1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VECustomDAG.h" 17 #include "VEInstrBuilder.h" 18 #include "VEMachineFunctionInfo.h" 19 #include "VERegisterInfo.h" 20 #include "VETargetMachine.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ve-lower" 40 41 //===----------------------------------------------------------------------===// 42 // Calling Convention Implementation 43 //===----------------------------------------------------------------------===// 44 45 #include "VEGenCallingConv.inc" 46 47 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 48 switch (CallConv) { 49 default: 50 return RetCC_VE_C; 51 case CallingConv::Fast: 52 return RetCC_VE_Fast; 53 } 54 } 55 56 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 57 if (IsVarArg) 58 return CC_VE2; 59 switch (CallConv) { 60 default: 61 return CC_VE_C; 62 case CallingConv::Fast: 63 return CC_VE_Fast; 64 } 65 } 66 67 bool VETargetLowering::CanLowerReturn( 68 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 69 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 70 CCAssignFn *RetCC = getReturnCC(CallConv); 71 SmallVector<CCValAssign, 16> RVLocs; 72 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 73 return CCInfo.CheckReturn(Outs, RetCC); 74 } 75 76 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 77 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 78 79 static const MVT AllMaskVTs[] = {MVT::v256i1, MVT::v512i1}; 80 81 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 82 83 void VETargetLowering::initRegisterClasses() { 84 // Set up the register classes. 85 addRegisterClass(MVT::i32, &VE::I32RegClass); 86 addRegisterClass(MVT::i64, &VE::I64RegClass); 87 addRegisterClass(MVT::f32, &VE::F32RegClass); 88 addRegisterClass(MVT::f64, &VE::I64RegClass); 89 addRegisterClass(MVT::f128, &VE::F128RegClass); 90 91 if (Subtarget->enableVPU()) { 92 for (MVT VecVT : AllVectorVTs) 93 addRegisterClass(VecVT, &VE::V64RegClass); 94 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 95 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 96 } 97 } 98 99 void VETargetLowering::initSPUActions() { 100 const auto &TM = getTargetMachine(); 101 /// Load & Store { 102 103 // VE doesn't have i1 sign extending load. 104 for (MVT VT : MVT::integer_valuetypes()) { 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 106 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 107 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 108 setTruncStoreAction(VT, MVT::i1, Expand); 109 } 110 111 // VE doesn't have floating point extload/truncstore, so expand them. 112 for (MVT FPVT : MVT::fp_valuetypes()) { 113 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 114 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 115 setTruncStoreAction(FPVT, OtherFPVT, Expand); 116 } 117 } 118 119 // VE doesn't have fp128 load/store, so expand them in custom lower. 120 setOperationAction(ISD::LOAD, MVT::f128, Custom); 121 setOperationAction(ISD::STORE, MVT::f128, Custom); 122 123 /// } Load & Store 124 125 // Custom legalize address nodes into LO/HI parts. 126 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 127 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 128 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 129 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 130 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 131 setOperationAction(ISD::JumpTable, PtrVT, Custom); 132 133 /// VAARG handling { 134 setOperationAction(ISD::VASTART, MVT::Other, Custom); 135 // VAARG needs to be lowered to access with 8 bytes alignment. 136 setOperationAction(ISD::VAARG, MVT::Other, Custom); 137 // Use the default implementation. 138 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 139 setOperationAction(ISD::VAEND, MVT::Other, Expand); 140 /// } VAARG handling 141 142 /// Stack { 143 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 145 146 // Use the default implementation. 147 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 148 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 149 /// } Stack 150 151 /// Branch { 152 153 // VE doesn't have BRCOND 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // BR_JT is not implemented yet. 157 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 158 159 /// } Branch 160 161 /// Int Ops { 162 for (MVT IntVT : {MVT::i32, MVT::i64}) { 163 // VE has no REM or DIVREM operations. 164 setOperationAction(ISD::UREM, IntVT, Expand); 165 setOperationAction(ISD::SREM, IntVT, Expand); 166 setOperationAction(ISD::SDIVREM, IntVT, Expand); 167 setOperationAction(ISD::UDIVREM, IntVT, Expand); 168 169 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 170 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 171 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 172 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 173 174 // VE has no MULHU/S or U/SMUL_LOHI operations. 175 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 176 setOperationAction(ISD::MULHU, IntVT, Expand); 177 setOperationAction(ISD::MULHS, IntVT, Expand); 178 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 179 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 180 181 // VE has no CTTZ, ROTL, ROTR operations. 182 setOperationAction(ISD::CTTZ, IntVT, Expand); 183 setOperationAction(ISD::ROTL, IntVT, Expand); 184 setOperationAction(ISD::ROTR, IntVT, Expand); 185 186 // VE has 64 bits instruction which works as i64 BSWAP operation. This 187 // instruction works fine as i32 BSWAP operation with an additional 188 // parameter. Use isel patterns to lower BSWAP. 189 setOperationAction(ISD::BSWAP, IntVT, Legal); 190 191 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 192 // operations. Use isel patterns for i64, promote for i32. 193 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 194 setOperationAction(ISD::BITREVERSE, IntVT, Act); 195 setOperationAction(ISD::CTLZ, IntVT, Act); 196 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 197 setOperationAction(ISD::CTPOP, IntVT, Act); 198 199 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 200 // Use isel patterns for i64, promote for i32. 201 setOperationAction(ISD::AND, IntVT, Act); 202 setOperationAction(ISD::OR, IntVT, Act); 203 setOperationAction(ISD::XOR, IntVT, Act); 204 205 // Legal smax and smin 206 setOperationAction(ISD::SMAX, IntVT, Legal); 207 setOperationAction(ISD::SMIN, IntVT, Legal); 208 } 209 /// } Int Ops 210 211 /// Conversion { 212 // VE doesn't have instructions for fp<->uint, so expand them by llvm 213 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 214 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 215 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 216 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 217 218 // fp16 not supported 219 for (MVT FPVT : MVT::fp_valuetypes()) { 220 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 221 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 222 } 223 /// } Conversion 224 225 /// Floating-point Ops { 226 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 227 /// and fcmp. 228 229 // VE doesn't have following floating point operations. 230 for (MVT VT : MVT::fp_valuetypes()) { 231 setOperationAction(ISD::FNEG, VT, Expand); 232 setOperationAction(ISD::FREM, VT, Expand); 233 } 234 235 // VE doesn't have fdiv of f128. 236 setOperationAction(ISD::FDIV, MVT::f128, Expand); 237 238 for (MVT FPVT : {MVT::f32, MVT::f64}) { 239 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 240 setOperationAction(ISD::ConstantFP, FPVT, Legal); 241 } 242 /// } Floating-point Ops 243 244 /// Floating-point math functions { 245 246 // VE doesn't have following floating point math functions. 247 for (MVT VT : MVT::fp_valuetypes()) { 248 setOperationAction(ISD::FABS, VT, Expand); 249 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 250 setOperationAction(ISD::FCOS, VT, Expand); 251 setOperationAction(ISD::FMA, VT, Expand); 252 setOperationAction(ISD::FPOW, VT, Expand); 253 setOperationAction(ISD::FSIN, VT, Expand); 254 setOperationAction(ISD::FSQRT, VT, Expand); 255 } 256 257 // VE has single and double FMINNUM and FMAXNUM 258 for (MVT VT : {MVT::f32, MVT::f64}) { 259 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, VT, Legal); 260 } 261 262 /// } Floating-point math functions 263 264 /// Atomic instructions { 265 266 setMaxAtomicSizeInBitsSupported(64); 267 setMinCmpXchgSizeInBits(32); 268 setSupportsUnalignedAtomics(false); 269 270 // Use custom inserter for ATOMIC_FENCE. 271 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 272 273 // Other atomic instructions. 274 for (MVT VT : MVT::integer_valuetypes()) { 275 // Support i8/i16 atomic swap. 276 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 277 278 // FIXME: Support "atmam" instructions. 279 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 280 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 281 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 282 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 283 284 // VE doesn't have follwing instructions. 285 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 286 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 287 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 288 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 289 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 290 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 291 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 292 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 293 } 294 295 /// } Atomic instructions 296 297 /// SJLJ instructions { 298 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 299 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 300 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 301 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 302 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 303 /// } SJLJ instructions 304 305 // Intrinsic instructions 306 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 307 } 308 309 void VETargetLowering::initVPUActions() { 310 for (MVT LegalMaskVT : AllMaskVTs) 311 setOperationAction(ISD::BUILD_VECTOR, LegalMaskVT, Custom); 312 313 for (unsigned Opc : {ISD::AND, ISD::OR, ISD::XOR}) 314 setOperationAction(Opc, MVT::v512i1, Custom); 315 316 for (MVT LegalVecVT : AllVectorVTs) { 317 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 318 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 320 // Translate all vector instructions with legal element types to VVP_* 321 // nodes. 322 // TODO We will custom-widen into VVP_* nodes in the future. While we are 323 // buildling the infrastructure for this, we only do this for legal vector 324 // VTs. 325 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 326 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 327 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 328 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 329 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, LegalVecVT, Custom); 330 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_STORE, LegalVecVT, Custom); 331 #include "VVPNodes.def" 332 } 333 334 for (MVT LegalPackedVT : AllPackedVTs) { 335 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 336 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 337 } 338 339 // vNt32, vNt64 ops (legal element types) 340 for (MVT VT : MVT::vector_valuetypes()) { 341 MVT ElemVT = VT.getVectorElementType(); 342 unsigned ElemBits = ElemVT.getScalarSizeInBits(); 343 if (ElemBits != 32 && ElemBits != 64) 344 continue; 345 346 for (unsigned MemOpc : {ISD::MLOAD, ISD::MSTORE, ISD::LOAD, ISD::STORE}) 347 setOperationAction(MemOpc, VT, Custom); 348 349 const ISD::NodeType IntReductionOCs[] = { 350 ISD::VECREDUCE_ADD, ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, 351 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMIN, 352 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_UMAX}; 353 354 for (unsigned IntRedOpc : IntReductionOCs) 355 setOperationAction(IntRedOpc, VT, Custom); 356 } 357 358 // v256i1 and v512i1 ops 359 for (MVT MaskVT : AllMaskVTs) { 360 // Custom lower mask ops 361 setOperationAction(ISD::STORE, MaskVT, Custom); 362 setOperationAction(ISD::LOAD, MaskVT, Custom); 363 } 364 } 365 366 SDValue 367 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 368 bool IsVarArg, 369 const SmallVectorImpl<ISD::OutputArg> &Outs, 370 const SmallVectorImpl<SDValue> &OutVals, 371 const SDLoc &DL, SelectionDAG &DAG) const { 372 // CCValAssign - represent the assignment of the return value to locations. 373 SmallVector<CCValAssign, 16> RVLocs; 374 375 // CCState - Info about the registers and stack slot. 376 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 377 *DAG.getContext()); 378 379 // Analyze return values. 380 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 381 382 SDValue Glue; 383 SmallVector<SDValue, 4> RetOps(1, Chain); 384 385 // Copy the result values into the output registers. 386 for (unsigned i = 0; i != RVLocs.size(); ++i) { 387 CCValAssign &VA = RVLocs[i]; 388 assert(VA.isRegLoc() && "Can only return in registers!"); 389 assert(!VA.needsCustom() && "Unexpected custom lowering"); 390 SDValue OutVal = OutVals[i]; 391 392 // Integer return values must be sign or zero extended by the callee. 393 switch (VA.getLocInfo()) { 394 case CCValAssign::Full: 395 break; 396 case CCValAssign::SExt: 397 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 398 break; 399 case CCValAssign::ZExt: 400 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 401 break; 402 case CCValAssign::AExt: 403 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 404 break; 405 case CCValAssign::BCvt: { 406 // Convert a float return value to i64 with padding. 407 // 63 31 0 408 // +------+------+ 409 // | float| 0 | 410 // +------+------+ 411 assert(VA.getLocVT() == MVT::i64); 412 assert(VA.getValVT() == MVT::f32); 413 SDValue Undef = SDValue( 414 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 415 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 416 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 417 MVT::i64, Undef, OutVal, Sub_f32), 418 0); 419 break; 420 } 421 default: 422 llvm_unreachable("Unknown loc info!"); 423 } 424 425 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue); 426 427 // Guarantee that all emitted copies are stuck together with flags. 