1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VEInstrBuilder.h" 17 #include "VEMachineFunctionInfo.h" 18 #include "VERegisterInfo.h" 19 #include "VETargetMachine.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "ve-lower" 39 40 //===----------------------------------------------------------------------===// 41 // Calling Convention Implementation 42 //===----------------------------------------------------------------------===// 43 44 #include "VEGenCallingConv.inc" 45 46 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 47 switch (CallConv) { 48 default: 49 return RetCC_VE_C; 50 case CallingConv::Fast: 51 return RetCC_VE_Fast; 52 } 53 } 54 55 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 56 if (IsVarArg) 57 return CC_VE2; 58 switch (CallConv) { 59 default: 60 return CC_VE_C; 61 case CallingConv::Fast: 62 return CC_VE_Fast; 63 } 64 } 65 66 bool VETargetLowering::CanLowerReturn( 67 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 68 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 69 CCAssignFn *RetCC = getReturnCC(CallConv); 70 SmallVector<CCValAssign, 16> RVLocs; 71 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 72 return CCInfo.CheckReturn(Outs, RetCC); 73 } 74 75 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 76 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 77 78 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 79 80 void VETargetLowering::initRegisterClasses() { 81 // Set up the register classes. 82 addRegisterClass(MVT::i32, &VE::I32RegClass); 83 addRegisterClass(MVT::i64, &VE::I64RegClass); 84 addRegisterClass(MVT::f32, &VE::F32RegClass); 85 addRegisterClass(MVT::f64, &VE::I64RegClass); 86 addRegisterClass(MVT::f128, &VE::F128RegClass); 87 88 if (Subtarget->enableVPU()) { 89 for (MVT VecVT : AllVectorVTs) 90 addRegisterClass(VecVT, &VE::V64RegClass); 91 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 92 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 93 } 94 } 95 96 void VETargetLowering::initSPUActions() { 97 const auto &TM = getTargetMachine(); 98 /// Load & Store { 99 100 // VE doesn't have i1 sign extending load. 101 for (MVT VT : MVT::integer_valuetypes()) { 102 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 103 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 104 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 105 setTruncStoreAction(VT, MVT::i1, Expand); 106 } 107 108 // VE doesn't have floating point extload/truncstore, so expand them. 109 for (MVT FPVT : MVT::fp_valuetypes()) { 110 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 111 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 112 setTruncStoreAction(FPVT, OtherFPVT, Expand); 113 } 114 } 115 116 // VE doesn't have fp128 load/store, so expand them in custom lower. 117 setOperationAction(ISD::LOAD, MVT::f128, Custom); 118 setOperationAction(ISD::STORE, MVT::f128, Custom); 119 120 /// } Load & Store 121 122 // Custom legalize address nodes into LO/HI parts. 123 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 124 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 125 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 126 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 127 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 128 setOperationAction(ISD::JumpTable, PtrVT, Custom); 129 130 /// VAARG handling { 131 setOperationAction(ISD::VASTART, MVT::Other, Custom); 132 // VAARG needs to be lowered to access with 8 bytes alignment. 133 setOperationAction(ISD::VAARG, MVT::Other, Custom); 134 // Use the default implementation. 135 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 136 setOperationAction(ISD::VAEND, MVT::Other, Expand); 137 /// } VAARG handling 138 139 /// Stack { 140 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 141 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 142 143 // Use the default implementation. 144 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 145 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 146 /// } Stack 147 148 /// Branch { 149 150 // VE doesn't have BRCOND 151 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 152 153 // BR_JT is not implemented yet. 154 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 155 156 /// } Branch 157 158 /// Int Ops { 159 for (MVT IntVT : {MVT::i32, MVT::i64}) { 160 // VE has no REM or DIVREM operations. 161 setOperationAction(ISD::UREM, IntVT, Expand); 162 setOperationAction(ISD::SREM, IntVT, Expand); 163 setOperationAction(ISD::SDIVREM, IntVT, Expand); 164 setOperationAction(ISD::UDIVREM, IntVT, Expand); 165 166 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 167 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 168 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 169 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 170 171 // VE has no MULHU/S or U/SMUL_LOHI operations. 172 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 173 setOperationAction(ISD::MULHU, IntVT, Expand); 174 setOperationAction(ISD::MULHS, IntVT, Expand); 175 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 176 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 177 178 // VE has no CTTZ, ROTL, ROTR operations. 179 setOperationAction(ISD::CTTZ, IntVT, Expand); 180 setOperationAction(ISD::ROTL, IntVT, Expand); 181 setOperationAction(ISD::ROTR, IntVT, Expand); 182 183 // VE has 64 bits instruction which works as i64 BSWAP operation. This 184 // instruction works fine as i32 BSWAP operation with an additional 185 // parameter. Use isel patterns to lower BSWAP. 186 setOperationAction(ISD::BSWAP, IntVT, Legal); 187 188 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 189 // operations. Use isel patterns for i64, promote for i32. 190 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 191 setOperationAction(ISD::BITREVERSE, IntVT, Act); 192 setOperationAction(ISD::CTLZ, IntVT, Act); 193 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 194 setOperationAction(ISD::CTPOP, IntVT, Act); 195 196 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 197 // Use isel patterns for i64, promote for i32. 