1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VECustomDAG.h" 17 #include "VEInstrBuilder.h" 18 #include "VEMachineFunctionInfo.h" 19 #include "VERegisterInfo.h" 20 #include "VETargetMachine.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ve-lower" 40 41 //===----------------------------------------------------------------------===// 42 // Calling Convention Implementation 43 //===----------------------------------------------------------------------===// 44 45 #include "VEGenCallingConv.inc" 46 47 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 48 switch (CallConv) { 49 default: 50 return RetCC_VE_C; 51 case CallingConv::Fast: 52 return RetCC_VE_Fast; 53 } 54 } 55 56 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 57 if (IsVarArg) 58 return CC_VE2; 59 switch (CallConv) { 60 default: 61 return CC_VE_C; 62 case CallingConv::Fast: 63 return CC_VE_Fast; 64 } 65 } 66 67 bool VETargetLowering::CanLowerReturn( 68 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 69 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 70 CCAssignFn *RetCC = getReturnCC(CallConv); 71 SmallVector<CCValAssign, 16> RVLocs; 72 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 73 return CCInfo.CheckReturn(Outs, RetCC); 74 } 75 76 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 77 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 78 79 static const MVT AllMaskVTs[] = {MVT::v256i1, MVT::v512i1}; 80 81 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 82 83 void VETargetLowering::initRegisterClasses() { 84 // Set up the register classes. 85 addRegisterClass(MVT::i32, &VE::I32RegClass); 86 addRegisterClass(MVT::i64, &VE::I64RegClass); 87 addRegisterClass(MVT::f32, &VE::F32RegClass); 88 addRegisterClass(MVT::f64, &VE::I64RegClass); 89 addRegisterClass(MVT::f128, &VE::F128RegClass); 90 91 if (Subtarget->enableVPU()) { 92 for (MVT VecVT : AllVectorVTs) 93 addRegisterClass(VecVT, &VE::V64RegClass); 94 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 95 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 96 } 97 } 98 99 void VETargetLowering::initSPUActions() { 100 const auto &TM = getTargetMachine(); 101 /// Load & Store { 102 103 // VE doesn't have i1 sign extending load. 104 for (MVT VT : MVT::integer_valuetypes()) { 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 106 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 107 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 108 setTruncStoreAction(VT, MVT::i1, Expand); 109 } 110 111 // VE doesn't have floating point extload/truncstore, so expand them. 112 for (MVT FPVT : MVT::fp_valuetypes()) { 113 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 114 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 115 setTruncStoreAction(FPVT, OtherFPVT, Expand); 116 } 117 } 118 119 // VE doesn't have fp128 load/store, so expand them in custom lower. 120 setOperationAction(ISD::LOAD, MVT::f128, Custom); 121 setOperationAction(ISD::STORE, MVT::f128, Custom); 122 123 /// } Load & Store 124 125 // Custom legalize address nodes into LO/HI parts. 126 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 127 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 128 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 129 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 130 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 131 setOperationAction(ISD::JumpTable, PtrVT, Custom); 132 133 /// VAARG handling { 134 setOperationAction(ISD::VASTART, MVT::Other, Custom); 135 // VAARG needs to be lowered to access with 8 bytes alignment. 136 setOperationAction(ISD::VAARG, MVT::Other, Custom); 137 // Use the default implementation. 138 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 139 setOperationAction(ISD::VAEND, MVT::Other, Expand); 140 /// } VAARG handling 141 142 /// Stack { 143 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 145 146 // Use the default implementation. 147 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 148 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 149 /// } Stack 150 151 /// Branch { 152 153 // VE doesn't have BRCOND 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // BR_JT is not implemented yet. 157 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 158 159 /// } Branch 160 161 /// Int Ops { 162 for (MVT IntVT : {MVT::i32, MVT::i64}) { 163 // VE has no REM or DIVREM operations. 164 setOperationAction(ISD::UREM, IntVT, Expand); 165 setOperationAction(ISD::SREM, IntVT, Expand); 166 setOperationAction(ISD::SDIVREM, IntVT, Expand); 167 setOperationAction(ISD::UDIVREM, IntVT, Expand); 168 169 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 170 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 171 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 172 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 173 174 // VE has no MULHU/S or U/SMUL_LOHI operations. 175 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 176 setOperationAction(ISD::MULHU, IntVT, Expand); 177 setOperationAction(ISD::MULHS, IntVT, Expand); 178 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 179 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 180 181 // VE has no CTTZ, ROTL, ROTR operations. 182 setOperationAction(ISD::CTTZ, IntVT, Expand); 183 setOperationAction(ISD::ROTL, IntVT, Expand); 184 setOperationAction(ISD::ROTR, IntVT, Expand); 185 186 // VE has 64 bits instruction which works as i64 BSWAP operation. This 187 // instruction works fine as i32 BSWAP operation with an additional 188 // parameter. Use isel patterns to lower BSWAP. 189 setOperationAction(ISD::BSWAP, IntVT, Legal); 190 191 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 192 // operations. Use isel patterns for i64, promote for i32. 193 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 194 setOperationAction(ISD::BITREVERSE, IntVT, Act); 195 setOperationAction(ISD::CTLZ, IntVT, Act); 196 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 197 setOperationAction(ISD::CTPOP, IntVT, Act); 198 199 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 200 // Use isel patterns for i64, promote for i32. 201 setOperationAction(ISD::AND, IntVT, Act); 202 setOperationAction(ISD::OR, IntVT, Act); 203 setOperationAction(ISD::XOR, IntVT, Act); 204 } 205 /// } Int Ops 206 207 /// Conversion { 208 // VE doesn't have instructions for fp<->uint, so expand them by llvm 209 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 210 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 211 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 212 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 213 214 // fp16 not supported 215 for (MVT FPVT : MVT::fp_valuetypes()) { 216 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 217 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 218 } 219 /// } Conversion 220 221 /// Floating-point Ops { 222 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 223 /// and fcmp. 224 225 // VE doesn't have following floating point operations. 226 for (MVT VT : MVT::fp_valuetypes()) { 227 setOperationAction(ISD::FNEG, VT, Expand); 228 setOperationAction(ISD::FREM, VT, Expand); 229 } 230 231 // VE doesn't have fdiv of f128. 232 setOperationAction(ISD::FDIV, MVT::f128, Expand); 233 234 for (MVT FPVT : {MVT::f32, MVT::f64}) { 235 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 236 setOperationAction(ISD::ConstantFP, FPVT, Legal); 237 } 238 /// } Floating-point Ops 239 240 /// Floating-point math functions { 241 242 // VE doesn't have following floating point math functions. 243 for (MVT VT : MVT::fp_valuetypes()) { 244 setOperationAction(ISD::FABS, VT, Expand); 245 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 246 setOperationAction(ISD::FCOS, VT, Expand); 247 setOperationAction(ISD::FSIN, VT, Expand); 248 setOperationAction(ISD::FSQRT, VT, Expand); 249 } 250 251 /// } Floating-point math functions 252 253 /// Atomic instructions { 254 255 setMaxAtomicSizeInBitsSupported(64); 256 setMinCmpXchgSizeInBits(32); 257 setSupportsUnalignedAtomics(false); 258 259 // Use custom inserter for ATOMIC_FENCE. 260 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 261 262 // Other atomic instructions. 263 for (MVT VT : MVT::integer_valuetypes()) { 264 // Support i8/i16 atomic swap. 265 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 266 267 // FIXME: Support "atmam" instructions. 268 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 269 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 270 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 271 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 272 273 // VE doesn't have follwing instructions. 274 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 275 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 276 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 277 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 278 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 279 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 280 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 281 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 282 } 283 284 /// } Atomic instructions 285 286 /// SJLJ instructions { 287 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 288 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 289 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 290 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 291 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 292 /// } SJLJ instructions 293 294 // Intrinsic instructions 295 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 296 } 297 298 void VETargetLowering::initVPUActions() { 299 for (MVT LegalMaskVT : AllMaskVTs) 300 setOperationAction(ISD::BUILD_VECTOR, LegalMaskVT, Custom); 301 302 for (unsigned Opc : {ISD::AND, ISD::OR, ISD::XOR}) 303 setOperationAction(Opc, MVT::v512i1, Custom); 304 305 for (MVT LegalVecVT : AllVectorVTs) { 306 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 307 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 308 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 309 // Translate all vector instructions with legal element types to VVP_* 310 // nodes. 311 // TODO We will custom-widen into VVP_* nodes in the future. While we are 312 // buildling the infrastructure for this, we only do this for legal vector 313 // VTs. 314 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 315 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 316 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 317 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 318 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, LegalVecVT, Custom); 319 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_STORE, LegalVecVT, Custom); 320 #include "VVPNodes.def" 321 } 322 323 for (MVT LegalPackedVT : AllPackedVTs) { 324 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 325 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 326 } 327 328 // vNt32, vNt64 ops (legal element types) 329 for (MVT VT : MVT::vector_valuetypes()) { 330 MVT ElemVT = VT.getVectorElementType(); 331 unsigned ElemBits = ElemVT.getScalarSizeInBits(); 332 if (ElemBits != 32 && ElemBits != 64) 333 continue; 334 335 for (unsigned MemOpc : {ISD::MLOAD, ISD::MSTORE, ISD::LOAD, ISD::STORE}) 336 setOperationAction(MemOpc, VT, Custom); 337 338 const ISD::NodeType IntReductionOCs[] = { 339 ISD::VECREDUCE_ADD, ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, 340 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMIN, 341 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_UMAX}; 342 343 for (unsigned IntRedOpc : IntReductionOCs) 344 setOperationAction(IntRedOpc, VT, Custom); 345 } 346 347 // v256i1 and v512i1 ops 348 for (MVT MaskVT : AllMaskVTs) { 349 // Custom lower mask ops 350 setOperationAction(ISD::STORE, MaskVT, Custom); 351 setOperationAction(ISD::LOAD, MaskVT, Custom); 352 } 353 } 354 355 SDValue 356 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 357 bool IsVarArg, 358 const SmallVectorImpl<ISD::OutputArg> &Outs, 359 const SmallVectorImpl<SDValue> &OutVals, 360 const SDLoc &DL, SelectionDAG &DAG) const { 361 // CCValAssign - represent the assignment of the return value to locations. 362 SmallVector<CCValAssign, 16> RVLocs; 363 364 // CCState - Info about the registers and stack slot. 365 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 366 *DAG.getContext()); 367 368 // Analyze return values. 369 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 370 371 SDValue Flag; 372 SmallVector<SDValue, 4> RetOps(1, Chain); 373 374 // Copy the result values into the output registers. 375 for (unsigned i = 0; i != RVLocs.size(); ++i) { 376 CCValAssign &VA = RVLocs[i]; 377 assert(VA.isRegLoc() && "Can only return in registers!"); 378 assert(!VA.needsCustom() && "Unexpected custom lowering"); 379 SDValue OutVal = OutVals[i]; 380 381 // Integer return values must be sign or zero extended by the callee. 382 switch (VA.getLocInfo()) { 383 case CCValAssign::Full: 384 break; 385 case CCValAssign::SExt: 386 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 387 break; 388 case CCValAssign::ZExt: 389 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 390 break; 391 case CCValAssign::AExt: 392 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 393 break; 394 case CCValAssign::BCvt: { 395 // Convert a float return value to i64 with padding. 