1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VECustomDAG.h" 17 #include "VEInstrBuilder.h" 18 #include "VEMachineFunctionInfo.h" 19 #include "VERegisterInfo.h" 20 #include "VETargetMachine.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ve-lower" 40 41 //===----------------------------------------------------------------------===// 42 // Calling Convention Implementation 43 //===----------------------------------------------------------------------===// 44 45 #include "VEGenCallingConv.inc" 46 47 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 48 switch (CallConv) { 49 default: 50 return RetCC_VE_C; 51 case CallingConv::Fast: 52 return RetCC_VE_Fast; 53 } 54 } 55 56 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 57 if (IsVarArg) 58 return CC_VE2; 59 switch (CallConv) { 60 default: 61 return CC_VE_C; 62 case CallingConv::Fast: 63 return CC_VE_Fast; 64 } 65 } 66 67 bool VETargetLowering::CanLowerReturn( 68 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 69 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 70 CCAssignFn *RetCC = getReturnCC(CallConv); 71 SmallVector<CCValAssign, 16> RVLocs; 72 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 73 return CCInfo.CheckReturn(Outs, RetCC); 74 } 75 76 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 77 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 78 79 static const MVT AllMaskVTs[] = {MVT::v256i1, MVT::v512i1}; 80 81 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 82 83 void VETargetLowering::initRegisterClasses() { 84 // Set up the register classes. 85 addRegisterClass(MVT::i32, &VE::I32RegClass); 86 addRegisterClass(MVT::i64, &VE::I64RegClass); 87 addRegisterClass(MVT::f32, &VE::F32RegClass); 88 addRegisterClass(MVT::f64, &VE::I64RegClass); 89 addRegisterClass(MVT::f128, &VE::F128RegClass); 90 91 if (Subtarget->enableVPU()) { 92 for (MVT VecVT : AllVectorVTs) 93 addRegisterClass(VecVT, &VE::V64RegClass); 94 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 95 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 96 } 97 } 98 99 void VETargetLowering::initSPUActions() { 100 const auto &TM = getTargetMachine(); 101 /// Load & Store { 102 103 // VE doesn't have i1 sign extending load. 104 for (MVT VT : MVT::integer_valuetypes()) { 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 106 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 107 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 108 setTruncStoreAction(VT, MVT::i1, Expand); 109 } 110 111 // VE doesn't have floating point extload/truncstore, so expand them. 112 for (MVT FPVT : MVT::fp_valuetypes()) { 113 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 114 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 115 setTruncStoreAction(FPVT, OtherFPVT, Expand); 116 } 117 } 118 119 // VE doesn't have fp128 load/store, so expand them in custom lower. 120 setOperationAction(ISD::LOAD, MVT::f128, Custom); 121 setOperationAction(ISD::STORE, MVT::f128, Custom); 122 123 /// } Load & Store 124 125 // Custom legalize address nodes into LO/HI parts. 126 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 127 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 128 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 129 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 130 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 131 setOperationAction(ISD::JumpTable, PtrVT, Custom); 132 133 /// VAARG handling { 134 setOperationAction(ISD::VASTART, MVT::Other, Custom); 135 // VAARG needs to be lowered to access with 8 bytes alignment. 136 setOperationAction(ISD::VAARG, MVT::Other, Custom); 137 // Use the default implementation. 138 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 139 setOperationAction(ISD::VAEND, MVT::Other, Expand); 140 /// } VAARG handling 141 142 /// Stack { 143 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 145 146 // Use the default implementation. 147 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 148 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 149 /// } Stack 150 151 /// Branch { 152 153 // VE doesn't have BRCOND 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // BR_JT is not implemented yet. 157 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 158 159 /// } Branch 160 161 /// Int Ops { 162 for (MVT IntVT : {MVT::i32, MVT::i64}) { 163 // VE has no REM or DIVREM operations. 164 setOperationAction(ISD::UREM, IntVT, Expand); 165 setOperationAction(ISD::SREM, IntVT, Expand); 166 setOperationAction(ISD::SDIVREM, IntVT, Expand); 167 setOperationAction(ISD::UDIVREM, IntVT, Expand); 168 169 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 170 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 171 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 172 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 173 174 // VE has no MULHU/S or U/SMUL_LOHI operations. 175 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 176 setOperationAction(ISD::MULHU, IntVT, Expand); 177 setOperationAction(ISD::MULHS, IntVT, Expand); 178 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 179 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 180 181 // VE has no CTTZ, ROTL, ROTR operations. 182 setOperationAction(ISD::CTTZ, IntVT, Expand); 183 setOperationAction(ISD::ROTL, IntVT, Expand); 184 setOperationAction(ISD::ROTR, IntVT, Expand); 185 186 // VE has 64 bits instruction which works as i64 BSWAP operation. This 187 // instruction works fine as i32 BSWAP operation with an additional 188 // parameter. Use isel patterns to lower BSWAP. 189 setOperationAction(ISD::BSWAP, IntVT, Legal); 190 191 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 192 // operations. Use isel patterns for i64, promote for i32. 193 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 194 setOperationAction(ISD::BITREVERSE, IntVT, Act); 195 setOperationAction(ISD::CTLZ, IntVT, Act); 196 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 197 setOperationAction(ISD::CTPOP, IntVT, Act); 198 199 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 200 // Use isel patterns for i64, promote for i32. 201 setOperationAction(ISD::AND, IntVT, Act); 202 setOperationAction(ISD::OR, IntVT, Act); 203 setOperationAction(ISD::XOR, IntVT, Act); 204 205 // Legal smax and smin 206 setOperationAction(ISD::SMAX, IntVT, Legal); 207 setOperationAction(ISD::SMIN, IntVT, Legal); 208 } 209 /// } Int Ops 210 211 /// Conversion { 212 // VE doesn't have instructions for fp<->uint, so expand them by llvm 213 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 214 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 215 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 216 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 217 218 // fp16 not supported 219 for (MVT FPVT : MVT::fp_valuetypes()) { 220 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 221 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 222 } 223 /// } Conversion 224 225 /// Floating-point Ops { 226 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 227 /// and fcmp. 228 229 // VE doesn't have following floating point operations. 230 for (MVT VT : MVT::fp_valuetypes()) { 231 setOperationAction(ISD::FNEG, VT, Expand); 232 setOperationAction(ISD::FREM, VT, Expand); 233 } 234 235 // VE doesn't have fdiv of f128. 236 setOperationAction(ISD::FDIV, MVT::f128, Expand); 237 238 for (MVT FPVT : {MVT::f32, MVT::f64}) { 239 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 240 setOperationAction(ISD::ConstantFP, FPVT, Legal); 241 } 242 /// } Floating-point Ops 243 244 /// Floating-point math functions { 245 246 // VE doesn't have following floating point math functions. 247 for (MVT VT : MVT::fp_valuetypes()) { 248 setOperationAction(ISD::FABS, VT, Expand); 249 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 250 setOperationAction(ISD::FCOS, VT, Expand); 251 setOperationAction(ISD::FMA, VT, Expand); 252 setOperationAction(ISD::FPOW, VT, Expand); 253 setOperationAction(ISD::FSIN, VT, Expand); 254 setOperationAction(ISD::FSQRT, VT, Expand); 255 } 256 257 // VE has single and double FMINNUM and FMAXNUM 258 for (MVT VT : {MVT::f32, MVT::f64}) { 259 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, VT, Legal); 260 } 261 262 /// } Floating-point math functions 263 264 /// Atomic instructions { 265 266 setMaxAtomicSizeInBitsSupported(64); 267 setMinCmpXchgSizeInBits(32); 268 setSupportsUnalignedAtomics(false); 269 270 // Use custom inserter for ATOMIC_FENCE. 271 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 272 273 // Other atomic instructions. 274 for (MVT VT : MVT::integer_valuetypes()) { 275 // Support i8/i16 atomic swap. 276 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 277 278 // FIXME: Support "atmam" instructions. 279 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 280 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 281 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 282 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 283 284 // VE doesn't have follwing instructions. 285 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 286 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 287 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 288 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 289 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 290 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 291 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 292 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 293 } 294 295 /// } Atomic instructions 296 297 /// SJLJ instructions { 298 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 299 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 300 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 301 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 302 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 303 /// } SJLJ instructions 304 305 // Intrinsic instructions 306 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 307 } 308 309 void VETargetLowering::initVPUActions() { 310 for (MVT LegalMaskVT : AllMaskVTs) 311 setOperationAction(ISD::BUILD_VECTOR, LegalMaskVT, Custom); 312 313 for (unsigned Opc : {ISD::AND, ISD::OR, ISD::XOR}) 314 setOperationAction(Opc, MVT::v512i1, Custom); 315 316 for (MVT LegalVecVT : AllVectorVTs) { 317 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 318 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 320 // Translate all vector instructions with legal element types to VVP_* 321 // nodes. 322 // TODO We will custom-widen into VVP_* nodes in the future. While we are 323 // buildling the infrastructure for this, we only do this for legal vector 324 // VTs. 325 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 326 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 327 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 328 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 329 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, LegalVecVT, Custom); 330 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_STORE, LegalVecVT, Custom); 331 #include "VVPNodes.def" 332 } 333 334 for (MVT LegalPackedVT : AllPackedVTs) { 335 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 336 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 337 } 338 339 // vNt32, vNt64 ops (legal element types) 340 for (MVT VT : MVT::vector_valuetypes()) { 341 MVT ElemVT = VT.getVectorElementType(); 342 unsigned ElemBits = ElemVT.getScalarSizeInBits(); 343 if (ElemBits != 32 && ElemBits != 64) 344 continue; 345 346 for (unsigned MemOpc : {ISD::MLOAD, ISD::MSTORE, ISD::LOAD, ISD::STORE}) 347 setOperationAction(MemOpc, VT, Custom); 348 349 const ISD::NodeType IntReductionOCs[] = { 350 ISD::VECREDUCE_ADD, ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, 351 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMIN, 352 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_UMAX}; 353 354 for (unsigned IntRedOpc : IntReductionOCs) 355 setOperationAction(IntRedOpc, VT, Custom); 356 } 357 358 // v256i1 and v512i1 ops 359 for (MVT MaskVT : AllMaskVTs) { 360 // Custom lower mask ops 361 setOperationAction(ISD::STORE, MaskVT, Custom); 362 setOperationAction(ISD::LOAD, MaskVT, Custom); 363 } 364 } 365 366 SDValue 367 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 368 bool IsVarArg, 369 const SmallVectorImpl<ISD::OutputArg> &Outs, 370 const SmallVectorImpl<SDValue> &OutVals, 371 const SDLoc &DL, SelectionDAG &DAG) const { 372 // CCValAssign - represent the assignment of the return value to locations. 373 SmallVector<CCValAssign, 16> RVLocs; 374 375 // CCState - Info about the registers and stack slot. 376 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 377 *DAG.getContext()); 378 379 // Analyze return values. 380 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 381 382 SDValue Glue; 383 SmallVector<SDValue, 4> RetOps(1, Chain); 384 385 // Copy the result values into the output registers. 386 for (unsigned i = 0; i != RVLocs.size(); ++i) { 387 CCValAssign &VA = RVLocs[i]; 388 assert(VA.isRegLoc() && "Can only return in registers!"); 389 assert(!VA.needsCustom() && "Unexpected custom lowering"); 390 SDValue OutVal = OutVals[i]; 391 392 // Integer return values must be sign or zero extended by the callee. 393 switch (VA.getLocInfo()) { 394 case CCValAssign::Full: 395 break; 396 case CCValAssign::SExt: 397 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 398 break; 399 case CCValAssign::ZExt: 400 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 401 break; 402 case CCValAssign::AExt: 403 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 404 break; 405 case CCValAssign::BCvt: { 406 // Convert a float return value to i64 with padding. 407 // 63 31 0 408 // +------+------+ 409 // | float| 0 | 410 // +------+------+ 411 assert(VA.getLocVT() == MVT::i64); 412 assert(VA.getValVT() == MVT::f32); 413 SDValue Undef = SDValue( 414 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 415 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 416 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 417 MVT::i64, Undef, OutVal, Sub_f32), 418 0); 419 break; 420 } 421 default: 422 llvm_unreachable("Unknown loc info!"); 423 } 424 425 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue); 426 427 // Guarantee that all emitted copies are stuck together with flags. 