3000 
3001   // We prefer to do this when all types are legal.
3002   if (!DCI.isAfterLegalizeDAG())
3003     return SDValue();
3004 
3005   // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant.
3006   if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC &&
3007       isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) &&
3008       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
3009     return SDValue();
3010 
3011   // Check all use of this TRUNCATE.
3012   for (const SDNode *User : N->uses()) {
3013     // Make sure that we're not going to replace TRUNCATE for non i32
3014     // instructions.
3015     //
3016     // FIXME: Although we could sometimes handle this, and it does occur in
3017     // practice that one of the condition inputs to the select is also one of
3018     // the outputs, we currently can't deal with this.
3019     if (isI32Insn(User, N))
3020       continue;
3021 
3022     return SDValue();
3023   }
3024 
3025   SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32);
3026   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT,
3027                                     N->getOperand(0), SubI32),
3028                  0);
3029 }
3030 
3031 SDValue VETargetLowering::PerformDAGCombine(SDNode *N,
3032                                             DAGCombinerInfo &DCI) const {
3033   switch (N->getOpcode()) {
3034   default:
3035     break;
3036   case ISD::SELECT:
3037     return combineSelect(N, DCI);
3038   case ISD::SELECT_CC:
3039     return combineSelectCC(N, DCI);
3040   case ISD::TRUNCATE:
3041     return combineTRUNCATE(N, DCI);
3042   }
3043 
3044   return SDValue();
3045 }
3046 
3047 //===----------------------------------------------------------------------===//
3048 // VE Inline Assembly Support
3049 //===----------------------------------------------------------------------===//
3050 
3051 VETargetLowering::ConstraintType
3052 VETargetLowering::getConstraintType(StringRef Constraint) const {
3053   if (Constraint.size() == 1) {
3054     switch (Constraint[0]) {
3055     default:
3056       break;
3057     case 'v': // vector registers
3058       return C_RegisterClass;
3059     }
3060   }
3061   return TargetLowering::getConstraintType(Constraint);
3062 }
3063 
3064 std::pair<unsigned, const TargetRegisterClass *>
3065 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3066                                                StringRef Constraint,
3067                                                MVT VT) const {
3068   const TargetRegisterClass *RC = nullptr;
3069   if (Constraint.size() == 1) {
3070     switch (Constraint[0]) {
3071     default:
3072       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3073     case 'r':
3074       RC = &VE::I64RegClass;
3075       break;
3076     case 'v':
3077       RC = &VE::V64RegClass;
3078       break;
3079     }
3080     return std::make_pair(0U, RC);
3081   }
3082 
3083   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3084 }
3085 
3086 //===----------------------------------------------------------------------===//
3087 // VE Target Optimization Support
3088 //===----------------------------------------------------------------------===//
3089 
3090 unsigned VETargetLowering::getMinimumJumpTableEntries() const {
3091   // Specify 8 for PIC model to relieve the impact of PIC load instructions.
3092   if (isJumpTableRelative())
3093     return 8;
3094 
3095   return TargetLowering::getMinimumJumpTableEntries();
3096 }
3097 
3098 bool VETargetLowering::hasAndNot(SDValue Y) const {
3099   EVT VT = Y.getValueType();
3100 
3101   // VE doesn't have vector and not instruction.
3102   if (VT.isVector())
3103     return false;
3104 
3105   // VE allows different immediate values for X and Y where ~X & Y.
3106   // Only simm7 works for X, and only mimm works for Y on VE.  However, this
3107   // function is used to check whether an immediate value is OK for and-not
3108   // instruction as both X and Y.  Generating additional instruction to
3109   // retrieve an immediate value is no good since the purpose of this
3110   // function is to convert a series of 3 instructions to another series of
3111   // 3 instructions with better parallelism.  Therefore, we return false
3112   // for all immediate values now.
3113   // FIXME: Change hasAndNot function to have two operands to make it work
3114   //        correctly with Aurora VE.