396 // 63 31 0 397 // +------+------+ 398 // | float| 0 | 399 // +------+------+ 400 assert(VA.getLocVT() == MVT::i64); 401 assert(VA.getValVT() == MVT::f32); 402 SDValue Undef = SDValue( 403 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 404 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 405 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 406 MVT::i64, Undef, OutVal, Sub_f32), 407 0); 408 break; 409 } 410 default: 411 llvm_unreachable("Unknown loc info!"); 412 } 413 414 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 415 416 // Guarantee that all emitted copies are stuck together with flags. 417 Flag = Chain.getValue(1); 418 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 419 } 420 421 RetOps[0] = Chain; // Update chain. 422 423 // Add the flag if we have it. 424 if (Flag.getNode()) 425 RetOps.push_back(Flag); 426 427 return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps); 428 } 429 430 SDValue VETargetLowering::LowerFormalArguments( 431 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 432 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 433 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 434 MachineFunction &MF = DAG.getMachineFunction(); 435 436 // Get the base offset of the incoming arguments stack space. 437 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 438 // Get the size of the preserved arguments area 439 unsigned ArgsPreserved = 64; 440 441 // Analyze arguments according to CC_VE. 442 SmallVector<CCValAssign, 16> ArgLocs; 443 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 444 *DAG.getContext()); 445 // Allocate the preserved area first. 446 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 447 // We already allocated the preserved area, so the stack offset computed 448 // by CC_VE would be correct now. 449 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 450 451 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 452 CCValAssign &VA = ArgLocs[i]; 453 assert(!VA.needsCustom() && "Unexpected custom lowering"); 454 if (VA.isRegLoc()) { 455 // This argument is passed in a register. 456 // All integer register arguments are promoted by the caller to i64. 457 458 // Create a virtual register for the promoted live-in value. 459 Register VReg = 460 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 461 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 462 463 // The caller promoted the argument, so insert an Assert?ext SDNode so we 464 // won't promote the value again in this function. 465 switch (VA.getLocInfo()) { 466 case CCValAssign::SExt: 467 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 468 DAG.getValueType(VA.getValVT())); 469 break; 470 case CCValAssign::ZExt: 471 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 472 DAG.getValueType(VA.getValVT())); 473 break; 474 case CCValAssign::BCvt: { 475 // Extract a float argument from i64 with padding. 476 // 63 31 0 477 // +------+------+ 478 // | float| 0 | 479 // +------+------+ 480 assert(VA.getLocVT() == MVT::i64); 481 assert(VA.getValVT() == MVT::f32); 482 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 483 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 484 MVT::f32, Arg, Sub_f32), 485 0); 486 break; 487 } 488 default: 489 break; 490 } 491 492 // Truncate the register down to the argument type. 493 if (VA.isExtInLoc()) 494 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 495 496 InVals.push_back(Arg); 497 continue; 498 } 499 500 // The registers are exhausted. This argument was passed on the stack. 501 assert(VA.isMemLoc()); 502 // The CC_VE_Full/Half functions compute stack offsets relative to the 503 // beginning of the arguments area at %fp + the size of reserved area. 504 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 505 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 506 507 // Adjust offset for a float argument by adding 4 since the argument is 508 // stored in 8 bytes buffer with offset like below. LLVM generates 509 // 4 bytes load instruction, so need to adjust offset here. This 510 // adjustment is required in only LowerFormalArguments. In LowerCall, 511 // a float argument is converted to i64 first, and stored as 8 bytes 512 // data, which is required by ABI, so no need for adjustment. 513 // 0 4 514 // +------+------+ 515 // | empty| float| 516 // +------+------+ 517 if (VA.getValVT() == MVT::f32) 518 Offset += 4; 519 520 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 521 InVals.push_back( 522 DAG.getLoad(VA.getValVT(), DL, Chain, 523 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 524 MachinePointerInfo::getFixedStack(MF, FI))); 525 } 526 527 if (!IsVarArg) 528 return Chain; 529 530 // This function takes variable arguments, some of which may have been passed 531 // in registers %s0-%s8. 532 // 533 // The va_start intrinsic needs to know the offset to the first variable 534 // argument. 535 // TODO: need to calculate offset correctly once we support f128. 536 unsigned ArgOffset = ArgLocs.size() * 8; 537 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 538 // Skip the reserved area at the top of stack. 539 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 540 541 return Chain; 542 } 543 544 // FIXME? Maybe this could be a TableGen attribute on some registers and 545 // this table could be generated automatically from RegInfo. 546 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 547 const MachineFunction &MF) const { 548 Register Reg = StringSwitch<Register>(RegName) 549 .Case("sp", VE::SX11) // Stack pointer 550 .Case("fp", VE::SX9) // Frame pointer 551 .Case("sl", VE::SX8) // Stack limit 552 .Case("lr", VE::SX10) // Link register 553 .Case("tp", VE::SX14) // Thread pointer 554 .Case("outer", VE::SX12) // Outer regiser 555 .Case("info", VE::SX17) // Info area register 556 .Case("got", VE::SX15) // Global offset table register 557 .Case("plt", VE::SX16) // Procedure linkage table register 558 .Default(0); 559 560 if (Reg) 561 return Reg; 562 563 report_fatal_error("Invalid register name global variable"); 564 } 565 566 //===----------------------------------------------------------------------===// 567 // TargetLowering Implementation 568 //===----------------------------------------------------------------------===// 569 570 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 571 SmallVectorImpl<SDValue> &InVals) const { 572 SelectionDAG &DAG = CLI.DAG; 573 SDLoc DL = CLI.DL; 574 SDValue Chain = CLI.Chain; 575 auto PtrVT = getPointerTy(DAG.getDataLayout()); 576 577 // VE target does not yet support tail call optimization. 578 CLI.IsTailCall = false; 579 580 // Get the base offset of the outgoing arguments stack space. 581 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 582 // Get the size of the preserved arguments area 583 unsigned ArgsPreserved = 8 * 8u; 584 585 // Analyze operands of the call, assigning locations to each operand. 586 SmallVector<CCValAssign, 16> ArgLocs; 587 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 588 *DAG.getContext()); 589 // Allocate the preserved area first. 590 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 591 // We already allocated the preserved area, so the stack offset computed 592 // by CC_VE would be correct now. 593 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 594 595 // VE requires to use both register and stack for varargs or no-prototyped 596 // functions. 597 bool UseBoth = CLI.IsVarArg; 598 599 // Analyze operands again if it is required to store BOTH. 600 SmallVector<CCValAssign, 16> ArgLocs2; 601 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 602 ArgLocs2, *DAG.getContext()); 603 if (UseBoth) 604 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 605 606 // Get the size of the outgoing arguments stack space requirement. 607 unsigned ArgsSize = CCInfo.getNextStackOffset(); 608 609 // Keep stack frames 16-byte aligned. 610 ArgsSize = alignTo(ArgsSize, 16); 611 612 // Adjust the stack pointer to make room for the arguments. 613 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 614 // with more than 6 arguments. 615 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 616 617 // Collect the set of registers to pass to the function and their values. 618 // This will be emitted as a sequence of CopyToReg nodes glued to the call 619 // instruction. 620 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 621 622 // Collect chains from all the memory opeations that copy arguments to the 623 // stack. They must follow the stack pointer adjustment above and precede the 624 // call instruction itself. 625 SmallVector<SDValue, 8> MemOpChains; 626 627 // VE needs to get address of callee function in a register 628 // So, prepare to copy it to SX12 here. 629 630 // If the callee is a GlobalAddress node (quite common, every direct call is) 631 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 632 // Likewise ExternalSymbol -> TargetExternalSymbol. 633 SDValue Callee = CLI.Callee; 634 635 bool IsPICCall = isPositionIndependent(); 636 637 // PC-relative references to external symbols should go through $stub. 638 // If so, we need to prepare GlobalBaseReg first. 639 const TargetMachine &TM = DAG.getTarget(); 640 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 641 const GlobalValue *GV = nullptr; 642 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 643 if (CalleeG) 644 GV = CalleeG->getGlobal(); 645 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 646 bool UsePlt = !Local; 647 MachineFunction &MF = DAG.getMachineFunction(); 648 649 // Turn GlobalAddress/ExternalSymbol node into a value node 650 // containing the address of them here. 651 if (CalleeG) { 652 if (IsPICCall) { 653 if (UsePlt) 654 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 655 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 656 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 657 } else { 658 Callee = 659 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 660 } 661 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 662 if (IsPICCall) { 663 if (UsePlt) 664 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 665 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 666 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 667 } else { 668 Callee = 669 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 670 } 671 } 672 673 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 674 675 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 676 CCValAssign &VA = ArgLocs[i]; 677 SDValue Arg = CLI.OutVals[i]; 678 679 // Promote the value if needed. 680 switch (VA.getLocInfo()) { 681 default: 682 llvm_unreachable("Unknown location info!"); 683 case CCValAssign::Full: 684 break; 685 case CCValAssign::SExt: 686 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 687 break; 688 case CCValAssign::ZExt: 689 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 690 break; 691 case CCValAssign::AExt: 692 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 693 break; 694 case CCValAssign::BCvt: { 695 // Convert a float argument to i64 with padding. 696 // 63 31 0 697 // +------+------+ 698 // | float| 0 | 699 // +------+------+ 700 assert(VA.getLocVT() == MVT::i64); 701 assert(VA.getValVT() == MVT::f32); 702 SDValue Undef = SDValue( 703 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 704 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 705 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 706 MVT::i64, Undef, Arg, Sub_f32), 707 0); 708 break; 709 } 710 } 711 712 if (VA.isRegLoc()) { 713 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 714 if (!UseBoth) 715 continue; 716 VA = ArgLocs2[i]; 717 } 718 719 assert(VA.isMemLoc()); 720 721 // Create a store off the stack pointer for this argument. 722 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 723 // The argument area starts at %fp/%sp + the size of reserved area. 724 SDValue PtrOff = 725 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 726 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 727 MemOpChains.push_back( 728 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 729 } 730 731 // Emit all stores, make sure they occur before the call. 732 if (!MemOpChains.empty()) 733 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 734 735 // Build a sequence of CopyToReg nodes glued together with token chain and 736 // glue operands which copy the outgoing args into registers. The InGlue is 737 // necessary since all emitted instructions must be stuck together in order 738 // to pass the live physical registers. 739 SDValue InGlue; 740 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 741 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 742 RegsToPass[i].second, InGlue); 743 InGlue = Chain.getValue(1); 744 } 745 746 // Build the operands for the call instruction itself. 747 SmallVector<SDValue, 8> Ops; 748 Ops.push_back(Chain); 749 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 750 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 751 RegsToPass[i].second.getValueType())); 752 753 // Add a register mask operand representing the call-preserved registers. 