428 Glue = Chain.getValue(1); 429 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 430 } 431 432 RetOps[0] = Chain; // Update chain. 433 434 // Add the glue if we have it. 435 if (Glue.getNode()) 436 RetOps.push_back(Glue); 437 438 return DAG.getNode(VEISD::RET_GLUE, DL, MVT::Other, RetOps); 439 } 440 441 SDValue VETargetLowering::LowerFormalArguments( 442 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 443 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 444 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 445 MachineFunction &MF = DAG.getMachineFunction(); 446 447 // Get the base offset of the incoming arguments stack space. 448 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 449 // Get the size of the preserved arguments area 450 unsigned ArgsPreserved = 64; 451 452 // Analyze arguments according to CC_VE. 453 SmallVector<CCValAssign, 16> ArgLocs; 454 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 455 *DAG.getContext()); 456 // Allocate the preserved area first. 457 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 458 // We already allocated the preserved area, so the stack offset computed 459 // by CC_VE would be correct now. 460 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 461 462 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 463 CCValAssign &VA = ArgLocs[i]; 464 assert(!VA.needsCustom() && "Unexpected custom lowering"); 465 if (VA.isRegLoc()) { 466 // This argument is passed in a register. 467 // All integer register arguments are promoted by the caller to i64. 468 469 // Create a virtual register for the promoted live-in value. 470 Register VReg = 471 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 472 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 473 474 // The caller promoted the argument, so insert an Assert?ext SDNode so we 475 // won't promote the value again in this function. 476 switch (VA.getLocInfo()) { 477 case CCValAssign::SExt: 478 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 479 DAG.getValueType(VA.getValVT())); 480 break; 481 case CCValAssign::ZExt: 482 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 483 DAG.getValueType(VA.getValVT())); 484 break; 485 case CCValAssign::BCvt: { 486 // Extract a float argument from i64 with padding. 487 // 63 31 0 488 // +------+------+ 489 // | float| 0 | 490 // +------+------+ 491 assert(VA.getLocVT() == MVT::i64); 492 assert(VA.getValVT() == MVT::f32); 493 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 494 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 495 MVT::f32, Arg, Sub_f32), 496 0); 497 break; 498 } 499 default: 500 break; 501 } 502 503 // Truncate the register down to the argument type. 504 if (VA.isExtInLoc()) 505 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 506 507 InVals.push_back(Arg); 508 continue; 509 } 510 511 // The registers are exhausted. This argument was passed on the stack. 512 assert(VA.isMemLoc()); 513 // The CC_VE_Full/Half functions compute stack offsets relative to the 514 // beginning of the arguments area at %fp + the size of reserved area. 515 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 516 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 517 518 // Adjust offset for a float argument by adding 4 since the argument is 519 // stored in 8 bytes buffer with offset like below. LLVM generates 520 // 4 bytes load instruction, so need to adjust offset here. This 521 // adjustment is required in only LowerFormalArguments. In LowerCall, 522 // a float argument is converted to i64 first, and stored as 8 bytes 523 // data, which is required by ABI, so no need for adjustment. 524 // 0 4 525 // +------+------+ 526 // | empty| float| 527 // +------+------+ 528 if (VA.getValVT() == MVT::f32) 529 Offset += 4; 530 531 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 532 InVals.push_back( 533 DAG.getLoad(VA.getValVT(), DL, Chain, 534 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 535 MachinePointerInfo::getFixedStack(MF, FI))); 536 } 537 538 if (!IsVarArg) 539 return Chain; 540 541 // This function takes variable arguments, some of which may have been passed 542 // in registers %s0-%s8. 543 // 544 // The va_start intrinsic needs to know the offset to the first variable 545 // argument. 546 // TODO: need to calculate offset correctly once we support f128. 547 unsigned ArgOffset = ArgLocs.size() * 8; 548 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 549 // Skip the reserved area at the top of stack. 550 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 551 552 return Chain; 553 } 554 555 // FIXME? Maybe this could be a TableGen attribute on some registers and 556 // this table could be generated automatically from RegInfo. 557 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 558 const MachineFunction &MF) const { 559 Register Reg = StringSwitch<Register>(RegName) 560 .Case("sp", VE::SX11) // Stack pointer 561 .Case("fp", VE::SX9) // Frame pointer 562 .Case("sl", VE::SX8) // Stack limit 563 .Case("lr", VE::SX10) // Link register 564 .Case("tp", VE::SX14) // Thread pointer 565 .Case("outer", VE::SX12) // Outer regiser 566 .Case("info", VE::SX17) // Info area register 567 .Case("got", VE::SX15) // Global offset table register 568 .Case("plt", VE::SX16) // Procedure linkage table register 569 .Default(0); 570 571 if (Reg) 572 return Reg; 573 574 report_fatal_error("Invalid register name global variable"); 575 } 576 577 //===----------------------------------------------------------------------===// 578 // TargetLowering Implementation 579 //===----------------------------------------------------------------------===// 580 581 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 582 SmallVectorImpl<SDValue> &InVals) const { 583 SelectionDAG &DAG = CLI.DAG; 584 SDLoc DL = CLI.DL; 585 SDValue Chain = CLI.Chain; 586 auto PtrVT = getPointerTy(DAG.getDataLayout()); 587 588 // VE target does not yet support tail call optimization. 589 CLI.IsTailCall = false; 590 591 // Get the base offset of the outgoing arguments stack space. 592 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 593 // Get the size of the preserved arguments area 594 unsigned ArgsPreserved = 8 * 8u; 595 596 // Analyze operands of the call, assigning locations to each operand. 597 SmallVector<CCValAssign, 16> ArgLocs; 598 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 599 *DAG.getContext()); 600 // Allocate the preserved area first. 601 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 602 // We already allocated the preserved area, so the stack offset computed 603 // by CC_VE would be correct now. 604 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 605 606 // VE requires to use both register and stack for varargs or no-prototyped 607 // functions. 608 bool UseBoth = CLI.IsVarArg; 609 610 // Analyze operands again if it is required to store BOTH. 611 SmallVector<CCValAssign, 16> ArgLocs2; 612 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 613 ArgLocs2, *DAG.getContext()); 614 if (UseBoth) 615 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 616 617 // Get the size of the outgoing arguments stack space requirement. 618 unsigned ArgsSize = CCInfo.getStackSize(); 619 620 // Keep stack frames 16-byte aligned. 621 ArgsSize = alignTo(ArgsSize, 16); 622 623 // Adjust the stack pointer to make room for the arguments. 624 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 625 // with more than 6 arguments. 626 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 627 628 // Collect the set of registers to pass to the function and their values. 629 // This will be emitted as a sequence of CopyToReg nodes glued to the call 630 // instruction. 631 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 632 633 // Collect chains from all the memory opeations that copy arguments to the 634 // stack. They must follow the stack pointer adjustment above and precede the 635 // call instruction itself. 636 SmallVector<SDValue, 8> MemOpChains; 637 638 // VE needs to get address of callee function in a register 639 // So, prepare to copy it to SX12 here. 640 641 // If the callee is a GlobalAddress node (quite common, every direct call is) 642 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 643 // Likewise ExternalSymbol -> TargetExternalSymbol. 644 SDValue Callee = CLI.Callee; 645 646 bool IsPICCall = isPositionIndependent(); 647 648 // PC-relative references to external symbols should go through $stub. 649 // If so, we need to prepare GlobalBaseReg first. 650 const TargetMachine &TM = DAG.getTarget(); 651 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 652 const GlobalValue *GV = nullptr; 653 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 654 if (CalleeG) 655 GV = CalleeG->getGlobal(); 656 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 657 bool UsePlt = !Local; 658 MachineFunction &MF = DAG.getMachineFunction(); 659 660 // Turn GlobalAddress/ExternalSymbol node into a value node 661 // containing the address of them here. 662 if (CalleeG) { 663 if (IsPICCall) { 664 if (UsePlt) 665 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 666 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 667 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 668 } else { 669 Callee = 670 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 671 } 672 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 673 if (IsPICCall) { 674 if (UsePlt) 675 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 676 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 677 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 678 } else { 679 Callee = 680 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 681 } 682 } 683 684 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 685 686 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 687 CCValAssign &VA = ArgLocs[i]; 688 SDValue Arg = CLI.OutVals[i]; 689 690 // Promote the value if needed. 691 switch (VA.getLocInfo()) { 692 default: 693 llvm_unreachable("Unknown location info!"); 694 case CCValAssign::Full: 695 break; 696 case CCValAssign::SExt: 697 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 698 break; 699 case CCValAssign::ZExt: 700 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 701 break; 702 case CCValAssign::AExt: 703 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 704 break; 705 case CCValAssign::BCvt: { 706 // Convert a float argument to i64 with padding. 707 // 63 31 0 708 // +------+------+ 709 // | float| 0 | 710 // +------+------+ 711 assert(VA.getLocVT() == MVT::i64); 712 assert(VA.getValVT() == MVT::f32); 713 SDValue Undef = SDValue( 714 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 715 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 716 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 717 MVT::i64, Undef, Arg, Sub_f32), 718 0); 719 break; 720 } 721 } 722 723 if (VA.isRegLoc()) { 724 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 725 if (!UseBoth) 726 continue; 727 VA = ArgLocs2[i]; 728 } 729 730 assert(VA.isMemLoc()); 731 732 // Create a store off the stack pointer for this argument. 733 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 734 // The argument area starts at %fp/%sp + the size of reserved area. 735 SDValue PtrOff = 736 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 737 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 738 MemOpChains.push_back( 739 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 740 } 741 742 // Emit all stores, make sure they occur before the call. 743 if (!MemOpChains.empty()) 744 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 745 746 // Build a sequence of CopyToReg nodes glued together with token chain and 747 // glue operands which copy the outgoing args into registers. The InGlue is 748 // necessary since all emitted instructions must be stuck together in order 749 // to pass the live physical registers. 750 SDValue InGlue; 751 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 752 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 753 RegsToPass[i].second, InGlue); 754 InGlue = Chain.getValue(1); 755 } 756 757 // Build the operands for the call instruction itself. 758 SmallVector<SDValue, 8> Ops; 759 Ops.push_back(Chain); 760 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 761 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 762 RegsToPass[i].second.getValueType())); 763 764 // Add a register mask operand representing the call-preserved registers. 765 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 766 const uint32_t *Mask = 767 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 768 assert(Mask && "Missing call preserved mask for calling convention"); 769 Ops.push_back(DAG.getRegisterMask(Mask)); 770 771 // Make sure the CopyToReg nodes are glued to the call instruction which 772 // consumes the registers. 773 if (InGlue.getNode()) 774 Ops.push_back(InGlue); 775 776 // Now the call itself. 777 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 778 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 779 InGlue = Chain.getValue(1); 780 781 // Revert the stack pointer immediately after the call. 782 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL); 783 InGlue = Chain.getValue(1); 784 785 // Now extract the return values. This is more or less the same as 786 // LowerFormalArguments. 787 788 // Assign locations to each value returned by this call. 789 SmallVector<CCValAssign, 16> RVLocs; 790 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 791 *DAG.getContext()); 792 793 // Set inreg flag manually for codegen generated library calls that 794 // return float. 795 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 796 CLI.Ins[0].Flags.setInReg(); 797 798 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 799 800 // Copy all of the result registers out of their specified physreg. 801 for (unsigned i = 0; i != RVLocs.size(); ++i) { 802 CCValAssign &VA = RVLocs[i]; 803 assert(!VA.needsCustom() && "Unexpected custom lowering"); 804 Register Reg = VA.getLocReg(); 805 806 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 807 // reside in the same register in the high and low bits. Reuse the 808 // CopyFromReg previous node to avoid duplicate copies. 