1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VECustomDAG.h" 17 #include "VEInstrBuilder.h" 18 #include "VEMachineFunctionInfo.h" 19 #include "VERegisterInfo.h" 20 #include "VETargetMachine.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ve-lower" 40 41 //===----------------------------------------------------------------------===// 42 // Calling Convention Implementation 43 //===----------------------------------------------------------------------===// 44 45 #include "VEGenCallingConv.inc" 46 47 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 48 switch (CallConv) { 49 default: 50 return RetCC_VE_C; 51 case CallingConv::Fast: 52 return RetCC_VE_Fast; 53 } 54 } 55 56 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 57 if (IsVarArg) 58 return CC_VE2; 59 switch (CallConv) { 60 default: 61 return CC_VE_C; 62 case CallingConv::Fast: 63 return CC_VE_Fast; 64 } 65 } 66 67 bool VETargetLowering::CanLowerReturn( 68 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 69 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 70 CCAssignFn *RetCC = getReturnCC(CallConv); 71 SmallVector<CCValAssign, 16> RVLocs; 72 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 73 return CCInfo.CheckReturn(Outs, RetCC); 74 } 75 76 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 77 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 78 79 static const MVT AllMaskVTs[] = {MVT::v256i1, MVT::v512i1}; 80 81 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 82 83 void VETargetLowering::initRegisterClasses() { 84 // Set up the register classes. 85 addRegisterClass(MVT::i32, &VE::I32RegClass); 86 addRegisterClass(MVT::i64, &VE::I64RegClass); 87 addRegisterClass(MVT::f32, &VE::F32RegClass); 88 addRegisterClass(MVT::f64, &VE::I64RegClass); 89 addRegisterClass(MVT::f128, &VE::F128RegClass); 90 91 if (Subtarget->enableVPU()) { 92 for (MVT VecVT : AllVectorVTs) 93 addRegisterClass(VecVT, &VE::V64RegClass); 94 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 95 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 96 } 97 } 98 99 void VETargetLowering::initSPUActions() { 100 const auto &TM = getTargetMachine(); 101 /// Load & Store { 102 103 // VE doesn't have i1 sign extending load. 104 for (MVT VT : MVT::integer_valuetypes()) { 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 106 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 107 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 108 setTruncStoreAction(VT, MVT::i1, Expand); 109 } 110 111 // VE doesn't have floating point extload/truncstore, so expand them. 112 for (MVT FPVT : MVT::fp_valuetypes()) { 113 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 114 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 115 setTruncStoreAction(FPVT, OtherFPVT, Expand); 116 } 117 } 118 119 // VE doesn't have fp128 load/store, so expand them in custom lower. 120 setOperationAction(ISD::LOAD, MVT::f128, Custom); 121 setOperationAction(ISD::STORE, MVT::f128, Custom); 122 123 /// } Load & Store 124 125 // Custom legalize address nodes into LO/HI parts. 126 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 127 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 128 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 129 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 130 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 131 setOperationAction(ISD::JumpTable, PtrVT, Custom); 132 133 /// VAARG handling { 134 setOperationAction(ISD::VASTART, MVT::Other, Custom); 135 // VAARG needs to be lowered to access with 8 bytes alignment. 136 setOperationAction(ISD::VAARG, MVT::Other, Custom); 137 // Use the default implementation. 138 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 139 setOperationAction(ISD::VAEND, MVT::Other, Expand); 140 /// } VAARG handling 141 142 /// Stack { 143 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 145 146 // Use the default implementation. 147 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 148 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 149 /// } Stack 150 151 /// Branch { 152 153 // VE doesn't have BRCOND 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // BR_JT is not implemented yet. 157 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 158 159 /// } Branch 160 161 /// Int Ops { 162 for (MVT IntVT : {MVT::i32, MVT::i64}) { 163 // VE has no REM or DIVREM operations. 164 setOperationAction(ISD::UREM, IntVT, Expand); 165 setOperationAction(ISD::SREM, IntVT, Expand); 166 setOperationAction(ISD::SDIVREM, IntVT, Expand); 167 setOperationAction(ISD::UDIVREM, IntVT, Expand); 168 169 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 170 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 171 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 172 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 173 174 // VE has no MULHU/S or U/SMUL_LOHI operations. 175 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 176 setOperationAction(ISD::MULHU, IntVT, Expand); 177 setOperationAction(ISD::MULHS, IntVT, Expand); 178 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 179 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 180 181 // VE has no CTTZ, ROTL, ROTR operations. 182 setOperationAction(ISD::CTTZ, IntVT, Expand); 183 setOperationAction(ISD::ROTL, IntVT, Expand); 184 setOperationAction(ISD::ROTR, IntVT, Expand); 185 186 // VE has 64 bits instruction which works as i64 BSWAP operation. This 187 // instruction works fine as i32 BSWAP operation with an additional 188 // parameter. Use isel patterns to lower BSWAP. 189 setOperationAction(ISD::BSWAP, IntVT, Legal); 190 191 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 192 // operations. Use isel patterns for i64, promote for i32. 193 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 194 setOperationAction(ISD::BITREVERSE, IntVT, Act); 195 setOperationAction(ISD::CTLZ, IntVT, Act); 196 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 197 setOperationAction(ISD::CTPOP, IntVT, Act); 198 199 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 200 // Use isel patterns for i64, promote for i32. 201 setOperationAction(ISD::AND, IntVT, Act); 202 setOperationAction(ISD::OR, IntVT, Act); 203 setOperationAction(ISD::XOR, IntVT, Act); 204 205 // Legal smax and smin 206 setOperationAction(ISD::SMAX, IntVT, Legal); 207 setOperationAction(ISD::SMIN, IntVT, Legal); 208 } 209 /// } Int Ops 210 211 /// Conversion { 212 // VE doesn't have instructions for fp<->uint, so expand them by llvm 213 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 214 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 215 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 216 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 217 218 // fp16 not supported 219 for (MVT FPVT : MVT::fp_valuetypes()) { 220 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 221 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 222 } 223 /// } Conversion 224 225 /// Floating-point Ops { 226 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 227 /// and fcmp. 228 229 // VE doesn't have following floating point operations. 230 for (MVT VT : MVT::fp_valuetypes()) { 231 setOperationAction(ISD::FNEG, VT, Expand); 232 setOperationAction(ISD::FREM, VT, Expand); 233 } 234 235 // VE doesn't have fdiv of f128. 236 setOperationAction(ISD::FDIV, MVT::f128, Expand); 237 238 for (MVT FPVT : {MVT::f32, MVT::f64}) { 239 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 240 setOperationAction(ISD::ConstantFP, FPVT, Legal); 241 } 242 /// } Floating-point Ops 243 244 /// Floating-point math functions { 245 246 // VE doesn't have following floating point math functions. 247 for (MVT VT : MVT::fp_valuetypes()) { 248 setOperationAction(ISD::FABS, VT, Expand); 249 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 250 setOperationAction(ISD::FCOS, VT, Expand); 251 setOperationAction(ISD::FMA, VT, Expand); 252 setOperationAction(ISD::FPOW, VT, Expand); 253 setOperationAction(ISD::FSIN, VT, Expand); 254 setOperationAction(ISD::FSQRT, VT, Expand); 255 } 256 257 // VE has single and double FMINNUM and FMAXNUM 258 for (MVT VT : {MVT::f32, MVT::f64}) { 259 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, VT, Legal); 260 } 261 262 /// } Floating-point math functions 263 264 /// Atomic instructions { 265 266 setMaxAtomicSizeInBitsSupported(64); 267 setMinCmpXchgSizeInBits(32); 268 setSupportsUnalignedAtomics(false); 269 270 // Use custom inserter for ATOMIC_FENCE. 271 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 272 273 // Other atomic instructions. 274 for (MVT VT : MVT::integer_valuetypes()) { 275 // Support i8/i16 atomic swap. 276 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 277 278 // FIXME: Support "atmam" instructions. 279 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 280 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 281 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 282 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 283 284 // VE doesn't have follwing instructions. 285 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 286 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 287 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 288 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 289 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 290 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 291 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 292 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 293 } 294 295 /// } Atomic instructions 296 297 /// SJLJ instructions { 298 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 299 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 300 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 301 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 302 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 303 /// } SJLJ instructions 304 305 // Intrinsic instructions 306 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 307 } 308 309 void VETargetLowering::initVPUActions() { 310 for (MVT LegalMaskVT : AllMaskVTs) 311 setOperationAction(ISD::BUILD_VECTOR, LegalMaskVT, Custom); 312 313 for (unsigned Opc : {ISD::AND, ISD::OR, ISD::XOR}) 314 setOperationAction(Opc, MVT::v512i1, Custom); 315 316 for (MVT LegalVecVT : AllVectorVTs) { 317 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 318 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 320 // Translate all vector instructions with legal element types to VVP_* 321 // nodes. 322 // TODO We will custom-widen into VVP_* nodes in the future. While we are 323 // buildling the infrastructure for this, we only do this for legal vector 324 // VTs. 325 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 326 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 327 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 328 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 329 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, LegalVecVT, Custom); 330 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_STORE, LegalVecVT, Custom); 331 #include "VVPNodes.def" 332 } 333 334 for (MVT LegalPackedVT : AllPackedVTs) { 335 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 336 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 337 } 338 339 // vNt32, vNt64 ops (legal element types) 340 for (MVT VT : MVT::vector_valuetypes()) { 341 MVT ElemVT = VT.getVectorElementType(); 342 unsigned ElemBits = ElemVT.getScalarSizeInBits(); 343 if (ElemBits != 32 && ElemBits != 64) 344 continue; 345 346 for (unsigned MemOpc : {ISD::MLOAD, ISD::MSTORE, ISD::LOAD, ISD::STORE}) 347 setOperationAction(MemOpc, VT, Custom); 348 349 const ISD::NodeType IntReductionOCs[] = { 350 ISD::VECREDUCE_ADD, ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, 351 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMIN, 352 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_UMAX}; 353 354 for (unsigned IntRedOpc : IntReductionOCs) 355 setOperationAction(IntRedOpc, VT, Custom); 356 } 357 358 // v256i1 and v512i1 ops 359 for (MVT MaskVT : AllMaskVTs) { 360 // Custom lower mask ops 361 setOperationAction(ISD::STORE, MaskVT, Custom); 362 setOperationAction(ISD::LOAD, MaskVT, Custom); 363 } 364 } 365 366 SDValue 367 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 368 bool IsVarArg, 369 const SmallVectorImpl<ISD::OutputArg> &Outs, 370 const SmallVectorImpl<SDValue> &OutVals, 371 const SDLoc &DL, SelectionDAG &DAG) const { 372 // CCValAssign - represent the assignment of the return value to locations. 373 SmallVector<CCValAssign, 16> RVLocs; 374 375 // CCState - Info about the registers and stack slot. 376 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 377 *DAG.getContext()); 378 379 // Analyze return values. 380 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 381 382 SDValue Glue; 383 SmallVector<SDValue, 4> RetOps(1, Chain); 384 385 // Copy the result values into the output registers. 386 for (unsigned i = 0; i != RVLocs.size(); ++i) { 387 CCValAssign &VA = RVLocs[i]; 388 assert(VA.isRegLoc() && "Can only return in registers!"); 389 assert(!VA.needsCustom() && "Unexpected custom lowering"); 390 SDValue OutVal = OutVals[i]; 391 392 // Integer return values must be sign or zero extended by the callee. 393 switch (VA.getLocInfo()) { 394 case CCValAssign::Full: 395 break; 396 case CCValAssign::SExt: 397 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 398 break; 399 case CCValAssign::ZExt: 400 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 401 break; 402 case CCValAssign::AExt: 403 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 404 break; 405 case CCValAssign::BCvt: { 406 // Convert a float return value to i64 with padding. 407 // 63 31 0 408 // +------+------+ 409 // | float| 0 | 410 // +------+------+ 411 assert(VA.getLocVT() == MVT::i64); 412 assert(VA.getValVT() == MVT::f32); 413 SDValue Undef = SDValue( 414 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 415 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 416 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 417 MVT::i64, Undef, OutVal, Sub_f32), 418 0); 419 break; 420 } 421 default: 422 llvm_unreachable("Unknown loc info!"); 423 } 424 425 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue); 426 427 // Guarantee that all emitted copies are stuck together with flags. 