754 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 755 const uint32_t *Mask = 756 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 757 assert(Mask && "Missing call preserved mask for calling convention"); 758 Ops.push_back(DAG.getRegisterMask(Mask)); 759 760 // Make sure the CopyToReg nodes are glued to the call instruction which 761 // consumes the registers. 762 if (InGlue.getNode()) 763 Ops.push_back(InGlue); 764 765 // Now the call itself. 766 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 767 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 768 InGlue = Chain.getValue(1); 769 770 // Revert the stack pointer immediately after the call. 771 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 772 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 773 InGlue = Chain.getValue(1); 774 775 // Now extract the return values. This is more or less the same as 776 // LowerFormalArguments. 777 778 // Assign locations to each value returned by this call. 779 SmallVector<CCValAssign, 16> RVLocs; 780 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 781 *DAG.getContext()); 782 783 // Set inreg flag manually for codegen generated library calls that 784 // return float. 785 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 786 CLI.Ins[0].Flags.setInReg(); 787 788 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 789 790 // Copy all of the result registers out of their specified physreg. 791 for (unsigned i = 0; i != RVLocs.size(); ++i) { 792 CCValAssign &VA = RVLocs[i]; 793 assert(!VA.needsCustom() && "Unexpected custom lowering"); 794 Register Reg = VA.getLocReg(); 795 796 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 797 // reside in the same register in the high and low bits. Reuse the 798 // CopyFromReg previous node to avoid duplicate copies. 799 SDValue RV; 800 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 801 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 802 RV = Chain.getValue(0); 803 804 // But usually we'll create a new CopyFromReg for a different register. 805 if (!RV.getNode()) { 806 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 807 Chain = RV.getValue(1); 808 InGlue = Chain.getValue(2); 809 } 810 811 // The callee promoted the return value, so insert an Assert?ext SDNode so 812 // we won't promote the value again in this function. 813 switch (VA.getLocInfo()) { 814 case CCValAssign::SExt: 815 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 816 DAG.getValueType(VA.getValVT())); 817 break; 818 case CCValAssign::ZExt: 819 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 820 DAG.getValueType(VA.getValVT())); 821 break; 822 case CCValAssign::BCvt: { 823 // Extract a float return value from i64 with padding. 824 // 63 31 0 825 // +------+------+ 826 // | float| 0 | 827 // +------+------+ 828 assert(VA.getLocVT() == MVT::i64); 829 assert(VA.getValVT() == MVT::f32); 830 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 831 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 832 MVT::f32, RV, Sub_f32), 833 0); 834 break; 835 } 836 default: 837 break; 838 } 839 840 // Truncate the register down to the return value type. 841 if (VA.isExtInLoc()) 842 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 843 844 InVals.push_back(RV); 845 } 846 847 return Chain; 848 } 849 850 bool VETargetLowering::isOffsetFoldingLegal( 851 const GlobalAddressSDNode *GA) const { 852 // VE uses 64 bit addressing, so we need multiple instructions to generate 853 // an address. Folding address with offset increases the number of 854 // instructions, so that we disable it here. Offsets will be folded in 855 // the DAG combine later if it worth to do so. 856 return false; 857 } 858 859 /// isFPImmLegal - Returns true if the target can instruction select the 860 /// specified FP immediate natively. If false, the legalizer will 861 /// materialize the FP immediate as a load from a constant pool. 862 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 863 bool ForCodeSize) const { 864 return VT == MVT::f32 || VT == MVT::f64; 865 } 866 867 /// Determine if the target supports unaligned memory accesses. 868 /// 869 /// This function returns true if the target allows unaligned memory accesses 870 /// of the specified type in the given address space. If true, it also returns 871 /// whether the unaligned memory access is "fast" in the last argument by 872 /// reference. This is used, for example, in situations where an array 873 /// copy/move/set is converted to a sequence of store operations. Its use 874 /// helps to ensure that such replacements don't generate code that causes an 875 /// alignment error (trap) on the target machine. 876 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 877 unsigned AddrSpace, 878 Align A, 879 MachineMemOperand::Flags, 880 bool *Fast) const { 881 if (Fast) { 882 // It's fast anytime on VE 883 *Fast = true; 884 } 885 return true; 886 } 887 888 VETargetLowering::VETargetLowering(const TargetMachine &TM, 889 const VESubtarget &STI) 890 : TargetLowering(TM), Subtarget(&STI) { 891 // Instructions which use registers as conditionals examine all the 892 // bits (as does the pseudo SELECT_CC expansion). I don't think it 893 // matters much whether it's ZeroOrOneBooleanContent, or 894 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 895 // former. 896 setBooleanContents(ZeroOrOneBooleanContent); 897 setBooleanVectorContents(ZeroOrOneBooleanContent); 898 899 initRegisterClasses(); 900 initSPUActions(); 901 initVPUActions(); 902 903 setStackPointerRegisterToSaveRestore(VE::SX11); 904 905 // We have target-specific dag combine patterns for the following nodes: 906 setTargetDAGCombine(ISD::TRUNCATE); 907 908 // Set function alignment to 16 bytes 909 setMinFunctionAlignment(Align(16)); 910 911 // VE stores all argument by 8 bytes alignment 912 setMinStackArgumentAlignment(Align(8)); 913 914 computeRegisterProperties(Subtarget->getRegisterInfo()); 915 } 916 917 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 918 #define TARGET_NODE_CASE(NAME) \ 919 case VEISD::NAME: \ 920 return "VEISD::" #NAME; 921 switch ((VEISD::NodeType)Opcode) { 922 case VEISD::FIRST_NUMBER: 923 break; 924 TARGET_NODE_CASE(CALL) 925 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 926 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 927 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 928 TARGET_NODE_CASE(GETFUNPLT) 929 TARGET_NODE_CASE(GETSTACKTOP) 930 TARGET_NODE_CASE(GETTLSADDR) 931 TARGET_NODE_CASE(GLOBAL_BASE_REG) 932 TARGET_NODE_CASE(Hi) 933 TARGET_NODE_CASE(Lo) 934 TARGET_NODE_CASE(MEMBARRIER) 935 TARGET_NODE_CASE(RET_FLAG) 936 TARGET_NODE_CASE(TS1AM) 937 TARGET_NODE_CASE(VEC_UNPACK_LO) 938 TARGET_NODE_CASE(VEC_UNPACK_HI) 939 TARGET_NODE_CASE(VEC_PACK) 940 TARGET_NODE_CASE(VEC_BROADCAST) 941 TARGET_NODE_CASE(REPL_I32) 942 TARGET_NODE_CASE(REPL_F32) 943 944 TARGET_NODE_CASE(LEGALAVL) 945 946 // Register the VVP_* SDNodes. 947 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 948 #include "VVPNodes.def" 949 } 950 #undef TARGET_NODE_CASE 951 return nullptr; 952 } 953 954 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 955 EVT VT) const { 956 return MVT::i32; 957 } 958 959 // Convert to a target node and set target flags. 960 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 961 SelectionDAG &DAG) const { 962 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 963 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 964 GA->getValueType(0), GA->getOffset(), TF); 965 966 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 967 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 968 0, TF); 969 970 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 971 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 972 CP->getAlign(), CP->getOffset(), TF); 973 974 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 975 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 976 TF); 977 978 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 979 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 980 981 llvm_unreachable("Unhandled address SDNode"); 982 } 983 984 // Split Op into high and low parts according to HiTF and LoTF. 985 // Return an ADD node combining the parts. 986 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 987 SelectionDAG &DAG) const { 988 SDLoc DL(Op); 989 EVT VT = Op.getValueType(); 990 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 991 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 992 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 993 } 994 995 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 996 // or ExternalSymbol SDNode. 997 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 998 SDLoc DL(Op); 999 EVT PtrVT = Op.getValueType(); 1000 1001 // Handle PIC mode first. VE needs a got load for every variable! 1002 if (isPositionIndependent()) { 1003 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 1004 1005 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 1006 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 1007 // Create following instructions for local linkage PIC code. 1008 // lea %reg, label@gotoff_lo 1009 // and %reg, %reg, (32)0 1010 // lea.sl %reg, label@gotoff_hi(%reg, %got) 1011 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1012 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1013 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1014 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1015 } 1016 // Create following instructions for not local linkage PIC code. 1017 // lea %reg, label@got_lo 1018 // and %reg, %reg, (32)0 1019 // lea.sl %reg, label@got_hi(%reg) 1020 // ld %reg, (%reg, %got) 1021 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 1022 VEMCExpr::VK_VE_GOT_LO32, DAG); 1023 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1024 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1025 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 1026 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1027 } 1028 1029 // This is one of the absolute code models. 1030 switch (getTargetMachine().getCodeModel()) { 1031 default: 1032 llvm_unreachable("Unsupported absolute code model"); 1033 case CodeModel::Small: 1034 case CodeModel::Medium: 1035 case CodeModel::Large: 1036 // abs64. 1037 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1038 } 1039 } 1040 1041 /// Custom Lower { 1042 1043 // The mappings for emitLeading/TrailingFence for VE is designed by following 1044 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1045 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, 1046 Instruction *Inst, 1047 AtomicOrdering Ord) const { 1048 switch (Ord) { 1049 case AtomicOrdering::NotAtomic: 1050 case AtomicOrdering::Unordered: 1051 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1052 case AtomicOrdering::Monotonic: 1053 case AtomicOrdering::Acquire: 1054 return nullptr; // Nothing to do 1055 case AtomicOrdering::Release: 1056 case AtomicOrdering::AcquireRelease: 1057 return Builder.CreateFence(AtomicOrdering::Release); 1058 case AtomicOrdering::SequentiallyConsistent: 1059 if (!Inst->hasAtomicStore()) 1060 return nullptr; // Nothing to do 1061 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1062 } 1063 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1064 } 1065 1066 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, 1067 Instruction *Inst, 1068 AtomicOrdering Ord) const { 1069 switch (Ord) { 1070 case AtomicOrdering::NotAtomic: 1071 case AtomicOrdering::Unordered: 1072 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1073 case AtomicOrdering::Monotonic: 1074 case AtomicOrdering::Release: 1075 return nullptr; // Nothing to do 1076 case AtomicOrdering::Acquire: 1077 case AtomicOrdering::AcquireRelease: 1078 return Builder.CreateFence(AtomicOrdering::Acquire); 1079 case AtomicOrdering::SequentiallyConsistent: 1080 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1081 } 1082 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1083 } 1084 1085 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1086 SelectionDAG &DAG) const { 1087 SDLoc DL(Op); 1088 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 1089 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 1090 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 1091 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 1092 1093 // VE uses Release consistency, so need a fence instruction if it is a 1094 // cross-thread fence. 1095 if (FenceSSID == SyncScope::System) { 1096 switch (FenceOrdering) { 1097 case AtomicOrdering::NotAtomic: 1098 case AtomicOrdering::Unordered: 1099 case AtomicOrdering::Monotonic: 1100 // No need to generate fencem instruction here. 1101 break; 1102 case AtomicOrdering::Acquire: 1103 // Generate "fencem 2" as acquire fence. 1104 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1105 DAG.getTargetConstant(2, DL, MVT::i32), 1106 Op.getOperand(0)), 1107 0); 1108 case AtomicOrdering::Release: 1109 // Generate "fencem 1" as release fence. 1110 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1111 DAG.getTargetConstant(1, DL, MVT::i32), 1112 Op.getOperand(0)), 1113 0); 1114 case AtomicOrdering::AcquireRelease: 1115 case AtomicOrdering::SequentiallyConsistent: 1116 // Generate "fencem 3" as acq_rel and seq_cst fence. 