198 setOperationAction(ISD::AND, IntVT, Act); 199 setOperationAction(ISD::OR, IntVT, Act); 200 setOperationAction(ISD::XOR, IntVT, Act); 201 } 202 /// } Int Ops 203 204 /// Conversion { 205 // VE doesn't have instructions for fp<->uint, so expand them by llvm 206 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 207 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 208 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 209 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 210 211 // fp16 not supported 212 for (MVT FPVT : MVT::fp_valuetypes()) { 213 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 214 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 215 } 216 /// } Conversion 217 218 /// Floating-point Ops { 219 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 220 /// and fcmp. 221 222 // VE doesn't have following floating point operations. 223 for (MVT VT : MVT::fp_valuetypes()) { 224 setOperationAction(ISD::FNEG, VT, Expand); 225 setOperationAction(ISD::FREM, VT, Expand); 226 } 227 228 // VE doesn't have fdiv of f128. 229 setOperationAction(ISD::FDIV, MVT::f128, Expand); 230 231 for (MVT FPVT : {MVT::f32, MVT::f64}) { 232 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 233 setOperationAction(ISD::ConstantFP, FPVT, Legal); 234 } 235 /// } Floating-point Ops 236 237 /// Floating-point math functions { 238 239 // VE doesn't have following floating point math functions. 240 for (MVT VT : MVT::fp_valuetypes()) { 241 setOperationAction(ISD::FABS, VT, Expand); 242 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 243 setOperationAction(ISD::FCOS, VT, Expand); 244 setOperationAction(ISD::FSIN, VT, Expand); 245 setOperationAction(ISD::FSQRT, VT, Expand); 246 } 247 248 /// } Floating-point math functions 249 250 /// Atomic instructions { 251 252 setMaxAtomicSizeInBitsSupported(64); 253 setMinCmpXchgSizeInBits(32); 254 setSupportsUnalignedAtomics(false); 255 256 // Use custom inserter for ATOMIC_FENCE. 257 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 258 259 // Other atomic instructions. 260 for (MVT VT : MVT::integer_valuetypes()) { 261 // Support i8/i16 atomic swap. 262 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 263 264 // FIXME: Support "atmam" instructions. 265 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 266 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 267 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 268 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 269 270 // VE doesn't have follwing instructions. 271 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 272 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 273 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 274 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 275 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 276 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 277 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 278 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 279 } 280 281 /// } Atomic instructions 282 283 /// SJLJ instructions { 284 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 285 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 286 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 287 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 288 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 289 /// } SJLJ instructions 290 291 // Intrinsic instructions 292 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 293 } 294 295 void VETargetLowering::initVPUActions() { 296 for (MVT LegalVecVT : AllVectorVTs) { 297 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 298 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 299 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 300 // Translate all vector instructions with legal element types to VVP_* 301 // nodes. 302 // TODO We will custom-widen into VVP_* nodes in the future. While we are 303 // buildling the infrastructure for this, we only do this for legal vector 304 // VTs. 305 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 306 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 307 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 308 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 309 #include "VVPNodes.def" 310 } 311 312 for (MVT LegalPackedVT : AllPackedVTs) { 313 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 314 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 315 } 316 } 317 318 SDValue 319 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 320 bool IsVarArg, 321 const SmallVectorImpl<ISD::OutputArg> &Outs, 322 const SmallVectorImpl<SDValue> &OutVals, 323 const SDLoc &DL, SelectionDAG &DAG) const { 324 // CCValAssign - represent the assignment of the return value to locations. 325 SmallVector<CCValAssign, 16> RVLocs; 326 327 // CCState - Info about the registers and stack slot. 328 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 329 *DAG.getContext()); 330 331 // Analyze return values. 332 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 333 334 SDValue Flag; 335 SmallVector<SDValue, 4> RetOps(1, Chain); 336 337 // Copy the result values into the output registers. 338 for (unsigned i = 0; i != RVLocs.size(); ++i) { 339 CCValAssign &VA = RVLocs[i]; 340 assert(VA.isRegLoc() && "Can only return in registers!"); 341 assert(!VA.needsCustom() && "Unexpected custom lowering"); 342 SDValue OutVal = OutVals[i]; 343 344 // Integer return values must be sign or zero extended by the callee. 345 switch (VA.getLocInfo()) { 346 case CCValAssign::Full: 347 break; 348 case CCValAssign::SExt: 349 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 350 break; 351 case CCValAssign::ZExt: 352 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 353 break; 354 case CCValAssign::AExt: 355 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 356 break; 357 case CCValAssign::BCvt: { 358 // Convert a float return value to i64 with padding. 359 // 63 31 0 360 // +------+------+ 361 // | float| 0 | 362 // +------+------+ 363 assert(VA.getLocVT() == MVT::i64); 364 assert(VA.getValVT() == MVT::f32); 365 SDValue Undef = SDValue( 366 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 367 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 368 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 369 MVT::i64, Undef, OutVal, Sub_f32), 370 0); 371 break; 372 } 373 default: 374 llvm_unreachable("Unknown loc info!"); 375 } 376 377 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 378 379 // Guarantee that all emitted copies are stuck together with flags. 