428 Glue = Chain.getValue(1); 429 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 430 } 431 432 RetOps[0] = Chain; // Update chain. 433 434 // Add the glue if we have it. 435 if (Glue.getNode()) 436 RetOps.push_back(Glue); 437 438 return DAG.getNode(VEISD::RET_GLUE, DL, MVT::Other, RetOps); 439 } 440 441 SDValue VETargetLowering::LowerFormalArguments( 442 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 443 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 444 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 445 MachineFunction &MF = DAG.getMachineFunction(); 446 447 // Get the base offset of the incoming arguments stack space. 448 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 449 // Get the size of the preserved arguments area 450 unsigned ArgsPreserved = 64; 451 452 // Analyze arguments according to CC_VE. 453 SmallVector<CCValAssign, 16> ArgLocs; 454 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 455 *DAG.getContext()); 456 // Allocate the preserved area first. 457 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 458 // We already allocated the preserved area, so the stack offset computed 459 // by CC_VE would be correct now. 460 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 461 462 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 463 CCValAssign &VA = ArgLocs[i]; 464 assert(!VA.needsCustom() && "Unexpected custom lowering"); 465 if (VA.isRegLoc()) { 466 // This argument is passed in a register. 467 // All integer register arguments are promoted by the caller to i64. 468 469 // Create a virtual register for the promoted live-in value. 470 Register VReg = 471 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 472 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 473 474 // The caller promoted the argument, so insert an Assert?ext SDNode so we 475 // won't promote the value again in this function. 476 switch (VA.getLocInfo()) { 477 case CCValAssign::SExt: 478 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 479 DAG.getValueType(VA.getValVT())); 480 break; 481 case CCValAssign::ZExt: 482 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 483 DAG.getValueType(VA.getValVT())); 484 break; 485 case CCValAssign::BCvt: { 486 // Extract a float argument from i64 with padding. 487 // 63 31 0 488 // +------+------+ 489 // | float| 0 | 490 // +------+------+ 491 assert(VA.getLocVT() == MVT::i64); 492 assert(VA.getValVT() == MVT::f32); 493 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 494 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 495 MVT::f32, Arg, Sub_f32), 496 0); 497 break; 498 } 499 default: 500 break; 501 } 502 503 // Truncate the register down to the argument type. 504 if (VA.isExtInLoc()) 505 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 506 507 InVals.push_back(Arg); 508 continue; 509 } 510 511 // The registers are exhausted. This argument was passed on the stack. 512 assert(VA.isMemLoc()); 513 // The CC_VE_Full/Half functions compute stack offsets relative to the 514 // beginning of the arguments area at %fp + the size of reserved area. 515 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 516 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 517 518 // Adjust offset for a float argument by adding 4 since the argument is 519 // stored in 8 bytes buffer with offset like below. LLVM generates 520 // 4 bytes load instruction, so need to adjust offset here. This 521 // adjustment is required in only LowerFormalArguments. In LowerCall, 522 // a float argument is converted to i64 first, and stored as 8 bytes 523 // data, which is required by ABI, so no need for adjustment. 524 // 0 4 525 // +------+------+ 526 // | empty| float| 527 // +------+------+ 528 if (VA.getValVT() == MVT::f32) 529 Offset += 4; 530 531 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 532 InVals.push_back( 533 DAG.getLoad(VA.getValVT(), DL, Chain, 534 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 535 MachinePointerInfo::getFixedStack(MF, FI))); 536 } 537 538 if (!IsVarArg) 539 return Chain; 540 541 // This function takes variable arguments, some of which may have been passed 542 // in registers %s0-%s8. 543 // 544 // The va_start intrinsic needs to know the offset to the first variable 545 // argument. 546 // TODO: need to calculate offset correctly once we support f128. 547 unsigned ArgOffset = ArgLocs.size() * 8; 548 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 549 // Skip the reserved area at the top of stack. 550 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 551 552 return Chain; 553 } 554 555 // FIXME? Maybe this could be a TableGen attribute on some registers and 556 // this table could be generated automatically from RegInfo. 557 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 558 const MachineFunction &MF) const { 559 Register Reg = StringSwitch<Register>(RegName) 560 .Case("sp", VE::SX11) // Stack pointer 561 .Case("fp", VE::SX9) // Frame pointer 562 .Case("sl", VE::SX8) // Stack limit 563 .Case("lr", VE::SX10) // Link register 564 .Case("tp", VE::SX14) // Thread pointer 565 .Case("outer", VE::SX12) // Outer regiser 566 .Case("info", VE::SX17) // Info area register 567 .Case("got", VE::SX15) // Global offset table register 568 .Case("plt", VE::SX16) // Procedure linkage table register 569 .Default(0); 570 571 if (Reg) 572 return Reg; 573 574 report_fatal_error("Invalid register name global variable"); 575 } 576 577 //===----------------------------------------------------------------------===// 578 // TargetLowering Implementation 579 //===----------------------------------------------------------------------===// 580 581 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 582 SmallVectorImpl<SDValue> &InVals) const { 583 SelectionDAG &DAG = CLI.DAG; 584 SDLoc DL = CLI.DL; 585 SDValue Chain = CLI.Chain; 586 auto PtrVT = getPointerTy(DAG.getDataLayout()); 587 588 // VE target does not yet support tail call optimization. 589 CLI.IsTailCall = false; 590 591 // Get the base offset of the outgoing arguments stack space. 592 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 593 // Get the size of the preserved arguments area 594 unsigned ArgsPreserved = 8 * 8u; 595 596 // Analyze operands of the call, assigning locations to each operand. 597 SmallVector<CCValAssign, 16> ArgLocs; 598 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 599 *DAG.getContext()); 600 // Allocate the preserved area first. 601 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 602 // We already allocated the preserved area, so the stack offset computed 603 // by CC_VE would be correct now. 604 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 605 606 // VE requires to use both register and stack for varargs or no-prototyped 607 // functions. 608 bool UseBoth = CLI.IsVarArg; 609 610 // Analyze operands again if it is required to store BOTH. 611 SmallVector<CCValAssign, 16> ArgLocs2; 612 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 613 ArgLocs2, *DAG.getContext()); 614 if (UseBoth) 615 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 616 617 // Get the size of the outgoing arguments stack space requirement. 618 unsigned ArgsSize = CCInfo.getStackSize(); 619 620 // Keep stack frames 16-byte aligned. 621 ArgsSize = alignTo(ArgsSize, 16); 622 623 // Adjust the stack pointer to make room for the arguments. 624 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 625 // with more than 6 arguments. 626 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 627 628 // Collect the set of registers to pass to the function and their values. 629 // This will be emitted as a sequence of CopyToReg nodes glued to the call 630 // instruction. 631 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 632 633 // Collect chains from all the memory opeations that copy arguments to the 634 // stack. They must follow the stack pointer adjustment above and precede the 635 // call instruction itself. 636 SmallVector<SDValue, 8> MemOpChains; 637 638 // VE needs to get address of callee function in a register 639 // So, prepare to copy it to SX12 here. 640 641 // If the callee is a GlobalAddress node (quite common, every direct call is) 642 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 643 // Likewise ExternalSymbol -> TargetExternalSymbol. 644 SDValue Callee = CLI.Callee; 645 646 bool IsPICCall = isPositionIndependent(); 647 648 // PC-relative references to external symbols should go through $stub. 649 // If so, we need to prepare GlobalBaseReg first. 650 const TargetMachine &TM = DAG.getTarget(); 651 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 652 const GlobalValue *GV = nullptr; 653 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 654 if (CalleeG) 655 GV = CalleeG->getGlobal(); 656 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 657 bool UsePlt = !Local; 658 MachineFunction &MF = DAG.getMachineFunction(); 659 660 // Turn GlobalAddress/ExternalSymbol node into a value node 661 // containing the address of them here. 662 if (CalleeG) { 663 if (IsPICCall) { 664 if (UsePlt) 665 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 666 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 667 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 668 } else { 669 Callee = 670 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 671 } 672 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 673 if (IsPICCall) { 674 if (UsePlt) 675 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 676 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 677 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 678 } else { 679 Callee = 680 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 681 } 682 } 683 684 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 685 686 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 687 CCValAssign &VA = ArgLocs[i]; 688 SDValue Arg = CLI.OutVals[i]; 689 690 // Promote the value if needed. 691 switch (VA.getLocInfo()) { 692 default: 693 llvm_unreachable("Unknown location info!"); 694 case CCValAssign::Full: 695 break; 696 case CCValAssign::SExt: 697 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 698 break; 699 case CCValAssign::ZExt: 700 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 701 break; 702 case CCValAssign::AExt: 703 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 704 break; 705 case CCValAssign::BCvt: { 706 // Convert a float argument to i64 with padding. 707 // 63 31 0 708 // +------+------+ 709 // | float| 0 | 710 // +------+------+ 711 assert(VA.getLocVT() == MVT::i64); 712 assert(VA.getValVT() == MVT::f32); 713 SDValue Undef = SDValue( 714 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 715 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 716 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 717 MVT::i64, Undef, Arg, Sub_f32), 718 0); 719 break; 720 } 721 } 722 723 if (VA.isRegLoc()) { 724 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 725 if (!UseBoth) 726 continue; 727 VA = ArgLocs2[i]; 728 } 729 730 assert(VA.isMemLoc()); 731 732 // Create a store off the stack pointer for this argument. 733 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 734 // The argument area starts at %fp/%sp + the size of reserved area. 735 SDValue PtrOff = 736 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 737 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 738 MemOpChains.push_back( 739 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 740 } 741 742 // Emit all stores, make sure they occur before the call. 743 if (!MemOpChains.empty()) 744 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 745 746 // Build a sequence of CopyToReg nodes glued together with token chain and 747 // glue operands which copy the outgoing args into registers. The InGlue is 748 // necessary since all emitted instructions must be stuck together in order 749 // to pass the live physical registers. 750 SDValue InGlue; 751 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 752 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 753 RegsToPass[i].second, InGlue); 754 InGlue = Chain.getValue(1); 755 } 756 757 // Build the operands for the call instruction itself. 758 SmallVector<SDValue, 8> Ops; 759 Ops.push_back(Chain); 760 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 761 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 762 RegsToPass[i].second.getValueType())); 763 764 // Add a register mask operand representing the call-preserved registers. 765 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 766 const uint32_t *Mask = 767 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 768 assert(Mask && "Missing call preserved mask for calling convention"); 769 Ops.push_back(DAG.getRegisterMask(Mask)); 770 771 // Make sure the CopyToReg nodes are glued to the call instruction which 772 // consumes the registers. 773 if (InGlue.getNode()) 774 Ops.push_back(InGlue); 775 776 // Now the call itself. 777 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 778 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 779 InGlue = Chain.getValue(1); 780 781 // Revert the stack pointer immediately after the call. 782 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL); 783 InGlue = Chain.getValue(1); 784 785 // Now extract the return values. This is more or less the same as 786 // LowerFormalArguments. 787 788 // Assign locations to each value returned by this call. 789 SmallVector<CCValAssign, 16> RVLocs; 790 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 791 *DAG.getContext()); 792 793 // Set inreg flag manually for codegen generated library calls that 794 // return float. 795 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 796 CLI.Ins[0].Flags.setInReg(); 797 798 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 799 800 // Copy all of the result registers out of their specified physreg. 801 for (unsigned i = 0; i != RVLocs.size(); ++i) { 802 CCValAssign &VA = RVLocs[i]; 803 assert(!VA.needsCustom() && "Unexpected custom lowering"); 804 Register Reg = VA.getLocReg(); 805 806 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 807 // reside in the same register in the high and low bits. Reuse the 808 // CopyFromReg previous node to avoid duplicate copies. 