428 Glue = Chain.getValue(1); 429 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 430 } 431 432 RetOps[0] = Chain; // Update chain. 433 434 // Add the glue if we have it. 435 if (Glue.getNode()) 436 RetOps.push_back(Glue); 437 438 return DAG.getNode(VEISD::RET_GLUE, DL, MVT::Other, RetOps); 439 } 440 441 SDValue VETargetLowering::LowerFormalArguments( 442 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 443 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 444 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 445 MachineFunction &MF = DAG.getMachineFunction(); 446 447 // Get the base offset of the incoming arguments stack space. 448 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 449 // Get the size of the preserved arguments area 450 unsigned ArgsPreserved = 64; 451 452 // Analyze arguments according to CC_VE. 453 SmallVector<CCValAssign, 16> ArgLocs; 454 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 455 *DAG.getContext()); 456 // Allocate the preserved area first. 457 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 458 // We already allocated the preserved area, so the stack offset computed 459 // by CC_VE would be correct now. 460 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 461 462 for (const CCValAssign &VA : ArgLocs) { 463 assert(!VA.needsCustom() && "Unexpected custom lowering"); 464 if (VA.isRegLoc()) { 465 // This argument is passed in a register. 466 // All integer register arguments are promoted by the caller to i64. 467 468 // Create a virtual register for the promoted live-in value. 469 Register VReg = 470 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 471 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 472 473 // The caller promoted the argument, so insert an Assert?ext SDNode so we 474 // won't promote the value again in this function. 475 switch (VA.getLocInfo()) { 476 case CCValAssign::SExt: 477 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 478 DAG.getValueType(VA.getValVT())); 479 break; 480 case CCValAssign::ZExt: 481 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 482 DAG.getValueType(VA.getValVT())); 483 break; 484 case CCValAssign::BCvt: { 485 // Extract a float argument from i64 with padding. 486 // 63 31 0 487 // +------+------+ 488 // | float| 0 | 489 // +------+------+ 490 assert(VA.getLocVT() == MVT::i64); 491 assert(VA.getValVT() == MVT::f32); 492 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 493 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 494 MVT::f32, Arg, Sub_f32), 495 0); 496 break; 497 } 498 default: 499 break; 500 } 501 502 // Truncate the register down to the argument type. 503 if (VA.isExtInLoc()) 504 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 505 506 InVals.push_back(Arg); 507 continue; 508 } 509 510 // The registers are exhausted. This argument was passed on the stack. 511 assert(VA.isMemLoc()); 512 // The CC_VE_Full/Half functions compute stack offsets relative to the 513 // beginning of the arguments area at %fp + the size of reserved area. 514 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 515 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 516 517 // Adjust offset for a float argument by adding 4 since the argument is 518 // stored in 8 bytes buffer with offset like below. LLVM generates 519 // 4 bytes load instruction, so need to adjust offset here. This 520 // adjustment is required in only LowerFormalArguments. In LowerCall, 521 // a float argument is converted to i64 first, and stored as 8 bytes 522 // data, which is required by ABI, so no need for adjustment. 523 // 0 4 524 // +------+------+ 525 // | empty| float| 526 // +------+------+ 527 if (VA.getValVT() == MVT::f32) 528 Offset += 4; 529 530 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 531 InVals.push_back( 532 DAG.getLoad(VA.getValVT(), DL, Chain, 533 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 534 MachinePointerInfo::getFixedStack(MF, FI))); 535 } 536 537 if (!IsVarArg) 538 return Chain; 539 540 // This function takes variable arguments, some of which may have been passed 541 // in registers %s0-%s8. 542 // 543 // The va_start intrinsic needs to know the offset to the first variable 544 // argument. 545 // TODO: need to calculate offset correctly once we support f128. 546 unsigned ArgOffset = ArgLocs.size() * 8; 547 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 548 // Skip the reserved area at the top of stack. 549 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 550 551 return Chain; 552 } 553 554 // FIXME? Maybe this could be a TableGen attribute on some registers and 555 // this table could be generated automatically from RegInfo. 556 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 557 const MachineFunction &MF) const { 558 Register Reg = StringSwitch<Register>(RegName) 559 .Case("sp", VE::SX11) // Stack pointer 560 .Case("fp", VE::SX9) // Frame pointer 561 .Case("sl", VE::SX8) // Stack limit 562 .Case("lr", VE::SX10) // Link register 563 .Case("tp", VE::SX14) // Thread pointer 564 .Case("outer", VE::SX12) // Outer regiser 565 .Case("info", VE::SX17) // Info area register 566 .Case("got", VE::SX15) // Global offset table register 567 .Case("plt", VE::SX16) // Procedure linkage table register 568 .Default(0); 569 570 if (Reg) 571 return Reg; 572 573 report_fatal_error("Invalid register name global variable"); 574 } 575 576 //===----------------------------------------------------------------------===// 577 // TargetLowering Implementation 578 //===----------------------------------------------------------------------===// 579 580 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 581 SmallVectorImpl<SDValue> &InVals) const { 582 SelectionDAG &DAG = CLI.DAG; 583 SDLoc DL = CLI.DL; 584 SDValue Chain = CLI.Chain; 585 auto PtrVT = getPointerTy(DAG.getDataLayout()); 586 587 // VE target does not yet support tail call optimization. 588 CLI.IsTailCall = false; 589 590 // Get the base offset of the outgoing arguments stack space. 591 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 592 // Get the size of the preserved arguments area 593 unsigned ArgsPreserved = 8 * 8u; 594 595 // Analyze operands of the call, assigning locations to each operand. 596 SmallVector<CCValAssign, 16> ArgLocs; 597 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 598 *DAG.getContext()); 599 // Allocate the preserved area first. 600 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 601 // We already allocated the preserved area, so the stack offset computed 602 // by CC_VE would be correct now. 603 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 604 605 // VE requires to use both register and stack for varargs or no-prototyped 606 // functions. 607 bool UseBoth = CLI.IsVarArg; 608 609 // Analyze operands again if it is required to store BOTH. 610 SmallVector<CCValAssign, 16> ArgLocs2; 611 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 612 ArgLocs2, *DAG.getContext()); 613 if (UseBoth) 614 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 615 616 // Get the size of the outgoing arguments stack space requirement. 617 unsigned ArgsSize = CCInfo.getStackSize(); 618 619 // Keep stack frames 16-byte aligned. 620 ArgsSize = alignTo(ArgsSize, 16); 621 622 // Adjust the stack pointer to make room for the arguments. 623 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 624 // with more than 6 arguments. 625 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 626 627 // Collect the set of registers to pass to the function and their values. 628 // This will be emitted as a sequence of CopyToReg nodes glued to the call 629 // instruction. 630 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 631 632 // Collect chains from all the memory opeations that copy arguments to the 633 // stack. They must follow the stack pointer adjustment above and precede the 634 // call instruction itself. 635 SmallVector<SDValue, 8> MemOpChains; 636 637 // VE needs to get address of callee function in a register 638 // So, prepare to copy it to SX12 here. 639 640 // If the callee is a GlobalAddress node (quite common, every direct call is) 641 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 642 // Likewise ExternalSymbol -> TargetExternalSymbol. 643 SDValue Callee = CLI.Callee; 644 645 bool IsPICCall = isPositionIndependent(); 646 647 // PC-relative references to external symbols should go through $stub. 648 // If so, we need to prepare GlobalBaseReg first. 649 const TargetMachine &TM = DAG.getTarget(); 650 const GlobalValue *GV = nullptr; 651 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 652 if (CalleeG) 653 GV = CalleeG->getGlobal(); 654 bool Local = TM.shouldAssumeDSOLocal(GV); 655 bool UsePlt = !Local; 656 MachineFunction &MF = DAG.getMachineFunction(); 657 658 // Turn GlobalAddress/ExternalSymbol node into a value node 659 // containing the address of them here. 660 if (CalleeG) { 661 if (IsPICCall) { 662 if (UsePlt) 663 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 664 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 665 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 666 } else { 667 Callee = 668 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 669 } 670 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 671 if (IsPICCall) { 672 if (UsePlt) 673 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 674 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 675 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 676 } else { 677 Callee = 678 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 679 } 680 } 681 682 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 683 684 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 685 CCValAssign &VA = ArgLocs[i]; 686 SDValue Arg = CLI.OutVals[i]; 687 688 // Promote the value if needed. 689 switch (VA.getLocInfo()) { 690 default: 691 llvm_unreachable("Unknown location info!"); 692 case CCValAssign::Full: 693 break; 694 case CCValAssign::SExt: 695 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 696 break; 697 case CCValAssign::ZExt: 698 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 699 break; 700 case CCValAssign::AExt: 701 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 702 break; 703 case CCValAssign::BCvt: { 704 // Convert a float argument to i64 with padding. 705 // 63 31 0 706 // +------+------+ 707 // | float| 0 | 708 // +------+------+ 709 assert(VA.getLocVT() == MVT::i64); 710 assert(VA.getValVT() == MVT::f32); 711 SDValue Undef = SDValue( 712 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 713 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 714 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 715 MVT::i64, Undef, Arg, Sub_f32), 716 0); 717 break; 718 } 719 } 720 721 if (VA.isRegLoc()) { 722 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 723 if (!UseBoth) 724 continue; 725 VA = ArgLocs2[i]; 726 } 727 728 assert(VA.isMemLoc()); 729 730 // Create a store off the stack pointer for this argument. 731 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 732 // The argument area starts at %fp/%sp + the size of reserved area. 733 SDValue PtrOff = 734 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 735 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 736 MemOpChains.push_back( 737 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 738 } 739 740 // Emit all stores, make sure they occur before the call. 741 if (!MemOpChains.empty()) 742 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 743 744 // Build a sequence of CopyToReg nodes glued together with token chain and 745 // glue operands which copy the outgoing args into registers. The InGlue is 746 // necessary since all emitted instructions must be stuck together in order 747 // to pass the live physical registers. 748 SDValue InGlue; 749 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 750 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 751 RegsToPass[i].second, InGlue); 752 InGlue = Chain.getValue(1); 753 } 754 755 // Build the operands for the call instruction itself. 756 SmallVector<SDValue, 8> Ops; 757 Ops.push_back(Chain); 758 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 759 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 760 RegsToPass[i].second.getValueType())); 761 762 // Add a register mask operand representing the call-preserved registers. 763 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 764 const uint32_t *Mask = 765 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 766 assert(Mask && "Missing call preserved mask for calling convention"); 767 Ops.push_back(DAG.getRegisterMask(Mask)); 768 769 // Make sure the CopyToReg nodes are glued to the call instruction which 770 // consumes the registers. 771 if (InGlue.getNode()) 772 Ops.push_back(InGlue); 773 774 // Now the call itself. 775 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 776 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 777 InGlue = Chain.getValue(1); 778 779 // Revert the stack pointer immediately after the call. 780 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL); 781 InGlue = Chain.getValue(1); 782 783 // Now extract the return values. This is more or less the same as 784 // LowerFormalArguments. 785 786 // Assign locations to each value returned by this call. 787 SmallVector<CCValAssign, 16> RVLocs; 788 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 789 *DAG.getContext()); 790 791 // Set inreg flag manually for codegen generated library calls that 792 // return float. 793 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 794 CLI.Ins[0].Flags.setInReg(); 795 796 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 797 798 // Copy all of the result registers out of their specified physreg. 799 for (unsigned i = 0; i != RVLocs.size(); ++i) { 800 CCValAssign &VA = RVLocs[i]; 801 assert(!VA.needsCustom() && "Unexpected custom lowering"); 802 Register Reg = VA.getLocReg(); 803 804 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 805 // reside in the same register in the high and low bits. Reuse the 806 // CopyFromReg previous node to avoid duplicate copies. 