1117 // FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses, 1118 // so seq_cst may require more instruction for them. 1119 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1120 DAG.getTargetConstant(3, DL, MVT::i32), 1121 Op.getOperand(0)), 1122 0); 1123 } 1124 } 1125 1126 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1127 return DAG.getNode(VEISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1128 } 1129 1130 TargetLowering::AtomicExpansionKind 1131 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1132 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1133 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1134 return AtomicExpansionKind::None; 1135 } 1136 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1137 1138 // Otherwise, expand it using compare and exchange instruction to not call 1139 // __sync_fetch_and_* functions. 1140 return AtomicExpansionKind::CmpXChg; 1141 } 1142 1143 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1144 SDValue &Bits) { 1145 SDLoc DL(Op); 1146 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1147 SDValue Ptr = N->getOperand(1); 1148 SDValue Val = N->getOperand(2); 1149 EVT PtrVT = Ptr.getValueType(); 1150 bool Byte = N->getMemoryVT() == MVT::i8; 1151 // Remainder = AND Ptr, 3 1152 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1153 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1154 // Bits = Remainder << 3 1155 // NewVal = Val << Bits 1156 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1157 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1158 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1159 : DAG.getConstant(3, DL, MVT::i32); 1160 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1161 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1162 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1163 } 1164 1165 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1166 SDValue Bits) { 1167 SDLoc DL(Op); 1168 EVT VT = Data.getValueType(); 1169 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1170 // NewData = Data >> Bits 1171 // Result = NewData & 0xff ; If Byte is true (1 byte) 1172 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1173 1174 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1175 return DAG.getNode(ISD::AND, DL, VT, 1176 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1177 } 1178 1179 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1180 SelectionDAG &DAG) const { 1181 SDLoc DL(Op); 1182 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1183 1184 if (N->getMemoryVT() == MVT::i8) { 1185 // For i8, use "ts1am" 1186 // Input: 1187 // ATOMIC_SWAP Ptr, Val, Order 1188 // 1189 // Output: 1190 // Remainder = AND Ptr, 3 1191 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1192 // Bits = Remainder << 3 1193 // NewVal = Val << Bits 1194 // 1195 // Aligned = AND Ptr, -4 1196 // Data = TS1AM Aligned, Flag, NewVal 1197 // 1198 // NewData = Data >> Bits 1199 // Result = NewData & 0xff ; 1 byte result 1200 SDValue Flag; 1201 SDValue Bits; 1202 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1203 1204 SDValue Ptr = N->getOperand(1); 1205 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1206 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1207 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1208 DAG.getVTList(Op.getNode()->getValueType(0), 1209 Op.getNode()->getValueType(1)), 1210 {N->getChain(), Aligned, Flag, NewVal}, 1211 N->getMemOperand()); 1212 1213 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1214 SDValue Chain = TS1AM.getValue(1); 1215 return DAG.getMergeValues({Result, Chain}, DL); 1216 } 1217 if (N->getMemoryVT() == MVT::i16) { 1218 // For i16, use "ts1am" 1219 SDValue Flag; 1220 SDValue Bits; 1221 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1222 1223 SDValue Ptr = N->getOperand(1); 1224 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1225 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1226 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1227 DAG.getVTList(Op.getNode()->getValueType(0), 1228 Op.getNode()->getValueType(1)), 1229 {N->getChain(), Aligned, Flag, NewVal}, 1230 N->getMemOperand()); 1231 1232 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1233 SDValue Chain = TS1AM.getValue(1); 1234 return DAG.getMergeValues({Result, Chain}, DL); 1235 } 1236 // Otherwise, let llvm legalize it. 1237 return Op; 1238 } 1239 1240 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1241 SelectionDAG &DAG) const { 1242 return makeAddress(Op, DAG); 1243 } 1244 1245 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1246 SelectionDAG &DAG) const { 1247 return makeAddress(Op, DAG); 1248 } 1249 1250 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1251 SelectionDAG &DAG) const { 1252 return makeAddress(Op, DAG); 1253 } 1254 1255 SDValue 1256 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1257 SelectionDAG &DAG) const { 1258 SDLoc DL(Op); 1259 1260 // Generate the following code: 1261 // t1: ch,glue = callseq_start t0, 0, 0 1262 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1263 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1264 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1265 SDValue Label = withTargetFlags(Op, 0, DAG); 1266 EVT PtrVT = Op.getValueType(); 1267 1268 // Lowering the machine isd will make sure everything is in the right 1269 // location. 1270 SDValue Chain = DAG.getEntryNode(); 1271 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1272 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1273 DAG.getMachineFunction(), CallingConv::C); 1274 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1275 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1276 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1277 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, DL, true), 1278 DAG.getIntPtrConstant(0, DL, true), 1279 Chain.getValue(1), DL); 1280 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1281 1282 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1283 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1284 MFI.setHasCalls(true); 1285 1286 // Also generate code to prepare a GOT register if it is PIC. 1287 if (isPositionIndependent()) { 1288 MachineFunction &MF = DAG.getMachineFunction(); 1289 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1290 } 1291 1292 return Chain; 1293 } 1294 1295 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1296 SelectionDAG &DAG) const { 1297 // The current implementation of nld (2.26) doesn't allow local exec model 1298 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1299 // generate the general dynamic model code sequence. 1300 // 1301 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1302 return lowerToTLSGeneralDynamicModel(Op, DAG); 1303 } 1304 1305 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1306 return makeAddress(Op, DAG); 1307 } 1308 1309 // Lower a f128 load into two f64 loads. 1310 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1311 SDLoc DL(Op); 1312 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1313 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1314 unsigned Alignment = LdNode->getAlign().value(); 1315 if (Alignment > 8) 1316 Alignment = 8; 1317 1318 SDValue Lo64 = 1319 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1320 LdNode->getPointerInfo(), Alignment, 1321 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1322 : MachineMemOperand::MONone); 1323 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1324 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1325 DAG.getConstant(8, DL, AddrVT)); 1326 SDValue Hi64 = 1327 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1328 LdNode->getPointerInfo(), Alignment, 1329 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1330 : MachineMemOperand::MONone); 1331 1332 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1333 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1334 1335 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1336 SDNode *InFP128 = 1337 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1338 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1339 SDValue(InFP128, 0), Hi64, SubRegEven); 1340 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1341 SDValue(InFP128, 0), Lo64, SubRegOdd); 1342 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1343 SDValue(Hi64.getNode(), 1)}; 1344 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1345 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1346 return DAG.getMergeValues(Ops, DL); 1347 } 1348 1349 // Lower a vXi1 load into following instructions 1350 // LDrii %1, (,%addr) 1351 // LVMxir %vm, 0, %1 1352 // LDrii %2, 8(,%addr) 1353 // LVMxir %vm, 0, %2 1354 // ... 1355 static SDValue lowerLoadI1(SDValue Op, SelectionDAG &DAG) { 1356 SDLoc DL(Op); 1357 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1358 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1359 1360 SDValue BasePtr = LdNode->getBasePtr(); 1361 unsigned Alignment = LdNode->getAlign().value(); 1362 if (Alignment > 8) 1363 Alignment = 8; 1364 1365 EVT AddrVT = BasePtr.getValueType(); 1366 EVT MemVT = LdNode->getMemoryVT(); 1367 if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { 1368 SDValue OutChains[4]; 1369 SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT); 1370 for (int i = 0; i < 4; ++i) { 1371 // Generate load dag and prepare chains. 1372 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1373 DAG.getConstant(8 * i, DL, AddrVT)); 1374 SDValue Val = 1375 DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr, 1376 LdNode->getPointerInfo(), Alignment, 1377 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1378 : MachineMemOperand::MONone); 1379 OutChains[i] = SDValue(Val.getNode(), 1); 1380 1381 VM = DAG.getMachineNode(VE::LVMir_m, DL, MVT::i64, 1382 DAG.getTargetConstant(i, DL, MVT::i64), Val, 1383 SDValue(VM, 0)); 1384 } 1385 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1386 SDValue Ops[2] = {SDValue(VM, 0), OutChain}; 1387 return DAG.getMergeValues(Ops, DL); 1388 } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { 1389 SDValue OutChains[8]; 1390 SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT); 1391 for (int i = 0; i < 8; ++i) { 1392 // Generate load dag and prepare chains. 1393 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1394 DAG.getConstant(8 * i, DL, AddrVT)); 1395 SDValue Val = 1396 DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr, 1397 LdNode->getPointerInfo(), Alignment, 1398 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1399 : MachineMemOperand::MONone); 1400 OutChains[i] = SDValue(Val.getNode(), 1); 1401 1402 VM = DAG.getMachineNode(VE::LVMyir_y, DL, MVT::i64, 1403 DAG.getTargetConstant(i, DL, MVT::i64), Val, 1404 SDValue(VM, 0)); 1405 } 1406 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1407 SDValue Ops[2] = {SDValue(VM, 0), OutChain}; 1408 return DAG.getMergeValues(Ops, DL); 1409 } else { 1410 // Otherwise, ask llvm to expand it. 1411 return SDValue(); 1412 } 1413 } 1414 1415 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1416 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1417 1418 EVT MemVT = LdNode->getMemoryVT(); 1419 1420 // Dispatch to vector isel. 1421 if (MemVT.isVector() && !isMaskType(MemVT)) 1422 return lowerToVVP(Op, DAG); 1423 1424 SDValue BasePtr = LdNode->getBasePtr(); 1425 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1426 // Do not expand store instruction with frame index here because of 1427 // dependency problems. We expand it later in eliminateFrameIndex(). 1428 return Op; 1429 } 1430 1431 if (MemVT == MVT::f128) 1432 return lowerLoadF128(Op, DAG); 1433 if (isMaskType(MemVT)) 1434 return lowerLoadI1(Op, DAG); 1435 1436 return Op; 1437 } 1438 1439 // Lower a f128 store into two f64 stores. 1440 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1441 SDLoc DL(Op); 1442 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1443 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1444 1445 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1446 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1447 1448 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1449 StNode->getValue(), SubRegEven); 1450 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1451 StNode->getValue(), SubRegOdd); 1452 1453 unsigned Alignment = StNode->getAlign().value(); 1454 if (Alignment > 8) 1455 Alignment = 8; 1456 1457 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1458 SDValue OutChains[2]; 1459 OutChains[0] = 1460 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1461 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1462 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1463 : MachineMemOperand::MONone); 1464 EVT AddrVT = StNode->getBasePtr().getValueType(); 1465 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1466 DAG.getConstant(8, DL, AddrVT)); 1467 OutChains[1] = 1468 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1469 MachinePointerInfo(), Alignment, 1470 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1471 : MachineMemOperand::MONone); 1472 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1473 } 1474 1475 // Lower a vXi1 store into following instructions 1476 // SVMi %1, %vm, 0 1477 // STrii %1, (,%addr) 1478 // SVMi %2, %vm, 1 1479 // STrii %2, 8(,%addr) 1480 // ... 