809 SDValue RV; 810 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 811 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 812 RV = Chain.getValue(0); 813 814 // But usually we'll create a new CopyFromReg for a different register. 815 if (!RV.getNode()) { 816 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 817 Chain = RV.getValue(1); 818 InGlue = Chain.getValue(2); 819 } 820 821 // The callee promoted the return value, so insert an Assert?ext SDNode so 822 // we won't promote the value again in this function. 823 switch (VA.getLocInfo()) { 824 case CCValAssign::SExt: 825 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 826 DAG.getValueType(VA.getValVT())); 827 break; 828 case CCValAssign::ZExt: 829 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 830 DAG.getValueType(VA.getValVT())); 831 break; 832 case CCValAssign::BCvt: { 833 // Extract a float return value from i64 with padding. 834 // 63 31 0 835 // +------+------+ 836 // | float| 0 | 837 // +------+------+ 838 assert(VA.getLocVT() == MVT::i64); 839 assert(VA.getValVT() == MVT::f32); 840 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 841 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 842 MVT::f32, RV, Sub_f32), 843 0); 844 break; 845 } 846 default: 847 break; 848 } 849 850 // Truncate the register down to the return value type. 851 if (VA.isExtInLoc()) 852 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 853 854 InVals.push_back(RV); 855 } 856 857 return Chain; 858 } 859 860 bool VETargetLowering::isOffsetFoldingLegal( 861 const GlobalAddressSDNode *GA) const { 862 // VE uses 64 bit addressing, so we need multiple instructions to generate 863 // an address. Folding address with offset increases the number of 864 // instructions, so that we disable it here. Offsets will be folded in 865 // the DAG combine later if it worth to do so. 866 return false; 867 } 868 869 /// isFPImmLegal - Returns true if the target can instruction select the 870 /// specified FP immediate natively. If false, the legalizer will 871 /// materialize the FP immediate as a load from a constant pool. 872 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 873 bool ForCodeSize) const { 874 return VT == MVT::f32 || VT == MVT::f64; 875 } 876 877 /// Determine if the target supports unaligned memory accesses. 878 /// 879 /// This function returns true if the target allows unaligned memory accesses 880 /// of the specified type in the given address space. If true, it also returns 881 /// whether the unaligned memory access is "fast" in the last argument by 882 /// reference. This is used, for example, in situations where an array 883 /// copy/move/set is converted to a sequence of store operations. Its use 884 /// helps to ensure that such replacements don't generate code that causes an 885 /// alignment error (trap) on the target machine. 886 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 887 unsigned AddrSpace, 888 Align A, 889 MachineMemOperand::Flags, 890 unsigned *Fast) const { 891 if (Fast) { 892 // It's fast anytime on VE 893 *Fast = 1; 894 } 895 return true; 896 } 897 898 VETargetLowering::VETargetLowering(const TargetMachine &TM, 899 const VESubtarget &STI) 900 : TargetLowering(TM), Subtarget(&STI) { 901 // Instructions which use registers as conditionals examine all the 902 // bits (as does the pseudo SELECT_CC expansion). I don't think it 903 // matters much whether it's ZeroOrOneBooleanContent, or 904 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 905 // former. 906 setBooleanContents(ZeroOrOneBooleanContent); 907 setBooleanVectorContents(ZeroOrOneBooleanContent); 908 909 initRegisterClasses(); 910 initSPUActions(); 911 initVPUActions(); 912 913 setStackPointerRegisterToSaveRestore(VE::SX11); 914 915 // We have target-specific dag combine patterns for the following nodes: 916 setTargetDAGCombine(ISD::TRUNCATE); 917 setTargetDAGCombine(ISD::SELECT); 918 setTargetDAGCombine(ISD::SELECT_CC); 919 920 // Set function alignment to 16 bytes 921 setMinFunctionAlignment(Align(16)); 922 923 // VE stores all argument by 8 bytes alignment 924 setMinStackArgumentAlignment(Align(8)); 925 926 computeRegisterProperties(Subtarget->getRegisterInfo()); 927 } 928 929 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 930 #define TARGET_NODE_CASE(NAME) \ 931 case VEISD::NAME: \ 932 return "VEISD::" #NAME; 933 switch ((VEISD::NodeType)Opcode) { 934 case VEISD::FIRST_NUMBER: 935 break; 936 TARGET_NODE_CASE(CMPI) 937 TARGET_NODE_CASE(CMPU) 938 TARGET_NODE_CASE(CMPF) 939 TARGET_NODE_CASE(CMPQ) 940 TARGET_NODE_CASE(CMOV) 941 TARGET_NODE_CASE(CALL) 942 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 943 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 944 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 945 TARGET_NODE_CASE(GETFUNPLT) 946 TARGET_NODE_CASE(GETSTACKTOP) 947 TARGET_NODE_CASE(GETTLSADDR) 948 TARGET_NODE_CASE(GLOBAL_BASE_REG) 949 TARGET_NODE_CASE(Hi) 950 TARGET_NODE_CASE(Lo) 951 TARGET_NODE_CASE(RET_GLUE) 952 TARGET_NODE_CASE(TS1AM) 953 TARGET_NODE_CASE(VEC_UNPACK_LO) 954 TARGET_NODE_CASE(VEC_UNPACK_HI) 955 TARGET_NODE_CASE(VEC_PACK) 956 TARGET_NODE_CASE(VEC_BROADCAST) 957 TARGET_NODE_CASE(REPL_I32) 958 TARGET_NODE_CASE(REPL_F32) 959 960 TARGET_NODE_CASE(LEGALAVL) 961 962 // Register the VVP_* SDNodes. 963 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 964 #include "VVPNodes.def" 965 } 966 #undef TARGET_NODE_CASE 967 return nullptr; 968 } 969 970 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 971 EVT VT) const { 972 return MVT::i32; 973 } 974 975 // Convert to a target node and set target flags. 976 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 977 SelectionDAG &DAG) const { 978 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 979 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 980 GA->getValueType(0), GA->getOffset(), TF); 981 982 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 983 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 984 0, TF); 985 986 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 987 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 988 CP->getAlign(), CP->getOffset(), TF); 989 990 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 991 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 992 TF); 993 994 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 995 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 996 997 llvm_unreachable("Unhandled address SDNode"); 998 } 999 1000 // Split Op into high and low parts according to HiTF and LoTF. 1001 // Return an ADD node combining the parts. 1002 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 1003 SelectionDAG &DAG) const { 1004 SDLoc DL(Op); 1005 EVT VT = Op.getValueType(); 1006 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 1007 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 1008 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1009 } 1010 1011 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 1012 // or ExternalSymbol SDNode. 1013 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 1014 SDLoc DL(Op); 1015 EVT PtrVT = Op.getValueType(); 1016 1017 // Handle PIC mode first. VE needs a got load for every variable! 1018 if (isPositionIndependent()) { 1019 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 1020 1021 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 1022 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 1023 // Create following instructions for local linkage PIC code. 1024 // lea %reg, label@gotoff_lo 1025 // and %reg, %reg, (32)0 1026 // lea.sl %reg, label@gotoff_hi(%reg, %got) 1027 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1028 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1029 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1030 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1031 } 1032 // Create following instructions for not local linkage PIC code. 1033 // lea %reg, label@got_lo 1034 // and %reg, %reg, (32)0 1035 // lea.sl %reg, label@got_hi(%reg) 1036 // ld %reg, (%reg, %got) 1037 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 1038 VEMCExpr::VK_VE_GOT_LO32, DAG); 1039 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1040 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1041 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 1042 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1043 } 1044 1045 // This is one of the absolute code models. 1046 switch (getTargetMachine().getCodeModel()) { 1047 default: 1048 llvm_unreachable("Unsupported absolute code model"); 1049 case CodeModel::Small: 1050 case CodeModel::Medium: 1051 case CodeModel::Large: 1052 // abs64. 1053 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1054 } 1055 } 1056 1057 /// Custom Lower { 1058 1059 // The mappings for emitLeading/TrailingFence for VE is designed by following 1060 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1061 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, 1062 Instruction *Inst, 1063 AtomicOrdering Ord) const { 1064 switch (Ord) { 1065 case AtomicOrdering::NotAtomic: 1066 case AtomicOrdering::Unordered: 1067 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1068 case AtomicOrdering::Monotonic: 1069 case AtomicOrdering::Acquire: 1070 return nullptr; // Nothing to do 1071 case AtomicOrdering::Release: 1072 case AtomicOrdering::AcquireRelease: 1073 return Builder.CreateFence(AtomicOrdering::Release); 1074 case AtomicOrdering::SequentiallyConsistent: 1075 if (!Inst->hasAtomicStore()) 1076 return nullptr; // Nothing to do 1077 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1078 } 1079 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1080 } 1081 1082 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, 1083 Instruction *Inst, 1084 AtomicOrdering Ord) const { 1085 switch (Ord) { 1086 case AtomicOrdering::NotAtomic: 1087 case AtomicOrdering::Unordered: 1088 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1089 case AtomicOrdering::Monotonic: 1090 case AtomicOrdering::Release: 1091 return nullptr; // Nothing to do 1092 case AtomicOrdering::Acquire: 1093 case AtomicOrdering::AcquireRelease: 1094 return Builder.CreateFence(AtomicOrdering::Acquire); 1095 case AtomicOrdering::SequentiallyConsistent: 1096 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1097 } 1098 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1099 } 1100 1101 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1102 SelectionDAG &DAG) const { 1103 SDLoc DL(Op); 1104 AtomicOrdering FenceOrdering = 1105 static_cast<AtomicOrdering>(Op.getConstantOperandVal(1)); 1106 SyncScope::ID FenceSSID = 1107 static_cast<SyncScope::ID>(Op.getConstantOperandVal(2)); 1108 1109 // VE uses Release consistency, so need a fence instruction if it is a 1110 // cross-thread fence. 1111 if (FenceSSID == SyncScope::System) { 1112 switch (FenceOrdering) { 1113 case AtomicOrdering::NotAtomic: 1114 case AtomicOrdering::Unordered: 1115 case AtomicOrdering::Monotonic: 1116 // No need to generate fencem instruction here. 1117 break; 1118 case AtomicOrdering::Acquire: 1119 // Generate "fencem 2" as acquire fence. 1120 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1121 DAG.getTargetConstant(2, DL, MVT::i32), 1122 Op.getOperand(0)), 1123 0); 1124 case AtomicOrdering::Release: 1125 // Generate "fencem 1" as release fence. 1126 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1127 DAG.getTargetConstant(1, DL, MVT::i32), 1128 Op.getOperand(0)), 1129 0); 1130 case AtomicOrdering::AcquireRelease: 1131 case AtomicOrdering::SequentiallyConsistent: 1132 // Generate "fencem 3" as acq_rel and seq_cst fence. 1133 // FIXME: "fencem 3" doesn't wait for PCIe deveices accesses, 1134 // so seq_cst may require more instruction for them. 1135 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1136 DAG.getTargetConstant(3, DL, MVT::i32), 1137 Op.getOperand(0)), 1138 0); 1139 } 1140 } 1141 1142 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1143 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1144 } 1145 1146 TargetLowering::AtomicExpansionKind 1147 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1148 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1149 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1150 return AtomicExpansionKind::None; 1151 } 1152 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1153 1154 // Otherwise, expand it using compare and exchange instruction to not call 1155 // __sync_fetch_and_* functions. 