380 Flag = Chain.getValue(1); 381 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 382 } 383 384 RetOps[0] = Chain; // Update chain. 385 386 // Add the flag if we have it. 387 if (Flag.getNode()) 388 RetOps.push_back(Flag); 389 390 return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps); 391 } 392 393 SDValue VETargetLowering::LowerFormalArguments( 394 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 395 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 396 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 397 MachineFunction &MF = DAG.getMachineFunction(); 398 399 // Get the base offset of the incoming arguments stack space. 400 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 401 // Get the size of the preserved arguments area 402 unsigned ArgsPreserved = 64; 403 404 // Analyze arguments according to CC_VE. 405 SmallVector<CCValAssign, 16> ArgLocs; 406 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 407 *DAG.getContext()); 408 // Allocate the preserved area first. 409 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 410 // We already allocated the preserved area, so the stack offset computed 411 // by CC_VE would be correct now. 412 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 413 414 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 415 CCValAssign &VA = ArgLocs[i]; 416 assert(!VA.needsCustom() && "Unexpected custom lowering"); 417 if (VA.isRegLoc()) { 418 // This argument is passed in a register. 419 // All integer register arguments are promoted by the caller to i64. 420 421 // Create a virtual register for the promoted live-in value. 422 unsigned VReg = 423 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 424 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 425 426 // The caller promoted the argument, so insert an Assert?ext SDNode so we 427 // won't promote the value again in this function. 428 switch (VA.getLocInfo()) { 429 case CCValAssign::SExt: 430 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 431 DAG.getValueType(VA.getValVT())); 432 break; 433 case CCValAssign::ZExt: 434 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 435 DAG.getValueType(VA.getValVT())); 436 break; 437 case CCValAssign::BCvt: { 438 // Extract a float argument from i64 with padding. 439 // 63 31 0 440 // +------+------+ 441 // | float| 0 | 442 // +------+------+ 443 assert(VA.getLocVT() == MVT::i64); 444 assert(VA.getValVT() == MVT::f32); 445 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 446 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 447 MVT::f32, Arg, Sub_f32), 448 0); 449 break; 450 } 451 default: 452 break; 453 } 454 455 // Truncate the register down to the argument type. 456 if (VA.isExtInLoc()) 457 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 458 459 InVals.push_back(Arg); 460 continue; 461 } 462 463 // The registers are exhausted. This argument was passed on the stack. 464 assert(VA.isMemLoc()); 465 // The CC_VE_Full/Half functions compute stack offsets relative to the 466 // beginning of the arguments area at %fp + the size of reserved area. 467 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 468 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 469 470 // Adjust offset for a float argument by adding 4 since the argument is 471 // stored in 8 bytes buffer with offset like below. LLVM generates 472 // 4 bytes load instruction, so need to adjust offset here. This 473 // adjustment is required in only LowerFormalArguments. In LowerCall, 474 // a float argument is converted to i64 first, and stored as 8 bytes 475 // data, which is required by ABI, so no need for adjustment. 476 // 0 4 477 // +------+------+ 478 // | empty| float| 479 // +------+------+ 480 if (VA.getValVT() == MVT::f32) 481 Offset += 4; 482 483 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 484 InVals.push_back( 485 DAG.getLoad(VA.getValVT(), DL, Chain, 486 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 487 MachinePointerInfo::getFixedStack(MF, FI))); 488 } 489 490 if (!IsVarArg) 491 return Chain; 492 493 // This function takes variable arguments, some of which may have been passed 494 // in registers %s0-%s8. 495 // 496 // The va_start intrinsic needs to know the offset to the first variable 497 // argument. 498 // TODO: need to calculate offset correctly once we support f128. 499 unsigned ArgOffset = ArgLocs.size() * 8; 500 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 501 // Skip the reserved area at the top of stack. 502 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 503 504 return Chain; 505 } 506 507 // FIXME? Maybe this could be a TableGen attribute on some registers and 508 // this table could be generated automatically from RegInfo. 509 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 510 const MachineFunction &MF) const { 511 Register Reg = StringSwitch<Register>(RegName) 512 .Case("sp", VE::SX11) // Stack pointer 513 .Case("fp", VE::SX9) // Frame pointer 514 .Case("sl", VE::SX8) // Stack limit 515 .Case("lr", VE::SX10) // Link register 516 .Case("tp", VE::SX14) // Thread pointer 517 .Case("outer", VE::SX12) // Outer regiser 518 .Case("info", VE::SX17) // Info area register 519 .Case("got", VE::SX15) // Global offset table register 520 .Case("plt", VE::SX16) // Procedure linkage table register 521 .Default(0); 522 523 if (Reg) 524 return Reg; 525 526 report_fatal_error("Invalid register name global variable"); 527 } 528 529 //===----------------------------------------------------------------------===// 530 // TargetLowering Implementation 531 //===----------------------------------------------------------------------===// 532 533 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 534 SmallVectorImpl<SDValue> &InVals) const { 535 SelectionDAG &DAG = CLI.DAG; 536 SDLoc DL = CLI.DL; 537 SDValue Chain = CLI.Chain; 538 auto PtrVT = getPointerTy(DAG.getDataLayout()); 539 540 // VE target does not yet support tail call optimization. 541 CLI.IsTailCall = false; 542 543 // Get the base offset of the outgoing arguments stack space. 