809 SDValue RV; 810 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 811 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 812 RV = Chain.getValue(0); 813 814 // But usually we'll create a new CopyFromReg for a different register. 815 if (!RV.getNode()) { 816 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 817 Chain = RV.getValue(1); 818 InGlue = Chain.getValue(2); 819 } 820 821 // The callee promoted the return value, so insert an Assert?ext SDNode so 822 // we won't promote the value again in this function. 823 switch (VA.getLocInfo()) { 824 case CCValAssign::SExt: 825 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 826 DAG.getValueType(VA.getValVT())); 827 break; 828 case CCValAssign::ZExt: 829 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 830 DAG.getValueType(VA.getValVT())); 831 break; 832 case CCValAssign::BCvt: { 833 // Extract a float return value from i64 with padding. 834 // 63 31 0 835 // +------+------+ 836 // | float| 0 | 837 // +------+------+ 838 assert(VA.getLocVT() == MVT::i64); 839 assert(VA.getValVT() == MVT::f32); 840 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 841 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 842 MVT::f32, RV, Sub_f32), 843 0); 844 break; 845 } 846 default: 847 break; 848 } 849 850 // Truncate the register down to the return value type. 851 if (VA.isExtInLoc()) 852 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 853 854 InVals.push_back(RV); 855 } 856 857 return Chain; 858 } 859 860 bool VETargetLowering::isOffsetFoldingLegal( 861 const GlobalAddressSDNode *GA) const { 862 // VE uses 64 bit addressing, so we need multiple instructions to generate 863 // an address. Folding address with offset increases the number of 864 // instructions, so that we disable it here. Offsets will be folded in 865 // the DAG combine later if it worth to do so. 866 return false; 867 } 868 869 /// isFPImmLegal - Returns true if the target can instruction select the 870 /// specified FP immediate natively. If false, the legalizer will 871 /// materialize the FP immediate as a load from a constant pool. 872 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 873 bool ForCodeSize) const { 874 return VT == MVT::f32 || VT == MVT::f64; 875 } 876 877 /// Determine if the target supports unaligned memory accesses. 878 /// 879 /// This function returns true if the target allows unaligned memory accesses 880 /// of the specified type in the given address space. If true, it also returns 881 /// whether the unaligned memory access is "fast" in the last argument by 882 /// reference. This is used, for example, in situations where an array 883 /// copy/move/set is converted to a sequence of store operations. Its use 884 /// helps to ensure that such replacements don't generate code that causes an 885 /// alignment error (trap) on the target machine. 886 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 887 unsigned AddrSpace, 888 Align A, 889 MachineMemOperand::Flags, 890 unsigned *Fast) const { 891 if (Fast) { 892 // It's fast anytime on VE 893 *Fast = 1; 894 } 895 return true; 896 } 897 898 VETargetLowering::VETargetLowering(const TargetMachine &TM, 899 const VESubtarget &STI) 900 : TargetLowering(TM), Subtarget(&STI) { 901 // Instructions which use registers as conditionals examine all the 902 // bits (as does the pseudo SELECT_CC expansion). I don't think it 903 // matters much whether it's ZeroOrOneBooleanContent, or 904 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 905 // former. 906 setBooleanContents(ZeroOrOneBooleanContent); 907 setBooleanVectorContents(ZeroOrOneBooleanContent); 908 909 initRegisterClasses(); 910 initSPUActions(); 911 initVPUActions(); 912 913 setStackPointerRegisterToSaveRestore(VE::SX11); 914 915 // We have target-specific dag combine patterns for the following nodes: 916 setTargetDAGCombine(ISD::TRUNCATE); 917 setTargetDAGCombine(ISD::SELECT); 918 setTargetDAGCombine(ISD::SELECT_CC); 919 920 // Set function alignment to 16 bytes 921 setMinFunctionAlignment(Align(16)); 922 923 // VE stores all argument by 8 bytes alignment 924 setMinStackArgumentAlignment(Align(8)); 925 926 computeRegisterProperties(Subtarget->getRegisterInfo()); 927 } 928 929 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 930 #define TARGET_NODE_CASE(NAME) \ 931 case VEISD::NAME: \ 932 return "VEISD::" #NAME; 933 switch ((VEISD::NodeType)Opcode) { 934 case VEISD::FIRST_NUMBER: 935 break; 936 TARGET_NODE_CASE(CMPI) 937 TARGET_NODE_CASE(CMPU) 938 TARGET_NODE_CASE(CMPF) 939 TARGET_NODE_CASE(CMPQ) 940 TARGET_NODE_CASE(CMOV) 941 TARGET_NODE_CASE(CALL) 942 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 943 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 944 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 945 TARGET_NODE_CASE(GETFUNPLT) 946 TARGET_NODE_CASE(GETSTACKTOP) 947 TARGET_NODE_CASE(GETTLSADDR) 948 TARGET_NODE_CASE(GLOBAL_BASE_REG) 949 TARGET_NODE_CASE(Hi) 950 TARGET_NODE_CASE(Lo) 951 TARGET_NODE_CASE(RET_GLUE) 952 TARGET_NODE_CASE(TS1AM) 953 TARGET_NODE_CASE(VEC_UNPACK_LO) 954 TARGET_NODE_CASE(VEC_UNPACK_HI) 955 TARGET_NODE_CASE(VEC_PACK) 956 TARGET_NODE_CASE(VEC_BROADCAST) 957 TARGET_NODE_CASE(REPL_I32) 958 TARGET_NODE_CASE(REPL_F32) 959 960 TARGET_NODE_CASE(LEGALAVL) 961 962 // Register the VVP_* SDNodes. 963 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 964 #include "VVPNodes.def" 965 } 966 #undef TARGET_NODE_CASE 967 return nullptr; 968 } 969 970 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 971 EVT VT) const { 972 return MVT::i32; 973 } 974 975 // Convert to a target node and set target flags. 976 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 977 SelectionDAG &DAG) const { 978 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 979 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 980 GA->getValueType(0), GA->getOffset(), TF); 981 982 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 983 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 984 0, TF); 985 986 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 987 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 988 CP->getAlign(), CP->getOffset(), TF); 989 990 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 991 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 992 TF); 993 994 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 995 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 996 997 llvm_unreachable("Unhandled address SDNode"); 998 } 999 1000 // Split Op into high and low parts according to HiTF and LoTF. 1001 // Return an ADD node combining the parts. 1002 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 1003 SelectionDAG &DAG) const { 1004 SDLoc DL(Op); 1005 EVT VT = Op.getValueType(); 1006 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 1007 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 1008 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1009 } 1010 1011 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 1012 // or ExternalSymbol SDNode. 1013 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 1014 SDLoc DL(Op); 1015 EVT PtrVT = Op.getValueType(); 1016 1017 // Handle PIC mode first. VE needs a got load for every variable! 1018 if (isPositionIndependent()) { 1019 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 1020 1021 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 1022 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 1023 // Create following instructions for local linkage PIC code. 1024 // lea %reg, label@gotoff_lo 1025 // and %reg, %reg, (32)0 1026 // lea.sl %reg, label@gotoff_hi(%reg, %got) 1027 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1028 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1029 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1030 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1031 } 1032 // Create following instructions for not local linkage PIC code. 1033 // lea %reg, label@got_lo 1034 // and %reg, %reg, (32)0 1035 // lea.sl %reg, label@got_hi(%reg) 1036 // ld %reg, (%reg, %got) 1037 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 1038 VEMCExpr::VK_VE_GOT_LO32, DAG); 1039 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1040 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1041 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 1042 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1043 } 1044 1045 // This is one of the absolute code models. 1046 switch (getTargetMachine().getCodeModel()) { 1047 default: 1048 llvm_unreachable("Unsupported absolute code model"); 1049 case CodeModel::Small: 1050 case CodeModel::Medium: 1051 case CodeModel::Large: 1052 // abs64. 1053 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1054 } 1055 } 1056 1057 /// Custom Lower { 1058 1059 // The mappings for emitLeading/TrailingFence for VE is designed by following 1060 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1061 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, 1062 Instruction *Inst, 1063 AtomicOrdering Ord) const { 1064 switch (Ord) { 1065 case AtomicOrdering::NotAtomic: 1066 case AtomicOrdering::Unordered: 1067 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1068 case AtomicOrdering::Monotonic: 1069 case AtomicOrdering::Acquire: 1070 return nullptr; // Nothing to do 1071 case AtomicOrdering::Release: 1072 case AtomicOrdering::AcquireRelease: 1073 return Builder.CreateFence(AtomicOrdering::Release); 1074 case AtomicOrdering::SequentiallyConsistent: 1075 if (!Inst->hasAtomicStore()) 1076 return nullptr; // Nothing to do 1077 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1078 } 1079 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1080 } 1081 1082 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, 1083 Instruction *Inst, 1084 AtomicOrdering Ord) const { 1085 switch (Ord) { 1086 case AtomicOrdering::NotAtomic: 1087 case AtomicOrdering::Unordered: 1088 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1089 case AtomicOrdering::Monotonic: 1090 case AtomicOrdering::Release: 1091 return nullptr; // Nothing to do 1092 case AtomicOrdering::Acquire: 1093 case AtomicOrdering::AcquireRelease: 1094 return Builder.CreateFence(AtomicOrdering::Acquire); 1095 case AtomicOrdering::SequentiallyConsistent: 1096 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1097 } 1098 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1099 } 1100 1101 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1102 SelectionDAG &DAG) const { 1103 SDLoc DL(Op); 1104 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 1105 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 1106 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 1107 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 1108 1109 // VE uses Release consistency, so need a fence instruction if it is a 1110 // cross-thread fence. 1111 if (FenceSSID == SyncScope::System) { 1112 switch (FenceOrdering) { 1113 case AtomicOrdering::NotAtomic: 1114 case AtomicOrdering::Unordered: 1115 case AtomicOrdering::Monotonic: 1116 // No need to generate fencem instruction here. 1117 break; 1118 case AtomicOrdering::Acquire: 1119 // Generate "fencem 2" as acquire fence. 1120 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1121 DAG.getTargetConstant(2, DL, MVT::i32), 1122 Op.getOperand(0)), 1123 0); 1124 case AtomicOrdering::Release: 1125 // Generate "fencem 1" as release fence. 1126 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1127 DAG.getTargetConstant(1, DL, MVT::i32), 1128 Op.getOperand(0)), 1129 0); 1130 case AtomicOrdering::AcquireRelease: 1131 case AtomicOrdering::SequentiallyConsistent: 1132 // Generate "fencem 3" as acq_rel and seq_cst fence. 1133 // FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses, 1134 // so seq_cst may require more instruction for them. 1135 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1136 DAG.getTargetConstant(3, DL, MVT::i32), 1137 Op.getOperand(0)), 1138 0); 1139 } 1140 } 1141 1142 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1143 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1144 } 1145 1146 TargetLowering::AtomicExpansionKind 1147 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1148 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1149 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1150 return AtomicExpansionKind::None; 1151 } 1152 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1153 1154 // Otherwise, expand it using compare and exchange instruction to not call 1155 // __sync_fetch_and_* functions. 