1156 return AtomicExpansionKind::CmpXChg; 1157 } 1158 1159 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1160 SDValue &Bits) { 1161 SDLoc DL(Op); 1162 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1163 SDValue Ptr = N->getOperand(1); 1164 SDValue Val = N->getOperand(2); 1165 EVT PtrVT = Ptr.getValueType(); 1166 bool Byte = N->getMemoryVT() == MVT::i8; 1167 // Remainder = AND Ptr, 3 1168 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1169 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1170 // Bits = Remainder << 3 1171 // NewVal = Val << Bits 1172 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1173 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1174 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1175 : DAG.getConstant(3, DL, MVT::i32); 1176 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1177 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1178 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1179 } 1180 1181 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1182 SDValue Bits) { 1183 SDLoc DL(Op); 1184 EVT VT = Data.getValueType(); 1185 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1186 // NewData = Data >> Bits 1187 // Result = NewData & 0xff ; If Byte is true (1 byte) 1188 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1189 1190 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1191 return DAG.getNode(ISD::AND, DL, VT, 1192 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1193 } 1194 1195 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1196 SelectionDAG &DAG) const { 1197 SDLoc DL(Op); 1198 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1199 1200 if (N->getMemoryVT() == MVT::i8) { 1201 // For i8, use "ts1am" 1202 // Input: 1203 // ATOMIC_SWAP Ptr, Val, Order 1204 // 1205 // Output: 1206 // Remainder = AND Ptr, 3 1207 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1208 // Bits = Remainder << 3 1209 // NewVal = Val << Bits 1210 // 1211 // Aligned = AND Ptr, -4 1212 // Data = TS1AM Aligned, Flag, NewVal 1213 // 1214 // NewData = Data >> Bits 1215 // Result = NewData & 0xff ; 1 byte result 1216 SDValue Flag; 1217 SDValue Bits; 1218 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1219 1220 SDValue Ptr = N->getOperand(1); 1221 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1222 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1223 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1224 DAG.getVTList(Op.getNode()->getValueType(0), 1225 Op.getNode()->getValueType(1)), 1226 {N->getChain(), Aligned, Flag, NewVal}, 1227 N->getMemOperand()); 1228 1229 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1230 SDValue Chain = TS1AM.getValue(1); 1231 return DAG.getMergeValues({Result, Chain}, DL); 1232 } 1233 if (N->getMemoryVT() == MVT::i16) { 1234 // For i16, use "ts1am" 1235 SDValue Flag; 1236 SDValue Bits; 1237 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1238 1239 SDValue Ptr = N->getOperand(1); 1240 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1241 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1242 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1243 DAG.getVTList(Op.getNode()->getValueType(0), 1244 Op.getNode()->getValueType(1)), 1245 {N->getChain(), Aligned, Flag, NewVal}, 1246 N->getMemOperand()); 1247 1248 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1249 SDValue Chain = TS1AM.getValue(1); 1250 return DAG.getMergeValues({Result, Chain}, DL); 1251 } 1252 // Otherwise, let llvm legalize it. 1253 return Op; 1254 } 1255 1256 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1257 SelectionDAG &DAG) const { 1258 return makeAddress(Op, DAG); 1259 } 1260 1261 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1262 SelectionDAG &DAG) const { 1263 return makeAddress(Op, DAG); 1264 } 1265 1266 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1267 SelectionDAG &DAG) const { 1268 return makeAddress(Op, DAG); 1269 } 1270 1271 SDValue 1272 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1273 SelectionDAG &DAG) const { 1274 SDLoc DL(Op); 1275 1276 // Generate the following code: 1277 // t1: ch,glue = callseq_start t0, 0, 0 1278 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1279 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1280 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1281 SDValue Label = withTargetFlags(Op, 0, DAG); 1282 EVT PtrVT = Op.getValueType(); 1283 1284 // Lowering the machine isd will make sure everything is in the right 1285 // location. 1286 SDValue Chain = DAG.getEntryNode(); 1287 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1288 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1289 DAG.getMachineFunction(), CallingConv::C); 1290 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1291 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1292 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1293 Chain = DAG.getCALLSEQ_END(Chain, 64, 0, Chain.getValue(1), DL); 1294 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1295 1296 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1297 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1298 MFI.setHasCalls(true); 1299 1300 // Also generate code to prepare a GOT register if it is PIC. 1301 if (isPositionIndependent()) { 1302 MachineFunction &MF = DAG.getMachineFunction(); 1303 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1304 } 1305 1306 return Chain; 1307 } 1308 1309 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1310 SelectionDAG &DAG) const { 1311 // The current implementation of nld (2.26) doesn't allow local exec model 1312 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1313 // generate the general dynamic model code sequence. 1314 // 1315 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1316 return lowerToTLSGeneralDynamicModel(Op, DAG); 1317 } 1318 1319 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1320 return makeAddress(Op, DAG); 1321 } 1322 1323 // Lower a f128 load into two f64 loads. 1324 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1325 SDLoc DL(Op); 1326 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1327 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1328 Align Alignment = LdNode->getAlign(); 1329 if (Alignment > 8) 1330 Alignment = Align(8); 1331 1332 SDValue Lo64 = 1333 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1334 LdNode->getPointerInfo(), Alignment, 1335 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1336 : MachineMemOperand::MONone); 1337 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1338 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1339 DAG.getConstant(8, DL, AddrVT)); 1340 SDValue Hi64 = 1341 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1342 LdNode->getPointerInfo(), Alignment, 1343 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1344 : MachineMemOperand::MONone); 1345 1346 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1347 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1348 1349 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1350 SDNode *InFP128 = 1351 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1352 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1353 SDValue(InFP128, 0), Hi64, SubRegEven); 1354 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1355 SDValue(InFP128, 0), Lo64, SubRegOdd); 1356 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1357 SDValue(Hi64.getNode(), 1)}; 1358 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1359 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1360 return DAG.getMergeValues(Ops, DL); 1361 } 1362 1363 // Lower a vXi1 load into following instructions 1364 // LDrii %1, (,%addr) 1365 // LVMxir %vm, 0, %1 1366 // LDrii %2, 8(,%addr) 1367 // LVMxir %vm, 0, %2 1368 // ... 1369 static SDValue lowerLoadI1(SDValue Op, SelectionDAG &DAG) { 1370 SDLoc DL(Op); 1371 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1372 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1373 1374 SDValue BasePtr = LdNode->getBasePtr(); 1375 Align Alignment = LdNode->getAlign(); 1376 if (Alignment > 8) 1377 Alignment = Align(8); 1378 1379 EVT AddrVT = BasePtr.getValueType(); 1380 EVT MemVT = LdNode->getMemoryVT(); 1381 if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { 1382 SDValue OutChains[4]; 1383 SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT); 1384 for (int i = 0; i < 4; ++i) { 1385 // Generate load dag and prepare chains. 1386 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1387 DAG.getConstant(8 * i, DL, AddrVT)); 1388 SDValue Val = 1389 DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr, 1390 LdNode->getPointerInfo(), Alignment, 1391 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1392 : MachineMemOperand::MONone); 1393 OutChains[i] = SDValue(Val.getNode(), 1); 1394 1395 VM = DAG.getMachineNode(VE::LVMir_m, DL, MVT::i64, 1396 DAG.getTargetConstant(i, DL, MVT::i64), Val, 1397 SDValue(VM, 0)); 1398 } 1399 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1400 SDValue Ops[2] = {SDValue(VM, 0), OutChain}; 1401 return DAG.getMergeValues(Ops, DL); 1402 } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { 1403 SDValue OutChains[8]; 1404 SDNode *VM = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MemVT); 1405 for (int i = 0; i < 8; ++i) { 1406 // Generate load dag and prepare chains. 1407 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1408 DAG.getConstant(8 * i, DL, AddrVT)); 1409 SDValue Val = 1410 DAG.getLoad(MVT::i64, DL, LdNode->getChain(), Addr, 1411 LdNode->getPointerInfo(), Alignment, 1412 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1413 : MachineMemOperand::MONone); 1414 OutChains[i] = SDValue(Val.getNode(), 1); 1415 1416 VM = DAG.getMachineNode(VE::LVMyir_y, DL, MVT::i64, 1417 DAG.getTargetConstant(i, DL, MVT::i64), Val, 1418 SDValue(VM, 0)); 1419 } 1420 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1421 SDValue Ops[2] = {SDValue(VM, 0), OutChain}; 1422 return DAG.getMergeValues(Ops, DL); 1423 } else { 1424 // Otherwise, ask llvm to expand it. 1425 return SDValue(); 1426 } 1427 } 1428 1429 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1430 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1431 EVT MemVT = LdNode->getMemoryVT(); 1432 1433 // If VPU is enabled, always expand non-mask vector loads to VVP 1434 if (Subtarget->enableVPU() && MemVT.isVector() && !isMaskType(MemVT)) 1435 return lowerToVVP(Op, DAG); 1436 1437 SDValue BasePtr = LdNode->getBasePtr(); 1438 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1439 // Do not expand store instruction with frame index here because of 1440 // dependency problems. We expand it later in eliminateFrameIndex(). 1441 return Op; 1442 } 1443 1444 if (MemVT == MVT::f128) 1445 return lowerLoadF128(Op, DAG); 1446 if (isMaskType(MemVT)) 1447 return lowerLoadI1(Op, DAG); 1448 1449 return Op; 1450 } 1451 1452 // Lower a f128 store into two f64 stores. 1453 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1454 SDLoc DL(Op); 1455 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1456 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1457 1458 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1459 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1460 1461 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1462 StNode->getValue(), SubRegEven); 1463 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1464 StNode->getValue(), SubRegOdd); 1465 1466 Align Alignment = StNode->getAlign(); 1467 if (Alignment > 8) 1468 Alignment = Align(8); 1469 1470 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1471 SDValue OutChains[2]; 1472 OutChains[0] = 1473 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1474 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1475 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1476 : MachineMemOperand::MONone); 1477 EVT AddrVT = StNode->getBasePtr().getValueType(); 1478 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1479 DAG.getConstant(8, DL, AddrVT)); 1480 OutChains[1] = 1481 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1482 MachinePointerInfo(), Alignment, 1483 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1484 : MachineMemOperand::MONone); 1485 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1486 } 1487 1488 // Lower a vXi1 store into following instructions 1489 // SVMi %1, %vm, 0 1490 // STrii %1, (,%addr) 1491 // SVMi %2, %vm, 1 1492 // STrii %2, 8(,%addr) 1493 // ... 1494 static SDValue lowerStoreI1(SDValue Op, SelectionDAG &DAG) { 1495 SDLoc DL(Op); 1496 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1497 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1498 1499 SDValue BasePtr = StNode->getBasePtr(); 1500 Align Alignment = StNode->getAlign(); 1501 if (Alignment > 8) 1502 Alignment = Align(8); 1503 EVT AddrVT = BasePtr.getValueType(); 1504 EVT MemVT = StNode->getMemoryVT(); 1505 if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { 1506 SDValue OutChains[4]; 1507 for (int i = 0; i < 4; ++i) { 1508 SDNode *V = 1509 DAG.getMachineNode(VE::SVMmi, DL, MVT::i64, StNode->getValue(), 1510 DAG.getTargetConstant(i, DL, MVT::i64)); 1511 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1512 DAG.getConstant(8 * i, DL, AddrVT)); 1513 OutChains[i] = 1514 DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr, 1515 MachinePointerInfo(), Alignment, 1516 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1517 : MachineMemOperand::MONone); 1518 } 1519 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1520 } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { 1521 SDValue OutChains[8]; 1522 for (int i = 0; i < 8; ++i) { 1523 SDNode *V = 1524 DAG.getMachineNode(VE::SVMyi, DL, MVT::i64, StNode->getValue(), 1525 DAG.getTargetConstant(i, DL, MVT::i64)); 1526 SDValue Addr = DAG.getNode(ISD::ADD, DL, AddrVT, BasePtr, 1527 DAG.getConstant(8 * i, DL, AddrVT)); 1528 OutChains[i] = 1529 DAG.getStore(StNode->getChain(), DL, SDValue(V, 0), Addr, 1530 MachinePointerInfo(), Alignment, 1531 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1532 : MachineMemOperand::MONone); 1533 } 1534 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1535 } else { 1536 // Otherwise, ask llvm to expand it. 1537 return SDValue(); 1538 } 1539 } 1540 1541 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1542 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1543 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1544 EVT MemVT = StNode->getMemoryVT(); 1545 1546 // If VPU is enabled, always expand non-mask vector stores to VVP 1547 if (Subtarget->enableVPU() && MemVT.isVector() && !isMaskType(MemVT)) 1548 return lowerToVVP(Op, DAG); 1549 1550 SDValue BasePtr = StNode->getBasePtr(); 1551 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1552 // Do not expand store instruction with frame index here because of 1553 // dependency problems. We expand it later in eliminateFrameIndex(). 1554 return Op; 1555 } 1556 1557 if (MemVT == MVT::f128) 1558 return lowerStoreF128(Op, DAG); 1559 if (isMaskType(MemVT)) 1560 return lowerStoreI1(Op, DAG); 1561 1562 // Otherwise, ask llvm to expand it. 1563 return SDValue(); 1564 } 1565 1566 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1567 MachineFunction &MF = DAG.getMachineFunction(); 1568 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1569 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1570 1571 // Need frame address to find the address of VarArgsFrameIndex. 1572 MF.getFrameInfo().setFrameAddressIsTaken(true); 1573 1574 // vastart just stores the address of the VarArgsFrameIndex slot into the 1575 // memory location argument. 