544 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 545 // Get the size of the preserved arguments area 546 unsigned ArgsPreserved = 8 * 8u; 547 548 // Analyze operands of the call, assigning locations to each operand. 549 SmallVector<CCValAssign, 16> ArgLocs; 550 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 551 *DAG.getContext()); 552 // Allocate the preserved area first. 553 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 554 // We already allocated the preserved area, so the stack offset computed 555 // by CC_VE would be correct now. 556 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 557 558 // VE requires to use both register and stack for varargs or no-prototyped 559 // functions. 560 bool UseBoth = CLI.IsVarArg; 561 562 // Analyze operands again if it is required to store BOTH. 563 SmallVector<CCValAssign, 16> ArgLocs2; 564 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 565 ArgLocs2, *DAG.getContext()); 566 if (UseBoth) 567 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 568 569 // Get the size of the outgoing arguments stack space requirement. 570 unsigned ArgsSize = CCInfo.getNextStackOffset(); 571 572 // Keep stack frames 16-byte aligned. 573 ArgsSize = alignTo(ArgsSize, 16); 574 575 // Adjust the stack pointer to make room for the arguments. 576 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 577 // with more than 6 arguments. 578 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 579 580 // Collect the set of registers to pass to the function and their values. 581 // This will be emitted as a sequence of CopyToReg nodes glued to the call 582 // instruction. 583 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 584 585 // Collect chains from all the memory opeations that copy arguments to the 586 // stack. They must follow the stack pointer adjustment above and precede the 587 // call instruction itself. 588 SmallVector<SDValue, 8> MemOpChains; 589 590 // VE needs to get address of callee function in a register 591 // So, prepare to copy it to SX12 here. 592 593 // If the callee is a GlobalAddress node (quite common, every direct call is) 594 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 595 // Likewise ExternalSymbol -> TargetExternalSymbol. 596 SDValue Callee = CLI.Callee; 597 598 bool IsPICCall = isPositionIndependent(); 599 600 // PC-relative references to external symbols should go through $stub. 601 // If so, we need to prepare GlobalBaseReg first. 602 const TargetMachine &TM = DAG.getTarget(); 603 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 604 const GlobalValue *GV = nullptr; 605 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 606 if (CalleeG) 607 GV = CalleeG->getGlobal(); 608 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 609 bool UsePlt = !Local; 610 MachineFunction &MF = DAG.getMachineFunction(); 611 612 // Turn GlobalAddress/ExternalSymbol node into a value node 613 // containing the address of them here. 614 if (CalleeG) { 615 if (IsPICCall) { 616 if (UsePlt) 617 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 618 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 619 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 620 } else { 621 Callee = 622 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 623 } 624 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 625 if (IsPICCall) { 626 if (UsePlt) 627 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 628 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 629 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 630 } else { 631 Callee = 632 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 633 } 634 } 635 636 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 637 638 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 639 CCValAssign &VA = ArgLocs[i]; 640 SDValue Arg = CLI.OutVals[i]; 641 642 // Promote the value if needed. 643 switch (VA.getLocInfo()) { 644 default: 645 llvm_unreachable("Unknown location info!"); 646 case CCValAssign::Full: 647 break; 648 case CCValAssign::SExt: 649 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 650 break; 651 case CCValAssign::ZExt: 652 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 653 break; 654 case CCValAssign::AExt: 655 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 656 break; 657 case CCValAssign::BCvt: { 658 // Convert a float argument to i64 with padding. 659 // 63 31 0 660 // +------+------+ 661 // | float| 0 | 662 // +------+------+ 663 assert(VA.getLocVT() == MVT::i64); 664 assert(VA.getValVT() == MVT::f32); 665 SDValue Undef = SDValue( 666 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 667 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 668 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 669 MVT::i64, Undef, Arg, Sub_f32), 670 0); 671 break; 672 } 673 } 674 675 if (VA.isRegLoc()) { 676 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 677 if (!UseBoth) 678 continue; 679 VA = ArgLocs2[i]; 680 } 681 682 assert(VA.isMemLoc()); 683 684 // Create a store off the stack pointer for this argument. 685 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 686 // The argument area starts at %fp/%sp + the size of reserved area. 687 SDValue PtrOff = 688 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 689 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 690 MemOpChains.push_back( 691 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 692 } 693 694 // Emit all stores, make sure they occur before the call. 695 if (!MemOpChains.empty()) 696 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 697 698 // Build a sequence of CopyToReg nodes glued together with token chain and 699 // glue operands which copy the outgoing args into registers. The InGlue is 700 // necessary since all emitted instructions must be stuck together in order 701 // to pass the live physical registers. 702 SDValue InGlue; 703 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 704 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 705 RegsToPass[i].second, InGlue); 706 InGlue = Chain.getValue(1); 707 } 708 709 // Build the operands for the call instruction itself. 710 SmallVector<SDValue, 8> Ops; 711 Ops.push_back(Chain); 712 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 713 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 714 RegsToPass[i].second.getValueType())); 715 716 // Add a register mask operand representing the call-preserved registers. 