1481 static SDValue lowerStoreI1(SDValue Op, SelectionDAG &DAG) { 1482 SDLoc DL(Op); 1483 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1484 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1485 1486 SDValue BasePtr = StNode->getBasePtr(); 1487 unsigned Alignment = StNode->getAlign().value(); 1488 if (Alignment > 8) 1489 Alignment = 8; 1490 EVT AddrVT = BasePtr.getValueType(); 1491 EVT MemVT = StNode->getMemoryVT(); 1492 if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { 1493 SDValue OutChains[4]; 1494 for (int i = 0; i < 4; ++i) { 1495 SDNode *V = 1496 DAG.getMachineNode(VE::SVMmi, DL, MVT::i64, StNode->getValue(), 1497 DAG.getTargetConstant(i, DL, MVT::i64)); 1498 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1499 DAG.getConstant(8 * i, DL, AddrVT)); 1500 OutChains[i] = 1501 DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr, 1502 MachinePointerInfo(), Alignment, 1503 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1504 : MachineMemOperand::MONone); 1505 } 1506 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1507 } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { 1508 SDValue OutChains[8]; 1509 for (int i = 0; i < 8; ++i) { 1510 SDNode *V = 1511 DAG.getMachineNode(VE::SVMyi, DL, MVT::i64, StNode->getValue(), 1512 DAG.getTargetConstant(i, DL, MVT::i64)); 1513 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1514 DAG.getConstant(8 * i, DL, AddrVT)); 1515 OutChains[i] = 1516 DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr, 1517 MachinePointerInfo(), Alignment, 1518 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1519 : MachineMemOperand::MONone); 1520 } 1521 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1522 } else { 1523 // Otherwise, ask llvm to expand it. 1524 return SDValue(); 1525 } 1526 } 1527 1528 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1529 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1530 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1531 1532 // always expand non-mask vector loads to VVP 1533 EVT MemVT = StNode->getMemoryVT(); 1534 if (MemVT.isVector() && !isMaskType(MemVT)) 1535 return lowerToVVP(Op, DAG); 1536 1537 SDValue BasePtr = StNode->getBasePtr(); 1538 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1539 // Do not expand store instruction with frame index here because of 1540 // dependency problems. We expand it later in eliminateFrameIndex(). 1541 return Op; 1542 } 1543 1544 if (MemVT == MVT::f128) 1545 return lowerStoreF128(Op, DAG); 1546 if (isMaskType(MemVT)) 1547 return lowerStoreI1(Op, DAG); 1548 1549 // Otherwise, ask llvm to expand it. 1550 return SDValue(); 1551 } 1552 1553 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1554 MachineFunction &MF = DAG.getMachineFunction(); 1555 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1556 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1557 1558 // Need frame address to find the address of VarArgsFrameIndex. 1559 MF.getFrameInfo().setFrameAddressIsTaken(true); 1560 1561 // vastart just stores the address of the VarArgsFrameIndex slot into the 1562 // memory location argument. 1563 SDLoc DL(Op); 1564 SDValue Offset = 1565 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1566 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1567 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1568 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1569 MachinePointerInfo(SV)); 1570 } 1571 1572 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1573 SDNode *Node = Op.getNode(); 1574 EVT VT = Node->getValueType(0); 1575 SDValue InChain = Node->getOperand(0); 1576 SDValue VAListPtr = Node->getOperand(1); 1577 EVT PtrVT = VAListPtr.getValueType(); 1578 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1579 SDLoc DL(Node); 1580 SDValue VAList = 1581 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1582 SDValue Chain = VAList.getValue(1); 1583 SDValue NextPtr; 1584 1585 if (VT == MVT::f128) { 1586 // VE f128 values must be stored with 16 bytes alignment. We don't 1587 // know the actual alignment of VAList, so we take alignment of it 1588 // dynamically. 1589 int Align = 16; 1590 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1591 DAG.getConstant(Align - 1, DL, PtrVT)); 1592 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1593 DAG.getConstant(-Align, DL, PtrVT)); 1594 // Increment the pointer, VAList, by 16 to the next vaarg. 1595 NextPtr = 1596 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1597 } else if (VT == MVT::f32) { 1598 // float --> need special handling like below. 1599 // 0 4 1600 // +------+------+ 1601 // | empty| float| 1602 // +------+------+ 1603 // Increment the pointer, VAList, by 8 to the next vaarg. 1604 NextPtr = 1605 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1606 // Then, adjust VAList. 1607 unsigned InternalOffset = 4; 1608 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1609 DAG.getConstant(InternalOffset, DL, PtrVT)); 1610 } else { 1611 // Increment the pointer, VAList, by 8 to the next vaarg. 1612 NextPtr = 1613 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1614 } 1615 1616 // Store the incremented VAList to the legalized pointer. 1617 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1618 1619 // Load the actual argument out of the pointer VAList. 1620 // We can't count on greater alignment than the word size. 1621 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 1622 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); 1623 } 1624 1625 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1626 SelectionDAG &DAG) const { 1627 // Generate following code. 1628 // (void)__llvm_grow_stack(size); 1629 // ret = GETSTACKTOP; // pseudo instruction 1630 SDLoc DL(Op); 1631 1632 // Get the inputs. 1633 SDNode *Node = Op.getNode(); 1634 SDValue Chain = Op.getOperand(0); 1635 SDValue Size = Op.getOperand(1); 1636 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1637 EVT VT = Node->getValueType(0); 1638 1639 // Chain the dynamic stack allocation so that it doesn't modify the stack 1640 // pointer when other instructions are using the stack. 1641 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1642 1643 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1644 Align StackAlign = TFI.getStackAlign(); 1645 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1646 1647 // Prepare arguments 1648 TargetLowering::ArgListTy Args; 1649 TargetLowering::ArgListEntry Entry; 1650 Entry.Node = Size; 1651 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1652 Args.push_back(Entry); 1653 if (NeedsAlign) { 1654 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1655 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1656 Args.push_back(Entry); 1657 } 1658 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1659 1660 EVT PtrVT = Op.getValueType(); 1661 SDValue Callee; 1662 if (NeedsAlign) { 1663 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1664 } else { 1665 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1666 } 1667 1668 TargetLowering::CallLoweringInfo CLI(DAG); 1669 CLI.setDebugLoc(DL) 1670 .setChain(Chain) 1671 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1672 .setDiscardResult(true); 1673 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1674 Chain = pair.second; 1675 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1676 if (NeedsAlign) { 1677 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1678 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1679 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1680 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1681 } 1682 // Chain = Result.getValue(1); 1683 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true), 1684 DAG.getIntPtrConstant(0, DL, true), SDValue(), DL); 1685 1686 SDValue Ops[2] = {Result, Chain}; 1687 return DAG.getMergeValues(Ops, DL); 1688 } 1689 1690 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1691 SelectionDAG &DAG) const { 1692 SDLoc DL(Op); 1693 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1694 Op.getOperand(1)); 1695 } 1696 1697 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1698 SelectionDAG &DAG) const { 1699 SDLoc DL(Op); 1700 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1701 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1702 Op.getOperand(1)); 1703 } 1704 1705 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1706 SelectionDAG &DAG) const { 1707 SDLoc DL(Op); 1708 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1709 Op.getOperand(0)); 1710 } 1711 1712 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1713 const VETargetLowering &TLI, 1714 const VESubtarget *Subtarget) { 1715 SDLoc DL(Op); 1716 MachineFunction &MF = DAG.getMachineFunction(); 1717 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1718 1719 MachineFrameInfo &MFI = MF.getFrameInfo(); 1720 MFI.setFrameAddressIsTaken(true); 1721 1722 unsigned Depth = Op.getConstantOperandVal(0); 1723 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1724 Register FrameReg = RegInfo->getFrameRegister(MF); 1725 SDValue FrameAddr = 1726 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1727 while (Depth--) 1728 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1729 FrameAddr, MachinePointerInfo()); 1730 return FrameAddr; 1731 } 1732 1733 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1734 const VETargetLowering &TLI, 1735 const VESubtarget *Subtarget) { 1736 MachineFunction &MF = DAG.getMachineFunction(); 1737 MachineFrameInfo &MFI = MF.getFrameInfo(); 1738 MFI.setReturnAddressIsTaken(true); 1739 1740 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1741 return SDValue(); 1742 1743 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1744 1745 SDLoc DL(Op); 1746 EVT VT = Op.getValueType(); 1747 SDValue Offset = DAG.getConstant(8, DL, VT); 1748 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1749 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1750 MachinePointerInfo()); 1751 } 1752 1753 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1754 SelectionDAG &DAG) const { 1755 SDLoc DL(Op); 1756 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1757 switch (IntNo) { 1758 default: // Don't custom lower most intrinsics. 1759 return SDValue(); 1760 case Intrinsic::eh_sjlj_lsda: { 1761 MachineFunction &MF = DAG.getMachineFunction(); 1762 MVT VT = Op.getSimpleValueType(); 1763 const VETargetMachine *TM = 1764 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1765 1766 // Create GCC_except_tableXX string. The real symbol for that will be 1767 // generated in EHStreamer::emitExceptionTable() later. So, we just 1768 // borrow it's name here. 1769 TM->getStrList()->push_back(std::string( 1770 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1771 SDValue Addr = 1772 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1773 if (isPositionIndependent()) { 1774 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1775 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1776 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1777 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1778 } 1779 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1780 } 1781 } 1782 } 1783 1784 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1785 if (!isa<BuildVectorSDNode>(N)) 1786 return false; 1787 const auto *BVN = cast<BuildVectorSDNode>(N); 1788 1789 // Find first non-undef insertion. 1790 unsigned Idx; 1791 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1792 auto ElemV = BVN->getOperand(Idx); 1793 if (!ElemV->isUndef()) 1794 break; 1795 } 1796 // Catch the (hypothetical) all-undef case. 1797 if (Idx == BVN->getNumOperands()) 1798 return false; 1799 // Remember insertion. 1800 UniqueIdx = Idx++; 1801 // Verify that all other insertions are undef. 1802 for (; Idx < BVN->getNumOperands(); ++Idx) { 1803 auto ElemV = BVN->getOperand(Idx); 1804 if (!ElemV->isUndef()) 1805 return false; 1806 } 1807 return true; 1808 } 1809 1810 static SDValue getSplatValue(SDNode *N) { 1811 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1812 return BuildVec->getSplatValue(); 1813 } 1814 return SDValue(); 1815 } 1816 1817 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1818 SelectionDAG &DAG) const { 1819 VECustomDAG CDAG(DAG, Op); 1820 MVT ResultVT = Op.getSimpleValueType(); 1821 1822 // If there is just one element, expand to INSERT_VECTOR_ELT. 1823 unsigned UniqueIdx; 1824 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1825 SDValue AccuV = CDAG.getUNDEF(Op.getValueType()); 1826 auto ElemV = Op->getOperand(UniqueIdx); 1827 SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64); 1828 return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV}); 1829 } 1830 1831 // Else emit a broadcast. 