1156 return AtomicExpansionKind::CmpXChg; 1157 } 1158 1159 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1160 SDValue &Bits) { 1161 SDLoc DL(Op); 1162 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1163 SDValue Ptr = N->getOperand(1); 1164 SDValue Val = N->getOperand(2); 1165 EVT PtrVT = Ptr.getValueType(); 1166 bool Byte = N->getMemoryVT() == MVT::i8; 1167 // Remainder = AND Ptr, 3 1168 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1169 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1170 // Bits = Remainder << 3 1171 // NewVal = Val << Bits 1172 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1173 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1174 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1175 : DAG.getConstant(3, DL, MVT::i32); 1176 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1177 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1178 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1179 } 1180 1181 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1182 SDValue Bits) { 1183 SDLoc DL(Op); 1184 EVT VT = Data.getValueType(); 1185 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1186 // NewData = Data >> Bits 1187 // Result = NewData & 0xff ; If Byte is true (1 byte) 1188 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1189 1190 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1191 return DAG.getNode(ISD::AND, DL, VT, 1192 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1193 } 1194 1195 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1196 SelectionDAG &DAG) const { 1197 SDLoc DL(Op); 1198 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1199 1200 if (N->getMemoryVT() == MVT::i8) { 1201 // For i8, use "ts1am" 1202 // Input: 1203 // ATOMIC_SWAP Ptr, Val, Order 1204 // 1205 // Output: 1206 // Remainder = AND Ptr, 3 1207 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1208 // Bits = Remainder << 3 1209 // NewVal = Val << Bits 1210 // 1211 // Aligned = AND Ptr, -4 1212 // Data = TS1AM Aligned, Flag, NewVal 1213 // 1214 // NewData = Data >> Bits 1215 // Result = NewData & 0xff ; 1 byte result 1216 SDValue Flag; 1217 SDValue Bits; 1218 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1219 1220 SDValue Ptr = N->getOperand(1); 1221 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1222 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1223 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1224 DAG.getVTList(Op.getNode()->getValueType(0), 1225 Op.getNode()->getValueType(1)), 1226 {N->getChain(), Aligned, Flag, NewVal}, 1227 N->getMemOperand()); 1228 1229 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1230 SDValue Chain = TS1AM.getValue(1); 1231 return DAG.getMergeValues({Result, Chain}, DL); 1232 } 1233 if (N->getMemoryVT() == MVT::i16) { 1234 // For i16, use "ts1am" 1235 SDValue Flag; 1236 SDValue Bits; 1237 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1238 1239 SDValue Ptr = N->getOperand(1); 1240 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1241 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1242 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1243 DAG.getVTList(Op.getNode()->getValueType(0), 1244 Op.getNode()->getValueType(1)), 1245 {N->getChain(), Aligned, Flag, NewVal}, 1246 N->getMemOperand()); 1247 1248 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1249 SDValue Chain = TS1AM.getValue(1); 1250 return DAG.getMergeValues({Result, Chain}, DL); 1251 } 1252 // Otherwise, let llvm legalize it. 1253 return Op; 1254 } 1255 1256 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1257 SelectionDAG &DAG) const { 1258 return makeAddress(Op, DAG); 1259 } 1260 1261 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1262 SelectionDAG &DAG) const { 1263 return makeAddress(Op, DAG); 1264 } 1265 1266 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1267 SelectionDAG &DAG) const { 1268 return makeAddress(Op, DAG); 1269 } 1270 1271 SDValue 1272 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1273 SelectionDAG &DAG) const { 1274 SDLoc DL(Op); 1275 1276 // Generate the following code: 1277 // t1: ch,glue = callseq_start t0, 0, 0 1278 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1279 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1280 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1281 SDValue Label = withTargetFlags(Op, 0, DAG); 1282 EVT PtrVT = Op.getValueType(); 1283 1284 // Lowering the machine isd will make sure everything is in the right 1285 // location. 1286 SDValue Chain = DAG.getEntryNode(); 1287 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1288 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1289 DAG.getMachineFunction(), CallingConv::C); 1290 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1291 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1292 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1293 Chain = DAG.getCALLSEQ_END(Chain, 64, 0, Chain.getValue(1), DL); 1294 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1295 1296 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1297 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1298 MFI.setHasCalls(true); 1299 1300 // Also generate code to prepare a GOT register if it is PIC. 1301 if (isPositionIndependent()) { 1302 MachineFunction &MF = DAG.getMachineFunction(); 1303 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1304 } 1305 1306 return Chain; 1307 } 1308 1309 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1310 SelectionDAG &DAG) const { 1311 // The current implementation of nld (2.26) doesn't allow local exec model 1312 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1313 // generate the general dynamic model code sequence. 1314 // 1315 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1316 return lowerToTLSGeneralDynamicModel(Op, DAG); 1317 } 1318 1319 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1320 return makeAddress(Op, DAG); 1321 } 1322 1323 // Lower a f128 load into two f64 loads. 1324 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1325 SDLoc DL(Op); 1326 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1327 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1328 Align Alignment = LdNode->getAlign(); 1329 if (Alignment > 8) 1330 Alignment = Align(8); 1331 1332 SDValue Lo64 = 1333 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1334 LdNode->getPointerInfo(), Alignment, 1335 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1336 : MachineMemOperand::MONone); 1337 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1338 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1339 DAG.getConstant(8, DL, AddrVT)); 1340 SDValue Hi64 = 1341 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1342 LdNode->getPointerInfo(), Alignment, 1343 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1344 : MachineMemOperand::MONone); 1345 1346 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1347 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1348 1349 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1350 SDNode *InFP128 = 1351 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1352 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1353 SDValue(InFP128, 0), Hi64, SubRegEven); 1354 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1355 SDValue(InFP128, 0), Lo64, SubRegOdd); 1356 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1357 SDValue(Hi64.getNode(), 1)}; 1358 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1359 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1360 return DAG.getMergeValues(Ops, DL); 1361 } 1362 1363 // Lower a vXi1 load into following instructions 1364 // LDrii %1, (,%addr) 1365 // LVMxir %vm, 0, %1 1366 // LDrii %2, 8(,%addr) 1367 // LVMxir %vm, 0, %2 1368 // ... 1369 static SDValue lowerLoadI1(SDValue Op, SelectionDAG &DAG) { 1370 SDLoc DL(Op); 1371 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1372 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1373 1374 SDValue BasePtr = LdNode->getBasePtr(); 1375 Align Alignment = LdNode->getAlign(); 1376 if (Alignment > 8) 1377 Alignment = Align(8); 1378 1379 EVT AddrVT = BasePtr.getValueType(); 1380 EVT MemVT = LdNode->getMemoryVT(); 1381 if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { 1382 SDValue OutChains[4]; 1383 SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT); 1384 for (int i = 0; i < 4; ++i) { 1385 // Generate load dag and prepare chains. 1386 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1387 DAG.getConstant(8 * i, DL, AddrVT)); 1388 SDValue Val = 1389 DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr, 1390 LdNode->getPointerInfo(), Alignment, 1391 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1392 : MachineMemOperand::MONone); 1393 OutChains[i] = SDValue(Val.getNode(), 1); 1394 1395 VM = DAG.getMachineNode(VE::LVMir_m, DL, MVT::i64, 1396 DAG.getTargetConstant(i, DL, MVT::i64), Val, 1397 SDValue(VM, 0)); 1398 } 1399 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1400 SDValue Ops[2] = {SDValue(VM, 0), OutChain}; 1401 return DAG.getMergeValues(Ops, DL); 1402 } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { 1403 SDValue OutChains[8]; 1404 SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT); 1405 for (int i = 0; i < 8; ++i) { 1406 // Generate load dag and prepare chains. 1407 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1408 DAG.getConstant(8 * i, DL, AddrVT)); 1409 SDValue Val = 1410 DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr, 1411 LdNode->getPointerInfo(), Alignment, 1412 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1413 : MachineMemOperand::MONone); 1414 OutChains[i] = SDValue(Val.getNode(), 1); 1415 1416 VM = DAG.getMachineNode(VE::LVMyir_y, DL, MVT::i64, 1417 DAG.getTargetConstant(i, DL, MVT::i64), Val, 1418 SDValue(VM, 0)); 1419 } 1420 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1421 SDValue Ops[2] = {SDValue(VM, 0), OutChain}; 1422 return DAG.getMergeValues(Ops, DL); 1423 } else { 1424 // Otherwise, ask llvm to expand it. 1425 return SDValue(); 1426 } 1427 } 1428 1429 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1430 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1431 1432 EVT MemVT = LdNode->getMemoryVT(); 1433 1434 // Dispatch to vector isel. 1435 if (MemVT.isVector() && !isMaskType(MemVT)) 1436 return lowerToVVP(Op, DAG); 1437 1438 SDValue BasePtr = LdNode->getBasePtr(); 1439 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1440 // Do not expand store instruction with frame index here because of 1441 // dependency problems. We expand it later in eliminateFrameIndex(). 1442 return Op; 1443 } 1444 1445 if (MemVT == MVT::f128) 1446 return lowerLoadF128(Op, DAG); 1447 if (isMaskType(MemVT)) 1448 return lowerLoadI1(Op, DAG); 1449 1450 return Op; 1451 } 1452 1453 // Lower a f128 store into two f64 stores. 1454 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1455 SDLoc DL(Op); 1456 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1457 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1458 1459 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1460 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1461 1462 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1463 StNode->getValue(), SubRegEven); 1464 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1465 StNode->getValue(), SubRegOdd); 1466 1467 Align Alignment = StNode->getAlign(); 1468 if (Alignment > 8) 1469 Alignment = Align(8); 1470 1471 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1472 SDValue OutChains[2]; 1473 OutChains[0] = 1474 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1475 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1476 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1477 : MachineMemOperand::MONone); 1478 EVT AddrVT = StNode->getBasePtr().getValueType(); 1479 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1480 DAG.getConstant(8, DL, AddrVT)); 1481 OutChains[1] = 1482 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1483 MachinePointerInfo(), Alignment, 1484 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1485 : MachineMemOperand::MONone); 1486 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1487 } 1488 1489 // Lower a vXi1 store into following instructions 1490 // SVMi %1, %vm, 0 1491 // STrii %1, (,%addr) 1492 // SVMi %2, %vm, 1 1493 // STrii %2, 8(,%addr) 1494 // ... 1495 static SDValue lowerStoreI1(SDValue Op, SelectionDAG &DAG) { 1496 SDLoc DL(Op); 1497 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1498 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1499 1500 SDValue BasePtr = StNode->getBasePtr(); 1501 Align Alignment = StNode->getAlign(); 1502 if (Alignment > 8) 1503 Alignment = Align(8); 1504 EVT AddrVT = BasePtr.getValueType(); 1505 EVT MemVT = StNode->getMemoryVT(); 1506 if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { 1507 SDValue OutChains[4]; 1508 for (int i = 0; i < 4; ++i) { 1509 SDNode *V = 1510 DAG.getMachineNode(VE::SVMmi, DL, MVT::i64, StNode->getValue(), 1511 DAG.getTargetConstant(i, DL, MVT::i64)); 1512 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1513 DAG.getConstant(8 * i, DL, AddrVT)); 1514 OutChains[i] = 1515 DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr, 1516 MachinePointerInfo(), Alignment, 1517 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1518 : MachineMemOperand::MONone); 1519 } 1520 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1521 } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { 1522 SDValue OutChains[8]; 1523 for (int i = 0; i < 8; ++i) { 1524 SDNode *V = 1525 DAG.getMachineNode(VE::SVMyi, DL, MVT::i64, StNode->getValue(), 1526 DAG.getTargetConstant(i, DL, MVT::i64)); 1527 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1528 DAG.getConstant(8 * i, DL, AddrVT)); 1529 OutChains[i] = 1530 DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr, 1531 MachinePointerInfo(), Alignment, 1532 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1533 : MachineMemOperand::MONone); 1534 } 1535 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1536 } else { 1537 // Otherwise, ask llvm to expand it. 1538 return SDValue(); 1539 } 1540 } 1541 1542 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1543 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1544 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1545 1546 // always expand non-mask vector loads to VVP 1547 EVT MemVT = StNode->getMemoryVT(); 1548 if (MemVT.isVector() && !isMaskType(MemVT)) 1549 return lowerToVVP(Op, DAG); 1550 1551 SDValue BasePtr = StNode->getBasePtr(); 1552 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1553 // Do not expand store instruction with frame index here because of 1554 // dependency problems. We expand it later in eliminateFrameIndex(). 1555 return Op; 1556 } 1557 1558 if (MemVT == MVT::f128) 1559 return lowerStoreF128(Op, DAG); 1560 if (isMaskType(MemVT)) 1561 return lowerStoreI1(Op, DAG); 1562 1563 // Otherwise, ask llvm to expand it. 1564 return SDValue(); 1565 } 1566 1567 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1568 MachineFunction &MF = DAG.getMachineFunction(); 1569 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1570 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1571 1572 // Need frame address to find the address of VarArgsFrameIndex. 1573 MF.getFrameInfo().setFrameAddressIsTaken(true); 1574 1575 // vastart just stores the address of the VarArgsFrameIndex slot into the 1576 // memory location argument. 