807 SDValue RV; 808 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 809 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 810 RV = Chain.getValue(0); 811 812 // But usually we'll create a new CopyFromReg for a different register. 813 if (!RV.getNode()) { 814 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 815 Chain = RV.getValue(1); 816 InGlue = Chain.getValue(2); 817 } 818 819 // The callee promoted the return value, so insert an Assert?ext SDNode so 820 // we won't promote the value again in this function. 821 switch (VA.getLocInfo()) { 822 case CCValAssign::SExt: 823 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 824 DAG.getValueType(VA.getValVT())); 825 break; 826 case CCValAssign::ZExt: 827 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 828 DAG.getValueType(VA.getValVT())); 829 break; 830 case CCValAssign::BCvt: { 831 // Extract a float return value from i64 with padding. 832 // 63 31 0 833 // +------+------+ 834 // | float| 0 | 835 // +------+------+ 836 assert(VA.getLocVT() == MVT::i64); 837 assert(VA.getValVT() == MVT::f32); 838 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 839 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 840 MVT::f32, RV, Sub_f32), 841 0); 842 break; 843 } 844 default: 845 break; 846 } 847 848 // Truncate the register down to the return value type. 849 if (VA.isExtInLoc()) 850 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 851 852 InVals.push_back(RV); 853 } 854 855 return Chain; 856 } 857 858 bool VETargetLowering::isOffsetFoldingLegal( 859 const GlobalAddressSDNode *GA) const { 860 // VE uses 64 bit addressing, so we need multiple instructions to generate 861 // an address. Folding address with offset increases the number of 862 // instructions, so that we disable it here. Offsets will be folded in 863 // the DAG combine later if it worth to do so. 864 return false; 865 } 866 867 /// isFPImmLegal - Returns true if the target can instruction select the 868 /// specified FP immediate natively. If false, the legalizer will 869 /// materialize the FP immediate as a load from a constant pool. 870 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 871 bool ForCodeSize) const { 872 return VT == MVT::f32 || VT == MVT::f64; 873 } 874 875 /// Determine if the target supports unaligned memory accesses. 876 /// 877 /// This function returns true if the target allows unaligned memory accesses 878 /// of the specified type in the given address space. If true, it also returns 879 /// whether the unaligned memory access is "fast" in the last argument by 880 /// reference. This is used, for example, in situations where an array 881 /// copy/move/set is converted to a sequence of store operations. Its use 882 /// helps to ensure that such replacements don't generate code that causes an 883 /// alignment error (trap) on the target machine. 884 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 885 unsigned AddrSpace, 886 Align A, 887 MachineMemOperand::Flags, 888 unsigned *Fast) const { 889 if (Fast) { 890 // It's fast anytime on VE 891 *Fast = 1; 892 } 893 return true; 894 } 895 896 VETargetLowering::VETargetLowering(const TargetMachine &TM, 897 const VESubtarget &STI) 898 : TargetLowering(TM), Subtarget(&STI) { 899 // Instructions which use registers as conditionals examine all the 900 // bits (as does the pseudo SELECT_CC expansion). I don't think it 901 // matters much whether it's ZeroOrOneBooleanContent, or 902 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 903 // former. 904 setBooleanContents(ZeroOrOneBooleanContent); 905 setBooleanVectorContents(ZeroOrOneBooleanContent); 906 907 initRegisterClasses(); 908 initSPUActions(); 909 initVPUActions(); 910 911 setStackPointerRegisterToSaveRestore(VE::SX11); 912 913 // We have target-specific dag combine patterns for the following nodes: 914 setTargetDAGCombine(ISD::TRUNCATE); 915 setTargetDAGCombine(ISD::SELECT); 916 setTargetDAGCombine(ISD::SELECT_CC); 917 918 // Set function alignment to 16 bytes 919 setMinFunctionAlignment(Align(16)); 920 921 // VE stores all argument by 8 bytes alignment 922 setMinStackArgumentAlignment(Align(8)); 923 924 computeRegisterProperties(Subtarget->getRegisterInfo()); 925 } 926 927 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 928 #define TARGET_NODE_CASE(NAME) \ 929 case VEISD::NAME: \ 930 return "VEISD::" #NAME; 931 switch ((VEISD::NodeType)Opcode) { 932 case VEISD::FIRST_NUMBER: 933 break; 934 TARGET_NODE_CASE(CMPI) 935 TARGET_NODE_CASE(CMPU) 936 TARGET_NODE_CASE(CMPF) 937 TARGET_NODE_CASE(CMPQ) 938 TARGET_NODE_CASE(CMOV) 939 TARGET_NODE_CASE(CALL) 940 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 941 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 942 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 943 TARGET_NODE_CASE(GETFUNPLT) 944 TARGET_NODE_CASE(GETSTACKTOP) 945 TARGET_NODE_CASE(GETTLSADDR) 946 TARGET_NODE_CASE(GLOBAL_BASE_REG) 947 TARGET_NODE_CASE(Hi) 948 TARGET_NODE_CASE(Lo) 949 TARGET_NODE_CASE(RET_GLUE) 950 TARGET_NODE_CASE(TS1AM) 951 TARGET_NODE_CASE(VEC_UNPACK_LO) 952 TARGET_NODE_CASE(VEC_UNPACK_HI) 953 TARGET_NODE_CASE(VEC_PACK) 954 TARGET_NODE_CASE(VEC_BROADCAST) 955 TARGET_NODE_CASE(REPL_I32) 956 TARGET_NODE_CASE(REPL_F32) 957 958 TARGET_NODE_CASE(LEGALAVL) 959 960 // Register the VVP_* SDNodes. 961 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 962 #include "VVPNodes.def" 963 } 964 #undef TARGET_NODE_CASE 965 return nullptr; 966 } 967 968 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 969 EVT VT) const { 970 return MVT::i32; 971 } 972 973 // Convert to a target node and set target flags. 974 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 975 SelectionDAG &DAG) const { 976 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 977 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 978 GA->getValueType(0), GA->getOffset(), TF); 979 980 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 981 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 982 0, TF); 983 984 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 985 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 986 CP->getAlign(), CP->getOffset(), TF); 987 988 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 989 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 990 TF); 991 992 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 993 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 994 995 llvm_unreachable("Unhandled address SDNode"); 996 } 997 998 // Split Op into high and low parts according to HiTF and LoTF. 999 // Return an ADD node combining the parts. 1000 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 1001 SelectionDAG &DAG) const { 1002 SDLoc DL(Op); 1003 EVT VT = Op.getValueType(); 1004 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 1005 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 1006 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1007 } 1008 1009 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 1010 // or ExternalSymbol SDNode. 1011 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 1012 SDLoc DL(Op); 1013 EVT PtrVT = Op.getValueType(); 1014 1015 // Handle PIC mode first. VE needs a got load for every variable! 1016 if (isPositionIndependent()) { 1017 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 1018 1019 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 1020 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 1021 // Create following instructions for local linkage PIC code. 1022 // lea %reg, label@gotoff_lo 1023 // and %reg, %reg, (32)0 1024 // lea.sl %reg, label@gotoff_hi(%reg, %got) 1025 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1026 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1027 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1028 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1029 } 1030 // Create following instructions for not local linkage PIC code. 1031 // lea %reg, label@got_lo 1032 // and %reg, %reg, (32)0 1033 // lea.sl %reg, label@got_hi(%reg) 1034 // ld %reg, (%reg, %got) 1035 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 1036 VEMCExpr::VK_VE_GOT_LO32, DAG); 1037 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1038 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1039 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 1040 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1041 } 1042 1043 // This is one of the absolute code models. 1044 switch (getTargetMachine().getCodeModel()) { 1045 default: 1046 llvm_unreachable("Unsupported absolute code model"); 1047 case CodeModel::Small: 1048 case CodeModel::Medium: 1049 case CodeModel::Large: 1050 // abs64. 1051 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1052 } 1053 } 1054 1055 /// Custom Lower { 1056 1057 // The mappings for emitLeading/TrailingFence for VE is designed by following 1058 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1059 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, 1060 Instruction *Inst, 1061 AtomicOrdering Ord) const { 1062 switch (Ord) { 1063 case AtomicOrdering::NotAtomic: 1064 case AtomicOrdering::Unordered: 1065 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1066 case AtomicOrdering::Monotonic: 1067 case AtomicOrdering::Acquire: 1068 return nullptr; // Nothing to do 1069 case AtomicOrdering::Release: 1070 case AtomicOrdering::AcquireRelease: 1071 return Builder.CreateFence(AtomicOrdering::Release); 1072 case AtomicOrdering::SequentiallyConsistent: 1073 if (!Inst->hasAtomicStore()) 1074 return nullptr; // Nothing to do 1075 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1076 } 1077 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1078 } 1079 1080 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, 1081 Instruction *Inst, 1082 AtomicOrdering Ord) const { 1083 switch (Ord) { 1084 case AtomicOrdering::NotAtomic: 1085 case AtomicOrdering::Unordered: 1086 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1087 case AtomicOrdering::Monotonic: 1088 case AtomicOrdering::Release: 1089 return nullptr; // Nothing to do 1090 case AtomicOrdering::Acquire: 1091 case AtomicOrdering::AcquireRelease: 1092 return Builder.CreateFence(AtomicOrdering::Acquire); 1093 case AtomicOrdering::SequentiallyConsistent: 1094 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1095 } 1096 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1097 } 1098 1099 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1100 SelectionDAG &DAG) const { 1101 SDLoc DL(Op); 1102 AtomicOrdering FenceOrdering = 1103 static_cast<AtomicOrdering>(Op.getConstantOperandVal(1)); 1104 SyncScope::ID FenceSSID = 1105 static_cast<SyncScope::ID>(Op.getConstantOperandVal(2)); 1106 1107 // VE uses Release consistency, so need a fence instruction if it is a 1108 // cross-thread fence. 1109 if (FenceSSID == SyncScope::System) { 1110 switch (FenceOrdering) { 1111 case AtomicOrdering::NotAtomic: 1112 case AtomicOrdering::Unordered: 1113 case AtomicOrdering::Monotonic: 1114 // No need to generate fencem instruction here. 1115 break; 1116 case AtomicOrdering::Acquire: 1117 // Generate "fencem 2" as acquire fence. 1118 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1119 DAG.getTargetConstant(2, DL, MVT::i32), 1120 Op.getOperand(0)), 1121 0); 1122 case AtomicOrdering::Release: 1123 // Generate "fencem 1" as release fence. 1124 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1125 DAG.getTargetConstant(1, DL, MVT::i32), 1126 Op.getOperand(0)), 1127 0); 1128 case AtomicOrdering::AcquireRelease: 1129 case AtomicOrdering::SequentiallyConsistent: 1130 // Generate "fencem 3" as acq_rel and seq_cst fence. 1131 // FIXME: "fencem 3" doesn't wait for PCIe deveices accesses, 1132 // so seq_cst may require more instruction for them. 1133 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1134 DAG.getTargetConstant(3, DL, MVT::i32), 1135 Op.getOperand(0)), 1136 0); 1137 } 1138 } 1139 1140 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1141 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1142 } 1143 1144 TargetLowering::AtomicExpansionKind 1145 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1146 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1147 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1148 return AtomicExpansionKind::None; 1149 } 1150 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1151 1152 // Otherwise, expand it using compare and exchange instruction to not call 1153 // __sync_fetch_and_* functions. 