1576 SDLoc DL(Op); 1577 SDValue Offset = 1578 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1579 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1580 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1581 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1582 MachinePointerInfo(SV)); 1583 } 1584 1585 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1586 SDNode *Node = Op.getNode(); 1587 EVT VT = Node->getValueType(0); 1588 SDValue InChain = Node->getOperand(0); 1589 SDValue VAListPtr = Node->getOperand(1); 1590 EVT PtrVT = VAListPtr.getValueType(); 1591 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1592 SDLoc DL(Node); 1593 SDValue VAList = 1594 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1595 SDValue Chain = VAList.getValue(1); 1596 SDValue NextPtr; 1597 1598 if (VT == MVT::f128) { 1599 // VE f128 values must be stored with 16 bytes alignment. We don't 1600 // know the actual alignment of VAList, so we take alignment of it 1601 // dynamically. 1602 int Align = 16; 1603 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1604 DAG.getConstant(Align - 1, DL, PtrVT)); 1605 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1606 DAG.getConstant(-Align, DL, PtrVT)); 1607 // Increment the pointer, VAList, by 16 to the next vaarg. 1608 NextPtr = 1609 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1610 } else if (VT == MVT::f32) { 1611 // float --> need special handling like below. 1612 // 0 4 1613 // +------+------+ 1614 // | empty| float| 1615 // +------+------+ 1616 // Increment the pointer, VAList, by 8 to the next vaarg. 1617 NextPtr = 1618 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1619 // Then, adjust VAList. 1620 unsigned InternalOffset = 4; 1621 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1622 DAG.getConstant(InternalOffset, DL, PtrVT)); 1623 } else { 1624 // Increment the pointer, VAList, by 8 to the next vaarg. 1625 NextPtr = 1626 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1627 } 1628 1629 // Store the incremented VAList to the legalized pointer. 1630 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1631 1632 // Load the actual argument out of the pointer VAList. 1633 // We can't count on greater alignment than the word size. 1634 return DAG.getLoad( 1635 VT, DL, InChain, VAList, MachinePointerInfo(), 1636 Align(std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8)); 1637 } 1638 1639 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1640 SelectionDAG &DAG) const { 1641 // Generate following code. 1642 // (void)__llvm_grow_stack(size); 1643 // ret = GETSTACKTOP; // pseudo instruction 1644 SDLoc DL(Op); 1645 1646 // Get the inputs. 1647 SDNode *Node = Op.getNode(); 1648 SDValue Chain = Op.getOperand(0); 1649 SDValue Size = Op.getOperand(1); 1650 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1651 EVT VT = Node->getValueType(0); 1652 1653 // Chain the dynamic stack allocation so that it doesn't modify the stack 1654 // pointer when other instructions are using the stack. 1655 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1656 1657 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1658 Align StackAlign = TFI.getStackAlign(); 1659 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1660 1661 // Prepare arguments 1662 TargetLowering::ArgListTy Args; 1663 TargetLowering::ArgListEntry Entry; 1664 Entry.Node = Size; 1665 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1666 Args.push_back(Entry); 1667 if (NeedsAlign) { 1668 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1669 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1670 Args.push_back(Entry); 1671 } 1672 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1673 1674 EVT PtrVT = Op.getValueType(); 1675 SDValue Callee; 1676 if (NeedsAlign) { 1677 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1678 } else { 1679 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1680 } 1681 1682 TargetLowering::CallLoweringInfo CLI(DAG); 1683 CLI.setDebugLoc(DL) 1684 .setChain(Chain) 1685 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1686 .setDiscardResult(true); 1687 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1688 Chain = pair.second; 1689 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1690 if (NeedsAlign) { 1691 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1692 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1693 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1694 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1695 } 1696 // Chain = Result.getValue(1); 1697 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), DL); 1698 1699 SDValue Ops[2] = {Result, Chain}; 1700 return DAG.getMergeValues(Ops, DL); 1701 } 1702 1703 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1704 SelectionDAG &DAG) const { 1705 SDLoc DL(Op); 1706 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1707 Op.getOperand(1)); 1708 } 1709 1710 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1711 SelectionDAG &DAG) const { 1712 SDLoc DL(Op); 1713 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1714 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1715 Op.getOperand(1)); 1716 } 1717 1718 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1719 SelectionDAG &DAG) const { 1720 SDLoc DL(Op); 1721 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1722 Op.getOperand(0)); 1723 } 1724 1725 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1726 const VETargetLowering &TLI, 1727 const VESubtarget *Subtarget) { 1728 SDLoc DL(Op); 1729 MachineFunction &MF = DAG.getMachineFunction(); 1730 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1731 1732 MachineFrameInfo &MFI = MF.getFrameInfo(); 1733 MFI.setFrameAddressIsTaken(true); 1734 1735 unsigned Depth = Op.getConstantOperandVal(0); 1736 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1737 Register FrameReg = RegInfo->getFrameRegister(MF); 1738 SDValue FrameAddr = 1739 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1740 while (Depth--) 1741 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1742 FrameAddr, MachinePointerInfo()); 1743 return FrameAddr; 1744 } 1745 1746 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1747 const VETargetLowering &TLI, 1748 const VESubtarget *Subtarget) { 1749 MachineFunction &MF = DAG.getMachineFunction(); 1750 MachineFrameInfo &MFI = MF.getFrameInfo(); 1751 MFI.setReturnAddressIsTaken(true); 1752 1753 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1754 return SDValue(); 1755 1756 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1757 1758 SDLoc DL(Op); 1759 EVT VT = Op.getValueType(); 1760 SDValue Offset = DAG.getConstant(8, DL, VT); 1761 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1762 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1763 MachinePointerInfo()); 1764 } 1765 1766 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1767 SelectionDAG &DAG) const { 1768 SDLoc DL(Op); 1769 unsigned IntNo = Op.getConstantOperandVal(0); 1770 switch (IntNo) { 1771 default: // Don't custom lower most intrinsics. 1772 return SDValue(); 1773 case Intrinsic::eh_sjlj_lsda: { 1774 MachineFunction &MF = DAG.getMachineFunction(); 1775 MVT VT = Op.getSimpleValueType(); 1776 const VETargetMachine *TM = 1777 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1778 1779 // Create GCC_except_tableXX string. The real symbol for that will be 1780 // generated in EHStreamer::emitExceptionTable() later. So, we just 1781 // borrow it's name here. 1782 TM->getStrList()->push_back(std::string( 1783 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1784 SDValue Addr = 1785 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1786 if (isPositionIndependent()) { 1787 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1788 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1789 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1790 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1791 } 1792 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1793 } 1794 } 1795 } 1796 1797 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1798 if (!isa<BuildVectorSDNode>(N)) 1799 return false; 1800 const auto *BVN = cast<BuildVectorSDNode>(N); 1801 1802 // Find first non-undef insertion. 1803 unsigned Idx; 1804 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1805 auto ElemV = BVN->getOperand(Idx); 1806 if (!ElemV->isUndef()) 1807 break; 1808 } 1809 // Catch the (hypothetical) all-undef case. 1810 if (Idx == BVN->getNumOperands()) 1811 return false; 1812 // Remember insertion. 1813 UniqueIdx = Idx++; 1814 // Verify that all other insertions are undef. 1815 for (; Idx < BVN->getNumOperands(); ++Idx) { 1816 auto ElemV = BVN->getOperand(Idx); 1817 if (!ElemV->isUndef()) 1818 return false; 1819 } 1820 return true; 1821 } 1822 1823 static SDValue getSplatValue(SDNode *N) { 1824 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1825 return BuildVec->getSplatValue(); 1826 } 1827 return SDValue(); 1828 } 1829 1830 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1831 SelectionDAG &DAG) const { 1832 VECustomDAG CDAG(DAG, Op); 1833 MVT ResultVT = Op.getSimpleValueType(); 1834 1835 // If there is just one element, expand to INSERT_VECTOR_ELT. 1836 unsigned UniqueIdx; 1837 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1838 SDValue AccuV = CDAG.getUNDEF(Op.getValueType()); 1839 auto ElemV = Op->getOperand(UniqueIdx); 1840 SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64); 1841 return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV}); 1842 } 1843 1844 // Else emit a broadcast. 1845 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1846 unsigned NumEls = ResultVT.getVectorNumElements(); 1847 auto AVL = CDAG.getConstant(NumEls, MVT::i32); 1848 return CDAG.getBroadcast(ResultVT, ScalarV, AVL); 1849 } 1850 1851 // Expand 1852 return SDValue(); 1853 } 1854 1855 TargetLowering::LegalizeAction 1856 VETargetLowering::getCustomOperationAction(SDNode &Op) const { 1857 // Custom legalization on VVP_* and VEC_* opcodes is required to pack-legalize 1858 // these operations (transform nodes such that their AVL parameter refers to 1859 // packs of 64bit, instead of number of elements. 1860 1861 // Packing opcodes are created with a pack-legal AVL (LEGALAVL). No need to 1862 // re-visit them. 1863 if (isPackingSupportOpcode(Op.getOpcode())) 1864 return Legal; 1865 1866 // Custom lower to legalize AVL for packed mode. 1867 if (isVVPOrVEC(Op.getOpcode())) 1868 return Custom; 1869 return Legal; 1870 } 1871 1872 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1873 LLVM_DEBUG(dbgs() << "::LowerOperation "; Op.dump(&DAG)); 1874 unsigned Opcode = Op.getOpcode(); 1875 1876 /// Scalar isel. 1877 switch (Opcode) { 1878 case ISD::ATOMIC_FENCE: 1879 return lowerATOMIC_FENCE(Op, DAG); 1880 case ISD::ATOMIC_SWAP: 1881 return lowerATOMIC_SWAP(Op, DAG); 1882 case ISD::BlockAddress: 1883 return lowerBlockAddress(Op, DAG); 1884 case ISD::ConstantPool: 1885 return lowerConstantPool(Op, DAG); 1886 case ISD::DYNAMIC_STACKALLOC: 1887 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1888 case ISD::EH_SJLJ_LONGJMP: 1889 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1890 case ISD::EH_SJLJ_SETJMP: 1891 return lowerEH_SJLJ_SETJMP(Op, DAG); 1892 case ISD::EH_SJLJ_SETUP_DISPATCH: 1893 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1894 case ISD::FRAMEADDR: 1895 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1896 case ISD::GlobalAddress: 1897 return lowerGlobalAddress(Op, DAG); 1898 case ISD::GlobalTLSAddress: 1899 return lowerGlobalTLSAddress(Op, DAG); 1900 case ISD::INTRINSIC_WO_CHAIN: 1901 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1902 case ISD::JumpTable: 1903 return lowerJumpTable(Op, DAG); 1904 case ISD::LOAD: 1905 return lowerLOAD(Op, DAG); 1906 case ISD::RETURNADDR: 1907 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1908 case ISD::BUILD_VECTOR: 1909 return lowerBUILD_VECTOR(Op, DAG); 1910 case ISD::STORE: 1911 return lowerSTORE(Op, DAG); 1912 case ISD::VASTART: 1913 return lowerVASTART(Op, DAG); 1914 case ISD::VAARG: 1915 return lowerVAARG(Op, DAG); 1916 1917 case ISD::INSERT_VECTOR_ELT: 1918 return lowerINSERT_VECTOR_ELT(Op, DAG); 1919 case ISD::EXTRACT_VECTOR_ELT: 1920 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1921 } 1922 1923 /// Vector isel. 1924 if (ISD::isVPOpcode(Opcode)) 1925 return lowerToVVP(Op, DAG); 1926 1927 switch (Opcode) { 1928 default: 1929 llvm_unreachable("Should not custom lower this!"); 1930 1931 // Legalize the AVL of this internal node. 1932 case VEISD::VEC_BROADCAST: 1933 #define ADD_VVP_OP(VVP_NAME, ...) case VEISD::VVP_NAME: 1934 #include "VVPNodes.def" 1935 // AVL already legalized. 1936 if (getAnnotatedNodeAVL(Op).second) 1937 return Op; 1938 return legalizeInternalVectorOp(Op, DAG); 1939 1940 // Translate into a VEC_*/VVP_* layer operation. 1941 case ISD::MLOAD: 1942 case ISD::MSTORE: 1943 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1944 #include "VVPNodes.def" 1945 if (isMaskArithmetic(Op) && isPackedVectorType(Op.getValueType())) 1946 return splitMaskArithmetic(Op, DAG); 1947 return lowerToVVP(Op, DAG); 1948 } 1949 } 1950 /// } Custom Lower 1951 1952 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1953 SmallVectorImpl<SDValue> &Results, 1954 SelectionDAG &DAG) const { 1955 switch (N->getOpcode()) { 1956 case ISD::ATOMIC_SWAP: 1957 // Let LLVM expand atomic swap instruction through LowerOperation. 1958 return; 1959 default: 1960 LLVM_DEBUG(N->dumpr(&DAG)); 1961 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1962 } 1963 } 1964 1965 /// JumpTable for VE. 1966 /// 1967 /// VE cannot generate relocatable symbol in jump table. VE cannot 1968 /// generate expressions using symbols in both text segment and data 1969 /// segment like below. 1970 /// .4byte .LBB0_2-.LJTI0_0 1971 /// So, we generate offset from the top of function like below as 1972 /// a custom label. 1973 /// .4byte .LBB0_2-<function name> 1974 1975 unsigned VETargetLowering::getJumpTableEncoding() const { 1976 // Use custom label for PIC. 1977 if (isPositionIndependent()) 1978 return MachineJumpTableInfo::EK_Custom32; 1979 1980 // Otherwise, use the normal jump table encoding heuristics. 1981 return TargetLowering::getJumpTableEncoding(); 1982 } 1983 1984 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1985 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1986 unsigned Uid, MCContext &Ctx) const { 1987 assert(isPositionIndependent()); 1988 1989 // Generate custom label for PIC like below. 