1577 SDLoc DL(Op); 1578 SDValue Offset = 1579 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1580 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1581 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1582 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1583 MachinePointerInfo(SV)); 1584 } 1585 1586 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1587 SDNode *Node = Op.getNode(); 1588 EVT VT = Node->getValueType(0); 1589 SDValue InChain = Node->getOperand(0); 1590 SDValue VAListPtr = Node->getOperand(1); 1591 EVT PtrVT = VAListPtr.getValueType(); 1592 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1593 SDLoc DL(Node); 1594 SDValue VAList = 1595 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1596 SDValue Chain = VAList.getValue(1); 1597 SDValue NextPtr; 1598 1599 if (VT == MVT::f128) { 1600 // VE f128 values must be stored with 16 bytes alignment. We don't 1601 // know the actual alignment of VAList, so we take alignment of it 1602 // dynamically. 1603 int Align = 16; 1604 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1605 DAG.getConstant(Align - 1, DL, PtrVT)); 1606 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1607 DAG.getConstant(-Align, DL, PtrVT)); 1608 // Increment the pointer, VAList, by 16 to the next vaarg. 1609 NextPtr = 1610 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1611 } else if (VT == MVT::f32) { 1612 // float --> need special handling like below. 1613 // 0 4 1614 // +------+------+ 1615 // | empty| float| 1616 // +------+------+ 1617 // Increment the pointer, VAList, by 8 to the next vaarg. 1618 NextPtr = 1619 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1620 // Then, adjust VAList. 1621 unsigned InternalOffset = 4; 1622 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1623 DAG.getConstant(InternalOffset, DL, PtrVT)); 1624 } else { 1625 // Increment the pointer, VAList, by 8 to the next vaarg. 1626 NextPtr = 1627 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1628 } 1629 1630 // Store the incremented VAList to the legalized pointer. 1631 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1632 1633 // Load the actual argument out of the pointer VAList. 1634 // We can't count on greater alignment than the word size. 1635 return DAG.getLoad( 1636 VT, DL, InChain, VAList, MachinePointerInfo(), 1637 Align(std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8)); 1638 } 1639 1640 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1641 SelectionDAG &DAG) const { 1642 // Generate following code. 1643 // (void)__llvm_grow_stack(size); 1644 // ret = GETSTACKTOP; // pseudo instruction 1645 SDLoc DL(Op); 1646 1647 // Get the inputs. 1648 SDNode *Node = Op.getNode(); 1649 SDValue Chain = Op.getOperand(0); 1650 SDValue Size = Op.getOperand(1); 1651 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1652 EVT VT = Node->getValueType(0); 1653 1654 // Chain the dynamic stack allocation so that it doesn't modify the stack 1655 // pointer when other instructions are using the stack. 1656 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1657 1658 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1659 Align StackAlign = TFI.getStackAlign(); 1660 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1661 1662 // Prepare arguments 1663 TargetLowering::ArgListTy Args; 1664 TargetLowering::ArgListEntry Entry; 1665 Entry.Node = Size; 1666 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1667 Args.push_back(Entry); 1668 if (NeedsAlign) { 1669 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1670 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1671 Args.push_back(Entry); 1672 } 1673 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1674 1675 EVT PtrVT = Op.getValueType(); 1676 SDValue Callee; 1677 if (NeedsAlign) { 1678 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1679 } else { 1680 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1681 } 1682 1683 TargetLowering::CallLoweringInfo CLI(DAG); 1684 CLI.setDebugLoc(DL) 1685 .setChain(Chain) 1686 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1687 .setDiscardResult(true); 1688 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1689 Chain = pair.second; 1690 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1691 if (NeedsAlign) { 1692 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1693 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1694 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1695 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1696 } 1697 // Chain = Result.getValue(1); 1698 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), DL); 1699 1700 SDValue Ops[2] = {Result, Chain}; 1701 return DAG.getMergeValues(Ops, DL); 1702 } 1703 1704 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1705 SelectionDAG &DAG) const { 1706 SDLoc DL(Op); 1707 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1708 Op.getOperand(1)); 1709 } 1710 1711 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1712 SelectionDAG &DAG) const { 1713 SDLoc DL(Op); 1714 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1715 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1716 Op.getOperand(1)); 1717 } 1718 1719 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1720 SelectionDAG &DAG) const { 1721 SDLoc DL(Op); 1722 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1723 Op.getOperand(0)); 1724 } 1725 1726 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1727 const VETargetLowering &TLI, 1728 const VESubtarget *Subtarget) { 1729 SDLoc DL(Op); 1730 MachineFunction &MF = DAG.getMachineFunction(); 1731 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1732 1733 MachineFrameInfo &MFI = MF.getFrameInfo(); 1734 MFI.setFrameAddressIsTaken(true); 1735 1736 unsigned Depth = Op.getConstantOperandVal(0); 1737 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1738 Register FrameReg = RegInfo->getFrameRegister(MF); 1739 SDValue FrameAddr = 1740 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1741 while (Depth--) 1742 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1743 FrameAddr, MachinePointerInfo()); 1744 return FrameAddr; 1745 } 1746 1747 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1748 const VETargetLowering &TLI, 1749 const VESubtarget *Subtarget) { 1750 MachineFunction &MF = DAG.getMachineFunction(); 1751 MachineFrameInfo &MFI = MF.getFrameInfo(); 1752 MFI.setReturnAddressIsTaken(true); 1753 1754 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1755 return SDValue(); 1756 1757 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1758 1759 SDLoc DL(Op); 1760 EVT VT = Op.getValueType(); 1761 SDValue Offset = DAG.getConstant(8, DL, VT); 1762 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1763 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1764 MachinePointerInfo()); 1765 } 1766 1767 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1768 SelectionDAG &DAG) const { 1769 SDLoc DL(Op); 1770 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1771 switch (IntNo) { 1772 default: // Don't custom lower most intrinsics. 1773 return SDValue(); 1774 case Intrinsic::eh_sjlj_lsda: { 1775 MachineFunction &MF = DAG.getMachineFunction(); 1776 MVT VT = Op.getSimpleValueType(); 1777 const VETargetMachine *TM = 1778 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1779 1780 // Create GCC_except_tableXX string. The real symbol for that will be 1781 // generated in EHStreamer::emitExceptionTable() later. So, we just 1782 // borrow it's name here. 1783 TM->getStrList()->push_back(std::string( 1784 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1785 SDValue Addr = 1786 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1787 if (isPositionIndependent()) { 1788 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1789 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1790 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1791 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1792 } 1793 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1794 } 1795 } 1796 } 1797 1798 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1799 if (!isa<BuildVectorSDNode>(N)) 1800 return false; 1801 const auto *BVN = cast<BuildVectorSDNode>(N); 1802 1803 // Find first non-undef insertion. 1804 unsigned Idx; 1805 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1806 auto ElemV = BVN->getOperand(Idx); 1807 if (!ElemV->isUndef()) 1808 break; 1809 } 1810 // Catch the (hypothetical) all-undef case. 1811 if (Idx == BVN->getNumOperands()) 1812 return false; 1813 // Remember insertion. 1814 UniqueIdx = Idx++; 1815 // Verify that all other insertions are undef. 1816 for (; Idx < BVN->getNumOperands(); ++Idx) { 1817 auto ElemV = BVN->getOperand(Idx); 1818 if (!ElemV->isUndef()) 1819 return false; 1820 } 1821 return true; 1822 } 1823 1824 static SDValue getSplatValue(SDNode *N) { 1825 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1826 return BuildVec->getSplatValue(); 1827 } 1828 return SDValue(); 1829 } 1830 1831 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1832 SelectionDAG &DAG) const { 1833 VECustomDAG CDAG(DAG, Op); 1834 MVT ResultVT = Op.getSimpleValueType(); 1835 1836 // If there is just one element, expand to INSERT_VECTOR_ELT. 1837 unsigned UniqueIdx; 1838 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1839 SDValue AccuV = CDAG.getUNDEF(Op.getValueType()); 1840 auto ElemV = Op->getOperand(UniqueIdx); 1841 SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64); 1842 return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV}); 1843 } 1844 1845 // Else emit a broadcast. 1846 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1847 unsigned NumEls = ResultVT.getVectorNumElements(); 1848 auto AVL = CDAG.getConstant(NumEls, MVT::i32); 1849 return CDAG.getBroadcast(ResultVT, ScalarV, AVL); 1850 } 1851 1852 // Expand 1853 return SDValue(); 1854 } 1855 1856 TargetLowering::LegalizeAction 1857 VETargetLowering::getCustomOperationAction(SDNode &Op) const { 1858 // Custom legalization on VVP_* and VEC_* opcodes is required to pack-legalize 1859 // these operations (transform nodes such that their AVL parameter refers to 1860 // packs of 64bit, instead of number of elements. 1861 1862 // Packing opcodes are created with a pack-legal AVL (LEGALAVL). No need to 1863 // re-visit them. 1864 if (isPackingSupportOpcode(Op.getOpcode())) 1865 return Legal; 1866 1867 // Custom lower to legalize AVL for packed mode. 1868 if (isVVPOrVEC(Op.getOpcode())) 1869 return Custom; 1870 return Legal; 1871 } 1872 1873 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1874 LLVM_DEBUG(dbgs() << "::LowerOperation"; Op->print(dbgs());); 1875 unsigned Opcode = Op.getOpcode(); 1876 1877 /// Scalar isel. 1878 switch (Opcode) { 1879 case ISD::ATOMIC_FENCE: 1880 return lowerATOMIC_FENCE(Op, DAG); 1881 case ISD::ATOMIC_SWAP: 1882 return lowerATOMIC_SWAP(Op, DAG); 1883 case ISD::BlockAddress: 1884 return lowerBlockAddress(Op, DAG); 1885 case ISD::ConstantPool: 1886 return lowerConstantPool(Op, DAG); 1887 case ISD::DYNAMIC_STACKALLOC: 1888 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1889 case ISD::EH_SJLJ_LONGJMP: 1890 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1891 case ISD::EH_SJLJ_SETJMP: 1892 return lowerEH_SJLJ_SETJMP(Op, DAG); 1893 case ISD::EH_SJLJ_SETUP_DISPATCH: 1894 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1895 case ISD::FRAMEADDR: 1896 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1897 case ISD::GlobalAddress: 1898 return lowerGlobalAddress(Op, DAG); 1899 case ISD::GlobalTLSAddress: 1900 return lowerGlobalTLSAddress(Op, DAG); 1901 case ISD::INTRINSIC_WO_CHAIN: 1902 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1903 case ISD::JumpTable: 1904 return lowerJumpTable(Op, DAG); 1905 case ISD::LOAD: 1906 return lowerLOAD(Op, DAG); 1907 case ISD::RETURNADDR: 1908 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1909 case ISD::BUILD_VECTOR: 1910 return lowerBUILD_VECTOR(Op, DAG); 1911 case ISD::STORE: 1912 return lowerSTORE(Op, DAG); 1913 case ISD::VASTART: 1914 return lowerVASTART(Op, DAG); 1915 case ISD::VAARG: 1916 return lowerVAARG(Op, DAG); 1917 1918 case ISD::INSERT_VECTOR_ELT: 1919 return lowerINSERT_VECTOR_ELT(Op, DAG); 1920 case ISD::EXTRACT_VECTOR_ELT: 1921 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1922 } 1923 1924 /// Vector isel. 1925 LLVM_DEBUG(dbgs() << "::LowerOperation_VVP"; Op->print(dbgs());); 1926 if (ISD::isVPOpcode(Opcode)) 1927 return lowerToVVP(Op, DAG); 1928 1929 switch (Opcode) { 1930 default: 1931 llvm_unreachable("Should not custom lower this!"); 1932 1933 // Legalize the AVL of this internal node. 1934 case VEISD::VEC_BROADCAST: 1935 #define ADD_VVP_OP(VVP_NAME, ...) case VEISD::VVP_NAME: 1936 #include "VVPNodes.def" 1937 // AVL already legalized. 1938 if (getAnnotatedNodeAVL(Op).second) 1939 return Op; 1940 return legalizeInternalVectorOp(Op, DAG); 1941 1942 // Translate into a VEC_*/VVP_* layer operation. 1943 case ISD::MLOAD: 1944 case ISD::MSTORE: 1945 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1946 #include "VVPNodes.def" 1947 if (isMaskArithmetic(Op) && isPackedVectorType(Op.getValueType())) 1948 return splitMaskArithmetic(Op, DAG); 1949 return lowerToVVP(Op, DAG); 1950 } 1951 } 1952 /// } Custom Lower 1953 1954 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1955 SmallVectorImpl<SDValue> &Results, 1956 SelectionDAG &DAG) const { 1957 switch (N->getOpcode()) { 1958 case ISD::ATOMIC_SWAP: 1959 // Let LLVM expand atomic swap instruction through LowerOperation. 1960 return; 1961 default: 1962 LLVM_DEBUG(N->dumpr(&DAG)); 1963 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1964 } 1965 } 1966 1967 /// JumpTable for VE. 1968 /// 1969 /// VE cannot generate relocatable symbol in jump table. VE cannot 1970 /// generate expressions using symbols in both text segment and data 1971 /// segment like below. 1972 /// .4byte .LBB0_2-.LJTI0_0 1973 /// So, we generate offset from the top of function like below as 1974 /// a custom label. 1975 /// .4byte .LBB0_2-<function name> 1976 1977 unsigned VETargetLowering::getJumpTableEncoding() const { 1978 // Use custom label for PIC. 1979 if (isPositionIndependent()) 1980 return MachineJumpTableInfo::EK_Custom32; 1981 1982 // Otherwise, use the normal jump table encoding heuristics. 1983 return TargetLowering::getJumpTableEncoding(); 1984 } 1985 1986 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1987 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1988 unsigned Uid, MCContext &Ctx) const { 1989 assert(isPositionIndependent()); 1990 1991 // Generate custom label for PIC like below. 