1154 return AtomicExpansionKind::CmpXChg; 1155 } 1156 1157 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1158 SDValue &Bits) { 1159 SDLoc DL(Op); 1160 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1161 SDValue Ptr = N->getOperand(1); 1162 SDValue Val = N->getOperand(2); 1163 EVT PtrVT = Ptr.getValueType(); 1164 bool Byte = N->getMemoryVT() == MVT::i8; 1165 // Remainder = AND Ptr, 3 1166 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1167 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1168 // Bits = Remainder << 3 1169 // NewVal = Val << Bits 1170 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1171 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1172 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1173 : DAG.getConstant(3, DL, MVT::i32); 1174 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1175 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1176 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1177 } 1178 1179 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1180 SDValue Bits) { 1181 SDLoc DL(Op); 1182 EVT VT = Data.getValueType(); 1183 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1184 // NewData = Data >> Bits 1185 // Result = NewData & 0xff ; If Byte is true (1 byte) 1186 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1187 1188 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1189 return DAG.getNode(ISD::AND, DL, VT, 1190 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1191 } 1192 1193 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1194 SelectionDAG &DAG) const { 1195 SDLoc DL(Op); 1196 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1197 1198 if (N->getMemoryVT() == MVT::i8) { 1199 // For i8, use "ts1am" 1200 // Input: 1201 // ATOMIC_SWAP Ptr, Val, Order 1202 // 1203 // Output: 1204 // Remainder = AND Ptr, 3 1205 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1206 // Bits = Remainder << 3 1207 // NewVal = Val << Bits 1208 // 1209 // Aligned = AND Ptr, -4 1210 // Data = TS1AM Aligned, Flag, NewVal 1211 // 1212 // NewData = Data >> Bits 1213 // Result = NewData & 0xff ; 1 byte result 1214 SDValue Flag; 1215 SDValue Bits; 1216 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1217 1218 SDValue Ptr = N->getOperand(1); 1219 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1220 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1221 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1222 DAG.getVTList(Op.getNode()->getValueType(0), 1223 Op.getNode()->getValueType(1)), 1224 {N->getChain(), Aligned, Flag, NewVal}, 1225 N->getMemOperand()); 1226 1227 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1228 SDValue Chain = TS1AM.getValue(1); 1229 return DAG.getMergeValues({Result, Chain}, DL); 1230 } 1231 if (N->getMemoryVT() == MVT::i16) { 1232 // For i16, use "ts1am" 1233 SDValue Flag; 1234 SDValue Bits; 1235 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1236 1237 SDValue Ptr = N->getOperand(1); 1238 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1239 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1240 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1241 DAG.getVTList(Op.getNode()->getValueType(0), 1242 Op.getNode()->getValueType(1)), 1243 {N->getChain(), Aligned, Flag, NewVal}, 1244 N->getMemOperand()); 1245 1246 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1247 SDValue Chain = TS1AM.getValue(1); 1248 return DAG.getMergeValues({Result, Chain}, DL); 1249 } 1250 // Otherwise, let llvm legalize it. 1251 return Op; 1252 } 1253 1254 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1255 SelectionDAG &DAG) const { 1256 return makeAddress(Op, DAG); 1257 } 1258 1259 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1260 SelectionDAG &DAG) const { 1261 return makeAddress(Op, DAG); 1262 } 1263 1264 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1265 SelectionDAG &DAG) const { 1266 return makeAddress(Op, DAG); 1267 } 1268 1269 SDValue 1270 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1271 SelectionDAG &DAG) const { 1272 SDLoc DL(Op); 1273 1274 // Generate the following code: 1275 // t1: ch,glue = callseq_start t0, 0, 0 1276 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1277 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1278 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1279 SDValue Label = withTargetFlags(Op, 0, DAG); 1280 EVT PtrVT = Op.getValueType(); 1281 1282 // Lowering the machine isd will make sure everything is in the right 1283 // location. 1284 SDValue Chain = DAG.getEntryNode(); 1285 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1286 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1287 DAG.getMachineFunction(), CallingConv::C); 1288 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1289 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1290 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1291 Chain = DAG.getCALLSEQ_END(Chain, 64, 0, Chain.getValue(1), DL); 1292 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1293 1294 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1295 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1296 MFI.setHasCalls(true); 1297 1298 // Also generate code to prepare a GOT register if it is PIC. 1299 if (isPositionIndependent()) { 1300 MachineFunction &MF = DAG.getMachineFunction(); 1301 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1302 } 1303 1304 return Chain; 1305 } 1306 1307 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1308 SelectionDAG &DAG) const { 1309 // The current implementation of nld (2.26) doesn't allow local exec model 1310 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1311 // generate the general dynamic model code sequence. 1312 // 1313 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1314 return lowerToTLSGeneralDynamicModel(Op, DAG); 1315 } 1316 1317 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1318 return makeAddress(Op, DAG); 1319 } 1320 1321 // Lower a f128 load into two f64 loads. 1322 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1323 SDLoc DL(Op); 1324 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1325 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1326 Align Alignment = LdNode->getAlign(); 1327 if (Alignment > 8) 1328 Alignment = Align(8); 1329 1330 SDValue Lo64 = 1331 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1332 LdNode->getPointerInfo(), Alignment, 1333 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1334 : MachineMemOperand::MONone); 1335 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1336 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1337 DAG.getConstant(8, DL, AddrVT)); 1338 SDValue Hi64 = 1339 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1340 LdNode->getPointerInfo(), Alignment, 1341 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1342 : MachineMemOperand::MONone); 1343 1344 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1345 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1346 1347 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1348 SDNode *InFP128 = 1349 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1350 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1351 SDValue(InFP128, 0), Hi64, SubRegEven); 1352 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1353 SDValue(InFP128, 0), Lo64, SubRegOdd); 1354 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1355 SDValue(Hi64.getNode(), 1)}; 1356 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1357 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1358 return DAG.getMergeValues(Ops, DL); 1359 } 1360 1361 // Lower a vXi1 load into following instructions 1362 // LDrii %1, (,%addr) 1363 // LVMxir %vm, 0, %1 1364 // LDrii %2, 8(,%addr) 1365 // LVMxir %vm, 0, %2 1366 // ... 1367 static SDValue lowerLoadI1(SDValue Op, SelectionDAG &DAG) { 1368 SDLoc DL(Op); 1369 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1370 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1371 1372 SDValue BasePtr = LdNode->getBasePtr(); 1373 Align Alignment = LdNode->getAlign(); 1374 if (Alignment > 8) 1375 Alignment = Align(8); 1376 1377 EVT AddrVT = BasePtr.getValueType(); 1378 EVT MemVT = LdNode->getMemoryVT(); 1379 if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { 1380 SDValue OutChains[4]; 1381 SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT); 1382 for (int i = 0; i < 4; ++i) { 1383 // Generate load dag and prepare chains. 1384 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1385 DAG.getConstant(8 * i, DL, AddrVT)); 1386 SDValue Val = 1387 DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr, 1388 LdNode->getPointerInfo(), Alignment, 1389 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1390 : MachineMemOperand::MONone); 1391 OutChains[i] = SDValue(Val.getNode(), 1); 1392 1393 VM = DAG.getMachineNode(VE::LVMir_m, DL, MVT::i64, 1394 DAG.getTargetConstant(i, DL, MVT::i64), Val, 1395 SDValue(VM, 0)); 1396 } 1397 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1398 SDValue Ops[2] = {SDValue(VM, 0), OutChain}; 1399 return DAG.getMergeValues(Ops, DL); 1400 } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { 1401 SDValue OutChains[8]; 1402 SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT); 1403 for (int i = 0; i < 8; ++i) { 1404 // Generate load dag and prepare chains. 1405 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1406 DAG.getConstant(8 * i, DL, AddrVT)); 1407 SDValue Val = 1408 DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr, 1409 LdNode->getPointerInfo(), Alignment, 1410 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1411 : MachineMemOperand::MONone); 1412 OutChains[i] = SDValue(Val.getNode(), 1); 1413 1414 VM = DAG.getMachineNode(VE::LVMyir_y, DL, MVT::i64, 1415 DAG.getTargetConstant(i, DL, MVT::i64), Val, 1416 SDValue(VM, 0)); 1417 } 1418 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1419 SDValue Ops[2] = {SDValue(VM, 0), OutChain}; 1420 return DAG.getMergeValues(Ops, DL); 1421 } else { 1422 // Otherwise, ask llvm to expand it. 1423 return SDValue(); 1424 } 1425 } 1426 1427 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1428 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1429 EVT MemVT = LdNode->getMemoryVT(); 1430 1431 // If VPU is enabled, always expand non-mask vector loads to VVP 1432 if (Subtarget->enableVPU() && MemVT.isVector() && !isMaskType(MemVT)) 1433 return lowerToVVP(Op, DAG); 1434 1435 SDValue BasePtr = LdNode->getBasePtr(); 1436 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1437 // Do not expand store instruction with frame index here because of 1438 // dependency problems. We expand it later in eliminateFrameIndex(). 1439 return Op; 1440 } 1441 1442 if (MemVT == MVT::f128) 1443 return lowerLoadF128(Op, DAG); 1444 if (isMaskType(MemVT)) 1445 return lowerLoadI1(Op, DAG); 1446 1447 return Op; 1448 } 1449 1450 // Lower a f128 store into two f64 stores. 1451 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1452 SDLoc DL(Op); 1453 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1454 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1455 1456 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1457 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1458 1459 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1460 StNode->getValue(), SubRegEven); 1461 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1462 StNode->getValue(), SubRegOdd); 1463 1464 Align Alignment = StNode->getAlign(); 1465 if (Alignment > 8) 1466 Alignment = Align(8); 1467 1468 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1469 SDValue OutChains[2]; 1470 OutChains[0] = 1471 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1472 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1473 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1474 : MachineMemOperand::MONone); 1475 EVT AddrVT = StNode->getBasePtr().getValueType(); 1476 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1477 DAG.getConstant(8, DL, AddrVT)); 1478 OutChains[1] = 1479 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1480 MachinePointerInfo(), Alignment, 1481 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1482 : MachineMemOperand::MONone); 1483 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1484 } 1485 1486 // Lower a vXi1 store into following instructions 1487 // SVMi %1, %vm, 0 1488 // STrii %1, (,%addr) 1489 // SVMi %2, %vm, 1 1490 // STrii %2, 8(,%addr) 1491 // ... 1492 static SDValue lowerStoreI1(SDValue Op, SelectionDAG &DAG) { 1493 SDLoc DL(Op); 1494 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1495 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1496 1497 SDValue BasePtr = StNode->getBasePtr(); 1498 Align Alignment = StNode->getAlign(); 1499 if (Alignment > 8) 1500 Alignment = Align(8); 1501 EVT AddrVT = BasePtr.getValueType(); 1502 EVT MemVT = StNode->getMemoryVT(); 1503 if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { 1504 SDValue OutChains[4]; 1505 for (int i = 0; i < 4; ++i) { 1506 SDNode *V = 1507 DAG.getMachineNode(VE::SVMmi, DL, MVT::i64, StNode->getValue(), 1508 DAG.getTargetConstant(i, DL, MVT::i64)); 1509 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1510 DAG.getConstant(8 * i, DL, AddrVT)); 1511 OutChains[i] = 1512 DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr, 1513 MachinePointerInfo(), Alignment, 1514 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1515 : MachineMemOperand::MONone); 1516 } 1517 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1518 } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { 1519 SDValue OutChains[8]; 1520 for (int i = 0; i < 8; ++i) { 1521 SDNode *V = 1522 DAG.getMachineNode(VE::SVMyi, DL, MVT::i64, StNode->getValue(), 1523 DAG.getTargetConstant(i, DL, MVT::i64)); 1524 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1525 DAG.getConstant(8 * i, DL, AddrVT)); 1526 OutChains[i] = 1527 DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr, 1528 MachinePointerInfo(), Alignment, 1529 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1530 : MachineMemOperand::MONone); 1531 } 1532 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1533 } else { 1534 // Otherwise, ask llvm to expand it. 1535 return SDValue(); 1536 } 1537 } 1538 1539 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1540 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1541 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1542 EVT MemVT = StNode->getMemoryVT(); 1543 1544 // If VPU is enabled, always expand non-mask vector stores to VVP 1545 if (Subtarget->enableVPU() && MemVT.isVector() && !isMaskType(MemVT)) 1546 return lowerToVVP(Op, DAG); 1547 1548 SDValue BasePtr = StNode->getBasePtr(); 1549 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1550 // Do not expand store instruction with frame index here because of 1551 // dependency problems. We expand it later in eliminateFrameIndex(). 1552 return Op; 1553 } 1554 1555 if (MemVT == MVT::f128) 1556 return lowerStoreF128(Op, DAG); 1557 if (isMaskType(MemVT)) 1558 return lowerStoreI1(Op, DAG); 1559 1560 // Otherwise, ask llvm to expand it. 1561 return SDValue(); 1562 } 1563 1564 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1565 MachineFunction &MF = DAG.getMachineFunction(); 1566 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1567 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1568 1569 // Need frame address to find the address of VarArgsFrameIndex. 1570 MF.getFrameInfo().setFrameAddressIsTaken(true); 1571 1572 // vastart just stores the address of the VarArgsFrameIndex slot into the 1573 // memory location argument. 