1990 // .4bytes .LBB0_2-<function name> 1991 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1992 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1993 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1994 return MCBinaryExpr::createSub(Value, Base, Ctx); 1995 } 1996 1997 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 1998 SelectionDAG &DAG) const { 1999 assert(isPositionIndependent()); 2000 SDLoc DL(Table); 2001 Function *Function = &DAG.getMachineFunction().getFunction(); 2002 assert(Function != nullptr); 2003 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 2004 2005 // In the jump table, we have following values in PIC mode. 2006 // .4bytes .LBB0_2-<function name> 2007 // We need to add this value and the address of this function to generate 2008 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 2009 // instructions: 2010 // lea %reg, fun@gotoff_lo 2011 // and %reg, %reg, (32)0 2012 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 2013 // In order to do so, we need to genarate correctly marked DAG node using 2014 // makeHiLoPair. 2015 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 2016 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 2017 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 2018 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 2019 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 2020 } 2021 2022 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 2023 MachineBasicBlock::iterator I, 2024 MachineBasicBlock *TargetBB, 2025 const DebugLoc &DL) const { 2026 MachineFunction *MF = MBB.getParent(); 2027 MachineRegisterInfo &MRI = MF->getRegInfo(); 2028 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2029 2030 const TargetRegisterClass *RC = &VE::I64RegClass; 2031 Register Tmp1 = MRI.createVirtualRegister(RC); 2032 Register Tmp2 = MRI.createVirtualRegister(RC); 2033 Register Result = MRI.createVirtualRegister(RC); 2034 2035 if (isPositionIndependent()) { 2036 // Create following instructions for local linkage PIC code. 2037 // lea %Tmp1, TargetBB@gotoff_lo 2038 // and %Tmp2, %Tmp1, (32)0 2039 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2040 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2041 .addImm(0) 2042 .addImm(0) 2043 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 2044 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2045 .addReg(Tmp1, getKillRegState(true)) 2046 .addImm(M0(32)); 2047 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 2048 .addReg(VE::SX15) 2049 .addReg(Tmp2, getKillRegState(true)) 2050 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 2051 } else { 2052 // Create following instructions for non-PIC code. 2053 // lea %Tmp1, TargetBB@lo 2054 // and %Tmp2, %Tmp1, (32)0 2055 // lea.sl %Result, TargetBB@hi(%Tmp2) 2056 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2057 .addImm(0) 2058 .addImm(0) 2059 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 2060 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2061 .addReg(Tmp1, getKillRegState(true)) 2062 .addImm(M0(32)); 2063 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2064 .addReg(Tmp2, getKillRegState(true)) 2065 .addImm(0) 2066 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 2067 } 2068 return Result; 2069 } 2070 2071 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 2072 MachineBasicBlock::iterator I, 2073 StringRef Symbol, const DebugLoc &DL, 2074 bool IsLocal = false, 2075 bool IsCall = false) const { 2076 MachineFunction *MF = MBB.getParent(); 2077 MachineRegisterInfo &MRI = MF->getRegInfo(); 2078 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2079 2080 const TargetRegisterClass *RC = &VE::I64RegClass; 2081 Register Result = MRI.createVirtualRegister(RC); 2082 2083 if (isPositionIndependent()) { 2084 if (IsCall && !IsLocal) { 2085 // Create following instructions for non-local linkage PIC code function 2086 // calls. These instructions uses IC and magic number -24, so we expand 2087 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 2088 // lea %Reg, Symbol@plt_lo(-24) 2089 // and %Reg, %Reg, (32)0 2090 // sic %s16 2091 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 2092 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 2093 .addExternalSymbol("abort"); 2094 } else if (IsLocal) { 2095 Register Tmp1 = MRI.createVirtualRegister(RC); 2096 Register Tmp2 = MRI.createVirtualRegister(RC); 2097 // Create following instructions for local linkage PIC code. 2098 // lea %Tmp1, Symbol@gotoff_lo 2099 // and %Tmp2, %Tmp1, (32)0 2100 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2101 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2102 .addImm(0) 2103 .addImm(0) 2104 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 2105 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2106 .addReg(Tmp1, getKillRegState(true)) 2107 .addImm(M0(32)); 2108 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 2109 .addReg(VE::SX15) 2110 .addReg(Tmp2, getKillRegState(true)) 2111 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 2112 } else { 2113 Register Tmp1 = MRI.createVirtualRegister(RC); 2114 Register Tmp2 = MRI.createVirtualRegister(RC); 2115 // Create following instructions for not local linkage PIC code. 2116 // lea %Tmp1, Symbol@got_lo 2117 // and %Tmp2, %Tmp1, (32)0 2118 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2119 // ld %Result, 0(%Tmp3) 2120 Register Tmp3 = MRI.createVirtualRegister(RC); 2121 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2122 .addImm(0) 2123 .addImm(0) 2124 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 2125 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2126 .addReg(Tmp1, getKillRegState(true)) 2127 .addImm(M0(32)); 2128 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 2129 .addReg(VE::SX15) 2130 .addReg(Tmp2, getKillRegState(true)) 2131 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 2132 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 2133 .addReg(Tmp3, getKillRegState(true)) 2134 .addImm(0) 2135 .addImm(0); 2136 } 2137 } else { 2138 Register Tmp1 = MRI.createVirtualRegister(RC); 2139 Register Tmp2 = MRI.createVirtualRegister(RC); 2140 // Create following instructions for non-PIC code. 2141 // lea %Tmp1, Symbol@lo 2142 // and %Tmp2, %Tmp1, (32)0 2143 // lea.sl %Result, Symbol@hi(%Tmp2) 2144 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2145 .addImm(0) 2146 .addImm(0) 2147 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 2148 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2149 .addReg(Tmp1, getKillRegState(true)) 2150 .addImm(M0(32)); 2151 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2152 .addReg(Tmp2, getKillRegState(true)) 2153 .addImm(0) 2154 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 2155 } 2156 return Result; 2157 } 2158 2159 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 2160 MachineBasicBlock *MBB, 2161 MachineBasicBlock *DispatchBB, 2162 int FI, int Offset) const { 2163 DebugLoc DL = MI.getDebugLoc(); 2164 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2165 2166 Register LabelReg = 2167 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 2168 2169 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 2170 // referenced by longjmp (throw) later. 2171 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2172 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 2173 MIB.addReg(LabelReg, getKillRegState(true)); 2174 } 2175 2176 MachineBasicBlock * 2177 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 2178 MachineBasicBlock *MBB) const { 2179 DebugLoc DL = MI.getDebugLoc(); 2180 MachineFunction *MF = MBB->getParent(); 2181 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2182 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2183 MachineRegisterInfo &MRI = MF->getRegInfo(); 2184 2185 const BasicBlock *BB = MBB->getBasicBlock(); 2186 MachineFunction::iterator I = ++MBB->getIterator(); 2187 2188 // Memory Reference. 2189 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2190 MI.memoperands_end()); 2191 Register BufReg = MI.getOperand(1).getReg(); 2192 2193 Register DstReg; 2194 2195 DstReg = MI.getOperand(0).getReg(); 2196 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 2197 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 2198 (void)TRI; 2199 Register MainDestReg = MRI.createVirtualRegister(RC); 2200 Register RestoreDestReg = MRI.createVirtualRegister(RC); 2201 2202 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 2203 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 2204 // 2205 // ThisMBB: 2206 // buf[3] = %s17 iff %s17 is used as BP 2207 // buf[1] = RestoreMBB as IC after longjmp 2208 // # SjLjSetup RestoreMBB 2209 // 2210 // MainMBB: 2211 // v_main = 0 2212 // 2213 // SinkMBB: 2214 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 2215 // ... 2216 // 2217 // RestoreMBB: 2218 // %s17 = buf[3] = iff %s17 is used as BP 2219 // v_restore = 1 2220 // goto SinkMBB 2221 2222 MachineBasicBlock *ThisMBB = MBB; 2223 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2224 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2225 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2226 MF->insert(I, MainMBB); 2227 MF->insert(I, SinkMBB); 2228 MF->push_back(RestoreMBB); 2229 RestoreMBB->setMachineBlockAddressTaken(); 2230 2231 // Transfer the remainder of BB and its successor edges to SinkMBB. 2232 SinkMBB->splice(SinkMBB->begin(), MBB, 2233 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2234 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2235 2236 // ThisMBB: 2237 Register LabelReg = 2238 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2239 2240 // Store BP in buf[3] iff this function is using BP. 2241 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2242 if (TFI->hasBP(*MF)) { 2243 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2244 MIB.addReg(BufReg); 2245 MIB.addImm(0); 2246 MIB.addImm(24); 2247 MIB.addReg(VE::SX17); 2248 MIB.setMemRefs(MMOs); 2249 } 2250 2251 // Store IP in buf[1]. 2252 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2253 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2254 MIB.addImm(0); 2255 MIB.addImm(8); 2256 MIB.addReg(LabelReg, getKillRegState(true)); 2257 MIB.setMemRefs(MMOs); 2258 2259 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2260 2261 // Insert setup. 2262 MIB = 2263 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2264 2265 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2266 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2267 ThisMBB->addSuccessor(MainMBB); 2268 ThisMBB->addSuccessor(RestoreMBB); 2269 2270 // MainMBB: 2271 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2272 .addImm(0) 2273 .addImm(0) 2274 .addImm(0); 2275 MainMBB->addSuccessor(SinkMBB); 2276 2277 // SinkMBB: 2278 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2279 .addReg(MainDestReg) 2280 .addMBB(MainMBB) 2281 .addReg(RestoreDestReg) 2282 .addMBB(RestoreMBB); 2283 2284 // RestoreMBB: 2285 // Restore BP from buf[3] iff this function is using BP. The address of 2286 // buf is in SX10. 2287 // FIXME: Better to not use SX10 here 2288 if (TFI->hasBP(*MF)) { 2289 MachineInstrBuilder MIB = 2290 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2291 MIB.addReg(VE::SX10); 2292 MIB.addImm(0); 2293 MIB.addImm(24); 2294 MIB.setMemRefs(MMOs); 2295 } 2296 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2297 .addImm(0) 2298 .addImm(0) 2299 .addImm(1); 2300 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2301 RestoreMBB->addSuccessor(SinkMBB); 2302 2303 MI.eraseFromParent(); 2304 return SinkMBB; 2305 } 2306 2307 MachineBasicBlock * 2308 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2309 MachineBasicBlock *MBB) const { 2310 DebugLoc DL = MI.getDebugLoc(); 2311 MachineFunction *MF = MBB->getParent(); 2312 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2313 MachineRegisterInfo &MRI = MF->getRegInfo(); 2314 2315 // Memory Reference. 2316 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2317 MI.memoperands_end()); 2318 Register BufReg = MI.getOperand(0).getReg(); 2319 2320 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2321 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2322 Register FP = VE::SX9; 2323 Register SP = VE::SX11; 2324 2325 MachineInstrBuilder MIB; 2326 2327 MachineBasicBlock *ThisMBB = MBB; 2328 2329 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2330 // 2331 // ThisMBB: 2332 // %fp = load buf[0] 2333 // %jmp = load buf[1] 2334 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2335 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2336 // jmp %jmp 2337 2338 // Reload FP. 2339 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2340 MIB.addReg(BufReg); 2341 MIB.addImm(0); 2342 MIB.addImm(0); 2343 MIB.setMemRefs(MMOs); 2344 2345 // Reload IP. 2346 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2347 MIB.addReg(BufReg); 2348 MIB.addImm(0); 2349 MIB.addImm(8); 2350 MIB.setMemRefs(MMOs); 2351 2352 // Copy BufReg to SX10 for later use in setjmp. 2353 // FIXME: Better to not use SX10 here 2354 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2355 .addReg(BufReg) 2356 .addImm(0); 2357 2358 // Reload SP. 2359 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2360 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2361 MIB.addImm(0); 2362 MIB.addImm(16); 2363 MIB.setMemRefs(MMOs); 2364 2365 // Jump. 2366 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2367 .addReg(Tmp, getKillRegState(true)) 2368 .addImm(0); 2369 2370 MI.eraseFromParent(); 2371 return ThisMBB; 2372 } 2373 2374 MachineBasicBlock * 2375 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2376 MachineBasicBlock *BB) const { 2377 DebugLoc DL = MI.getDebugLoc(); 2378 MachineFunction *MF = BB->getParent(); 2379 MachineFrameInfo &MFI = MF->getFrameInfo(); 2380 MachineRegisterInfo &MRI = MF->getRegInfo(); 2381 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2382 int FI = MFI.getFunctionContextIndex(); 2383 2384 // Get a mapping of the call site numbers to all of the landing pads they're 2385 // associated with. 2386 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2387 unsigned MaxCSNum = 0; 2388 for (auto &MBB : *MF) { 2389 if (!MBB.isEHPad()) 2390 continue; 2391 2392 MCSymbol *Sym = nullptr; 2393 for (const auto &MI : MBB) { 2394 if (MI.isDebugInstr()) 2395 continue; 2396 2397 assert(MI.isEHLabel() && "expected EH_LABEL"); 2398 Sym = MI.getOperand(0).getMCSymbol(); 2399 break; 2400 } 2401 2402 if (!MF->hasCallSiteLandingPad(Sym)) 2403 continue; 2404 2405 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2406 CallSiteNumToLPad[CSI].push_back(&MBB); 2407 MaxCSNum = std::max(MaxCSNum, CSI); 2408 } 2409 } 2410 2411 // Get an ordered list of the machine basic blocks for the jump table. 