1832 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1833 unsigned NumEls = ResultVT.getVectorNumElements(); 1834 auto AVL = CDAG.getConstant(NumEls, MVT::i32); 1835 return CDAG.getBroadcast(ResultVT, ScalarV, AVL); 1836 } 1837 1838 // Expand 1839 return SDValue(); 1840 } 1841 1842 TargetLowering::LegalizeAction 1843 VETargetLowering::getCustomOperationAction(SDNode &Op) const { 1844 // Custom legalization on VVP_* and VEC_* opcodes is required to pack-legalize 1845 // these operations (transform nodes such that their AVL parameter refers to 1846 // packs of 64bit, instead of number of elements. 1847 1848 // Packing opcodes are created with a pack-legal AVL (LEGALAVL). No need to 1849 // re-visit them. 1850 if (isPackingSupportOpcode(Op.getOpcode())) 1851 return Legal; 1852 1853 // Custom lower to legalize AVL for packed mode. 1854 if (isVVPOrVEC(Op.getOpcode())) 1855 return Custom; 1856 return Legal; 1857 } 1858 1859 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1860 LLVM_DEBUG(dbgs() << "::LowerOperation"; Op->print(dbgs());); 1861 unsigned Opcode = Op.getOpcode(); 1862 1863 /// Scalar isel. 1864 switch (Opcode) { 1865 case ISD::ATOMIC_FENCE: 1866 return lowerATOMIC_FENCE(Op, DAG); 1867 case ISD::ATOMIC_SWAP: 1868 return lowerATOMIC_SWAP(Op, DAG); 1869 case ISD::BlockAddress: 1870 return lowerBlockAddress(Op, DAG); 1871 case ISD::ConstantPool: 1872 return lowerConstantPool(Op, DAG); 1873 case ISD::DYNAMIC_STACKALLOC: 1874 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1875 case ISD::EH_SJLJ_LONGJMP: 1876 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1877 case ISD::EH_SJLJ_SETJMP: 1878 return lowerEH_SJLJ_SETJMP(Op, DAG); 1879 case ISD::EH_SJLJ_SETUP_DISPATCH: 1880 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1881 case ISD::FRAMEADDR: 1882 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1883 case ISD::GlobalAddress: 1884 return lowerGlobalAddress(Op, DAG); 1885 case ISD::GlobalTLSAddress: 1886 return lowerGlobalTLSAddress(Op, DAG); 1887 case ISD::INTRINSIC_WO_CHAIN: 1888 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1889 case ISD::JumpTable: 1890 return lowerJumpTable(Op, DAG); 1891 case ISD::LOAD: 1892 return lowerLOAD(Op, DAG); 1893 case ISD::RETURNADDR: 1894 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1895 case ISD::BUILD_VECTOR: 1896 return lowerBUILD_VECTOR(Op, DAG); 1897 case ISD::STORE: 1898 return lowerSTORE(Op, DAG); 1899 case ISD::VASTART: 1900 return lowerVASTART(Op, DAG); 1901 case ISD::VAARG: 1902 return lowerVAARG(Op, DAG); 1903 1904 case ISD::INSERT_VECTOR_ELT: 1905 return lowerINSERT_VECTOR_ELT(Op, DAG); 1906 case ISD::EXTRACT_VECTOR_ELT: 1907 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1908 } 1909 1910 /// Vector isel. 1911 LLVM_DEBUG(dbgs() << "::LowerOperation_VVP"; Op->print(dbgs());); 1912 if (ISD::isVPOpcode(Opcode)) 1913 return lowerToVVP(Op, DAG); 1914 1915 switch (Opcode) { 1916 default: 1917 llvm_unreachable("Should not custom lower this!"); 1918 1919 // Legalize the AVL of this internal node. 1920 case VEISD::VEC_BROADCAST: 1921 #define ADD_VVP_OP(VVP_NAME, ...) case VEISD::VVP_NAME: 1922 #include "VVPNodes.def" 1923 // AVL already legalized. 1924 if (getAnnotatedNodeAVL(Op).second) 1925 return Op; 1926 return legalizeInternalVectorOp(Op, DAG); 1927 1928 // Translate into a VEC_*/VVP_* layer operation. 1929 case ISD::MLOAD: 1930 case ISD::MSTORE: 1931 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1932 #include "VVPNodes.def" 1933 if (isMaskArithmetic(Op) && isPackedVectorType(Op.getValueType())) 1934 return splitMaskArithmetic(Op, DAG); 1935 return lowerToVVP(Op, DAG); 1936 } 1937 } 1938 /// } Custom Lower 1939 1940 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1941 SmallVectorImpl<SDValue> &Results, 1942 SelectionDAG &DAG) const { 1943 switch (N->getOpcode()) { 1944 case ISD::ATOMIC_SWAP: 1945 // Let LLVM expand atomic swap instruction through LowerOperation. 1946 return; 1947 default: 1948 LLVM_DEBUG(N->dumpr(&DAG)); 1949 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1950 } 1951 } 1952 1953 /// JumpTable for VE. 1954 /// 1955 /// VE cannot generate relocatable symbol in jump table. VE cannot 1956 /// generate expressions using symbols in both text segment and data 1957 /// segment like below. 1958 /// .4byte .LBB0_2-.LJTI0_0 1959 /// So, we generate offset from the top of function like below as 1960 /// a custom label. 1961 /// .4byte .LBB0_2-<function name> 1962 1963 unsigned VETargetLowering::getJumpTableEncoding() const { 1964 // Use custom label for PIC. 1965 if (isPositionIndependent()) 1966 return MachineJumpTableInfo::EK_Custom32; 1967 1968 // Otherwise, use the normal jump table encoding heuristics. 1969 return TargetLowering::getJumpTableEncoding(); 1970 } 1971 1972 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1973 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1974 unsigned Uid, MCContext &Ctx) const { 1975 assert(isPositionIndependent()); 1976 1977 // Generate custom label for PIC like below. 1978 // .4bytes .LBB0_2-<function name> 1979 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1980 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1981 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1982 return MCBinaryExpr::createSub(Value, Base, Ctx); 1983 } 1984 1985 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 1986 SelectionDAG &DAG) const { 1987 assert(isPositionIndependent()); 1988 SDLoc DL(Table); 1989 Function *Function = &DAG.getMachineFunction().getFunction(); 1990 assert(Function != nullptr); 1991 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 1992 1993 // In the jump table, we have following values in PIC mode. 1994 // .4bytes .LBB0_2-<function name> 1995 // We need to add this value and the address of this function to generate 1996 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 1997 // instructions: 1998 // lea %reg, fun@gotoff_lo 1999 // and %reg, %reg, (32)0 2000 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 2001 // In order to do so, we need to genarate correctly marked DAG node using 2002 // makeHiLoPair. 2003 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 2004 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 2005 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 2006 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 2007 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 2008 } 2009 2010 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 2011 MachineBasicBlock::iterator I, 2012 MachineBasicBlock *TargetBB, 2013 const DebugLoc &DL) const { 2014 MachineFunction *MF = MBB.getParent(); 2015 MachineRegisterInfo &MRI = MF->getRegInfo(); 2016 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2017 2018 const TargetRegisterClass *RC = &VE::I64RegClass; 2019 Register Tmp1 = MRI.createVirtualRegister(RC); 2020 Register Tmp2 = MRI.createVirtualRegister(RC); 2021 Register Result = MRI.createVirtualRegister(RC); 2022 2023 if (isPositionIndependent()) { 2024 // Create following instructions for local linkage PIC code. 2025 // lea %Tmp1, TargetBB@gotoff_lo 2026 // and %Tmp2, %Tmp1, (32)0 2027 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2028 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2029 .addImm(0) 2030 .addImm(0) 2031 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 2032 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2033 .addReg(Tmp1, getKillRegState(true)) 2034 .addImm(M0(32)); 2035 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 2036 .addReg(VE::SX15) 2037 .addReg(Tmp2, getKillRegState(true)) 2038 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 2039 } else { 2040 // Create following instructions for non-PIC code. 2041 // lea %Tmp1, TargetBB@lo 2042 // and %Tmp2, %Tmp1, (32)0 2043 // lea.sl %Result, TargetBB@hi(%Tmp2) 2044 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2045 .addImm(0) 2046 .addImm(0) 2047 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 2048 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2049 .addReg(Tmp1, getKillRegState(true)) 2050 .addImm(M0(32)); 2051 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2052 .addReg(Tmp2, getKillRegState(true)) 2053 .addImm(0) 2054 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 2055 } 2056 return Result; 2057 } 2058 2059 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 2060 MachineBasicBlock::iterator I, 2061 StringRef Symbol, const DebugLoc &DL, 2062 bool IsLocal = false, 2063 bool IsCall = false) const { 2064 MachineFunction *MF = MBB.getParent(); 2065 MachineRegisterInfo &MRI = MF->getRegInfo(); 2066 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2067 2068 const TargetRegisterClass *RC = &VE::I64RegClass; 2069 Register Result = MRI.createVirtualRegister(RC); 2070 2071 if (isPositionIndependent()) { 2072 if (IsCall && !IsLocal) { 2073 // Create following instructions for non-local linkage PIC code function 2074 // calls. These instructions uses IC and magic number -24, so we expand 2075 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 2076 // lea %Reg, Symbol@plt_lo(-24) 2077 // and %Reg, %Reg, (32)0 2078 // sic %s16 2079 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 2080 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 2081 .addExternalSymbol("abort"); 2082 } else if (IsLocal) { 2083 Register Tmp1 = MRI.createVirtualRegister(RC); 2084 Register Tmp2 = MRI.createVirtualRegister(RC); 2085 // Create following instructions for local linkage PIC code. 2086 // lea %Tmp1, Symbol@gotoff_lo 2087 // and %Tmp2, %Tmp1, (32)0 2088 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2089 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2090 .addImm(0) 2091 .addImm(0) 2092 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 2093 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2094 .addReg(Tmp1, getKillRegState(true)) 2095 .addImm(M0(32)); 2096 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 2097 .addReg(VE::SX15) 2098 .addReg(Tmp2, getKillRegState(true)) 2099 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 2100 } else { 2101 Register Tmp1 = MRI.createVirtualRegister(RC); 2102 Register Tmp2 = MRI.createVirtualRegister(RC); 2103 // Create following instructions for not local linkage PIC code. 2104 // lea %Tmp1, Symbol@got_lo 2105 // and %Tmp2, %Tmp1, (32)0 2106 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2107 // ld %Result, 0(%Tmp3) 2108 Register Tmp3 = MRI.createVirtualRegister(RC); 2109 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2110 .addImm(0) 2111 .addImm(0) 2112 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 2113 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2114 .addReg(Tmp1, getKillRegState(true)) 2115 .addImm(M0(32)); 2116 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 2117 .addReg(VE::SX15) 2118 .addReg(Tmp2, getKillRegState(true)) 2119 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 2120 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 2121 .addReg(Tmp3, getKillRegState(true)) 2122 .addImm(0) 2123 .addImm(0); 2124 } 2125 } else { 2126 Register Tmp1 = MRI.createVirtualRegister(RC); 2127 Register Tmp2 = MRI.createVirtualRegister(RC); 2128 // Create following instructions for non-PIC code. 2129 // lea %Tmp1, Symbol@lo 2130 // and %Tmp2, %Tmp1, (32)0 2131 // lea.sl %Result, Symbol@hi(%Tmp2) 2132 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2133 .addImm(0) 2134 .addImm(0) 2135 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 2136 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2137 .addReg(Tmp1, getKillRegState(true)) 2138 .addImm(M0(32)); 2139 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2140 .addReg(Tmp2, getKillRegState(true)) 2141 .addImm(0) 2142 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 2143 } 2144 return Result; 2145 } 2146 2147 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 2148 MachineBasicBlock *MBB, 2149 MachineBasicBlock *DispatchBB, 2150 int FI, int Offset) const { 2151 DebugLoc DL = MI.getDebugLoc(); 2152 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2153 2154 Register LabelReg = 2155 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 2156 2157 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 2158 // referenced by longjmp (throw) later. 2159 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2160 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 2161 MIB.addReg(LabelReg, getKillRegState(true)); 2162 } 2163 2164 MachineBasicBlock * 2165 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 2166 MachineBasicBlock *MBB) const { 2167 DebugLoc DL = MI.getDebugLoc(); 2168 MachineFunction *MF = MBB->getParent(); 2169 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2170 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2171 MachineRegisterInfo &MRI = MF->getRegInfo(); 2172 2173 const BasicBlock *BB = MBB->getBasicBlock(); 2174 MachineFunction::iterator I = ++MBB->getIterator(); 2175 2176 // Memory Reference. 2177 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2178 MI.memoperands_end()); 2179 Register BufReg = MI.getOperand(1).getReg(); 2180 2181 Register DstReg; 2182 2183 DstReg = MI.getOperand(0).getReg(); 2184 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 2185 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 2186 (void)TRI; 2187 Register MainDestReg = MRI.createVirtualRegister(RC); 2188 Register RestoreDestReg = MRI.createVirtualRegister(RC); 2189 2190 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 2191 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 2192 // 2193 // ThisMBB: 2194 // buf[3] = %s17 iff %s17 is used as BP 2195 // buf[1] = RestoreMBB as IC after longjmp 2196 // # SjLjSetup RestoreMBB 2197 // 2198 // MainMBB: 2199 // v_main = 0 2200 // 2201 // SinkMBB: 2202 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 2203 // ... 