1574 SDLoc DL(Op); 1575 SDValue Offset = 1576 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1577 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1578 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1579 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1580 MachinePointerInfo(SV)); 1581 } 1582 1583 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1584 SDNode *Node = Op.getNode(); 1585 EVT VT = Node->getValueType(0); 1586 SDValue InChain = Node->getOperand(0); 1587 SDValue VAListPtr = Node->getOperand(1); 1588 EVT PtrVT = VAListPtr.getValueType(); 1589 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1590 SDLoc DL(Node); 1591 SDValue VAList = 1592 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1593 SDValue Chain = VAList.getValue(1); 1594 SDValue NextPtr; 1595 1596 if (VT == MVT::f128) { 1597 // VE f128 values must be stored with 16 bytes alignment. We don't 1598 // know the actual alignment of VAList, so we take alignment of it 1599 // dynamically. 1600 int Align = 16; 1601 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1602 DAG.getConstant(Align - 1, DL, PtrVT)); 1603 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1604 DAG.getConstant(-Align, DL, PtrVT)); 1605 // Increment the pointer, VAList, by 16 to the next vaarg. 1606 NextPtr = 1607 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1608 } else if (VT == MVT::f32) { 1609 // float --> need special handling like below. 1610 // 0 4 1611 // +------+------+ 1612 // | empty| float| 1613 // +------+------+ 1614 // Increment the pointer, VAList, by 8 to the next vaarg. 1615 NextPtr = 1616 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1617 // Then, adjust VAList. 1618 unsigned InternalOffset = 4; 1619 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1620 DAG.getConstant(InternalOffset, DL, PtrVT)); 1621 } else { 1622 // Increment the pointer, VAList, by 8 to the next vaarg. 1623 NextPtr = 1624 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1625 } 1626 1627 // Store the incremented VAList to the legalized pointer. 1628 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1629 1630 // Load the actual argument out of the pointer VAList. 1631 // We can't count on greater alignment than the word size. 1632 return DAG.getLoad( 1633 VT, DL, InChain, VAList, MachinePointerInfo(), 1634 Align(std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8)); 1635 } 1636 1637 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1638 SelectionDAG &DAG) const { 1639 // Generate following code. 1640 // (void)__llvm_grow_stack(size); 1641 // ret = GETSTACKTOP; // pseudo instruction 1642 SDLoc DL(Op); 1643 1644 // Get the inputs. 1645 SDNode *Node = Op.getNode(); 1646 SDValue Chain = Op.getOperand(0); 1647 SDValue Size = Op.getOperand(1); 1648 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1649 EVT VT = Node->getValueType(0); 1650 1651 // Chain the dynamic stack allocation so that it doesn't modify the stack 1652 // pointer when other instructions are using the stack. 1653 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1654 1655 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1656 Align StackAlign = TFI.getStackAlign(); 1657 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1658 1659 // Prepare arguments 1660 TargetLowering::ArgListTy Args; 1661 TargetLowering::ArgListEntry Entry; 1662 Entry.Node = Size; 1663 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1664 Args.push_back(Entry); 1665 if (NeedsAlign) { 1666 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1667 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1668 Args.push_back(Entry); 1669 } 1670 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1671 1672 EVT PtrVT = Op.getValueType(); 1673 SDValue Callee; 1674 if (NeedsAlign) { 1675 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1676 } else { 1677 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1678 } 1679 1680 TargetLowering::CallLoweringInfo CLI(DAG); 1681 CLI.setDebugLoc(DL) 1682 .setChain(Chain) 1683 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1684 .setDiscardResult(true); 1685 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1686 Chain = pair.second; 1687 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1688 if (NeedsAlign) { 1689 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1690 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1691 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1692 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1693 } 1694 // Chain = Result.getValue(1); 1695 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), DL); 1696 1697 SDValue Ops[2] = {Result, Chain}; 1698 return DAG.getMergeValues(Ops, DL); 1699 } 1700 1701 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1702 SelectionDAG &DAG) const { 1703 SDLoc DL(Op); 1704 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1705 Op.getOperand(1)); 1706 } 1707 1708 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1709 SelectionDAG &DAG) const { 1710 SDLoc DL(Op); 1711 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1712 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1713 Op.getOperand(1)); 1714 } 1715 1716 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1717 SelectionDAG &DAG) const { 1718 SDLoc DL(Op); 1719 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1720 Op.getOperand(0)); 1721 } 1722 1723 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1724 const VETargetLowering &TLI, 1725 const VESubtarget *Subtarget) { 1726 SDLoc DL(Op); 1727 MachineFunction &MF = DAG.getMachineFunction(); 1728 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1729 1730 MachineFrameInfo &MFI = MF.getFrameInfo(); 1731 MFI.setFrameAddressIsTaken(true); 1732 1733 unsigned Depth = Op.getConstantOperandVal(0); 1734 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1735 Register FrameReg = RegInfo->getFrameRegister(MF); 1736 SDValue FrameAddr = 1737 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1738 while (Depth--) 1739 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1740 FrameAddr, MachinePointerInfo()); 1741 return FrameAddr; 1742 } 1743 1744 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1745 const VETargetLowering &TLI, 1746 const VESubtarget *Subtarget) { 1747 MachineFunction &MF = DAG.getMachineFunction(); 1748 MachineFrameInfo &MFI = MF.getFrameInfo(); 1749 MFI.setReturnAddressIsTaken(true); 1750 1751 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1752 return SDValue(); 1753 1754 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1755 1756 SDLoc DL(Op); 1757 EVT VT = Op.getValueType(); 1758 SDValue Offset = DAG.getConstant(8, DL, VT); 1759 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1760 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1761 MachinePointerInfo()); 1762 } 1763 1764 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1765 SelectionDAG &DAG) const { 1766 SDLoc DL(Op); 1767 unsigned IntNo = Op.getConstantOperandVal(0); 1768 switch (IntNo) { 1769 default: // Don't custom lower most intrinsics. 1770 return SDValue(); 1771 case Intrinsic::eh_sjlj_lsda: { 1772 MachineFunction &MF = DAG.getMachineFunction(); 1773 MVT VT = Op.getSimpleValueType(); 1774 const VETargetMachine *TM = 1775 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1776 1777 // Create GCC_except_tableXX string. The real symbol for that will be 1778 // generated in EHStreamer::emitExceptionTable() later. So, we just 1779 // borrow it's name here. 1780 TM->getStrList()->push_back(std::string( 1781 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1782 SDValue Addr = 1783 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1784 if (isPositionIndependent()) { 1785 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1786 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1787 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1788 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1789 } 1790 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1791 } 1792 } 1793 } 1794 1795 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1796 if (!isa<BuildVectorSDNode>(N)) 1797 return false; 1798 const auto *BVN = cast<BuildVectorSDNode>(N); 1799 1800 // Find first non-undef insertion. 1801 unsigned Idx; 1802 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1803 auto ElemV = BVN->getOperand(Idx); 1804 if (!ElemV->isUndef()) 1805 break; 1806 } 1807 // Catch the (hypothetical) all-undef case. 1808 if (Idx == BVN->getNumOperands()) 1809 return false; 1810 // Remember insertion. 1811 UniqueIdx = Idx++; 1812 // Verify that all other insertions are undef. 1813 for (; Idx < BVN->getNumOperands(); ++Idx) { 1814 auto ElemV = BVN->getOperand(Idx); 1815 if (!ElemV->isUndef()) 1816 return false; 1817 } 1818 return true; 1819 } 1820 1821 static SDValue getSplatValue(SDNode *N) { 1822 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1823 return BuildVec->getSplatValue(); 1824 } 1825 return SDValue(); 1826 } 1827 1828 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1829 SelectionDAG &DAG) const { 1830 VECustomDAG CDAG(DAG, Op); 1831 MVT ResultVT = Op.getSimpleValueType(); 1832 1833 // If there is just one element, expand to INSERT_VECTOR_ELT. 1834 unsigned UniqueIdx; 1835 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1836 SDValue AccuV = CDAG.getUNDEF(Op.getValueType()); 1837 auto ElemV = Op->getOperand(UniqueIdx); 1838 SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64); 1839 return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV}); 1840 } 1841 1842 // Else emit a broadcast. 1843 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1844 unsigned NumEls = ResultVT.getVectorNumElements(); 1845 auto AVL = CDAG.getConstant(NumEls, MVT::i32); 1846 return CDAG.getBroadcast(ResultVT, ScalarV, AVL); 1847 } 1848 1849 // Expand 1850 return SDValue(); 1851 } 1852 1853 TargetLowering::LegalizeAction 1854 VETargetLowering::getCustomOperationAction(SDNode &Op) const { 1855 // Custom legalization on VVP_* and VEC_* opcodes is required to pack-legalize 1856 // these operations (transform nodes such that their AVL parameter refers to 1857 // packs of 64bit, instead of number of elements. 1858 1859 // Packing opcodes are created with a pack-legal AVL (LEGALAVL). No need to 1860 // re-visit them. 1861 if (isPackingSupportOpcode(Op.getOpcode())) 1862 return Legal; 1863 1864 // Custom lower to legalize AVL for packed mode. 1865 if (isVVPOrVEC(Op.getOpcode())) 1866 return Custom; 1867 return Legal; 1868 } 1869 1870 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1871 LLVM_DEBUG(dbgs() << "::LowerOperation "; Op.dump(&DAG)); 1872 unsigned Opcode = Op.getOpcode(); 1873 1874 /// Scalar isel. 1875 switch (Opcode) { 1876 case ISD::ATOMIC_FENCE: 1877 return lowerATOMIC_FENCE(Op, DAG); 1878 case ISD::ATOMIC_SWAP: 1879 return lowerATOMIC_SWAP(Op, DAG); 1880 case ISD::BlockAddress: 1881 return lowerBlockAddress(Op, DAG); 1882 case ISD::ConstantPool: 1883 return lowerConstantPool(Op, DAG); 1884 case ISD::DYNAMIC_STACKALLOC: 1885 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1886 case ISD::EH_SJLJ_LONGJMP: 1887 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1888 case ISD::EH_SJLJ_SETJMP: 1889 return lowerEH_SJLJ_SETJMP(Op, DAG); 1890 case ISD::EH_SJLJ_SETUP_DISPATCH: 1891 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1892 case ISD::FRAMEADDR: 1893 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1894 case ISD::GlobalAddress: 1895 return lowerGlobalAddress(Op, DAG); 1896 case ISD::GlobalTLSAddress: 1897 return lowerGlobalTLSAddress(Op, DAG); 1898 case ISD::INTRINSIC_WO_CHAIN: 1899 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1900 case ISD::JumpTable: 1901 return lowerJumpTable(Op, DAG); 1902 case ISD::LOAD: 1903 return lowerLOAD(Op, DAG); 1904 case ISD::RETURNADDR: 1905 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1906 case ISD::BUILD_VECTOR: 1907 return lowerBUILD_VECTOR(Op, DAG); 1908 case ISD::STORE: 1909 return lowerSTORE(Op, DAG); 1910 case ISD::VASTART: 1911 return lowerVASTART(Op, DAG); 1912 case ISD::VAARG: 1913 return lowerVAARG(Op, DAG); 1914 1915 case ISD::INSERT_VECTOR_ELT: 1916 return lowerINSERT_VECTOR_ELT(Op, DAG); 1917 case ISD::EXTRACT_VECTOR_ELT: 1918 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1919 } 1920 1921 /// Vector isel. 1922 if (ISD::isVPOpcode(Opcode)) 1923 return lowerToVVP(Op, DAG); 1924 1925 switch (Opcode) { 1926 default: 1927 llvm_unreachable("Should not custom lower this!"); 1928 1929 // Legalize the AVL of this internal node. 1930 case VEISD::VEC_BROADCAST: 1931 #define ADD_VVP_OP(VVP_NAME, ...) case VEISD::VVP_NAME: 1932 #include "VVPNodes.def" 1933 // AVL already legalized. 1934 if (getAnnotatedNodeAVL(Op).second) 1935 return Op; 1936 return legalizeInternalVectorOp(Op, DAG); 1937 1938 // Translate into a VEC_*/VVP_* layer operation. 1939 case ISD::MLOAD: 1940 case ISD::MSTORE: 1941 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1942 #include "VVPNodes.def" 1943 if (isMaskArithmetic(Op) && isPackedVectorType(Op.getValueType())) 1944 return splitMaskArithmetic(Op, DAG); 1945 return lowerToVVP(Op, DAG); 1946 } 1947 } 1948 /// } Custom Lower 1949 1950 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1951 SmallVectorImpl<SDValue> &Results, 1952 SelectionDAG &DAG) const { 1953 switch (N->getOpcode()) { 1954 case ISD::ATOMIC_SWAP: 1955 // Let LLVM expand atomic swap instruction through LowerOperation. 1956 return; 1957 default: 1958 LLVM_DEBUG(N->dumpr(&DAG)); 1959 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1960 } 1961 } 1962 1963 /// JumpTable for VE. 1964 /// 1965 /// VE cannot generate relocatable symbol in jump table. VE cannot 1966 /// generate expressions using symbols in both text segment and data 1967 /// segment like below. 1968 /// .4byte .LBB0_2-.LJTI0_0 1969 /// So, we generate offset from the top of function like below as 1970 /// a custom label. 1971 /// .4byte .LBB0_2-<function name> 1972 1973 unsigned VETargetLowering::getJumpTableEncoding() const { 1974 // Use custom label for PIC. 1975 if (isPositionIndependent()) 1976 return MachineJumpTableInfo::EK_Custom32; 1977 1978 // Otherwise, use the normal jump table encoding heuristics. 1979 return TargetLowering::getJumpTableEncoding(); 1980 } 1981 1982 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1983 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1984 unsigned Uid, MCContext &Ctx) const { 1985 assert(isPositionIndependent()); 1986 1987 // Generate custom label for PIC like below. 