1992 // .4bytes .LBB0_2-<function name> 1993 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1994 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1995 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1996 return MCBinaryExpr::createSub(Value, Base, Ctx); 1997 } 1998 1999 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 2000 SelectionDAG &DAG) const { 2001 assert(isPositionIndependent()); 2002 SDLoc DL(Table); 2003 Function *Function = &DAG.getMachineFunction().getFunction(); 2004 assert(Function != nullptr); 2005 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 2006 2007 // In the jump table, we have following values in PIC mode. 2008 // .4bytes .LBB0_2-<function name> 2009 // We need to add this value and the address of this function to generate 2010 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 2011 // instructions: 2012 // lea %reg, fun@gotoff_lo 2013 // and %reg, %reg, (32)0 2014 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 2015 // In order to do so, we need to genarate correctly marked DAG node using 2016 // makeHiLoPair. 2017 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 2018 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 2019 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 2020 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 2021 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 2022 } 2023 2024 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 2025 MachineBasicBlock::iterator I, 2026 MachineBasicBlock *TargetBB, 2027 const DebugLoc &DL) const { 2028 MachineFunction *MF = MBB.getParent(); 2029 MachineRegisterInfo &MRI = MF->getRegInfo(); 2030 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2031 2032 const TargetRegisterClass *RC = &VE::I64RegClass; 2033 Register Tmp1 = MRI.createVirtualRegister(RC); 2034 Register Tmp2 = MRI.createVirtualRegister(RC); 2035 Register Result = MRI.createVirtualRegister(RC); 2036 2037 if (isPositionIndependent()) { 2038 // Create following instructions for local linkage PIC code. 2039 // lea %Tmp1, TargetBB@gotoff_lo 2040 // and %Tmp2, %Tmp1, (32)0 2041 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2042 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2043 .addImm(0) 2044 .addImm(0) 2045 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 2046 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2047 .addReg(Tmp1, getKillRegState(true)) 2048 .addImm(M0(32)); 2049 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 2050 .addReg(VE::SX15) 2051 .addReg(Tmp2, getKillRegState(true)) 2052 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 2053 } else { 2054 // Create following instructions for non-PIC code. 2055 // lea %Tmp1, TargetBB@lo 2056 // and %Tmp2, %Tmp1, (32)0 2057 // lea.sl %Result, TargetBB@hi(%Tmp2) 2058 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2059 .addImm(0) 2060 .addImm(0) 2061 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 2062 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2063 .addReg(Tmp1, getKillRegState(true)) 2064 .addImm(M0(32)); 2065 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2066 .addReg(Tmp2, getKillRegState(true)) 2067 .addImm(0) 2068 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 2069 } 2070 return Result; 2071 } 2072 2073 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 2074 MachineBasicBlock::iterator I, 2075 StringRef Symbol, const DebugLoc &DL, 2076 bool IsLocal = false, 2077 bool IsCall = false) const { 2078 MachineFunction *MF = MBB.getParent(); 2079 MachineRegisterInfo &MRI = MF->getRegInfo(); 2080 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2081 2082 const TargetRegisterClass *RC = &VE::I64RegClass; 2083 Register Result = MRI.createVirtualRegister(RC); 2084 2085 if (isPositionIndependent()) { 2086 if (IsCall && !IsLocal) { 2087 // Create following instructions for non-local linkage PIC code function 2088 // calls. These instructions uses IC and magic number -24, so we expand 2089 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 2090 // lea %Reg, Symbol@plt_lo(-24) 2091 // and %Reg, %Reg, (32)0 2092 // sic %s16 2093 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 2094 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 2095 .addExternalSymbol("abort"); 2096 } else if (IsLocal) { 2097 Register Tmp1 = MRI.createVirtualRegister(RC); 2098 Register Tmp2 = MRI.createVirtualRegister(RC); 2099 // Create following instructions for local linkage PIC code. 2100 // lea %Tmp1, Symbol@gotoff_lo 2101 // and %Tmp2, %Tmp1, (32)0 2102 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2103 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2104 .addImm(0) 2105 .addImm(0) 2106 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 2107 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2108 .addReg(Tmp1, getKillRegState(true)) 2109 .addImm(M0(32)); 2110 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 2111 .addReg(VE::SX15) 2112 .addReg(Tmp2, getKillRegState(true)) 2113 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 2114 } else { 2115 Register Tmp1 = MRI.createVirtualRegister(RC); 2116 Register Tmp2 = MRI.createVirtualRegister(RC); 2117 // Create following instructions for not local linkage PIC code. 2118 // lea %Tmp1, Symbol@got_lo 2119 // and %Tmp2, %Tmp1, (32)0 2120 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2121 // ld %Result, 0(%Tmp3) 2122 Register Tmp3 = MRI.createVirtualRegister(RC); 2123 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2124 .addImm(0) 2125 .addImm(0) 2126 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 2127 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2128 .addReg(Tmp1, getKillRegState(true)) 2129 .addImm(M0(32)); 2130 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 2131 .addReg(VE::SX15) 2132 .addReg(Tmp2, getKillRegState(true)) 2133 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 2134 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 2135 .addReg(Tmp3, getKillRegState(true)) 2136 .addImm(0) 2137 .addImm(0); 2138 } 2139 } else { 2140 Register Tmp1 = MRI.createVirtualRegister(RC); 2141 Register Tmp2 = MRI.createVirtualRegister(RC); 2142 // Create following instructions for non-PIC code. 2143 // lea %Tmp1, Symbol@lo 2144 // and %Tmp2, %Tmp1, (32)0 2145 // lea.sl %Result, Symbol@hi(%Tmp2) 2146 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2147 .addImm(0) 2148 .addImm(0) 2149 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 2150 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2151 .addReg(Tmp1, getKillRegState(true)) 2152 .addImm(M0(32)); 2153 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2154 .addReg(Tmp2, getKillRegState(true)) 2155 .addImm(0) 2156 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 2157 } 2158 return Result; 2159 } 2160 2161 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 2162 MachineBasicBlock *MBB, 2163 MachineBasicBlock *DispatchBB, 2164 int FI, int Offset) const { 2165 DebugLoc DL = MI.getDebugLoc(); 2166 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2167 2168 Register LabelReg = 2169 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 2170 2171 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 2172 // referenced by longjmp (throw) later. 2173 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2174 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 2175 MIB.addReg(LabelReg, getKillRegState(true)); 2176 } 2177 2178 MachineBasicBlock * 2179 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 2180 MachineBasicBlock *MBB) const { 2181 DebugLoc DL = MI.getDebugLoc(); 2182 MachineFunction *MF = MBB->getParent(); 2183 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2184 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2185 MachineRegisterInfo &MRI = MF->getRegInfo(); 2186 2187 const BasicBlock *BB = MBB->getBasicBlock(); 2188 MachineFunction::iterator I = ++MBB->getIterator(); 2189 2190 // Memory Reference. 2191 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2192 MI.memoperands_end()); 2193 Register BufReg = MI.getOperand(1).getReg(); 2194 2195 Register DstReg; 2196 2197 DstReg = MI.getOperand(0).getReg(); 2198 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 2199 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 2200 (void)TRI; 2201 Register MainDestReg = MRI.createVirtualRegister(RC); 2202 Register RestoreDestReg = MRI.createVirtualRegister(RC); 2203 2204 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 2205 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 2206 // 2207 // ThisMBB: 2208 // buf[3] = %s17 iff %s17 is used as BP 2209 // buf[1] = RestoreMBB as IC after longjmp 2210 // # SjLjSetup RestoreMBB 2211 // 2212 // MainMBB: 2213 // v_main = 0 2214 // 2215 // SinkMBB: 2216 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 2217 // ... 2218 // 2219 // RestoreMBB: 2220 // %s17 = buf[3] = iff %s17 is used as BP 2221 // v_restore = 1 2222 // goto SinkMBB 2223 2224 MachineBasicBlock *ThisMBB = MBB; 2225 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2226 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2227 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2228 MF->insert(I, MainMBB); 2229 MF->insert(I, SinkMBB); 2230 MF->push_back(RestoreMBB); 2231 RestoreMBB->setMachineBlockAddressTaken(); 2232 2233 // Transfer the remainder of BB and its successor edges to SinkMBB. 2234 SinkMBB->splice(SinkMBB->begin(), MBB, 2235 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2236 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2237 2238 // ThisMBB: 2239 Register LabelReg = 2240 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2241 2242 // Store BP in buf[3] iff this function is using BP. 2243 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2244 if (TFI->hasBP(*MF)) { 2245 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2246 MIB.addReg(BufReg); 2247 MIB.addImm(0); 2248 MIB.addImm(24); 2249 MIB.addReg(VE::SX17); 2250 MIB.setMemRefs(MMOs); 2251 } 2252 2253 // Store IP in buf[1]. 2254 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2255 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2256 MIB.addImm(0); 2257 MIB.addImm(8); 2258 MIB.addReg(LabelReg, getKillRegState(true)); 2259 MIB.setMemRefs(MMOs); 2260 2261 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2262 2263 // Insert setup. 2264 MIB = 2265 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2266 2267 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2268 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2269 ThisMBB->addSuccessor(MainMBB); 2270 ThisMBB->addSuccessor(RestoreMBB); 2271 2272 // MainMBB: 2273 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2274 .addImm(0) 2275 .addImm(0) 2276 .addImm(0); 2277 MainMBB->addSuccessor(SinkMBB); 2278 2279 // SinkMBB: 2280 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2281 .addReg(MainDestReg) 2282 .addMBB(MainMBB) 2283 .addReg(RestoreDestReg) 2284 .addMBB(RestoreMBB); 2285 2286 // RestoreMBB: 2287 // Restore BP from buf[3] iff this function is using BP. The address of 2288 // buf is in SX10. 2289 // FIXME: Better to not use SX10 here 2290 if (TFI->hasBP(*MF)) { 2291 MachineInstrBuilder MIB = 2292 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2293 MIB.addReg(VE::SX10); 2294 MIB.addImm(0); 2295 MIB.addImm(24); 2296 MIB.setMemRefs(MMOs); 2297 } 2298 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2299 .addImm(0) 2300 .addImm(0) 2301 .addImm(1); 2302 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2303 RestoreMBB->addSuccessor(SinkMBB); 2304 2305 MI.eraseFromParent(); 2306 return SinkMBB; 2307 } 2308 2309 MachineBasicBlock * 2310 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2311 MachineBasicBlock *MBB) const { 2312 DebugLoc DL = MI.getDebugLoc(); 2313 MachineFunction *MF = MBB->getParent(); 2314 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2315 MachineRegisterInfo &MRI = MF->getRegInfo(); 2316 2317 // Memory Reference. 2318 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2319 MI.memoperands_end()); 2320 Register BufReg = MI.getOperand(0).getReg(); 2321 2322 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2323 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2324 Register FP = VE::SX9; 2325 Register SP = VE::SX11; 2326 2327 MachineInstrBuilder MIB; 2328 2329 MachineBasicBlock *ThisMBB = MBB; 2330 2331 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2332 // 2333 // ThisMBB: 2334 // %fp = load buf[0] 2335 // %jmp = load buf[1] 2336 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2337 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2338 // jmp %jmp 2339 2340 // Reload FP. 2341 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2342 MIB.addReg(BufReg); 2343 MIB.addImm(0); 2344 MIB.addImm(0); 2345 MIB.setMemRefs(MMOs); 2346 2347 // Reload IP. 2348 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2349 MIB.addReg(BufReg); 2350 MIB.addImm(0); 2351 MIB.addImm(8); 2352 MIB.setMemRefs(MMOs); 2353 2354 // Copy BufReg to SX10 for later use in setjmp. 2355 // FIXME: Better to not use SX10 here 2356 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2357 .addReg(BufReg) 2358 .addImm(0); 2359 2360 // Reload SP. 2361 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2362 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2363 MIB.addImm(0); 2364 MIB.addImm(16); 2365 MIB.setMemRefs(MMOs); 2366 2367 // Jump. 2368 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2369 .addReg(Tmp, getKillRegState(true)) 2370 .addImm(0); 2371 2372 MI.eraseFromParent(); 2373 return ThisMBB; 2374 } 2375 2376 MachineBasicBlock * 2377 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2378 MachineBasicBlock *BB) const { 2379 DebugLoc DL = MI.getDebugLoc(); 2380 MachineFunction *MF = BB->getParent(); 2381 MachineFrameInfo &MFI = MF->getFrameInfo(); 2382 MachineRegisterInfo &MRI = MF->getRegInfo(); 2383 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2384 int FI = MFI.getFunctionContextIndex(); 2385 2386 // Get a mapping of the call site numbers to all of the landing pads they're 2387 // associated with. 2388 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2389 unsigned MaxCSNum = 0; 2390 for (auto &MBB : *MF) { 2391 if (!MBB.isEHPad()) 2392 continue; 2393 2394 MCSymbol *Sym = nullptr; 2395 for (const auto &MI : MBB) { 2396 if (MI.isDebugInstr()) 2397 continue; 2398 2399 assert(MI.isEHLabel() && "expected EH_LABEL"); 2400 Sym = MI.getOperand(0).getMCSymbol(); 2401 break; 2402 } 2403 2404 if (!MF->hasCallSiteLandingPad(Sym)) 2405 continue; 2406 2407 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2408 CallSiteNumToLPad[CSI].push_back(&MBB); 2409 MaxCSNum = std::max(MaxCSNum, CSI); 2410 } 2411 } 2412 2413 // Get an ordered list of the machine basic blocks for the jump table. 