2204 // 2205 // RestoreMBB: 2206 // %s17 = buf[3] = iff %s17 is used as BP 2207 // v_restore = 1 2208 // goto SinkMBB 2209 2210 MachineBasicBlock *ThisMBB = MBB; 2211 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2212 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2213 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2214 MF->insert(I, MainMBB); 2215 MF->insert(I, SinkMBB); 2216 MF->push_back(RestoreMBB); 2217 RestoreMBB->setHasAddressTaken(); 2218 2219 // Transfer the remainder of BB and its successor edges to SinkMBB. 2220 SinkMBB->splice(SinkMBB->begin(), MBB, 2221 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2222 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2223 2224 // ThisMBB: 2225 Register LabelReg = 2226 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2227 2228 // Store BP in buf[3] iff this function is using BP. 2229 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2230 if (TFI->hasBP(*MF)) { 2231 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2232 MIB.addReg(BufReg); 2233 MIB.addImm(0); 2234 MIB.addImm(24); 2235 MIB.addReg(VE::SX17); 2236 MIB.setMemRefs(MMOs); 2237 } 2238 2239 // Store IP in buf[1]. 2240 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2241 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2242 MIB.addImm(0); 2243 MIB.addImm(8); 2244 MIB.addReg(LabelReg, getKillRegState(true)); 2245 MIB.setMemRefs(MMOs); 2246 2247 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2248 2249 // Insert setup. 2250 MIB = 2251 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2252 2253 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2254 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2255 ThisMBB->addSuccessor(MainMBB); 2256 ThisMBB->addSuccessor(RestoreMBB); 2257 2258 // MainMBB: 2259 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2260 .addImm(0) 2261 .addImm(0) 2262 .addImm(0); 2263 MainMBB->addSuccessor(SinkMBB); 2264 2265 // SinkMBB: 2266 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2267 .addReg(MainDestReg) 2268 .addMBB(MainMBB) 2269 .addReg(RestoreDestReg) 2270 .addMBB(RestoreMBB); 2271 2272 // RestoreMBB: 2273 // Restore BP from buf[3] iff this function is using BP. The address of 2274 // buf is in SX10. 2275 // FIXME: Better to not use SX10 here 2276 if (TFI->hasBP(*MF)) { 2277 MachineInstrBuilder MIB = 2278 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2279 MIB.addReg(VE::SX10); 2280 MIB.addImm(0); 2281 MIB.addImm(24); 2282 MIB.setMemRefs(MMOs); 2283 } 2284 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2285 .addImm(0) 2286 .addImm(0) 2287 .addImm(1); 2288 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2289 RestoreMBB->addSuccessor(SinkMBB); 2290 2291 MI.eraseFromParent(); 2292 return SinkMBB; 2293 } 2294 2295 MachineBasicBlock * 2296 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2297 MachineBasicBlock *MBB) const { 2298 DebugLoc DL = MI.getDebugLoc(); 2299 MachineFunction *MF = MBB->getParent(); 2300 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2301 MachineRegisterInfo &MRI = MF->getRegInfo(); 2302 2303 // Memory Reference. 2304 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2305 MI.memoperands_end()); 2306 Register BufReg = MI.getOperand(0).getReg(); 2307 2308 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2309 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2310 Register FP = VE::SX9; 2311 Register SP = VE::SX11; 2312 2313 MachineInstrBuilder MIB; 2314 2315 MachineBasicBlock *ThisMBB = MBB; 2316 2317 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2318 // 2319 // ThisMBB: 2320 // %fp = load buf[0] 2321 // %jmp = load buf[1] 2322 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2323 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2324 // jmp %jmp 2325 2326 // Reload FP. 2327 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2328 MIB.addReg(BufReg); 2329 MIB.addImm(0); 2330 MIB.addImm(0); 2331 MIB.setMemRefs(MMOs); 2332 2333 // Reload IP. 2334 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2335 MIB.addReg(BufReg); 2336 MIB.addImm(0); 2337 MIB.addImm(8); 2338 MIB.setMemRefs(MMOs); 2339 2340 // Copy BufReg to SX10 for later use in setjmp. 2341 // FIXME: Better to not use SX10 here 2342 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2343 .addReg(BufReg) 2344 .addImm(0); 2345 2346 // Reload SP. 2347 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2348 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2349 MIB.addImm(0); 2350 MIB.addImm(16); 2351 MIB.setMemRefs(MMOs); 2352 2353 // Jump. 2354 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2355 .addReg(Tmp, getKillRegState(true)) 2356 .addImm(0); 2357 2358 MI.eraseFromParent(); 2359 return ThisMBB; 2360 } 2361 2362 MachineBasicBlock * 2363 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2364 MachineBasicBlock *BB) const { 2365 DebugLoc DL = MI.getDebugLoc(); 2366 MachineFunction *MF = BB->getParent(); 2367 MachineFrameInfo &MFI = MF->getFrameInfo(); 2368 MachineRegisterInfo &MRI = MF->getRegInfo(); 2369 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2370 int FI = MFI.getFunctionContextIndex(); 2371 2372 // Get a mapping of the call site numbers to all of the landing pads they're 2373 // associated with. 2374 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2375 unsigned MaxCSNum = 0; 2376 for (auto &MBB : *MF) { 2377 if (!MBB.isEHPad()) 2378 continue; 2379 2380 MCSymbol *Sym = nullptr; 2381 for (const auto &MI : MBB) { 2382 if (MI.isDebugInstr()) 2383 continue; 2384 2385 assert(MI.isEHLabel() && "expected EH_LABEL"); 2386 Sym = MI.getOperand(0).getMCSymbol(); 2387 break; 2388 } 2389 2390 if (!MF->hasCallSiteLandingPad(Sym)) 2391 continue; 2392 2393 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2394 CallSiteNumToLPad[CSI].push_back(&MBB); 2395 MaxCSNum = std::max(MaxCSNum, CSI); 2396 } 2397 } 2398 2399 // Get an ordered list of the machine basic blocks for the jump table. 2400 std::vector<MachineBasicBlock *> LPadList; 2401 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2402 LPadList.reserve(CallSiteNumToLPad.size()); 2403 2404 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2405 for (auto &LP : CallSiteNumToLPad[CSI]) { 2406 LPadList.push_back(LP); 2407 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2408 } 2409 } 2410 2411 assert(!LPadList.empty() && 2412 "No landing pad destinations for the dispatch jump table!"); 2413 2414 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2415 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2416 // 2417 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2418 // First `i64` is callsite, so callsite is FI+8. 2419 static const int OffsetIC = 72; 2420 static const int OffsetCS = 8; 2421 2422 // Create the MBBs for the dispatch code like following: 2423 // 2424 // ThisMBB: 2425 // Prepare DispatchBB address and store it to buf[1]. 2426 // ... 2427 // 2428 // DispatchBB: 2429 // %s15 = GETGOT iff isPositionIndependent 2430 // %callsite = load callsite 2431 // brgt.l.t #size of callsites, %callsite, DispContBB 2432 // 2433 // TrapBB: 2434 // Call abort. 2435 // 2436 // DispContBB: 2437 // %breg = address of jump table 2438 // %pc = load and calculate next pc from %breg and %callsite 2439 // jmp %pc 2440 2441 // Shove the dispatch's address into the return slot in the function context. 2442 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2443 DispatchBB->setIsEHPad(true); 2444 2445 // Trap BB will causes trap like `assert(0)`. 2446 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2447 DispatchBB->addSuccessor(TrapBB); 2448 2449 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2450 DispatchBB->addSuccessor(DispContBB); 2451 2452 // Insert MBBs. 2453 MF->push_back(DispatchBB); 2454 MF->push_back(DispContBB); 2455 MF->push_back(TrapBB); 2456 2457 // Insert code to call abort in the TrapBB. 2458 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2459 /* Local */ false, /* Call */ true); 2460 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2461 .addReg(Abort, getKillRegState(true)) 2462 .addImm(0) 2463 .addImm(0); 2464 2465 // Insert code into the entry block that creates and registers the function 2466 // context. 2467 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2468 2469 // Create the jump table and associated information 2470 unsigned JTE = getJumpTableEncoding(); 2471 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2472 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2473 2474 const VERegisterInfo &RI = TII->getRegisterInfo(); 2475 // Add a register mask with no preserved registers. This results in all 2476 // registers being marked as clobbered. 2477 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2478 .addRegMask(RI.getNoPreservedMask()); 2479 2480 if (isPositionIndependent()) { 2481 // Force to generate GETGOT, since current implementation doesn't store GOT 2482 // register. 2483 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2484 } 2485 2486 // IReg is used as an index in a memory operand and therefore can't be SP 2487 const TargetRegisterClass *RC = &VE::I64RegClass; 2488 Register IReg = MRI.createVirtualRegister(RC); 2489 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2490 OffsetCS); 2491 if (LPadList.size() < 64) { 2492 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2493 .addImm(VECC::CC_ILE) 2494 .addImm(LPadList.size()) 2495 .addReg(IReg) 2496 .addMBB(TrapBB); 2497 } else { 2498 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2499 Register TmpReg = MRI.createVirtualRegister(RC); 2500 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2501 .addImm(0) 2502 .addImm(0) 2503 .addImm(LPadList.size()); 2504 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2505 .addImm(VECC::CC_ILE) 2506 .addReg(TmpReg, getKillRegState(true)) 2507 .addReg(IReg) 2508 .addMBB(TrapBB); 2509 } 2510 2511 Register BReg = MRI.createVirtualRegister(RC); 2512 Register Tmp1 = MRI.createVirtualRegister(RC); 2513 Register Tmp2 = MRI.createVirtualRegister(RC); 2514 2515 if (isPositionIndependent()) { 2516 // Create following instructions for local linkage PIC code. 2517 // lea %Tmp1, .LJTI0_0@gotoff_lo 2518 // and %Tmp2, %Tmp1, (32)0 2519 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2520 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2521 .addImm(0) 2522 .addImm(0) 2523 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2524 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2525 .addReg(Tmp1, getKillRegState(true)) 2526 .addImm(M0(32)); 2527 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2528 .addReg(VE::SX15) 2529 .addReg(Tmp2, getKillRegState(true)) 2530 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2531 } else { 2532 // Create following instructions for non-PIC code. 2533 // lea %Tmp1, .LJTI0_0@lo 2534 // and %Tmp2, %Tmp1, (32)0 2535 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2536 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2537 .addImm(0) 2538 .addImm(0) 2539 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2540 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2541 .addReg(Tmp1, getKillRegState(true)) 2542 .addImm(M0(32)); 2543 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2544 .addReg(Tmp2, getKillRegState(true)) 2545 .addImm(0) 2546 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2547 } 2548 2549 switch (JTE) { 2550 case MachineJumpTableInfo::EK_BlockAddress: { 2551 // Generate simple block address code for no-PIC model. 2552 // sll %Tmp1, %IReg, 3 2553 // lds %TReg, 0(%Tmp1, %BReg) 2554 // bcfla %TReg 2555 2556 Register TReg = MRI.createVirtualRegister(RC); 2557 Register Tmp1 = MRI.createVirtualRegister(RC); 2558 2559 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2560 .addReg(IReg, getKillRegState(true)) 2561 .addImm(3); 2562 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2563 .addReg(BReg, getKillRegState(true)) 2564 .addReg(Tmp1, getKillRegState(true)) 2565 .addImm(0); 2566 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2567 .addReg(TReg, getKillRegState(true)) 2568 .addImm(0); 2569 break; 2570 } 2571 case MachineJumpTableInfo::EK_Custom32: { 2572 // Generate block address code using differences from the function pointer 2573 // for PIC model. 2574 // sll %Tmp1, %IReg, 2 2575 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2576 // Prepare function address in BReg2. 