1988 // .4bytes .LBB0_2-<function name> 1989 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1990 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1991 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1992 return MCBinaryExpr::createSub(Value, Base, Ctx); 1993 } 1994 1995 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 1996 SelectionDAG &DAG) const { 1997 assert(isPositionIndependent()); 1998 SDLoc DL(Table); 1999 Function *Function = &DAG.getMachineFunction().getFunction(); 2000 assert(Function != nullptr); 2001 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 2002 2003 // In the jump table, we have following values in PIC mode. 2004 // .4bytes .LBB0_2-<function name> 2005 // We need to add this value and the address of this function to generate 2006 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 2007 // instructions: 2008 // lea %reg, fun@gotoff_lo 2009 // and %reg, %reg, (32)0 2010 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 2011 // In order to do so, we need to genarate correctly marked DAG node using 2012 // makeHiLoPair. 2013 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 2014 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 2015 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 2016 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 2017 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 2018 } 2019 2020 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 2021 MachineBasicBlock::iterator I, 2022 MachineBasicBlock *TargetBB, 2023 const DebugLoc &DL) const { 2024 MachineFunction *MF = MBB.getParent(); 2025 MachineRegisterInfo &MRI = MF->getRegInfo(); 2026 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2027 2028 const TargetRegisterClass *RC = &VE::I64RegClass; 2029 Register Tmp1 = MRI.createVirtualRegister(RC); 2030 Register Tmp2 = MRI.createVirtualRegister(RC); 2031 Register Result = MRI.createVirtualRegister(RC); 2032 2033 if (isPositionIndependent()) { 2034 // Create following instructions for local linkage PIC code. 2035 // lea %Tmp1, TargetBB@gotoff_lo 2036 // and %Tmp2, %Tmp1, (32)0 2037 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2038 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2039 .addImm(0) 2040 .addImm(0) 2041 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 2042 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2043 .addReg(Tmp1, getKillRegState(true)) 2044 .addImm(M0(32)); 2045 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 2046 .addReg(VE::SX15) 2047 .addReg(Tmp2, getKillRegState(true)) 2048 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 2049 } else { 2050 // Create following instructions for non-PIC code. 2051 // lea %Tmp1, TargetBB@lo 2052 // and %Tmp2, %Tmp1, (32)0 2053 // lea.sl %Result, TargetBB@hi(%Tmp2) 2054 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2055 .addImm(0) 2056 .addImm(0) 2057 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 2058 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2059 .addReg(Tmp1, getKillRegState(true)) 2060 .addImm(M0(32)); 2061 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2062 .addReg(Tmp2, getKillRegState(true)) 2063 .addImm(0) 2064 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 2065 } 2066 return Result; 2067 } 2068 2069 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 2070 MachineBasicBlock::iterator I, 2071 StringRef Symbol, const DebugLoc &DL, 2072 bool IsLocal = false, 2073 bool IsCall = false) const { 2074 MachineFunction *MF = MBB.getParent(); 2075 MachineRegisterInfo &MRI = MF->getRegInfo(); 2076 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2077 2078 const TargetRegisterClass *RC = &VE::I64RegClass; 2079 Register Result = MRI.createVirtualRegister(RC); 2080 2081 if (isPositionIndependent()) { 2082 if (IsCall && !IsLocal) { 2083 // Create following instructions for non-local linkage PIC code function 2084 // calls. These instructions uses IC and magic number -24, so we expand 2085 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 2086 // lea %Reg, Symbol@plt_lo(-24) 2087 // and %Reg, %Reg, (32)0 2088 // sic %s16 2089 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 2090 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 2091 .addExternalSymbol("abort"); 2092 } else if (IsLocal) { 2093 Register Tmp1 = MRI.createVirtualRegister(RC); 2094 Register Tmp2 = MRI.createVirtualRegister(RC); 2095 // Create following instructions for local linkage PIC code. 2096 // lea %Tmp1, Symbol@gotoff_lo 2097 // and %Tmp2, %Tmp1, (32)0 2098 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2099 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2100 .addImm(0) 2101 .addImm(0) 2102 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 2103 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2104 .addReg(Tmp1, getKillRegState(true)) 2105 .addImm(M0(32)); 2106 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 2107 .addReg(VE::SX15) 2108 .addReg(Tmp2, getKillRegState(true)) 2109 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 2110 } else { 2111 Register Tmp1 = MRI.createVirtualRegister(RC); 2112 Register Tmp2 = MRI.createVirtualRegister(RC); 2113 // Create following instructions for not local linkage PIC code. 2114 // lea %Tmp1, Symbol@got_lo 2115 // and %Tmp2, %Tmp1, (32)0 2116 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2117 // ld %Result, 0(%Tmp3) 2118 Register Tmp3 = MRI.createVirtualRegister(RC); 2119 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2120 .addImm(0) 2121 .addImm(0) 2122 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 2123 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2124 .addReg(Tmp1, getKillRegState(true)) 2125 .addImm(M0(32)); 2126 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 2127 .addReg(VE::SX15) 2128 .addReg(Tmp2, getKillRegState(true)) 2129 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 2130 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 2131 .addReg(Tmp3, getKillRegState(true)) 2132 .addImm(0) 2133 .addImm(0); 2134 } 2135 } else { 2136 Register Tmp1 = MRI.createVirtualRegister(RC); 2137 Register Tmp2 = MRI.createVirtualRegister(RC); 2138 // Create following instructions for non-PIC code. 2139 // lea %Tmp1, Symbol@lo 2140 // and %Tmp2, %Tmp1, (32)0 2141 // lea.sl %Result, Symbol@hi(%Tmp2) 2142 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2143 .addImm(0) 2144 .addImm(0) 2145 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 2146 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2147 .addReg(Tmp1, getKillRegState(true)) 2148 .addImm(M0(32)); 2149 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2150 .addReg(Tmp2, getKillRegState(true)) 2151 .addImm(0) 2152 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 2153 } 2154 return Result; 2155 } 2156 2157 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 2158 MachineBasicBlock *MBB, 2159 MachineBasicBlock *DispatchBB, 2160 int FI, int Offset) const { 2161 DebugLoc DL = MI.getDebugLoc(); 2162 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2163 2164 Register LabelReg = 2165 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 2166 2167 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 2168 // referenced by longjmp (throw) later. 2169 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2170 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 2171 MIB.addReg(LabelReg, getKillRegState(true)); 2172 } 2173 2174 MachineBasicBlock * 2175 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 2176 MachineBasicBlock *MBB) const { 2177 DebugLoc DL = MI.getDebugLoc(); 2178 MachineFunction *MF = MBB->getParent(); 2179 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2180 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2181 MachineRegisterInfo &MRI = MF->getRegInfo(); 2182 2183 const BasicBlock *BB = MBB->getBasicBlock(); 2184 MachineFunction::iterator I = ++MBB->getIterator(); 2185 2186 // Memory Reference. 2187 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2188 MI.memoperands_end()); 2189 Register BufReg = MI.getOperand(1).getReg(); 2190 2191 Register DstReg; 2192 2193 DstReg = MI.getOperand(0).getReg(); 2194 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 2195 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 2196 (void)TRI; 2197 Register MainDestReg = MRI.createVirtualRegister(RC); 2198 Register RestoreDestReg = MRI.createVirtualRegister(RC); 2199 2200 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 2201 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 2202 // 2203 // ThisMBB: 2204 // buf[3] = %s17 iff %s17 is used as BP 2205 // buf[1] = RestoreMBB as IC after longjmp 2206 // # SjLjSetup RestoreMBB 2207 // 2208 // MainMBB: 2209 // v_main = 0 2210 // 2211 // SinkMBB: 2212 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 2213 // ... 2214 // 2215 // RestoreMBB: 2216 // %s17 = buf[3] = iff %s17 is used as BP 2217 // v_restore = 1 2218 // goto SinkMBB 2219 2220 MachineBasicBlock *ThisMBB = MBB; 2221 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2222 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2223 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2224 MF->insert(I, MainMBB); 2225 MF->insert(I, SinkMBB); 2226 MF->push_back(RestoreMBB); 2227 RestoreMBB->setMachineBlockAddressTaken(); 2228 2229 // Transfer the remainder of BB and its successor edges to SinkMBB. 2230 SinkMBB->splice(SinkMBB->begin(), MBB, 2231 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2232 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2233 2234 // ThisMBB: 2235 Register LabelReg = 2236 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2237 2238 // Store BP in buf[3] iff this function is using BP. 2239 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2240 if (TFI->hasBP(*MF)) { 2241 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2242 MIB.addReg(BufReg); 2243 MIB.addImm(0); 2244 MIB.addImm(24); 2245 MIB.addReg(VE::SX17); 2246 MIB.setMemRefs(MMOs); 2247 } 2248 2249 // Store IP in buf[1]. 2250 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2251 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2252 MIB.addImm(0); 2253 MIB.addImm(8); 2254 MIB.addReg(LabelReg, getKillRegState(true)); 2255 MIB.setMemRefs(MMOs); 2256 2257 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2258 2259 // Insert setup. 2260 MIB = 2261 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2262 2263 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2264 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2265 ThisMBB->addSuccessor(MainMBB); 2266 ThisMBB->addSuccessor(RestoreMBB); 2267 2268 // MainMBB: 2269 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2270 .addImm(0) 2271 .addImm(0) 2272 .addImm(0); 2273 MainMBB->addSuccessor(SinkMBB); 2274 2275 // SinkMBB: 2276 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2277 .addReg(MainDestReg) 2278 .addMBB(MainMBB) 2279 .addReg(RestoreDestReg) 2280 .addMBB(RestoreMBB); 2281 2282 // RestoreMBB: 2283 // Restore BP from buf[3] iff this function is using BP. The address of 2284 // buf is in SX10. 2285 // FIXME: Better to not use SX10 here 2286 if (TFI->hasBP(*MF)) { 2287 MachineInstrBuilder MIB = 2288 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2289 MIB.addReg(VE::SX10); 2290 MIB.addImm(0); 2291 MIB.addImm(24); 2292 MIB.setMemRefs(MMOs); 2293 } 2294 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2295 .addImm(0) 2296 .addImm(0) 2297 .addImm(1); 2298 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2299 RestoreMBB->addSuccessor(SinkMBB); 2300 2301 MI.eraseFromParent(); 2302 return SinkMBB; 2303 } 2304 2305 MachineBasicBlock * 2306 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2307 MachineBasicBlock *MBB) const { 2308 DebugLoc DL = MI.getDebugLoc(); 2309 MachineFunction *MF = MBB->getParent(); 2310 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2311 MachineRegisterInfo &MRI = MF->getRegInfo(); 2312 2313 // Memory Reference. 2314 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2315 MI.memoperands_end()); 2316 Register BufReg = MI.getOperand(0).getReg(); 2317 2318 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2319 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2320 Register FP = VE::SX9; 2321 Register SP = VE::SX11; 2322 2323 MachineInstrBuilder MIB; 2324 2325 MachineBasicBlock *ThisMBB = MBB; 2326 2327 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2328 // 2329 // ThisMBB: 2330 // %fp = load buf[0] 2331 // %jmp = load buf[1] 2332 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2333 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2334 // jmp %jmp 2335 2336 // Reload FP. 2337 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2338 MIB.addReg(BufReg); 2339 MIB.addImm(0); 2340 MIB.addImm(0); 2341 MIB.setMemRefs(MMOs); 2342 2343 // Reload IP. 2344 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2345 MIB.addReg(BufReg); 2346 MIB.addImm(0); 2347 MIB.addImm(8); 2348 MIB.setMemRefs(MMOs); 2349 2350 // Copy BufReg to SX10 for later use in setjmp. 2351 // FIXME: Better to not use SX10 here 2352 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2353 .addReg(BufReg) 2354 .addImm(0); 2355 2356 // Reload SP. 2357 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2358 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2359 MIB.addImm(0); 2360 MIB.addImm(16); 2361 MIB.setMemRefs(MMOs); 2362 2363 // Jump. 2364 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2365 .addReg(Tmp, getKillRegState(true)) 2366 .addImm(0); 2367 2368 MI.eraseFromParent(); 2369 return ThisMBB; 2370 } 2371 2372 MachineBasicBlock * 2373 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2374 MachineBasicBlock *BB) const { 2375 DebugLoc DL = MI.getDebugLoc(); 2376 MachineFunction *MF = BB->getParent(); 2377 MachineFrameInfo &MFI = MF->getFrameInfo(); 2378 MachineRegisterInfo &MRI = MF->getRegInfo(); 2379 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2380 int FI = MFI.getFunctionContextIndex(); 2381 2382 // Get a mapping of the call site numbers to all of the landing pads they're 2383 // associated with. 2384 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2385 unsigned MaxCSNum = 0; 2386 for (auto &MBB : *MF) { 2387 if (!MBB.isEHPad()) 2388 continue; 2389 2390 MCSymbol *Sym = nullptr; 2391 for (const auto &MI : MBB) { 2392 if (MI.isDebugInstr()) 2393 continue; 2394 2395 assert(MI.isEHLabel() && "expected EH_LABEL"); 2396 Sym = MI.getOperand(0).getMCSymbol(); 2397 break; 2398 } 2399 2400 if (!MF->hasCallSiteLandingPad(Sym)) 2401 continue; 2402 2403 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2404 CallSiteNumToLPad[CSI].push_back(&MBB); 2405 MaxCSNum = std::max(MaxCSNum, CSI); 2406 } 2407 } 2408 2409 // Get an ordered list of the machine basic blocks for the jump table. 