717 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 718 const uint32_t *Mask = 719 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 720 assert(Mask && "Missing call preserved mask for calling convention"); 721 Ops.push_back(DAG.getRegisterMask(Mask)); 722 723 // Make sure the CopyToReg nodes are glued to the call instruction which 724 // consumes the registers. 725 if (InGlue.getNode()) 726 Ops.push_back(InGlue); 727 728 // Now the call itself. 729 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 730 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 731 InGlue = Chain.getValue(1); 732 733 // Revert the stack pointer immediately after the call. 734 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 735 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 736 InGlue = Chain.getValue(1); 737 738 // Now extract the return values. This is more or less the same as 739 // LowerFormalArguments. 740 741 // Assign locations to each value returned by this call. 742 SmallVector<CCValAssign, 16> RVLocs; 743 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 744 *DAG.getContext()); 745 746 // Set inreg flag manually for codegen generated library calls that 747 // return float. 748 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 749 CLI.Ins[0].Flags.setInReg(); 750 751 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 752 753 // Copy all of the result registers out of their specified physreg. 754 for (unsigned i = 0; i != RVLocs.size(); ++i) { 755 CCValAssign &VA = RVLocs[i]; 756 assert(!VA.needsCustom() && "Unexpected custom lowering"); 757 unsigned Reg = VA.getLocReg(); 758 759 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 760 // reside in the same register in the high and low bits. Reuse the 761 // CopyFromReg previous node to avoid duplicate copies. 762 SDValue RV; 763 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 764 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 765 RV = Chain.getValue(0); 766 767 // But usually we'll create a new CopyFromReg for a different register. 768 if (!RV.getNode()) { 769 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 770 Chain = RV.getValue(1); 771 InGlue = Chain.getValue(2); 772 } 773 774 // The callee promoted the return value, so insert an Assert?ext SDNode so 775 // we won't promote the value again in this function. 776 switch (VA.getLocInfo()) { 777 case CCValAssign::SExt: 778 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 779 DAG.getValueType(VA.getValVT())); 780 break; 781 case CCValAssign::ZExt: 782 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 783 DAG.getValueType(VA.getValVT())); 784 break; 785 case CCValAssign::BCvt: { 786 // Extract a float return value from i64 with padding. 787 // 63 31 0 788 // +------+------+ 789 // | float| 0 | 790 // +------+------+ 791 assert(VA.getLocVT() == MVT::i64); 792 assert(VA.getValVT() == MVT::f32); 793 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 794 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 795 MVT::f32, RV, Sub_f32), 796 0); 797 break; 798 } 799 default: 800 break; 801 } 802 803 // Truncate the register down to the return value type. 804 if (VA.isExtInLoc()) 805 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 806 807 InVals.push_back(RV); 808 } 809 810 return Chain; 811 } 812 813 bool VETargetLowering::isOffsetFoldingLegal( 814 const GlobalAddressSDNode *GA) const { 815 // VE uses 64 bit addressing, so we need multiple instructions to generate 816 // an address. Folding address with offset increases the number of 817 // instructions, so that we disable it here. Offsets will be folded in 818 // the DAG combine later if it worth to do so. 819 return false; 820 } 821 822 /// isFPImmLegal - Returns true if the target can instruction select the 823 /// specified FP immediate natively. If false, the legalizer will 824 /// materialize the FP immediate as a load from a constant pool. 825 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 826 bool ForCodeSize) const { 827 return VT == MVT::f32 || VT == MVT::f64; 828 } 829 830 /// Determine if the target supports unaligned memory accesses. 831 /// 832 /// This function returns true if the target allows unaligned memory accesses 833 /// of the specified type in the given address space. If true, it also returns 834 /// whether the unaligned memory access is "fast" in the last argument by 835 /// reference. This is used, for example, in situations where an array 836 /// copy/move/set is converted to a sequence of store operations. Its use 837 /// helps to ensure that such replacements don't generate code that causes an 838 /// alignment error (trap) on the target machine. 839 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 840 unsigned AddrSpace, 841 Align A, 842 MachineMemOperand::Flags, 843 bool *Fast) const { 844 if (Fast) { 845 // It's fast anytime on VE 846 *Fast = true; 847 } 848 return true; 849 } 850 851 VETargetLowering::VETargetLowering(const TargetMachine &TM, 852 const VESubtarget &STI) 853 : TargetLowering(TM), Subtarget(&STI) { 854 // Instructions which use registers as conditionals examine all the 855 // bits (as does the pseudo SELECT_CC expansion). I don't think it 856 // matters much whether it's ZeroOrOneBooleanContent, or 857 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 858 // former. 859 setBooleanContents(ZeroOrOneBooleanContent); 860 setBooleanVectorContents(ZeroOrOneBooleanContent); 861 862 initRegisterClasses(); 863 initSPUActions(); 864 initVPUActions(); 865 866 setStackPointerRegisterToSaveRestore(VE::SX11); 867 868 // We have target-specific dag combine patterns for the following nodes: 869 setTargetDAGCombine(ISD::TRUNCATE); 870 871 // Set function alignment to 16 bytes 872 setMinFunctionAlignment(Align(16)); 873 874 // VE stores all argument by 8 bytes alignment 875 setMinStackArgumentAlignment(Align(8)); 876 877 computeRegisterProperties(Subtarget->getRegisterInfo()); 878 } 879 880 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 881 #define TARGET_NODE_CASE(NAME) \ 882 case VEISD::NAME: \ 883 return "VEISD::" #NAME; 884 switch ((VEISD::NodeType)Opcode) { 885 case VEISD::FIRST_NUMBER: 886 break; 887 TARGET_NODE_CASE(CALL) 888 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 889 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 890 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 891 TARGET_NODE_CASE(GETFUNPLT) 892 TARGET_NODE_CASE(GETSTACKTOP) 893 TARGET_NODE_CASE(GETTLSADDR) 894 TARGET_NODE_CASE(GLOBAL_BASE_REG) 895 TARGET_NODE_CASE(Hi) 896 TARGET_NODE_CASE(Lo) 897 TARGET_NODE_CASE(MEMBARRIER) 898 TARGET_NODE_CASE(RET_FLAG) 899 TARGET_NODE_CASE(TS1AM) 900 TARGET_NODE_CASE(VEC_BROADCAST) 901 902 // Register the VVP_* SDNodes. 