2577 // adds.l %TReg, %BReg2, %OReg 2578 // bcfla %TReg 2579 2580 assert(isPositionIndependent()); 2581 Register OReg = MRI.createVirtualRegister(RC); 2582 Register TReg = MRI.createVirtualRegister(RC); 2583 Register Tmp1 = MRI.createVirtualRegister(RC); 2584 2585 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2586 .addReg(IReg, getKillRegState(true)) 2587 .addImm(2); 2588 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2589 .addReg(BReg, getKillRegState(true)) 2590 .addReg(Tmp1, getKillRegState(true)) 2591 .addImm(0); 2592 Register BReg2 = 2593 prepareSymbol(*DispContBB, DispContBB->end(), 2594 DispContBB->getParent()->getName(), DL, /* Local */ true); 2595 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2596 .addReg(OReg, getKillRegState(true)) 2597 .addReg(BReg2, getKillRegState(true)); 2598 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2599 .addReg(TReg, getKillRegState(true)) 2600 .addImm(0); 2601 break; 2602 } 2603 default: 2604 llvm_unreachable("Unexpected jump table encoding"); 2605 } 2606 2607 // Add the jump table entries as successors to the MBB. 2608 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2609 for (auto &LP : LPadList) 2610 if (SeenMBBs.insert(LP).second) 2611 DispContBB->addSuccessor(LP); 2612 2613 // N.B. the order the invoke BBs are processed in doesn't matter here. 2614 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2615 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2616 for (MachineBasicBlock *MBB : InvokeBBs) { 2617 // Remove the landing pad successor from the invoke block and replace it 2618 // with the new dispatch block. 2619 // Keep a copy of Successors since it's modified inside the loop. 2620 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2621 MBB->succ_rend()); 2622 // FIXME: Avoid quadratic complexity. 2623 for (auto MBBS : Successors) { 2624 if (MBBS->isEHPad()) { 2625 MBB->removeSuccessor(MBBS); 2626 MBBLPads.push_back(MBBS); 2627 } 2628 } 2629 2630 MBB->addSuccessor(DispatchBB); 2631 2632 // Find the invoke call and mark all of the callee-saved registers as 2633 // 'implicit defined' so that they're spilled. This prevents code from 2634 // moving instructions to before the EH block, where they will never be 2635 // executed. 2636 for (auto &II : reverse(*MBB)) { 2637 if (!II.isCall()) 2638 continue; 2639 2640 DenseMap<Register, bool> DefRegs; 2641 for (auto &MOp : II.operands()) 2642 if (MOp.isReg()) 2643 DefRegs[MOp.getReg()] = true; 2644 2645 MachineInstrBuilder MIB(*MF, &II); 2646 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2647 Register Reg = SavedRegs[RI]; 2648 if (!DefRegs[Reg]) 2649 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2650 } 2651 2652 break; 2653 } 2654 } 2655 2656 // Mark all former landing pads as non-landing pads. The dispatch is the only 2657 // landing pad now. 2658 for (auto &LP : MBBLPads) 2659 LP->setIsEHPad(false); 2660 2661 // The instruction is gone now. 2662 MI.eraseFromParent(); 2663 return BB; 2664 } 2665 2666 MachineBasicBlock * 2667 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2668 MachineBasicBlock *BB) const { 2669 switch (MI.getOpcode()) { 2670 default: 2671 llvm_unreachable("Unknown Custom Instruction!"); 2672 case VE::EH_SjLj_LongJmp: 2673 return emitEHSjLjLongJmp(MI, BB); 2674 case VE::EH_SjLj_SetJmp: 2675 return emitEHSjLjSetJmp(MI, BB); 2676 case VE::EH_SjLj_Setup_Dispatch: 2677 return emitSjLjDispatchBlock(MI, BB); 2678 } 2679 } 2680 2681 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2682 switch (User->getOpcode()) { 2683 default: 2684 return false; 2685 case ISD::ADD: 2686 case ISD::SUB: 2687 case ISD::MUL: 2688 case ISD::SDIV: 2689 case ISD::UDIV: 2690 case ISD::SETCC: 2691 case ISD::SMIN: 2692 case ISD::SMAX: 2693 case ISD::SHL: 2694 case ISD::SRA: 2695 case ISD::BSWAP: 2696 case ISD::SINT_TO_FP: 2697 case ISD::UINT_TO_FP: 2698 case ISD::BR_CC: 2699 case ISD::BITCAST: 2700 case ISD::ATOMIC_CMP_SWAP: 2701 case ISD::ATOMIC_SWAP: 2702 return true; 2703 case ISD::SRL: 2704 if (N->getOperand(0).getOpcode() != ISD::SRL) 2705 return true; 2706 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2707 // doesn't optimize trunc now. 2708 return false; 2709 case ISD::SELECT_CC: 2710 if (User->getOperand(2).getNode() != N && 2711 User->getOperand(3).getNode() != N) 2712 return true; 2713 LLVM_FALLTHROUGH; 2714 case ISD::AND: 2715 case ISD::OR: 2716 case ISD::XOR: 2717 case ISD::SELECT: 2718 case ISD::CopyToReg: 2719 // Check all use of selections, bit operations, and copies. If all of them 2720 // are safe, optimize truncate to extract_subreg. 2721 for (const SDNode *U : User->uses()) { 2722 switch (U->getOpcode()) { 2723 default: 2724 // If the use is an instruction which treats the source operand as i32, 2725 // it is safe to avoid truncate here. 2726 if (isI32Insn(U, N)) 2727 continue; 2728 break; 2729 case ISD::ANY_EXTEND: 2730 case ISD::SIGN_EXTEND: 2731 case ISD::ZERO_EXTEND: { 2732 // Special optimizations to the combination of ext and trunc. 2733 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2734 // since this truncate instruction clears higher 32 bits which is filled 2735 // by one of ext instructions later. 2736 assert(N->getValueType(0) == MVT::i32 && 2737 "find truncate to not i32 integer"); 2738 if (User->getOpcode() == ISD::SELECT_CC || 2739 User->getOpcode() == ISD::SELECT) 2740 continue; 2741 break; 2742 } 2743 } 2744 return false; 2745 } 2746 return true; 2747 } 2748 } 2749 2750 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2751 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2752 // is sometime too late. So, doing it at here. 2753 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2754 DAGCombinerInfo &DCI) const { 2755 assert(N->getOpcode() == ISD::TRUNCATE && 2756 "Should be called with a TRUNCATE node"); 2757 2758 SelectionDAG &DAG = DCI.DAG; 2759 SDLoc DL(N); 2760 EVT VT = N->getValueType(0); 2761 2762 // We prefer to do this when all types are legal. 2763 if (!DCI.isAfterLegalizeDAG()) 2764 return SDValue(); 2765 2766 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 2767 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 2768 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 2769 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 2770 return SDValue(); 2771 2772 // Check all use of this TRUNCATE. 2773 for (const SDNode *User : N->uses()) { 2774 // Make sure that we're not going to replace TRUNCATE for non i32 2775 // instructions. 2776 // 2777 // FIXME: Although we could sometimes handle this, and it does occur in 2778 // practice that one of the condition inputs to the select is also one of 2779 // the outputs, we currently can't deal with this. 2780 if (isI32Insn(User, N)) 2781 continue; 2782 2783 return SDValue(); 2784 } 2785 2786 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2787 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 2788 N->getOperand(0), SubI32), 2789 0); 2790 } 2791 2792 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 2793 DAGCombinerInfo &DCI) const { 2794 switch (N->getOpcode()) { 2795 default: 2796 break; 2797 case ISD::TRUNCATE: 2798 return combineTRUNCATE(N, DCI); 2799 } 2800 2801 return SDValue(); 2802 } 2803 2804 //===----------------------------------------------------------------------===// 2805 // VE Inline Assembly Support 2806 //===----------------------------------------------------------------------===// 2807 2808 VETargetLowering::ConstraintType 2809 VETargetLowering::getConstraintType(StringRef Constraint) const { 2810 if (Constraint.size() == 1) { 2811 switch (Constraint[0]) { 2812 default: 2813 break; 2814 case 'v': // vector registers 2815 return C_RegisterClass; 2816 } 2817 } 2818 return TargetLowering::getConstraintType(Constraint); 2819 } 2820 2821 std::pair<unsigned, const TargetRegisterClass *> 2822 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2823 StringRef Constraint, 2824 MVT VT) const { 2825 const TargetRegisterClass *RC = nullptr; 2826 if (Constraint.size() == 1) { 2827 switch (Constraint[0]) { 2828 default: 2829 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2830 case 'r': 2831 RC = &VE::I64RegClass; 2832 break; 2833 case 'v': 2834 RC = &VE::V64RegClass; 2835 break; 2836 } 2837 return std::make_pair(0U, RC); 2838 } 2839 2840 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2841 } 2842 2843 //===----------------------------------------------------------------------===// 2844 // VE Target Optimization Support 2845 //===----------------------------------------------------------------------===// 2846 2847 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 2848 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 2849 if (isJumpTableRelative()) 2850 return 8; 2851 2852 return TargetLowering::getMinimumJumpTableEntries(); 2853 } 2854 2855 bool VETargetLowering::hasAndNot(SDValue Y) const { 2856 EVT VT = Y.getValueType(); 2857 2858 // VE doesn't have vector and not instruction. 2859 if (VT.isVector()) 2860 return false; 2861 2862 // VE allows different immediate values for X and Y where ~X & Y. 2863 // Only simm7 works for X, and only mimm works for Y on VE. However, this 2864 // function is used to check whether an immediate value is OK for and-not 2865 // instruction as both X and Y. Generating additional instruction to 2866 // retrieve an immediate value is no good since the purpose of this 2867 // function is to convert a series of 3 instructions to another series of 2868 // 3 instructions with better parallelism. Therefore, we return false 2869 // for all immediate values now. 2870 // FIXME: Change hasAndNot function to have two operands to make it work 2871 // correctly with Aurora VE. 2872 if (isa<ConstantSDNode>(Y)) 2873 return false; 2874 2875 // It's ok for generic registers. 2876 return true; 2877 } 2878 2879 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2880 SelectionDAG &DAG) const { 2881 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 2882 MVT VT = Op.getOperand(0).getSimpleValueType(); 2883 2884 // Special treatment for packed V64 types. 2885 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2886 (void)VT; 2887 // Example of codes: 2888 // %packed_v = extractelt %vr, %idx / 2 2889 // %v = %packed_v >> (%idx % 2 * 32) 2890 // %res = %v & 0xffffffff 2891 2892 SDValue Vec = Op.getOperand(0); 2893 SDValue Idx = Op.getOperand(1); 2894 SDLoc DL(Op); 2895 SDValue Result = Op; 2896 if (false /* Idx->isConstant() */) { 2897 // TODO: optimized implementation using constant values 2898 } else { 2899 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2900 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2901 SDValue PackedElt = 2902 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2903 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2904 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2905 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2906 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2907 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 2908 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 2909 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2910 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2911 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 2912 MVT::i32, PackedElt, SubI32), 2913 0); 2914 2915 if (Op.getSimpleValueType() == MVT::f32) { 2916 Result = DAG.getBitcast(MVT::f32, Result); 2917 } else { 2918 assert(Op.getSimpleValueType() == MVT::i32); 2919 } 2920 } 2921 return Result; 2922 } 2923 2924 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2925 SelectionDAG &DAG) const { 2926 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 2927 MVT VT = Op.getOperand(0).getSimpleValueType(); 2928 2929 // Special treatment for packed V64 types. 2930 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2931 (void)VT; 2932 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 2933 // bits" required `val << 32` from C implementation's point of view. 2934 // 2935 // Example of codes: 2936 // %packed_elt = extractelt %vr, (%idx >> 1) 2937 // %shift = ((%idx & 1) ^ 1) << 5 2938 // %packed_elt &= 0xffffffff00000000 >> shift 2939 // %packed_elt |= (zext %val) << shift 2940 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 2941 2942 SDLoc DL(Op); 2943 SDValue Vec = Op.getOperand(0); 2944 SDValue Val = Op.getOperand(1); 2945 SDValue Idx = Op.getOperand(2); 2946 if (Idx.getSimpleValueType() == MVT::i32) 2947 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 2948 if (Val.getSimpleValueType() == MVT::f32) 2949 Val = DAG.getBitcast(MVT::i32, Val); 2950 assert(Val.getSimpleValueType() == MVT::i32); 2951 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 2952 2953 SDValue Result = Op; 2954 if (false /* Idx->isConstant()*/) { 2955 // TODO: optimized implementation using constant values 2956 } else { 2957 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2958 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2959 SDValue PackedElt = 2960 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2961 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2962 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2963 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2964 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2965 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 2966 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 2967 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2968 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 2969 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 2970 Result = 2971 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 2972 {HalfIdx, PackedElt, Vec}), 2973 0); 2974 } 2975 return Result; 2976 } 2977