2410 std::vector<MachineBasicBlock *> LPadList; 2411 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2412 LPadList.reserve(CallSiteNumToLPad.size()); 2413 2414 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2415 for (auto &LP : CallSiteNumToLPad[CSI]) { 2416 LPadList.push_back(LP); 2417 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2418 } 2419 } 2420 2421 assert(!LPadList.empty() && 2422 "No landing pad destinations for the dispatch jump table!"); 2423 2424 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2425 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2426 // 2427 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2428 // First `i64` is callsite, so callsite is FI+8. 2429 static const int OffsetIC = 72; 2430 static const int OffsetCS = 8; 2431 2432 // Create the MBBs for the dispatch code like following: 2433 // 2434 // ThisMBB: 2435 // Prepare DispatchBB address and store it to buf[1]. 2436 // ... 2437 // 2438 // DispatchBB: 2439 // %s15 = GETGOT iff isPositionIndependent 2440 // %callsite = load callsite 2441 // brgt.l.t #size of callsites, %callsite, DispContBB 2442 // 2443 // TrapBB: 2444 // Call abort. 2445 // 2446 // DispContBB: 2447 // %breg = address of jump table 2448 // %pc = load and calculate next pc from %breg and %callsite 2449 // jmp %pc 2450 2451 // Shove the dispatch's address into the return slot in the function context. 2452 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2453 DispatchBB->setIsEHPad(true); 2454 2455 // Trap BB will causes trap like `assert(0)`. 2456 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2457 DispatchBB->addSuccessor(TrapBB); 2458 2459 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2460 DispatchBB->addSuccessor(DispContBB); 2461 2462 // Insert MBBs. 2463 MF->push_back(DispatchBB); 2464 MF->push_back(DispContBB); 2465 MF->push_back(TrapBB); 2466 2467 // Insert code to call abort in the TrapBB. 2468 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2469 /* Local */ false, /* Call */ true); 2470 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2471 .addReg(Abort, getKillRegState(true)) 2472 .addImm(0) 2473 .addImm(0); 2474 2475 // Insert code into the entry block that creates and registers the function 2476 // context. 2477 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2478 2479 // Create the jump table and associated information 2480 unsigned JTE = getJumpTableEncoding(); 2481 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2482 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2483 2484 const VERegisterInfo &RI = TII->getRegisterInfo(); 2485 // Add a register mask with no preserved registers. This results in all 2486 // registers being marked as clobbered. 2487 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2488 .addRegMask(RI.getNoPreservedMask()); 2489 2490 if (isPositionIndependent()) { 2491 // Force to generate GETGOT, since current implementation doesn't store GOT 2492 // register. 2493 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2494 } 2495 2496 // IReg is used as an index in a memory operand and therefore can't be SP 2497 const TargetRegisterClass *RC = &VE::I64RegClass; 2498 Register IReg = MRI.createVirtualRegister(RC); 2499 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2500 OffsetCS); 2501 if (LPadList.size() < 64) { 2502 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2503 .addImm(VECC::CC_ILE) 2504 .addImm(LPadList.size()) 2505 .addReg(IReg) 2506 .addMBB(TrapBB); 2507 } else { 2508 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2509 Register TmpReg = MRI.createVirtualRegister(RC); 2510 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2511 .addImm(0) 2512 .addImm(0) 2513 .addImm(LPadList.size()); 2514 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2515 .addImm(VECC::CC_ILE) 2516 .addReg(TmpReg, getKillRegState(true)) 2517 .addReg(IReg) 2518 .addMBB(TrapBB); 2519 } 2520 2521 Register BReg = MRI.createVirtualRegister(RC); 2522 Register Tmp1 = MRI.createVirtualRegister(RC); 2523 Register Tmp2 = MRI.createVirtualRegister(RC); 2524 2525 if (isPositionIndependent()) { 2526 // Create following instructions for local linkage PIC code. 2527 // lea %Tmp1, .LJTI0_0@gotoff_lo 2528 // and %Tmp2, %Tmp1, (32)0 2529 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2530 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2531 .addImm(0) 2532 .addImm(0) 2533 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2534 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2535 .addReg(Tmp1, getKillRegState(true)) 2536 .addImm(M0(32)); 2537 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2538 .addReg(VE::SX15) 2539 .addReg(Tmp2, getKillRegState(true)) 2540 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2541 } else { 2542 // Create following instructions for non-PIC code. 2543 // lea %Tmp1, .LJTI0_0@lo 2544 // and %Tmp2, %Tmp1, (32)0 2545 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2546 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2547 .addImm(0) 2548 .addImm(0) 2549 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2550 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2551 .addReg(Tmp1, getKillRegState(true)) 2552 .addImm(M0(32)); 2553 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2554 .addReg(Tmp2, getKillRegState(true)) 2555 .addImm(0) 2556 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2557 } 2558 2559 switch (JTE) { 2560 case MachineJumpTableInfo::EK_BlockAddress: { 2561 // Generate simple block address code for no-PIC model. 2562 // sll %Tmp1, %IReg, 3 2563 // lds %TReg, 0(%Tmp1, %BReg) 2564 // bcfla %TReg 2565 2566 Register TReg = MRI.createVirtualRegister(RC); 2567 Register Tmp1 = MRI.createVirtualRegister(RC); 2568 2569 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2570 .addReg(IReg, getKillRegState(true)) 2571 .addImm(3); 2572 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2573 .addReg(BReg, getKillRegState(true)) 2574 .addReg(Tmp1, getKillRegState(true)) 2575 .addImm(0); 2576 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2577 .addReg(TReg, getKillRegState(true)) 2578 .addImm(0); 2579 break; 2580 } 2581 case MachineJumpTableInfo::EK_Custom32: { 2582 // Generate block address code using differences from the function pointer 2583 // for PIC model. 2584 // sll %Tmp1, %IReg, 2 2585 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2586 // Prepare function address in BReg2. 2587 // adds.l %TReg, %BReg2, %OReg 2588 // bcfla %TReg 2589 2590 assert(isPositionIndependent()); 2591 Register OReg = MRI.createVirtualRegister(RC); 2592 Register TReg = MRI.createVirtualRegister(RC); 2593 Register Tmp1 = MRI.createVirtualRegister(RC); 2594 2595 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2596 .addReg(IReg, getKillRegState(true)) 2597 .addImm(2); 2598 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2599 .addReg(BReg, getKillRegState(true)) 2600 .addReg(Tmp1, getKillRegState(true)) 2601 .addImm(0); 2602 Register BReg2 = 2603 prepareSymbol(*DispContBB, DispContBB->end(), 2604 DispContBB->getParent()->getName(), DL, /* Local */ true); 2605 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2606 .addReg(OReg, getKillRegState(true)) 2607 .addReg(BReg2, getKillRegState(true)); 2608 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2609 .addReg(TReg, getKillRegState(true)) 2610 .addImm(0); 2611 break; 2612 } 2613 default: 2614 llvm_unreachable("Unexpected jump table encoding"); 2615 } 2616 2617 // Add the jump table entries as successors to the MBB. 2618 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2619 for (auto &LP : LPadList) 2620 if (SeenMBBs.insert(LP).second) 2621 DispContBB->addSuccessor(LP); 2622 2623 // N.B. the order the invoke BBs are processed in doesn't matter here. 2624 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2625 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2626 for (MachineBasicBlock *MBB : InvokeBBs) { 2627 // Remove the landing pad successor from the invoke block and replace it 2628 // with the new dispatch block. 2629 // Keep a copy of Successors since it's modified inside the loop. 2630 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2631 MBB->succ_rend()); 2632 // FIXME: Avoid quadratic complexity. 2633 for (auto *MBBS : Successors) { 2634 if (MBBS->isEHPad()) { 2635 MBB->removeSuccessor(MBBS); 2636 MBBLPads.push_back(MBBS); 2637 } 2638 } 2639 2640 MBB->addSuccessor(DispatchBB); 2641 2642 // Find the invoke call and mark all of the callee-saved registers as 2643 // 'implicit defined' so that they're spilled. This prevents code from 2644 // moving instructions to before the EH block, where they will never be 2645 // executed. 2646 for (auto &II : reverse(*MBB)) { 2647 if (!II.isCall()) 2648 continue; 2649 2650 DenseMap<Register, bool> DefRegs; 2651 for (auto &MOp : II.operands()) 2652 if (MOp.isReg()) 2653 DefRegs[MOp.getReg()] = true; 2654 2655 MachineInstrBuilder MIB(*MF, &II); 2656 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2657 Register Reg = SavedRegs[RI]; 2658 if (!DefRegs[Reg]) 2659 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2660 } 2661 2662 break; 2663 } 2664 } 2665 2666 // Mark all former landing pads as non-landing pads. The dispatch is the only 2667 // landing pad now. 2668 for (auto &LP : MBBLPads) 2669 LP->setIsEHPad(false); 2670 2671 // The instruction is gone now. 2672 MI.eraseFromParent(); 2673 return BB; 2674 } 2675 2676 MachineBasicBlock * 2677 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2678 MachineBasicBlock *BB) const { 2679 switch (MI.getOpcode()) { 2680 default: 2681 llvm_unreachable("Unknown Custom Instruction!"); 2682 case VE::EH_SjLj_LongJmp: 2683 return emitEHSjLjLongJmp(MI, BB); 2684 case VE::EH_SjLj_SetJmp: 2685 return emitEHSjLjSetJmp(MI, BB); 2686 case VE::EH_SjLj_Setup_Dispatch: 2687 return emitSjLjDispatchBlock(MI, BB); 2688 } 2689 } 2690 2691 static bool isSimm7(SDValue V) { 2692 EVT VT = V.getValueType(); 2693 if (VT.isVector()) 2694 return false; 2695 2696 if (VT.isInteger()) { 2697 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(V)) 2698 return isInt<7>(C->getSExtValue()); 2699 } else if (VT.isFloatingPoint()) { 2700 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(V)) { 2701 if (VT == MVT::f32 || VT == MVT::f64) { 2702 const APInt &Imm = C->getValueAPF().bitcastToAPInt(); 2703 uint64_t Val = Imm.getSExtValue(); 2704 if (Imm.getBitWidth() == 32) 2705 Val <<= 32; // Immediate value of float place at higher bits on VE. 2706 return isInt<7>(Val); 2707 } 2708 } 2709 } 2710 return false; 2711 } 2712 2713 static bool isMImm(SDValue V) { 2714 EVT VT = V.getValueType(); 2715 if (VT.isVector()) 2716 return false; 2717 2718 if (VT.isInteger()) { 2719 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(V)) 2720 return isMImmVal(getImmVal(C)); 2721 } else if (VT.isFloatingPoint()) { 2722 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(V)) { 2723 if (VT == MVT::f32) { 2724 // Float value places at higher bits, so ignore lower 32 bits. 2725 return isMImm32Val(getFpImmVal(C) >> 32); 2726 } else if (VT == MVT::f64) { 2727 return isMImmVal(getFpImmVal(C)); 2728 } 2729 } 2730 } 2731 return false; 2732 } 2733 2734 static unsigned decideComp(EVT SrcVT, ISD::CondCode CC) { 2735 if (SrcVT.isFloatingPoint()) { 2736 if (SrcVT == MVT::f128) 2737 return VEISD::CMPQ; 2738 return VEISD::CMPF; 2739 } 2740 return isSignedIntSetCC(CC) ? VEISD::CMPI : VEISD::CMPU; 2741 } 2742 2743 static EVT decideCompType(EVT SrcVT) { 2744 if (SrcVT == MVT::f128) 2745 return MVT::f64; 2746 return SrcVT; 2747 } 2748 2749 static bool safeWithoutCompWithNull(EVT SrcVT, ISD::CondCode CC, 2750 bool WithCMov) { 2751 if (SrcVT.isFloatingPoint()) { 2752 // For the case of floating point setcc, only unordered comparison 2753 // or general comparison with -enable-no-nans-fp-math option reach 2754 // here, so it is safe even if values are NaN. Only f128 doesn't 2755 // safe since VE uses f64 result of f128 comparison. 2756 return SrcVT != MVT::f128; 2757 } 2758 if (isIntEqualitySetCC(CC)) { 2759 // For the case of equal or not equal, it is safe without comparison with 0. 2760 return true; 2761 } 2762 if (WithCMov) { 2763 // For the case of integer setcc with cmov, all signed comparison with 0 2764 // are safe. 2765 return isSignedIntSetCC(CC); 2766 } 2767 // For the case of integer setcc, only signed 64 bits comparison is safe. 2768 // For unsigned, "CMPU 0x80000000, 0" has to be greater than 0, but it becomes 2769 // less than 0 witout CMPU. For 32 bits, other half of 32 bits are 2770 // uncoditional, so it is not safe too without CMPI.. 2771 return isSignedIntSetCC(CC) && SrcVT == MVT::i64; 2772 } 2773 2774 static SDValue generateComparison(EVT VT, SDValue LHS, SDValue RHS, 2775 ISD::CondCode CC, bool WithCMov, 2776 const SDLoc &DL, SelectionDAG &DAG) { 2777 // Compare values. If RHS is 0 and it is safe to calculate without 2778 // comparison, we don't generate an instruction for comparison. 2779 EVT CompVT = decideCompType(VT); 2780 if (CompVT == VT && safeWithoutCompWithNull(VT, CC, WithCMov) && 2781 (isNullConstant(RHS) || isNullFPConstant(RHS))) { 2782 return LHS; 2783 } 2784 return DAG.getNode(decideComp(VT, CC), DL, CompVT, LHS, RHS); 2785 } 2786 2787 SDValue VETargetLowering::combineSelect(SDNode *N, 2788 DAGCombinerInfo &DCI) const { 2789 assert(N->getOpcode() == ISD::SELECT && 2790 "Should be called with a SELECT node"); 2791 ISD::CondCode CC = ISD::CondCode::SETNE; 2792 SDValue Cond = N->getOperand(0); 2793 SDValue True = N->getOperand(1); 2794 SDValue False = N->getOperand(2); 2795 2796 // We handle only scalar SELECT. 