903 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 904 #include "VVPNodes.def" 905 } 906 #undef TARGET_NODE_CASE 907 return nullptr; 908 } 909 910 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 911 EVT VT) const { 912 return MVT::i32; 913 } 914 915 // Convert to a target node and set target flags. 916 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 917 SelectionDAG &DAG) const { 918 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 919 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 920 GA->getValueType(0), GA->getOffset(), TF); 921 922 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 923 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 924 0, TF); 925 926 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 927 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 928 CP->getAlign(), CP->getOffset(), TF); 929 930 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 931 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 932 TF); 933 934 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 935 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 936 937 llvm_unreachable("Unhandled address SDNode"); 938 } 939 940 // Split Op into high and low parts according to HiTF and LoTF. 941 // Return an ADD node combining the parts. 942 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 943 SelectionDAG &DAG) const { 944 SDLoc DL(Op); 945 EVT VT = Op.getValueType(); 946 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 947 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 948 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 949 } 950 951 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 952 // or ExternalSymbol SDNode. 953 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 954 SDLoc DL(Op); 955 EVT PtrVT = Op.getValueType(); 956 957 // Handle PIC mode first. VE needs a got load for every variable! 958 if (isPositionIndependent()) { 959 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 960 961 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 962 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 963 // Create following instructions for local linkage PIC code. 964 // lea %reg, label@gotoff_lo 965 // and %reg, %reg, (32)0 966 // lea.sl %reg, label@gotoff_hi(%reg, %got) 967 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 968 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 969 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 970 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 971 } 972 // Create following instructions for not local linkage PIC code. 973 // lea %reg, label@got_lo 974 // and %reg, %reg, (32)0 975 // lea.sl %reg, label@got_hi(%reg) 976 // ld %reg, (%reg, %got) 977 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 978 VEMCExpr::VK_VE_GOT_LO32, DAG); 979 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 980 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 981 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 982 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 983 } 984 985 // This is one of the absolute code models. 986 switch (getTargetMachine().getCodeModel()) { 987 default: 988 llvm_unreachable("Unsupported absolute code model"); 989 case CodeModel::Small: 990 case CodeModel::Medium: 991 case CodeModel::Large: 992 // abs64. 993 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 994 } 995 } 996 997 /// Custom Lower { 998 999 // The mappings for emitLeading/TrailingFence for VE is designed by following 1000 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1001 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, 1002 Instruction *Inst, 1003 AtomicOrdering Ord) const { 1004 switch (Ord) { 1005 case AtomicOrdering::NotAtomic: 1006 case AtomicOrdering::Unordered: 1007 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1008 case AtomicOrdering::Monotonic: 1009 case AtomicOrdering::Acquire: 1010 return nullptr; // Nothing to do 1011 case AtomicOrdering::Release: 1012 case AtomicOrdering::AcquireRelease: 1013 return Builder.CreateFence(AtomicOrdering::Release); 1014 case AtomicOrdering::SequentiallyConsistent: 1015 if (!Inst->hasAtomicStore()) 1016 return nullptr; // Nothing to do 1017 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1018 } 1019 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1020 } 1021 1022 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, 1023 Instruction *Inst, 1024 AtomicOrdering Ord) const { 1025 switch (Ord) { 1026 case AtomicOrdering::NotAtomic: 1027 case AtomicOrdering::Unordered: 1028 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1029 case AtomicOrdering::Monotonic: 1030 case AtomicOrdering::Release: 1031 return nullptr; // Nothing to do 1032 case AtomicOrdering::Acquire: 1033 case AtomicOrdering::AcquireRelease: 1034 return Builder.CreateFence(AtomicOrdering::Acquire); 1035 case AtomicOrdering::SequentiallyConsistent: 1036 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1037 } 1038 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1039 } 1040 1041 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1042 SelectionDAG &DAG) const { 1043 SDLoc DL(Op); 1044 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 1045 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 1046 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 1047 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 1048 1049 // VE uses Release consistency, so need a fence instruction if it is a 1050 // cross-thread fence. 1051 if (FenceSSID == SyncScope::System) { 1052 switch (FenceOrdering) { 1053 case AtomicOrdering::NotAtomic: 1054 case AtomicOrdering::Unordered: 1055 case AtomicOrdering::Monotonic: 1056 // No need to generate fencem instruction here. 1057 break; 1058 case AtomicOrdering::Acquire: 1059 // Generate "fencem 2" as acquire fence. 