2414 std::vector<MachineBasicBlock *> LPadList; 2415 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2416 LPadList.reserve(CallSiteNumToLPad.size()); 2417 2418 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2419 for (auto &LP : CallSiteNumToLPad[CSI]) { 2420 LPadList.push_back(LP); 2421 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2422 } 2423 } 2424 2425 assert(!LPadList.empty() && 2426 "No landing pad destinations for the dispatch jump table!"); 2427 2428 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2429 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2430 // 2431 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2432 // First `i64` is callsite, so callsite is FI+8. 2433 static const int OffsetIC = 72; 2434 static const int OffsetCS = 8; 2435 2436 // Create the MBBs for the dispatch code like following: 2437 // 2438 // ThisMBB: 2439 // Prepare DispatchBB address and store it to buf[1]. 2440 // ... 2441 // 2442 // DispatchBB: 2443 // %s15 = GETGOT iff isPositionIndependent 2444 // %callsite = load callsite 2445 // brgt.l.t #size of callsites, %callsite, DispContBB 2446 // 2447 // TrapBB: 2448 // Call abort. 2449 // 2450 // DispContBB: 2451 // %breg = address of jump table 2452 // %pc = load and calculate next pc from %breg and %callsite 2453 // jmp %pc 2454 2455 // Shove the dispatch's address into the return slot in the function context. 2456 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2457 DispatchBB->setIsEHPad(true); 2458 2459 // Trap BB will causes trap like `assert(0)`. 2460 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2461 DispatchBB->addSuccessor(TrapBB); 2462 2463 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2464 DispatchBB->addSuccessor(DispContBB); 2465 2466 // Insert MBBs. 2467 MF->push_back(DispatchBB); 2468 MF->push_back(DispContBB); 2469 MF->push_back(TrapBB); 2470 2471 // Insert code to call abort in the TrapBB. 2472 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2473 /* Local */ false, /* Call */ true); 2474 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2475 .addReg(Abort, getKillRegState(true)) 2476 .addImm(0) 2477 .addImm(0); 2478 2479 // Insert code into the entry block that creates and registers the function 2480 // context. 2481 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2482 2483 // Create the jump table and associated information 2484 unsigned JTE = getJumpTableEncoding(); 2485 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2486 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2487 2488 const VERegisterInfo &RI = TII->getRegisterInfo(); 2489 // Add a register mask with no preserved registers. This results in all 2490 // registers being marked as clobbered. 2491 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2492 .addRegMask(RI.getNoPreservedMask()); 2493 2494 if (isPositionIndependent()) { 2495 // Force to generate GETGOT, since current implementation doesn't store GOT 2496 // register. 2497 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2498 } 2499 2500 // IReg is used as an index in a memory operand and therefore can't be SP 2501 const TargetRegisterClass *RC = &VE::I64RegClass; 2502 Register IReg = MRI.createVirtualRegister(RC); 2503 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2504 OffsetCS); 2505 if (LPadList.size() < 64) { 2506 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2507 .addImm(VECC::CC_ILE) 2508 .addImm(LPadList.size()) 2509 .addReg(IReg) 2510 .addMBB(TrapBB); 2511 } else { 2512 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2513 Register TmpReg = MRI.createVirtualRegister(RC); 2514 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2515 .addImm(0) 2516 .addImm(0) 2517 .addImm(LPadList.size()); 2518 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2519 .addImm(VECC::CC_ILE) 2520 .addReg(TmpReg, getKillRegState(true)) 2521 .addReg(IReg) 2522 .addMBB(TrapBB); 2523 } 2524 2525 Register BReg = MRI.createVirtualRegister(RC); 2526 Register Tmp1 = MRI.createVirtualRegister(RC); 2527 Register Tmp2 = MRI.createVirtualRegister(RC); 2528 2529 if (isPositionIndependent()) { 2530 // Create following instructions for local linkage PIC code. 2531 // lea %Tmp1, .LJTI0_0@gotoff_lo 2532 // and %Tmp2, %Tmp1, (32)0 2533 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2534 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2535 .addImm(0) 2536 .addImm(0) 2537 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2538 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2539 .addReg(Tmp1, getKillRegState(true)) 2540 .addImm(M0(32)); 2541 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2542 .addReg(VE::SX15) 2543 .addReg(Tmp2, getKillRegState(true)) 2544 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2545 } else { 2546 // Create following instructions for non-PIC code. 2547 // lea %Tmp1, .LJTI0_0@lo 2548 // and %Tmp2, %Tmp1, (32)0 2549 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2550 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2551 .addImm(0) 2552 .addImm(0) 2553 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2554 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2555 .addReg(Tmp1, getKillRegState(true)) 2556 .addImm(M0(32)); 2557 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2558 .addReg(Tmp2, getKillRegState(true)) 2559 .addImm(0) 2560 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2561 } 2562 2563 switch (JTE) { 2564 case MachineJumpTableInfo::EK_BlockAddress: { 2565 // Generate simple block address code for no-PIC model. 2566 // sll %Tmp1, %IReg, 3 2567 // lds %TReg, 0(%Tmp1, %BReg) 2568 // bcfla %TReg 2569 2570 Register TReg = MRI.createVirtualRegister(RC); 2571 Register Tmp1 = MRI.createVirtualRegister(RC); 2572 2573 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2574 .addReg(IReg, getKillRegState(true)) 2575 .addImm(3); 2576 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2577 .addReg(BReg, getKillRegState(true)) 2578 .addReg(Tmp1, getKillRegState(true)) 2579 .addImm(0); 2580 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2581 .addReg(TReg, getKillRegState(true)) 2582 .addImm(0); 2583 break; 2584 } 2585 case MachineJumpTableInfo::EK_Custom32: { 2586 // Generate block address code using differences from the function pointer 2587 // for PIC model. 2588 // sll %Tmp1, %IReg, 2 2589 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2590 // Prepare function address in BReg2. 2591 // adds.l %TReg, %BReg2, %OReg 2592 // bcfla %TReg 2593 2594 assert(isPositionIndependent()); 2595 Register OReg = MRI.createVirtualRegister(RC); 2596 Register TReg = MRI.createVirtualRegister(RC); 2597 Register Tmp1 = MRI.createVirtualRegister(RC); 2598 2599 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2600 .addReg(IReg, getKillRegState(true)) 2601 .addImm(2); 2602 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2603 .addReg(BReg, getKillRegState(true)) 2604 .addReg(Tmp1, getKillRegState(true)) 2605 .addImm(0); 2606 Register BReg2 = 2607 prepareSymbol(*DispContBB, DispContBB->end(), 2608 DispContBB->getParent()->getName(), DL, /* Local */ true); 2609 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2610 .addReg(OReg, getKillRegState(true)) 2611 .addReg(BReg2, getKillRegState(true)); 2612 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2613 .addReg(TReg, getKillRegState(true)) 2614 .addImm(0); 2615 break; 2616 } 2617 default: 2618 llvm_unreachable("Unexpected jump table encoding"); 2619 } 2620 2621 // Add the jump table entries as successors to the MBB. 2622 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2623 for (auto &LP : LPadList) 2624 if (SeenMBBs.insert(LP).second) 2625 DispContBB->addSuccessor(LP); 2626 2627 // N.B. the order the invoke BBs are processed in doesn't matter here. 2628 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2629 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2630 for (MachineBasicBlock *MBB : InvokeBBs) { 2631 // Remove the landing pad successor from the invoke block and replace it 2632 // with the new dispatch block. 2633 // Keep a copy of Successors since it's modified inside the loop. 2634 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2635 MBB->succ_rend()); 2636 // FIXME: Avoid quadratic complexity. 2637 for (auto *MBBS : Successors) { 2638 if (MBBS->isEHPad()) { 2639 MBB->removeSuccessor(MBBS); 2640 MBBLPads.push_back(MBBS); 2641 } 2642 } 2643 2644 MBB->addSuccessor(DispatchBB); 2645 2646 // Find the invoke call and mark all of the callee-saved registers as 2647 // 'implicit defined' so that they're spilled. This prevents code from 2648 // moving instructions to before the EH block, where they will never be 2649 // executed. 2650 for (auto &II : reverse(*MBB)) { 2651 if (!II.isCall()) 2652 continue; 2653 2654 DenseMap<Register, bool> DefRegs; 2655 for (auto &MOp : II.operands()) 2656 if (MOp.isReg()) 2657 DefRegs[MOp.getReg()] = true; 2658 2659 MachineInstrBuilder MIB(*MF, &II); 2660 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2661 Register Reg = SavedRegs[RI]; 2662 if (!DefRegs[Reg]) 2663 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2664 } 2665 2666 break; 2667 } 2668 } 2669 2670 // Mark all former landing pads as non-landing pads. The dispatch is the only 2671 // landing pad now. 2672 for (auto &LP : MBBLPads) 2673 LP->setIsEHPad(false); 2674 2675 // The instruction is gone now. 2676 MI.eraseFromParent(); 2677 return BB; 2678 } 2679 2680 MachineBasicBlock * 2681 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2682 MachineBasicBlock *BB) const { 2683 switch (MI.getOpcode()) { 2684 default: 2685 llvm_unreachable("Unknown Custom Instruction!"); 2686 case VE::EH_SjLj_LongJmp: 2687 return emitEHSjLjLongJmp(MI, BB); 2688 case VE::EH_SjLj_SetJmp: 2689 return emitEHSjLjSetJmp(MI, BB); 2690 case VE::EH_SjLj_Setup_Dispatch: 2691 return emitSjLjDispatchBlock(MI, BB); 2692 } 2693 } 2694 2695 static bool isSimm7(SDValue V) { 2696 EVT VT = V.getValueType(); 2697 if (VT.isVector()) 2698 return false; 2699 2700 if (VT.isInteger()) { 2701 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(V)) 2702 return isInt<7>(C->getSExtValue()); 2703 } else if (VT.isFloatingPoint()) { 2704 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(V)) { 2705 if (VT == MVT::f32 || VT == MVT::f64) { 2706 const APInt &Imm = C->getValueAPF().bitcastToAPInt(); 2707 uint64_t Val = Imm.getSExtValue(); 2708 if (Imm.getBitWidth() == 32) 2709 Val <<= 32; // Immediate value of float place at higher bits on VE. 2710 return isInt<7>(Val); 2711 } 2712 } 2713 } 2714 return false; 2715 } 2716 2717 static bool isMImm(SDValue V) { 2718 EVT VT = V.getValueType(); 2719 if (VT.isVector()) 2720 return false; 2721 2722 if (VT.isInteger()) { 2723 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(V)) 2724 return isMImmVal(getImmVal(C)); 2725 } else if (VT.isFloatingPoint()) { 2726 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(V)) { 2727 if (VT == MVT::f32) { 2728 // Float value places at higher bits, so ignore lower 32 bits. 2729 return isMImm32Val(getFpImmVal(C) >> 32); 2730 } else if (VT == MVT::f64) { 2731 return isMImmVal(getFpImmVal(C)); 2732 } 2733 } 2734 } 2735 return false; 2736 } 2737 2738 static unsigned decideComp(EVT SrcVT, ISD::CondCode CC) { 2739 if (SrcVT.isFloatingPoint()) { 2740 if (SrcVT == MVT::f128) 2741 return VEISD::CMPQ; 2742 return VEISD::CMPF; 2743 } 2744 return isSignedIntSetCC(CC) ? VEISD::CMPI : VEISD::CMPU; 2745 } 2746 2747 static EVT decideCompType(EVT SrcVT) { 2748 if (SrcVT == MVT::f128) 2749 return MVT::f64; 2750 return SrcVT; 2751 } 2752 2753 static bool safeWithoutCompWithNull(EVT SrcVT, ISD::CondCode CC, 2754 bool WithCMov) { 2755 if (SrcVT.isFloatingPoint()) { 2756 // For the case of floating point setcc, only unordered comparison 2757 // or general comparison with -enable-no-nans-fp-math option reach 2758 // here, so it is safe even if values are NaN. Only f128 doesn't 2759 // safe since VE uses f64 result of f128 comparison. 2760 return SrcVT != MVT::f128; 2761 } 2762 if (isIntEqualitySetCC(CC)) { 2763 // For the case of equal or not equal, it is safe without comparison with 0. 2764 return true; 2765 } 2766 if (WithCMov) { 2767 // For the case of integer setcc with cmov, all signed comparison with 0 2768 // are safe. 2769 return isSignedIntSetCC(CC); 2770 } 2771 // For the case of integer setcc, only signed 64 bits comparison is safe. 2772 // For unsigned, "CMPU 0x80000000, 0" has to be greater than 0, but it becomes 2773 // less than 0 witout CMPU. For 32 bits, other half of 32 bits are 2774 // uncoditional, so it is not safe too without CMPI.. 2775 return isSignedIntSetCC(CC) && SrcVT == MVT::i64; 2776 } 2777 2778 static SDValue generateComparison(EVT VT, SDValue LHS, SDValue RHS, 2779 ISD::CondCode CC, bool WithCMov, 2780 const SDLoc &DL, SelectionDAG &DAG) { 2781 // Compare values. If RHS is 0 and it is safe to calculate without 2782 // comparison, we don't generate an instruction for comparison. 2783 EVT CompVT = decideCompType(VT); 2784 if (CompVT == VT && safeWithoutCompWithNull(VT, CC, WithCMov) && 2785 (isNullConstant(RHS) || isNullFPConstant(RHS))) { 2786 return LHS; 2787 } 2788 return DAG.getNode(decideComp(VT, CC), DL, CompVT, LHS, RHS); 2789 } 2790 2791 SDValue VETargetLowering::combineSelect(SDNode *N, 2792 DAGCombinerInfo &DCI) const { 2793 assert(N->getOpcode() == ISD::SELECT && 2794 "Should be called with a SELECT node"); 2795 ISD::CondCode CC = ISD::CondCode::SETNE; 2796 SDValue Cond = N->getOperand(0); 2797 SDValue True = N->getOperand(1); 2798 SDValue False = N->getOperand(2); 2799 2800 // We handle only scalar SELECT. 