3115   if (isa<ConstantSDNode>(Y))
3116     return false;
3117 
3118   // It's ok for generic registers.
3119   return true;
3120 }
3121 
3122 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3123                                                   SelectionDAG &DAG) const {
3124   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
3125   MVT VT = Op.getOperand(0).getSimpleValueType();
3126 
3127   // Special treatment for packed V64 types.
3128   assert(VT == MVT::v512i32 || VT == MVT::v512f32);
3129   (void)VT;
3130   // Example of codes:
3131   //   %packed_v = extractelt %vr, %idx / 2
3132   //   %v = %packed_v >> (%idx % 2 * 32)
3133   //   %res = %v & 0xffffffff
3134 
3135   SDValue Vec = Op.getOperand(0);
3136   SDValue Idx = Op.getOperand(1);
3137   SDLoc DL(Op);
3138   SDValue Result = Op;
3139   if (false /* Idx->isConstant() */) {
3140     // TODO: optimized implementation using constant values
3141   } else {
3142     SDValue Const1 = DAG.getConstant(1, DL, MVT::i64);
3143     SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1});
3144     SDValue PackedElt =
3145         SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0);
3146     SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1});
3147     SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1});
3148     SDValue Const5 = DAG.getConstant(5, DL, MVT::i64);
3149     Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5});
3150     PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift});
3151     SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64);
3152     PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask});
3153     SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32);
3154     Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
3155                                         MVT::i32, PackedElt, SubI32),
3156                      0);
3157 
3158     if (Op.getSimpleValueType() == MVT::f32) {
3159       Result = DAG.getBitcast(MVT::f32, Result);
3160     } else {
3161       assert(Op.getSimpleValueType() == MVT::i32);
3162     }
3163   }
3164   return Result;
3165 }
3166 
3167 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3168                                                  SelectionDAG &DAG) const {
3169   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
3170   MVT VT = Op.getOperand(0).getSimpleValueType();
3171 
3172   // Special treatment for packed V64 types.
3173   assert(VT == MVT::v512i32 || VT == MVT::v512f32);
3174   (void)VT;
3175   // The v512i32 and v512f32 starts from upper bits (0..31).  This "upper
3176   // bits" required `val << 32` from C implementation's point of view.
3177   //
3178   // Example of codes:
3179   //   %packed_elt = extractelt %vr, (%idx >> 1)
3180   //   %shift = ((%idx & 1) ^ 1) << 5
3181   //   %packed_elt &= 0xffffffff00000000 >> shift
3182   //   %packed_elt |= (zext %val) << shift
3183   //   %vr = insertelt %vr, %packed_elt, (%idx >> 1)
3184 
3185   SDLoc DL(Op);
3186   SDValue Vec = Op.getOperand(0);
3187   SDValue Val = Op.getOperand(1);
3188   SDValue Idx = Op.getOperand(2);
3189   if (Idx.getSimpleValueType() == MVT::i32)
3190     Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx);
3191   if (Val.getSimpleValueType() == MVT::f32)
3192     Val = DAG.getBitcast(MVT::i32, Val);
3193   assert(Val.getSimpleValueType() == MVT::i32);
3194   Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3195 
3196   SDValue Result = Op;
3197   if (false /* Idx->isConstant()*/) {
3198     // TODO: optimized implementation using constant values
3199   } else {
3200     SDValue Const1 = DAG.getConstant(1, DL, MVT::i64);
3201     SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1});
3202     SDValue PackedElt =
3203         SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0);
3204     SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1});
3205     SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1});
3206     SDValue Const5 = DAG.getConstant(5, DL, MVT::i64);
3207     Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5});
3208     SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64);
3209     Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift});
3210     PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask});
3211     Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift});
3212     PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val});
3213     Result =
3214         SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(),
3215                                    {HalfIdx, PackedElt, Vec}),
3216                 0);
3217   }
3218   return Result;
3219 }
3220