2412 std::vector<MachineBasicBlock *> LPadList; 2413 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2414 LPadList.reserve(CallSiteNumToLPad.size()); 2415 2416 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2417 for (auto &LP : CallSiteNumToLPad[CSI]) { 2418 LPadList.push_back(LP); 2419 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2420 } 2421 } 2422 2423 assert(!LPadList.empty() && 2424 "No landing pad destinations for the dispatch jump table!"); 2425 2426 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2427 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2428 // 2429 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2430 // First `i64` is callsite, so callsite is FI+8. 2431 static const int OffsetIC = 72; 2432 static const int OffsetCS = 8; 2433 2434 // Create the MBBs for the dispatch code like following: 2435 // 2436 // ThisMBB: 2437 // Prepare DispatchBB address and store it to buf[1]. 2438 // ... 2439 // 2440 // DispatchBB: 2441 // %s15 = GETGOT iff isPositionIndependent 2442 // %callsite = load callsite 2443 // brgt.l.t #size of callsites, %callsite, DispContBB 2444 // 2445 // TrapBB: 2446 // Call abort. 2447 // 2448 // DispContBB: 2449 // %breg = address of jump table 2450 // %pc = load and calculate next pc from %breg and %callsite 2451 // jmp %pc 2452 2453 // Shove the dispatch's address into the return slot in the function context. 2454 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2455 DispatchBB->setIsEHPad(true); 2456 2457 // Trap BB will causes trap like `assert(0)`. 2458 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2459 DispatchBB->addSuccessor(TrapBB); 2460 2461 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2462 DispatchBB->addSuccessor(DispContBB); 2463 2464 // Insert MBBs. 2465 MF->push_back(DispatchBB); 2466 MF->push_back(DispContBB); 2467 MF->push_back(TrapBB); 2468 2469 // Insert code to call abort in the TrapBB. 2470 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2471 /* Local */ false, /* Call */ true); 2472 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2473 .addReg(Abort, getKillRegState(true)) 2474 .addImm(0) 2475 .addImm(0); 2476 2477 // Insert code into the entry block that creates and registers the function 2478 // context. 2479 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2480 2481 // Create the jump table and associated information 2482 unsigned JTE = getJumpTableEncoding(); 2483 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2484 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2485 2486 const VERegisterInfo &RI = TII->getRegisterInfo(); 2487 // Add a register mask with no preserved registers. This results in all 2488 // registers being marked as clobbered. 2489 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2490 .addRegMask(RI.getNoPreservedMask()); 2491 2492 if (isPositionIndependent()) { 2493 // Force to generate GETGOT, since current implementation doesn't store GOT 2494 // register. 2495 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2496 } 2497 2498 // IReg is used as an index in a memory operand and therefore can't be SP 2499 const TargetRegisterClass *RC = &VE::I64RegClass; 2500 Register IReg = MRI.createVirtualRegister(RC); 2501 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2502 OffsetCS); 2503 if (LPadList.size() < 64) { 2504 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2505 .addImm(VECC::CC_ILE) 2506 .addImm(LPadList.size()) 2507 .addReg(IReg) 2508 .addMBB(TrapBB); 2509 } else { 2510 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2511 Register TmpReg = MRI.createVirtualRegister(RC); 2512 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2513 .addImm(0) 2514 .addImm(0) 2515 .addImm(LPadList.size()); 2516 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2517 .addImm(VECC::CC_ILE) 2518 .addReg(TmpReg, getKillRegState(true)) 2519 .addReg(IReg) 2520 .addMBB(TrapBB); 2521 } 2522 2523 Register BReg = MRI.createVirtualRegister(RC); 2524 Register Tmp1 = MRI.createVirtualRegister(RC); 2525 Register Tmp2 = MRI.createVirtualRegister(RC); 2526 2527 if (isPositionIndependent()) { 2528 // Create following instructions for local linkage PIC code. 2529 // lea %Tmp1, .LJTI0_0@gotoff_lo 2530 // and %Tmp2, %Tmp1, (32)0 2531 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2532 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2533 .addImm(0) 2534 .addImm(0) 2535 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2536 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2537 .addReg(Tmp1, getKillRegState(true)) 2538 .addImm(M0(32)); 2539 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2540 .addReg(VE::SX15) 2541 .addReg(Tmp2, getKillRegState(true)) 2542 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2543 } else { 2544 // Create following instructions for non-PIC code. 2545 // lea %Tmp1, .LJTI0_0@lo 2546 // and %Tmp2, %Tmp1, (32)0 2547 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2548 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2549 .addImm(0) 2550 .addImm(0) 2551 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2552 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2553 .addReg(Tmp1, getKillRegState(true)) 2554 .addImm(M0(32)); 2555 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2556 .addReg(Tmp2, getKillRegState(true)) 2557 .addImm(0) 2558 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2559 } 2560 2561 switch (JTE) { 2562 case MachineJumpTableInfo::EK_BlockAddress: { 2563 // Generate simple block address code for no-PIC model. 2564 // sll %Tmp1, %IReg, 3 2565 // lds %TReg, 0(%Tmp1, %BReg) 2566 // bcfla %TReg 2567 2568 Register TReg = MRI.createVirtualRegister(RC); 2569 Register Tmp1 = MRI.createVirtualRegister(RC); 2570 2571 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2572 .addReg(IReg, getKillRegState(true)) 2573 .addImm(3); 2574 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2575 .addReg(BReg, getKillRegState(true)) 2576 .addReg(Tmp1, getKillRegState(true)) 2577 .addImm(0); 2578 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2579 .addReg(TReg, getKillRegState(true)) 2580 .addImm(0); 2581 break; 2582 } 2583 case MachineJumpTableInfo::EK_Custom32: { 2584 // Generate block address code using differences from the function pointer 2585 // for PIC model. 2586 // sll %Tmp1, %IReg, 2 2587 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2588 // Prepare function address in BReg2. 2589 // adds.l %TReg, %BReg2, %OReg 2590 // bcfla %TReg 2591 2592 assert(isPositionIndependent()); 2593 Register OReg = MRI.createVirtualRegister(RC); 2594 Register TReg = MRI.createVirtualRegister(RC); 2595 Register Tmp1 = MRI.createVirtualRegister(RC); 2596 2597 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2598 .addReg(IReg, getKillRegState(true)) 2599 .addImm(2); 2600 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2601 .addReg(BReg, getKillRegState(true)) 2602 .addReg(Tmp1, getKillRegState(true)) 2603 .addImm(0); 2604 Register BReg2 = 2605 prepareSymbol(*DispContBB, DispContBB->end(), 2606 DispContBB->getParent()->getName(), DL, /* Local */ true); 2607 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2608 .addReg(OReg, getKillRegState(true)) 2609 .addReg(BReg2, getKillRegState(true)); 2610 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2611 .addReg(TReg, getKillRegState(true)) 2612 .addImm(0); 2613 break; 2614 } 2615 default: 2616 llvm_unreachable("Unexpected jump table encoding"); 2617 } 2618 2619 // Add the jump table entries as successors to the MBB. 2620 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2621 for (auto &LP : LPadList) 2622 if (SeenMBBs.insert(LP).second) 2623 DispContBB->addSuccessor(LP); 2624 2625 // N.B. the order the invoke BBs are processed in doesn't matter here. 2626 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2627 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2628 for (MachineBasicBlock *MBB : InvokeBBs) { 2629 // Remove the landing pad successor from the invoke block and replace it 2630 // with the new dispatch block. 2631 // Keep a copy of Successors since it's modified inside the loop. 2632 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2633 MBB->succ_rend()); 2634 // FIXME: Avoid quadratic complexity. 2635 for (auto *MBBS : Successors) { 2636 if (MBBS->isEHPad()) { 2637 MBB->removeSuccessor(MBBS); 2638 MBBLPads.push_back(MBBS); 2639 } 2640 } 2641 2642 MBB->addSuccessor(DispatchBB); 2643 2644 // Find the invoke call and mark all of the callee-saved registers as 2645 // 'implicit defined' so that they're spilled. This prevents code from 2646 // moving instructions to before the EH block, where they will never be 2647 // executed. 2648 for (auto &II : reverse(*MBB)) { 2649 if (!II.isCall()) 2650 continue; 2651 2652 DenseMap<Register, bool> DefRegs; 2653 for (auto &MOp : II.operands()) 2654 if (MOp.isReg()) 2655 DefRegs[MOp.getReg()] = true; 2656 2657 MachineInstrBuilder MIB(*MF, &II); 2658 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2659 Register Reg = SavedRegs[RI]; 2660 if (!DefRegs[Reg]) 2661 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2662 } 2663 2664 break; 2665 } 2666 } 2667 2668 // Mark all former landing pads as non-landing pads. The dispatch is the only 2669 // landing pad now. 2670 for (auto &LP : MBBLPads) 2671 LP->setIsEHPad(false); 2672 2673 // The instruction is gone now. 2674 MI.eraseFromParent(); 2675 return BB; 2676 } 2677 2678 MachineBasicBlock * 2679 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2680 MachineBasicBlock *BB) const { 2681 switch (MI.getOpcode()) { 2682 default: 2683 llvm_unreachable("Unknown Custom Instruction!"); 2684 case VE::EH_SjLj_LongJmp: 2685 return emitEHSjLjLongJmp(MI, BB); 2686 case VE::EH_SjLj_SetJmp: 2687 return emitEHSjLjSetJmp(MI, BB); 2688 case VE::EH_SjLj_Setup_Dispatch: 2689 return emitSjLjDispatchBlock(MI, BB); 2690 } 2691 } 2692 2693 static bool isSimm7(SDValue V) { 2694 EVT VT = V.getValueType(); 2695 if (VT.isVector()) 2696 return false; 2697 2698 if (VT.isInteger()) { 2699 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(V)) 2700 return isInt<7>(C->getSExtValue()); 2701 } else if (VT.isFloatingPoint()) { 2702 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(V)) { 2703 if (VT == MVT::f32 || VT == MVT::f64) { 2704 const APInt &Imm = C->getValueAPF().bitcastToAPInt(); 2705 uint64_t Val = Imm.getSExtValue(); 2706 if (Imm.getBitWidth() == 32) 2707 Val <<= 32; // Immediate value of float place at higher bits on VE. 2708 return isInt<7>(Val); 2709 } 2710 } 2711 } 2712 return false; 2713 } 2714 2715 static bool isMImm(SDValue V) { 2716 EVT VT = V.getValueType(); 2717 if (VT.isVector()) 2718 return false; 2719 2720 if (VT.isInteger()) { 2721 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(V)) 2722 return isMImmVal(getImmVal(C)); 2723 } else if (VT.isFloatingPoint()) { 2724 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(V)) { 2725 if (VT == MVT::f32) { 2726 // Float value places at higher bits, so ignore lower 32 bits. 2727 return isMImm32Val(getFpImmVal(C) >> 32); 2728 } else if (VT == MVT::f64) { 2729 return isMImmVal(getFpImmVal(C)); 2730 } 2731 } 2732 } 2733 return false; 2734 } 2735 2736 static unsigned decideComp(EVT SrcVT, ISD::CondCode CC) { 2737 if (SrcVT.isFloatingPoint()) { 2738 if (SrcVT == MVT::f128) 2739 return VEISD::CMPQ; 2740 return VEISD::CMPF; 2741 } 2742 return isSignedIntSetCC(CC) ? VEISD::CMPI : VEISD::CMPU; 2743 } 2744 2745 static EVT decideCompType(EVT SrcVT) { 2746 if (SrcVT == MVT::f128) 2747 return MVT::f64; 2748 return SrcVT; 2749 } 2750 2751 static bool safeWithoutCompWithNull(EVT SrcVT, ISD::CondCode CC, 2752 bool WithCMov) { 2753 if (SrcVT.isFloatingPoint()) { 2754 // For the case of floating point setcc, only unordered comparison 2755 // or general comparison with -enable-no-nans-fp-math option reach 2756 // here, so it is safe even if values are NaN. Only f128 doesn't 2757 // safe since VE uses f64 result of f128 comparison. 2758 return SrcVT != MVT::f128; 2759 } 2760 if (isIntEqualitySetCC(CC)) { 2761 // For the case of equal or not equal, it is safe without comparison with 0. 2762 return true; 2763 } 2764 if (WithCMov) { 2765 // For the case of integer setcc with cmov, all signed comparison with 0 2766 // are safe. 2767 return isSignedIntSetCC(CC); 2768 } 2769 // For the case of integer setcc, only signed 64 bits comparison is safe. 2770 // For unsigned, "CMPU 0x80000000, 0" has to be greater than 0, but it becomes 2771 // less than 0 witout CMPU. For 32 bits, other half of 32 bits are 2772 // uncoditional, so it is not safe too without CMPI.. 2773 return isSignedIntSetCC(CC) && SrcVT == MVT::i64; 2774 } 2775 2776 static SDValue generateComparison(EVT VT, SDValue LHS, SDValue RHS, 2777 ISD::CondCode CC, bool WithCMov, 2778 const SDLoc &DL, SelectionDAG &DAG) { 2779 // Compare values. If RHS is 0 and it is safe to calculate without 2780 // comparison, we don't generate an instruction for comparison. 2781 EVT CompVT = decideCompType(VT); 2782 if (CompVT == VT && safeWithoutCompWithNull(VT, CC, WithCMov) && 2783 (isNullConstant(RHS) || isNullFPConstant(RHS))) { 2784 return LHS; 2785 } 2786 return DAG.getNode(decideComp(VT, CC), DL, CompVT, LHS, RHS); 2787 } 2788 2789 SDValue VETargetLowering::combineSelect(SDNode *N, 2790 DAGCombinerInfo &DCI) const { 2791 assert(N->getOpcode() == ISD::SELECT && 2792 "Should be called with a SELECT node"); 2793 ISD::CondCode CC = ISD::CondCode::SETNE; 2794 SDValue Cond = N->getOperand(0); 2795 SDValue True = N->getOperand(1); 2796 SDValue False = N->getOperand(2); 2797 2798 // We handle only scalar SELECT. 