1060 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1061 DAG.getTargetConstant(2, DL, MVT::i32), 1062 Op.getOperand(0)), 1063 0); 1064 case AtomicOrdering::Release: 1065 // Generate "fencem 1" as release fence. 1066 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1067 DAG.getTargetConstant(1, DL, MVT::i32), 1068 Op.getOperand(0)), 1069 0); 1070 case AtomicOrdering::AcquireRelease: 1071 case AtomicOrdering::SequentiallyConsistent: 1072 // Generate "fencem 3" as acq_rel and seq_cst fence. 1073 // FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses, 1074 // so seq_cst may require more instruction for them. 1075 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1076 DAG.getTargetConstant(3, DL, MVT::i32), 1077 Op.getOperand(0)), 1078 0); 1079 } 1080 } 1081 1082 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1083 return DAG.getNode(VEISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1084 } 1085 1086 TargetLowering::AtomicExpansionKind 1087 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1088 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1089 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1090 return AtomicExpansionKind::None; 1091 } 1092 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1093 1094 // Otherwise, expand it using compare and exchange instruction to not call 1095 // __sync_fetch_and_* functions. 1096 return AtomicExpansionKind::CmpXChg; 1097 } 1098 1099 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1100 SDValue &Bits) { 1101 SDLoc DL(Op); 1102 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1103 SDValue Ptr = N->getOperand(1); 1104 SDValue Val = N->getOperand(2); 1105 EVT PtrVT = Ptr.getValueType(); 1106 bool Byte = N->getMemoryVT() == MVT::i8; 1107 // Remainder = AND Ptr, 3 1108 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1109 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1110 // Bits = Remainder << 3 1111 // NewVal = Val << Bits 1112 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1113 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1114 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1115 : DAG.getConstant(3, DL, MVT::i32); 1116 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1117 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1118 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1119 } 1120 1121 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1122 SDValue Bits) { 1123 SDLoc DL(Op); 1124 EVT VT = Data.getValueType(); 1125 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1126 // NewData = Data >> Bits 1127 // Result = NewData & 0xff ; If Byte is true (1 byte) 1128 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1129 1130 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1131 return DAG.getNode(ISD::AND, DL, VT, 1132 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1133 } 1134 1135 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1136 SelectionDAG &DAG) const { 1137 SDLoc DL(Op); 1138 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1139 1140 if (N->getMemoryVT() == MVT::i8) { 1141 // For i8, use "ts1am" 1142 // Input: 1143 // ATOMIC_SWAP Ptr, Val, Order 1144 // 1145 // Output: 1146 // Remainder = AND Ptr, 3 1147 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1148 // Bits = Remainder << 3 1149 // NewVal = Val << Bits 1150 // 1151 // Aligned = AND Ptr, -4 1152 // Data = TS1AM Aligned, Flag, NewVal 1153 // 1154 // NewData = Data >> Bits 1155 // Result = NewData & 0xff ; 1 byte result 1156 SDValue Flag; 1157 SDValue Bits; 1158 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1159 1160 SDValue Ptr = N->getOperand(1); 1161 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1162 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1163 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1164 DAG.getVTList(Op.getNode()->getValueType(0), 1165 Op.getNode()->getValueType(1)), 1166 {N->getChain(), Aligned, Flag, NewVal}, 1167 N->getMemOperand()); 1168 1169 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1170 SDValue Chain = TS1AM.getValue(1); 1171 return DAG.getMergeValues({Result, Chain}, DL); 1172 } 1173 if (N->getMemoryVT() == MVT::i16) { 1174 // For i16, use "ts1am" 1175 SDValue Flag; 1176 SDValue Bits; 1177 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1178 1179 SDValue Ptr = N->getOperand(1); 1180 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1181 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1182 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1183 DAG.getVTList(Op.getNode()->getValueType(0), 1184 Op.getNode()->getValueType(1)), 1185 {N->getChain(), Aligned, Flag, NewVal}, 1186 N->getMemOperand()); 1187 1188 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1189 SDValue Chain = TS1AM.getValue(1); 1190 return DAG.getMergeValues({Result, Chain}, DL); 1191 } 1192 // Otherwise, let llvm legalize it. 1193 return Op; 1194 } 1195 1196 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1197 SelectionDAG &DAG) const { 1198 return makeAddress(Op, DAG); 1199 } 1200 1201 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1202 SelectionDAG &DAG) const { 1203 return makeAddress(Op, DAG); 1204 } 1205 1206 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1207 SelectionDAG &DAG) const { 1208 return makeAddress(Op, DAG); 1209 } 1210 1211 SDValue 1212 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1213 SelectionDAG &DAG) const { 1214 SDLoc DL(Op); 1215 1216 // Generate the following code: 1217 // t1: ch,glue = callseq_start t0, 0, 0 1218 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1219 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1220 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1221 SDValue Label = withTargetFlags(Op, 0, DAG); 1222 EVT PtrVT = Op.getValueType(); 1223 1224 // Lowering the machine isd will make sure everything is in the right 1225 // location. 