2797 EVT VT = N->getValueType(0); 2798 if (VT.isVector()) 2799 return SDValue(); 2800 2801 // Peform combineSelect after leagalize DAG. 2802 if (!DCI.isAfterLegalizeDAG()) 2803 return SDValue(); 2804 2805 EVT VT0 = Cond.getValueType(); 2806 if (isMImm(True)) { 2807 // VE's condition move can handle MImm in True clause, so nothing to do. 2808 } else if (isMImm(False)) { 2809 // VE's condition move can handle MImm in True clause, so swap True and 2810 // False clauses if False has MImm value. And, update condition code. 2811 std::swap(True, False); 2812 CC = getSetCCInverse(CC, VT0); 2813 } 2814 2815 SDLoc DL(N); 2816 SelectionDAG &DAG = DCI.DAG; 2817 VECC::CondCode VECCVal; 2818 if (VT0.isFloatingPoint()) { 2819 VECCVal = fpCondCode2Fcc(CC); 2820 } else { 2821 VECCVal = intCondCode2Icc(CC); 2822 } 2823 SDValue Ops[] = {Cond, True, False, 2824 DAG.getConstant(VECCVal, DL, MVT::i32)}; 2825 return DAG.getNode(VEISD::CMOV, DL, VT, Ops); 2826 } 2827 2828 SDValue VETargetLowering::combineSelectCC(SDNode *N, 2829 DAGCombinerInfo &DCI) const { 2830 assert(N->getOpcode() == ISD::SELECT_CC && 2831 "Should be called with a SELECT_CC node"); 2832 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 2833 SDValue LHS = N->getOperand(0); 2834 SDValue RHS = N->getOperand(1); 2835 SDValue True = N->getOperand(2); 2836 SDValue False = N->getOperand(3); 2837 2838 // We handle only scalar SELECT_CC. 2839 EVT VT = N->getValueType(0); 2840 if (VT.isVector()) 2841 return SDValue(); 2842 2843 // Peform combineSelectCC after leagalize DAG. 2844 if (!DCI.isAfterLegalizeDAG()) 2845 return SDValue(); 2846 2847 // We handle only i32/i64/f32/f64/f128 comparisons. 2848 EVT LHSVT = LHS.getValueType(); 2849 assert(LHSVT == RHS.getValueType()); 2850 switch (LHSVT.getSimpleVT().SimpleTy) { 2851 case MVT::i32: 2852 case MVT::i64: 2853 case MVT::f32: 2854 case MVT::f64: 2855 case MVT::f128: 2856 break; 2857 default: 2858 // Return SDValue to let llvm handle other types. 2859 return SDValue(); 2860 } 2861 2862 if (isMImm(RHS)) { 2863 // VE's comparison can handle MImm in RHS, so nothing to do. 2864 } else if (isSimm7(RHS)) { 2865 // VE's comparison can handle Simm7 in LHS, so swap LHS and RHS, and 2866 // update condition code. 2867 std::swap(LHS, RHS); 2868 CC = getSetCCSwappedOperands(CC); 2869 } 2870 if (isMImm(True)) { 2871 // VE's condition move can handle MImm in True clause, so nothing to do. 2872 } else if (isMImm(False)) { 2873 // VE's condition move can handle MImm in True clause, so swap True and 2874 // False clauses if False has MImm value. And, update condition code. 2875 std::swap(True, False); 2876 CC = getSetCCInverse(CC, LHSVT); 2877 } 2878 2879 SDLoc DL(N); 2880 SelectionDAG &DAG = DCI.DAG; 2881 2882 bool WithCMov = true; 2883 SDValue CompNode = generateComparison(LHSVT, LHS, RHS, CC, WithCMov, DL, DAG); 2884 2885 VECC::CondCode VECCVal; 2886 if (LHSVT.isFloatingPoint()) { 2887 VECCVal = fpCondCode2Fcc(CC); 2888 } else { 2889 VECCVal = intCondCode2Icc(CC); 2890 } 2891 SDValue Ops[] = {CompNode, True, False, 2892 DAG.getConstant(VECCVal, DL, MVT::i32)}; 2893 return DAG.getNode(VEISD::CMOV, DL, VT, Ops); 2894 } 2895 2896 static bool isI32InsnAllUses(const SDNode *User, const SDNode *N); 2897 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2898 switch (User->getOpcode()) { 2899 default: 2900 return false; 2901 case ISD::ADD: 2902 case ISD::SUB: 2903 case ISD::MUL: 2904 case ISD::SDIV: 2905 case ISD::UDIV: 2906 case ISD::SETCC: 2907 case ISD::SMIN: 2908 case ISD::SMAX: 2909 case ISD::SHL: 2910 case ISD::SRA: 2911 case ISD::BSWAP: 2912 case ISD::SINT_TO_FP: 2913 case ISD::UINT_TO_FP: 2914 case ISD::BR_CC: 2915 case ISD::BITCAST: 2916 case ISD::ATOMIC_CMP_SWAP: 2917 case ISD::ATOMIC_SWAP: 2918 case VEISD::CMPU: 2919 case VEISD::CMPI: 2920 return true; 2921 case ISD::SRL: 2922 if (N->getOperand(0).getOpcode() != ISD::SRL) 2923 return true; 2924 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2925 // doesn't optimize trunc now. 2926 return false; 2927 case ISD::SELECT_CC: 2928 if (User->getOperand(2).getNode() != N && 2929 User->getOperand(3).getNode() != N) 2930 return true; 2931 return isI32InsnAllUses(User, N); 2932 case VEISD::CMOV: 2933 // CMOV in (cmov (trunc ...), true, false, int-comparison) is safe. 2934 // However, trunc in true or false clauses is not safe. 2935 if (User->getOperand(1).getNode() != N && 2936 User->getOperand(2).getNode() != N && 2937 isa<ConstantSDNode>(User->getOperand(3))) { 2938 VECC::CondCode VECCVal = 2939 static_cast<VECC::CondCode>(User->getConstantOperandVal(3)); 2940 return isIntVECondCode(VECCVal); 2941 } 2942 [[fallthrough]]; 2943 case ISD::AND: 2944 case ISD::OR: 2945 case ISD::XOR: 2946 case ISD::SELECT: 2947 case ISD::CopyToReg: 2948 // Check all use of selections, bit operations, and copies. If all of them 2949 // are safe, optimize truncate to extract_subreg. 2950 return isI32InsnAllUses(User, N); 2951 } 2952 } 2953 2954 static bool isI32InsnAllUses(const SDNode *User, const SDNode *N) { 2955 // Check all use of User node. If all of them are safe, optimize 2956 // truncate to extract_subreg. 2957 for (const SDNode *U : User->uses()) { 2958 switch (U->getOpcode()) { 2959 default: 2960 // If the use is an instruction which treats the source operand as i32, 2961 // it is safe to avoid truncate here. 2962 if (isI32Insn(U, N)) 2963 continue; 2964 break; 2965 case ISD::ANY_EXTEND: 2966 case ISD::SIGN_EXTEND: 2967 case ISD::ZERO_EXTEND: { 2968 // Special optimizations to the combination of ext and trunc. 2969 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2970 // since this truncate instruction clears higher 32 bits which is filled 2971 // by one of ext instructions later. 2972 assert(N->getValueType(0) == MVT::i32 && 2973 "find truncate to not i32 integer"); 2974 if (User->getOpcode() == ISD::SELECT_CC || 2975 User->getOpcode() == ISD::SELECT || User->getOpcode() == VEISD::CMOV) 2976 continue; 2977 break; 2978 } 2979 } 2980 return false; 2981 } 2982 return true; 2983 } 2984 2985 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2986 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2987 // is sometime too late. So, doing it at here. 2988 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2989 DAGCombinerInfo &DCI) const { 2990 assert(N->getOpcode() == ISD::TRUNCATE && 2991 "Should be called with a TRUNCATE node"); 2992 2993 SelectionDAG &DAG = DCI.DAG; 2994 SDLoc DL(N); 2995 EVT VT = N->getValueType(0); 2996 2997 // We prefer to do this when all types are legal. 2998 if (!DCI.isAfterLegalizeDAG()) 2999 return SDValue(); 3000 3001 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 3002 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 3003 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 3004 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 3005 return SDValue(); 3006 3007 // Check all use of this TRUNCATE. 3008 for (const SDNode *User : N->uses()) { 3009 // Make sure that we're not going to replace TRUNCATE for non i32 3010 // instructions. 3011 // 3012 // FIXME: Although we could sometimes handle this, and it does occur in 3013 // practice that one of the condition inputs to the select is also one of 3014 // the outputs, we currently can't deal with this. 3015 if (isI32Insn(User, N)) 3016 continue; 3017 3018 return SDValue(); 3019 } 3020 3021 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 3022 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 3023 N->getOperand(0), SubI32), 3024 0); 3025 } 3026 3027 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 3028 DAGCombinerInfo &DCI) const { 3029 switch (N->getOpcode()) { 3030 default: 3031 break; 3032 case ISD::SELECT: 3033 return combineSelect(N, DCI); 3034 case ISD::SELECT_CC: 3035 return combineSelectCC(N, DCI); 3036 case ISD::TRUNCATE: 3037 return combineTRUNCATE(N, DCI); 3038 } 3039 3040 return SDValue(); 3041 } 3042 3043 //===----------------------------------------------------------------------===// 3044 // VE Inline Assembly Support 3045 //===----------------------------------------------------------------------===// 3046 3047 VETargetLowering::ConstraintType 3048 VETargetLowering::getConstraintType(StringRef Constraint) const { 3049 if (Constraint.size() == 1) { 3050 switch (Constraint[0]) { 3051 default: 3052 break; 3053 case 'v': // vector registers 3054 return C_RegisterClass; 3055 } 3056 } 3057 return TargetLowering::getConstraintType(Constraint); 3058 } 3059 3060 std::pair<unsigned, const TargetRegisterClass *> 3061 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3062 StringRef Constraint, 3063 MVT VT) const { 3064 const TargetRegisterClass *RC = nullptr; 3065 if (Constraint.size() == 1) { 3066 switch (Constraint[0]) { 3067 default: 3068 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3069 case 'r': 3070 RC = &VE::I64RegClass; 3071 break; 3072 case 'v': 3073 RC = &VE::V64RegClass; 3074 break; 3075 } 3076 return std::make_pair(0U, RC); 3077 } 3078 3079 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3080 } 3081 3082 //===----------------------------------------------------------------------===// 3083 // VE Target Optimization Support 3084 //===----------------------------------------------------------------------===// 3085 3086 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 3087 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 3088 if (isJumpTableRelative()) 3089 return 8; 3090 3091 return TargetLowering::getMinimumJumpTableEntries(); 3092 } 3093 3094 bool VETargetLowering::hasAndNot(SDValue Y) const { 3095 EVT VT = Y.getValueType(); 3096 3097 // VE doesn't have vector and not instruction. 3098 if (VT.isVector()) 3099 return false; 3100 3101 // VE allows different immediate values for X and Y where ~X & Y. 3102 // Only simm7 works for X, and only mimm works for Y on VE. However, this 3103 // function is used to check whether an immediate value is OK for and-not 3104 // instruction as both X and Y. Generating additional instruction to 3105 // retrieve an immediate value is no good since the purpose of this 3106 // function is to convert a series of 3 instructions to another series of 3107 // 3 instructions with better parallelism. Therefore, we return false 3108 // for all immediate values now. 3109 // FIXME: Change hasAndNot function to have two operands to make it work 3110 // correctly with Aurora VE. 3111 if (isa<ConstantSDNode>(Y)) 3112 return false; 3113 3114 // It's ok for generic registers. 3115 return true; 3116 } 3117 3118 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3119 SelectionDAG &DAG) const { 3120 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 3121 MVT VT = Op.getOperand(0).getSimpleValueType(); 3122 3123 // Special treatment for packed V64 types. 3124 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 3125 (void)VT; 3126 // Example of codes: 3127 // %packed_v = extractelt %vr, %idx / 2 3128 // %v = %packed_v >> (%idx % 2 * 32) 3129 // %res = %v & 0xffffffff 3130 3131 SDValue Vec = Op.getOperand(0); 3132 SDValue Idx = Op.getOperand(1); 3133 SDLoc DL(Op); 3134 SDValue Result = Op; 3135 if (false /* Idx->isConstant() */) { 3136 // TODO: optimized implementation using constant values 3137 } else { 3138 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 3139 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 3140 SDValue PackedElt = 3141 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 3142 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 3143 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 3144 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 3145 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 3146 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 3147 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 3148 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 3149 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 3150 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 3151 MVT::i32, PackedElt, SubI32), 3152 0); 3153 3154 if (Op.getSimpleValueType() == MVT::f32) { 3155 Result = DAG.getBitcast(MVT::f32, Result); 3156 } else { 3157 assert(Op.getSimpleValueType() == MVT::i32); 3158 } 3159 } 3160 return Result; 3161 } 3162 3163 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3164 SelectionDAG &DAG) const { 3165 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 3166 MVT VT = Op.getOperand(0).getSimpleValueType(); 3167 3168 // Special treatment for packed V64 types. 3169 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 3170 (void)VT; 3171 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 3172 // bits" required `val << 32` from C implementation's point of view. 3173 // 3174 // Example of codes: 3175 // %packed_elt = extractelt %vr, (%idx >> 1) 3176 // %shift = ((%idx & 1) ^ 1) << 5 3177 // %packed_elt &= 0xffffffff00000000 >> shift 3178 // %packed_elt |= (zext %val) << shift 3179 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 3180 3181 SDLoc DL(Op); 3182 SDValue Vec = Op.getOperand(0); 3183 SDValue Val = Op.getOperand(1); 3184 SDValue Idx = Op.getOperand(2); 3185 if (Idx.getSimpleValueType() == MVT::i32) 3186 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 3187 if (Val.getSimpleValueType() == MVT::f32) 3188 Val = DAG.getBitcast(MVT::i32, Val); 3189 assert(Val.getSimpleValueType() == MVT::i32); 3190 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 3191 3192 SDValue Result = Op; 3193 if (false /* Idx->isConstant()*/) { 3194 // TODO: optimized implementation using constant values 3195 } else { 3196 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 3197 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 3198 SDValue PackedElt = 3199 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 3200 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 3201 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 3202 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 3203 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 3204 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 3205 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 3206 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 3207 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 3208 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 3209 Result = 3210 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 3211 {HalfIdx, PackedElt, Vec}), 3212 0); 3213 } 3214 return Result; 3215 } 3216