2799 EVT VT = N->getValueType(0); 2800 if (VT.isVector()) 2801 return SDValue(); 2802 2803 // Peform combineSelect after leagalize DAG. 2804 if (!DCI.isAfterLegalizeDAG()) 2805 return SDValue(); 2806 2807 EVT VT0 = Cond.getValueType(); 2808 if (isMImm(True)) { 2809 // VE's condition move can handle MImm in True clause, so nothing to do. 2810 } else if (isMImm(False)) { 2811 // VE's condition move can handle MImm in True clause, so swap True and 2812 // False clauses if False has MImm value. And, update condition code. 2813 std::swap(True, False); 2814 CC = getSetCCInverse(CC, VT0); 2815 } 2816 2817 SDLoc DL(N); 2818 SelectionDAG &DAG = DCI.DAG; 2819 VECC::CondCode VECCVal; 2820 if (VT0.isFloatingPoint()) { 2821 VECCVal = fpCondCode2Fcc(CC); 2822 } else { 2823 VECCVal = intCondCode2Icc(CC); 2824 } 2825 SDValue Ops[] = {Cond, True, False, 2826 DAG.getConstant(VECCVal, DL, MVT::i32)}; 2827 return DAG.getNode(VEISD::CMOV, DL, VT, Ops); 2828 } 2829 2830 SDValue VETargetLowering::combineSelectCC(SDNode *N, 2831 DAGCombinerInfo &DCI) const { 2832 assert(N->getOpcode() == ISD::SELECT_CC && 2833 "Should be called with a SELECT_CC node"); 2834 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 2835 SDValue LHS = N->getOperand(0); 2836 SDValue RHS = N->getOperand(1); 2837 SDValue True = N->getOperand(2); 2838 SDValue False = N->getOperand(3); 2839 2840 // We handle only scalar SELECT_CC. 2841 EVT VT = N->getValueType(0); 2842 if (VT.isVector()) 2843 return SDValue(); 2844 2845 // Peform combineSelectCC after leagalize DAG. 2846 if (!DCI.isAfterLegalizeDAG()) 2847 return SDValue(); 2848 2849 // We handle only i32/i64/f32/f64/f128 comparisons. 2850 EVT LHSVT = LHS.getValueType(); 2851 assert(LHSVT == RHS.getValueType()); 2852 switch (LHSVT.getSimpleVT().SimpleTy) { 2853 case MVT::i32: 2854 case MVT::i64: 2855 case MVT::f32: 2856 case MVT::f64: 2857 case MVT::f128: 2858 break; 2859 default: 2860 // Return SDValue to let llvm handle other types. 2861 return SDValue(); 2862 } 2863 2864 if (isMImm(RHS)) { 2865 // VE's comparison can handle MImm in RHS, so nothing to do. 2866 } else if (isSimm7(RHS)) { 2867 // VE's comparison can handle Simm7 in LHS, so swap LHS and RHS, and 2868 // update condition code. 2869 std::swap(LHS, RHS); 2870 CC = getSetCCSwappedOperands(CC); 2871 } 2872 if (isMImm(True)) { 2873 // VE's condition move can handle MImm in True clause, so nothing to do. 2874 } else if (isMImm(False)) { 2875 // VE's condition move can handle MImm in True clause, so swap True and 2876 // False clauses if False has MImm value. And, update condition code. 2877 std::swap(True, False); 2878 CC = getSetCCInverse(CC, LHSVT); 2879 } 2880 2881 SDLoc DL(N); 2882 SelectionDAG &DAG = DCI.DAG; 2883 2884 bool WithCMov = true; 2885 SDValue CompNode = generateComparison(LHSVT, LHS, RHS, CC, WithCMov, DL, DAG); 2886 2887 VECC::CondCode VECCVal; 2888 if (LHSVT.isFloatingPoint()) { 2889 VECCVal = fpCondCode2Fcc(CC); 2890 } else { 2891 VECCVal = intCondCode2Icc(CC); 2892 } 2893 SDValue Ops[] = {CompNode, True, False, 2894 DAG.getConstant(VECCVal, DL, MVT::i32)}; 2895 return DAG.getNode(VEISD::CMOV, DL, VT, Ops); 2896 } 2897 2898 static bool isI32InsnAllUses(const SDNode *User, const SDNode *N); 2899 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2900 switch (User->getOpcode()) { 2901 default: 2902 return false; 2903 case ISD::ADD: 2904 case ISD::SUB: 2905 case ISD::MUL: 2906 case ISD::SDIV: 2907 case ISD::UDIV: 2908 case ISD::SETCC: 2909 case ISD::SMIN: 2910 case ISD::SMAX: 2911 case ISD::SHL: 2912 case ISD::SRA: 2913 case ISD::BSWAP: 2914 case ISD::SINT_TO_FP: 2915 case ISD::UINT_TO_FP: 2916 case ISD::BR_CC: 2917 case ISD::BITCAST: 2918 case ISD::ATOMIC_CMP_SWAP: 2919 case ISD::ATOMIC_SWAP: 2920 case VEISD::CMPU: 2921 case VEISD::CMPI: 2922 return true; 2923 case ISD::SRL: 2924 if (N->getOperand(0).getOpcode() != ISD::SRL) 2925 return true; 2926 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2927 // doesn't optimize trunc now. 2928 return false; 2929 case ISD::SELECT_CC: 2930 if (User->getOperand(2).getNode() != N && 2931 User->getOperand(3).getNode() != N) 2932 return true; 2933 return isI32InsnAllUses(User, N); 2934 case VEISD::CMOV: 2935 // CMOV in (cmov (trunc ...), true, false, int-comparison) is safe. 2936 // However, trunc in true or false clauses is not safe. 2937 if (User->getOperand(1).getNode() != N && 2938 User->getOperand(2).getNode() != N && 2939 isa<ConstantSDNode>(User->getOperand(3))) { 2940 VECC::CondCode VECCVal = 2941 static_cast<VECC::CondCode>(User->getConstantOperandVal(3)); 2942 return isIntVECondCode(VECCVal); 2943 } 2944 [[fallthrough]]; 2945 case ISD::AND: 2946 case ISD::OR: 2947 case ISD::XOR: 2948 case ISD::SELECT: 2949 case ISD::CopyToReg: 2950 // Check all use of selections, bit operations, and copies. If all of them 2951 // are safe, optimize truncate to extract_subreg. 2952 return isI32InsnAllUses(User, N); 2953 } 2954 } 2955 2956 static bool isI32InsnAllUses(const SDNode *User, const SDNode *N) { 2957 // Check all use of User node. If all of them are safe, optimize 2958 // truncate to extract_subreg. 2959 for (const SDNode *U : User->uses()) { 2960 switch (U->getOpcode()) { 2961 default: 2962 // If the use is an instruction which treats the source operand as i32, 2963 // it is safe to avoid truncate here. 2964 if (isI32Insn(U, N)) 2965 continue; 2966 break; 2967 case ISD::ANY_EXTEND: 2968 case ISD::SIGN_EXTEND: 2969 case ISD::ZERO_EXTEND: { 2970 // Special optimizations to the combination of ext and trunc. 2971 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2972 // since this truncate instruction clears higher 32 bits which is filled 2973 // by one of ext instructions later. 2974 assert(N->getValueType(0) == MVT::i32 && 2975 "find truncate to not i32 integer"); 2976 if (User->getOpcode() == ISD::SELECT_CC || 2977 User->getOpcode() == ISD::SELECT || User->getOpcode() == VEISD::CMOV) 2978 continue; 2979 break; 2980 } 2981 } 2982 return false; 2983 } 2984 return true; 2985 } 2986 2987 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2988 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2989 // is sometime too late. So, doing it at here. 2990 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2991 DAGCombinerInfo &DCI) const { 2992 assert(N->getOpcode() == ISD::TRUNCATE && 2993 "Should be called with a TRUNCATE node"); 2994 2995 SelectionDAG &DAG = DCI.DAG; 2996 SDLoc DL(N); 2997 EVT VT = N->getValueType(0); 2998 2999 // We prefer to do this when all types are legal. 3000 if (!DCI.isAfterLegalizeDAG()) 3001 return SDValue(); 3002 3003 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 3004 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 3005 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 3006 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 3007 return SDValue(); 3008 3009 // Check all use of this TRUNCATE. 3010 for (const SDNode *User : N->uses()) { 3011 // Make sure that we're not going to replace TRUNCATE for non i32 3012 // instructions. 3013 // 3014 // FIXME: Although we could sometimes handle this, and it does occur in 3015 // practice that one of the condition inputs to the select is also one of 3016 // the outputs, we currently can't deal with this. 3017 if (isI32Insn(User, N)) 3018 continue; 3019 3020 return SDValue(); 3021 } 3022 3023 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 3024 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 3025 N->getOperand(0), SubI32), 3026 0); 3027 } 3028 3029 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 3030 DAGCombinerInfo &DCI) const { 3031 switch (N->getOpcode()) { 3032 default: 3033 break; 3034 case ISD::SELECT: 3035 return combineSelect(N, DCI); 3036 case ISD::SELECT_CC: 3037 return combineSelectCC(N, DCI); 3038 case ISD::TRUNCATE: 3039 return combineTRUNCATE(N, DCI); 3040 } 3041 3042 return SDValue(); 3043 } 3044 3045 //===----------------------------------------------------------------------===// 3046 // VE Inline Assembly Support 3047 //===----------------------------------------------------------------------===// 3048 3049 VETargetLowering::ConstraintType 3050 VETargetLowering::getConstraintType(StringRef Constraint) const { 3051 if (Constraint.size() == 1) { 3052 switch (Constraint[0]) { 3053 default: 3054 break; 3055 case 'v': // vector registers 3056 return C_RegisterClass; 3057 } 3058 } 3059 return TargetLowering::getConstraintType(Constraint); 3060 } 3061 3062 std::pair<unsigned, const TargetRegisterClass *> 3063 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3064 StringRef Constraint, 3065 MVT VT) const { 3066 const TargetRegisterClass *RC = nullptr; 3067 if (Constraint.size() == 1) { 3068 switch (Constraint[0]) { 3069 default: 3070 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3071 case 'r': 3072 RC = &VE::I64RegClass; 3073 break; 3074 case 'v': 3075 RC = &VE::V64RegClass; 3076 break; 3077 } 3078 return std::make_pair(0U, RC); 3079 } 3080 3081 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3082 } 3083 3084 //===----------------------------------------------------------------------===// 3085 // VE Target Optimization Support 3086 //===----------------------------------------------------------------------===// 3087 3088 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 3089 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 3090 if (isJumpTableRelative()) 3091 return 8; 3092 3093 return TargetLowering::getMinimumJumpTableEntries(); 3094 } 3095 3096 bool VETargetLowering::hasAndNot(SDValue Y) const { 3097 EVT VT = Y.getValueType(); 3098 3099 // VE doesn't have vector and not instruction. 3100 if (VT.isVector()) 3101 return false; 3102 3103 // VE allows different immediate values for X and Y where ~X & Y. 3104 // Only simm7 works for X, and only mimm works for Y on VE. However, this 3105 // function is used to check whether an immediate value is OK for and-not 3106 // instruction as both X and Y. Generating additional instruction to 3107 // retrieve an immediate value is no good since the purpose of this 3108 // function is to convert a series of 3 instructions to another series of 3109 // 3 instructions with better parallelism. Therefore, we return false 3110 // for all immediate values now. 3111 // FIXME: Change hasAndNot function to have two operands to make it work 3112 // correctly with Aurora VE. 3113 if (isa<ConstantSDNode>(Y)) 3114 return false; 3115 3116 // It's ok for generic registers. 3117 return true; 3118 } 3119 3120 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3121 SelectionDAG &DAG) const { 3122 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 3123 MVT VT = Op.getOperand(0).getSimpleValueType(); 3124 3125 // Special treatment for packed V64 types. 3126 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 3127 (void)VT; 3128 // Example of codes: 3129 // %packed_v = extractelt %vr, %idx / 2 3130 // %v = %packed_v >> (%idx % 2 * 32) 3131 // %res = %v & 0xffffffff 3132 3133 SDValue Vec = Op.getOperand(0); 3134 SDValue Idx = Op.getOperand(1); 3135 SDLoc DL(Op); 3136 SDValue Result = Op; 3137 if (false /* Idx->isConstant() */) { 3138 // TODO: optimized implementation using constant values 3139 } else { 3140 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 3141 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 3142 SDValue PackedElt = 3143 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 3144 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 3145 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 3146 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 3147 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 3148 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 3149 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 3150 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 3151 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 3152 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 3153 MVT::i32, PackedElt, SubI32), 3154 0); 3155 3156 if (Op.getSimpleValueType() == MVT::f32) { 3157 Result = DAG.getBitcast(MVT::f32, Result); 3158 } else { 3159 assert(Op.getSimpleValueType() == MVT::i32); 3160 } 3161 } 3162 return Result; 3163 } 3164 3165 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3166 SelectionDAG &DAG) const { 3167 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 3168 MVT VT = Op.getOperand(0).getSimpleValueType(); 3169 3170 // Special treatment for packed V64 types. 3171 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 3172 (void)VT; 3173 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 3174 // bits" required `val << 32` from C implementation's point of view. 3175 // 3176 // Example of codes: 3177 // %packed_elt = extractelt %vr, (%idx >> 1) 3178 // %shift = ((%idx & 1) ^ 1) << 5 3179 // %packed_elt &= 0xffffffff00000000 >> shift 3180 // %packed_elt |= (zext %val) << shift 3181 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 3182 3183 SDLoc DL(Op); 3184 SDValue Vec = Op.getOperand(0); 3185 SDValue Val = Op.getOperand(1); 3186 SDValue Idx = Op.getOperand(2); 3187 if (Idx.getSimpleValueType() == MVT::i32) 3188 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 3189 if (Val.getSimpleValueType() == MVT::f32) 3190 Val = DAG.getBitcast(MVT::i32, Val); 3191 assert(Val.getSimpleValueType() == MVT::i32); 3192 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 3193 3194 SDValue Result = Op; 3195 if (false /* Idx->isConstant()*/) { 3196 // TODO: optimized implementation using constant values 3197 } else { 3198 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 3199 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 3200 SDValue PackedElt = 3201 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 3202 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 3203 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 3204 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 3205 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 3206 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 3207 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 3208 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 3209 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 3210 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 3211 Result = 3212 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 3213 {HalfIdx, PackedElt, Vec}), 3214 0); 3215 } 3216 return Result; 3217 } 3218