2801 EVT VT = N->getValueType(0); 2802 if (VT.isVector()) 2803 return SDValue(); 2804 2805 // Peform combineSelect after leagalize DAG. 2806 if (!DCI.isAfterLegalizeDAG()) 2807 return SDValue(); 2808 2809 EVT VT0 = Cond.getValueType(); 2810 if (isMImm(True)) { 2811 // VE's condition move can handle MImm in True clause, so nothing to do. 2812 } else if (isMImm(False)) { 2813 // VE's condition move can handle MImm in True clause, so swap True and 2814 // False clauses if False has MImm value. And, update condition code. 2815 std::swap(True, False); 2816 CC = getSetCCInverse(CC, VT0); 2817 } 2818 2819 SDLoc DL(N); 2820 SelectionDAG &DAG = DCI.DAG; 2821 VECC::CondCode VECCVal; 2822 if (VT0.isFloatingPoint()) { 2823 VECCVal = fpCondCode2Fcc(CC); 2824 } else { 2825 VECCVal = intCondCode2Icc(CC); 2826 } 2827 SDValue Ops[] = {Cond, True, False, 2828 DAG.getConstant(VECCVal, DL, MVT::i32)}; 2829 return DAG.getNode(VEISD::CMOV, DL, VT, Ops); 2830 } 2831 2832 SDValue VETargetLowering::combineSelectCC(SDNode *N, 2833 DAGCombinerInfo &DCI) const { 2834 assert(N->getOpcode() == ISD::SELECT_CC && 2835 "Should be called with a SELECT_CC node"); 2836 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 2837 SDValue LHS = N->getOperand(0); 2838 SDValue RHS = N->getOperand(1); 2839 SDValue True = N->getOperand(2); 2840 SDValue False = N->getOperand(3); 2841 2842 // We handle only scalar SELECT_CC. 2843 EVT VT = N->getValueType(0); 2844 if (VT.isVector()) 2845 return SDValue(); 2846 2847 // Peform combineSelectCC after leagalize DAG. 2848 if (!DCI.isAfterLegalizeDAG()) 2849 return SDValue(); 2850 2851 // We handle only i32/i64/f32/f64/f128 comparisons. 2852 EVT LHSVT = LHS.getValueType(); 2853 assert(LHSVT == RHS.getValueType()); 2854 switch (LHSVT.getSimpleVT().SimpleTy) { 2855 case MVT::i32: 2856 case MVT::i64: 2857 case MVT::f32: 2858 case MVT::f64: 2859 case MVT::f128: 2860 break; 2861 default: 2862 // Return SDValue to let llvm handle other types. 2863 return SDValue(); 2864 } 2865 2866 if (isMImm(RHS)) { 2867 // VE's comparison can handle MImm in RHS, so nothing to do. 2868 } else if (isSimm7(RHS)) { 2869 // VE's comparison can handle Simm7 in LHS, so swap LHS and RHS, and 2870 // update condition code. 2871 std::swap(LHS, RHS); 2872 CC = getSetCCSwappedOperands(CC); 2873 } 2874 if (isMImm(True)) { 2875 // VE's condition move can handle MImm in True clause, so nothing to do. 2876 } else if (isMImm(False)) { 2877 // VE's condition move can handle MImm in True clause, so swap True and 2878 // False clauses if False has MImm value. And, update condition code. 2879 std::swap(True, False); 2880 CC = getSetCCInverse(CC, LHSVT); 2881 } 2882 2883 SDLoc DL(N); 2884 SelectionDAG &DAG = DCI.DAG; 2885 2886 bool WithCMov = true; 2887 SDValue CompNode = generateComparison(LHSVT, LHS, RHS, CC, WithCMov, DL, DAG); 2888 2889 VECC::CondCode VECCVal; 2890 if (LHSVT.isFloatingPoint()) { 2891 VECCVal = fpCondCode2Fcc(CC); 2892 } else { 2893 VECCVal = intCondCode2Icc(CC); 2894 } 2895 SDValue Ops[] = {CompNode, True, False, 2896 DAG.getConstant(VECCVal, DL, MVT::i32)}; 2897 return DAG.getNode(VEISD::CMOV, DL, VT, Ops); 2898 } 2899 2900 static bool isI32InsnAllUses(const SDNode *User, const SDNode *N); 2901 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2902 switch (User->getOpcode()) { 2903 default: 2904 return false; 2905 case ISD::ADD: 2906 case ISD::SUB: 2907 case ISD::MUL: 2908 case ISD::SDIV: 2909 case ISD::UDIV: 2910 case ISD::SETCC: 2911 case ISD::SMIN: 2912 case ISD::SMAX: 2913 case ISD::SHL: 2914 case ISD::SRA: 2915 case ISD::BSWAP: 2916 case ISD::SINT_TO_FP: 2917 case ISD::UINT_TO_FP: 2918 case ISD::BR_CC: 2919 case ISD::BITCAST: 2920 case ISD::ATOMIC_CMP_SWAP: 2921 case ISD::ATOMIC_SWAP: 2922 case VEISD::CMPU: 2923 case VEISD::CMPI: 2924 return true; 2925 case ISD::SRL: 2926 if (N->getOperand(0).getOpcode() != ISD::SRL) 2927 return true; 2928 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2929 // doesn't optimize trunc now. 2930 return false; 2931 case ISD::SELECT_CC: 2932 if (User->getOperand(2).getNode() != N && 2933 User->getOperand(3).getNode() != N) 2934 return true; 2935 return isI32InsnAllUses(User, N); 2936 case VEISD::CMOV: 2937 // CMOV in (cmov (trunc ...), true, false, int-comparison) is safe. 2938 // However, trunc in true or false clauses is not safe. 2939 if (User->getOperand(1).getNode() != N && 2940 User->getOperand(2).getNode() != N && 2941 isa<ConstantSDNode>(User->getOperand(3))) { 2942 VECC::CondCode VECCVal = static_cast<VECC::CondCode>( 2943 cast<ConstantSDNode>(User->getOperand(3))->getZExtValue()); 2944 return isIntVECondCode(VECCVal); 2945 } 2946 [[fallthrough]]; 2947 case ISD::AND: 2948 case ISD::OR: 2949 case ISD::XOR: 2950 case ISD::SELECT: 2951 case ISD::CopyToReg: 2952 // Check all use of selections, bit operations, and copies. If all of them 2953 // are safe, optimize truncate to extract_subreg. 2954 return isI32InsnAllUses(User, N); 2955 } 2956 } 2957 2958 static bool isI32InsnAllUses(const SDNode *User, const SDNode *N) { 2959 // Check all use of User node. If all of them are safe, optimize 2960 // truncate to extract_subreg. 2961 for (const SDNode *U : User->uses()) { 2962 switch (U->getOpcode()) { 2963 default: 2964 // If the use is an instruction which treats the source operand as i32, 2965 // it is safe to avoid truncate here. 2966 if (isI32Insn(U, N)) 2967 continue; 2968 break; 2969 case ISD::ANY_EXTEND: 2970 case ISD::SIGN_EXTEND: 2971 case ISD::ZERO_EXTEND: { 2972 // Special optimizations to the combination of ext and trunc. 2973 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2974 // since this truncate instruction clears higher 32 bits which is filled 2975 // by one of ext instructions later. 2976 assert(N->getValueType(0) == MVT::i32 && 2977 "find truncate to not i32 integer"); 2978 if (User->getOpcode() == ISD::SELECT_CC || 2979 User->getOpcode() == ISD::SELECT || User->getOpcode() == VEISD::CMOV) 2980 continue; 2981 break; 2982 } 2983 } 2984 return false; 2985 } 2986 return true; 2987 } 2988 2989 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2990 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2991 // is sometime too late. So, doing it at here. 2992 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2993 DAGCombinerInfo &DCI) const { 2994 assert(N->getOpcode() == ISD::TRUNCATE && 2995 "Should be called with a TRUNCATE node"); 2996 2997 SelectionDAG &DAG = DCI.DAG; 2998 SDLoc DL(N); 2999 EVT VT = N->getValueType(0); 3000 3001 // We prefer to do this when all types are legal. 3002 if (!DCI.isAfterLegalizeDAG()) 3003 return SDValue(); 3004 3005 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 3006 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 3007 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 3008 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 3009 return SDValue(); 3010 3011 // Check all use of this TRUNCATE. 3012 for (const SDNode *User : N->uses()) { 3013 // Make sure that we're not going to replace TRUNCATE for non i32 3014 // instructions. 3015 // 3016 // FIXME: Although we could sometimes handle this, and it does occur in 3017 // practice that one of the condition inputs to the select is also one of 3018 // the outputs, we currently can't deal with this. 3019 if (isI32Insn(User, N)) 3020 continue; 3021 3022 return SDValue(); 3023 } 3024 3025 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 3026 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 3027 N->getOperand(0), SubI32), 3028 0); 3029 } 3030 3031 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 3032 DAGCombinerInfo &DCI) const { 3033 switch (N->getOpcode()) { 3034 default: 3035 break; 3036 case ISD::SELECT: 3037 return combineSelect(N, DCI); 3038 case ISD::SELECT_CC: 3039 return combineSelectCC(N, DCI); 3040 case ISD::TRUNCATE: 3041 return combineTRUNCATE(N, DCI); 3042 } 3043 3044 return SDValue(); 3045 } 3046 3047 //===----------------------------------------------------------------------===// 3048 // VE Inline Assembly Support 3049 //===----------------------------------------------------------------------===// 3050 3051 VETargetLowering::ConstraintType 3052 VETargetLowering::getConstraintType(StringRef Constraint) const { 3053 if (Constraint.size() == 1) { 3054 switch (Constraint[0]) { 3055 default: 3056 break; 3057 case 'v': // vector registers 3058 return C_RegisterClass; 3059 } 3060 } 3061 return TargetLowering::getConstraintType(Constraint); 3062 } 3063 3064 std::pair<unsigned, const TargetRegisterClass *> 3065 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3066 StringRef Constraint, 3067 MVT VT) const { 3068 const TargetRegisterClass *RC = nullptr; 3069 if (Constraint.size() == 1) { 3070 switch (Constraint[0]) { 3071 default: 3072 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3073 case 'r': 3074 RC = &VE::I64RegClass; 3075 break; 3076 case 'v': 3077 RC = &VE::V64RegClass; 3078 break; 3079 } 3080 return std::make_pair(0U, RC); 3081 } 3082 3083 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3084 } 3085 3086 //===----------------------------------------------------------------------===// 3087 // VE Target Optimization Support 3088 //===----------------------------------------------------------------------===// 3089 3090 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 3091 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 3092 if (isJumpTableRelative()) 3093 return 8; 3094 3095 return TargetLowering::getMinimumJumpTableEntries(); 3096 } 3097 3098 bool VETargetLowering::hasAndNot(SDValue Y) const { 3099 EVT VT = Y.getValueType(); 3100 3101 // VE doesn't have vector and not instruction. 3102 if (VT.isVector()) 3103 return false; 3104 3105 // VE allows different immediate values for X and Y where ~X & Y. 3106 // Only simm7 works for X, and only mimm works for Y on VE. However, this 3107 // function is used to check whether an immediate value is OK for and-not 3108 // instruction as both X and Y. Generating additional instruction to 3109 // retrieve an immediate value is no good since the purpose of this 3110 // function is to convert a series of 3 instructions to another series of 3111 // 3 instructions with better parallelism. Therefore, we return false 3112 // for all immediate values now. 3113 // FIXME: Change hasAndNot function to have two operands to make it work 3114 // correctly with Aurora VE. 3115 if (isa<ConstantSDNode>(Y)) 3116 return false; 3117 3118 // It's ok for generic registers. 3119 return true; 3120 } 3121 3122 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3123 SelectionDAG &DAG) const { 3124 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 3125 MVT VT = Op.getOperand(0).getSimpleValueType(); 3126 3127 // Special treatment for packed V64 types. 3128 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 3129 (void)VT; 3130 // Example of codes: 3131 // %packed_v = extractelt %vr, %idx / 2 3132 // %v = %packed_v >> (%idx % 2 * 32) 3133 // %res = %v & 0xffffffff 3134 3135 SDValue Vec = Op.getOperand(0); 3136 SDValue Idx = Op.getOperand(1); 3137 SDLoc DL(Op); 3138 SDValue Result = Op; 3139 if (false /* Idx->isConstant() */) { 3140 // TODO: optimized implementation using constant values 3141 } else { 3142 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 3143 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 3144 SDValue PackedElt = 3145 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 3146 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 3147 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 3148 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 3149 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 3150 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 3151 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 3152 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 3153 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 3154 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 3155 MVT::i32, PackedElt, SubI32), 3156 0); 3157 3158 if (Op.getSimpleValueType() == MVT::f32) { 3159 Result = DAG.getBitcast(MVT::f32, Result); 3160 } else { 3161 assert(Op.getSimpleValueType() == MVT::i32); 3162 } 3163 } 3164 return Result; 3165 } 3166 3167 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3168 SelectionDAG &DAG) const { 3169 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 3170 MVT VT = Op.getOperand(0).getSimpleValueType(); 3171 3172 // Special treatment for packed V64 types. 3173 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 3174 (void)VT; 3175 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 3176 // bits" required `val << 32` from C implementation's point of view. 3177 // 3178 // Example of codes: 3179 // %packed_elt = extractelt %vr, (%idx >> 1) 3180 // %shift = ((%idx & 1) ^ 1) << 5 3181 // %packed_elt &= 0xffffffff00000000 >> shift 3182 // %packed_elt |= (zext %val) << shift 3183 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 3184 3185 SDLoc DL(Op); 3186 SDValue Vec = Op.getOperand(0); 3187 SDValue Val = Op.getOperand(1); 3188 SDValue Idx = Op.getOperand(2); 3189 if (Idx.getSimpleValueType() == MVT::i32) 3190 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 3191 if (Val.getSimpleValueType() == MVT::f32) 3192 Val = DAG.getBitcast(MVT::i32, Val); 3193 assert(Val.getSimpleValueType() == MVT::i32); 3194 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 3195 3196 SDValue Result = Op; 3197 if (false /* Idx->isConstant()*/) { 3198 // TODO: optimized implementation using constant values 3199 } else { 3200 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 3201 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 3202 SDValue PackedElt = 3203 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 3204 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 3205 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 3206 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 3207 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 3208 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 3209 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 3210 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 3211 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 3212 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 3213 Result = 3214 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 3215 {HalfIdx, PackedElt, Vec}), 3216 0); 3217 } 3218 return Result; 3219 } 3220