1226 SDValue Chain = DAG.getEntryNode(); 1227 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1228 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1229 DAG.getMachineFunction(), CallingConv::C); 1230 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1231 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1232 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1233 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, DL, true), 1234 DAG.getIntPtrConstant(0, DL, true), 1235 Chain.getValue(1), DL); 1236 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1237 1238 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1239 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1240 MFI.setHasCalls(true); 1241 1242 // Also generate code to prepare a GOT register if it is PIC. 1243 if (isPositionIndependent()) { 1244 MachineFunction &MF = DAG.getMachineFunction(); 1245 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1246 } 1247 1248 return Chain; 1249 } 1250 1251 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1252 SelectionDAG &DAG) const { 1253 // The current implementation of nld (2.26) doesn't allow local exec model 1254 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1255 // generate the general dynamic model code sequence. 1256 // 1257 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1258 return lowerToTLSGeneralDynamicModel(Op, DAG); 1259 } 1260 1261 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1262 return makeAddress(Op, DAG); 1263 } 1264 1265 // Lower a f128 load into two f64 loads. 1266 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1267 SDLoc DL(Op); 1268 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1269 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1270 unsigned Alignment = LdNode->getAlign().value(); 1271 if (Alignment > 8) 1272 Alignment = 8; 1273 1274 SDValue Lo64 = 1275 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1276 LdNode->getPointerInfo(), Alignment, 1277 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1278 : MachineMemOperand::MONone); 1279 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1280 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1281 DAG.getConstant(8, DL, AddrVT)); 1282 SDValue Hi64 = 1283 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1284 LdNode->getPointerInfo(), Alignment, 1285 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1286 : MachineMemOperand::MONone); 1287 1288 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1289 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1290 1291 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1292 SDNode *InFP128 = 1293 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1294 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1295 SDValue(InFP128, 0), Hi64, SubRegEven); 1296 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1297 SDValue(InFP128, 0), Lo64, SubRegOdd); 1298 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1299 SDValue(Hi64.getNode(), 1)}; 1300 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1301 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1302 return DAG.getMergeValues(Ops, DL); 1303 } 1304 1305 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1306 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1307 1308 SDValue BasePtr = LdNode->getBasePtr(); 1309 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1310 // Do not expand store instruction with frame index here because of 1311 // dependency problems. We expand it later in eliminateFrameIndex(). 1312 return Op; 1313 } 1314 1315 EVT MemVT = LdNode->getMemoryVT(); 1316 if (MemVT == MVT::f128) 1317 return lowerLoadF128(Op, DAG); 1318 1319 return Op; 1320 } 1321 1322 // Lower a f128 store into two f64 stores. 1323 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1324 SDLoc DL(Op); 1325 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1326 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1327 1328 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1329 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1330 1331 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1332 StNode->getValue(), SubRegEven); 1333 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1334 StNode->getValue(), SubRegOdd); 1335 1336 unsigned Alignment = StNode->getAlign().value(); 1337 if (Alignment > 8) 1338 Alignment = 8; 1339 1340 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1341 SDValue OutChains[2]; 1342 OutChains[0] = 1343 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1344 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1345 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1346 : MachineMemOperand::MONone); 1347 EVT AddrVT = StNode->getBasePtr().getValueType(); 1348 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1349 DAG.getConstant(8, DL, AddrVT)); 1350 OutChains[1] = 1351 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1352 MachinePointerInfo(), Alignment, 1353 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1354 : MachineMemOperand::MONone); 1355 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1356 } 1357 1358 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1359 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1360 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1361 1362 SDValue BasePtr = StNode->getBasePtr(); 1363 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1364 // Do not expand store instruction with frame index here because of 1365 // dependency problems. We expand it later in eliminateFrameIndex(). 1366 return Op; 1367 } 1368 1369 EVT MemVT = StNode->getMemoryVT(); 1370 if (MemVT == MVT::f128) 1371 return lowerStoreF128(Op, DAG); 1372 1373 // Otherwise, ask llvm to expand it. 1374 return SDValue(); 1375 } 1376 1377 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1378 MachineFunction &MF = DAG.getMachineFunction(); 1379 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1380 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1381 1382 // Need frame address to find the address of VarArgsFrameIndex. 1383 MF.getFrameInfo().setFrameAddressIsTaken(true); 1384 1385 // vastart just stores the address of the VarArgsFrameIndex slot into the 1386 // memory location argument. 1387 SDLoc DL(Op); 1388 SDValue Offset = 1389 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1390 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1391 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1392 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1393 MachinePointerInfo(SV)); 1394 } 1395 1396 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1397 SDNode *Node = Op.getNode(); 1398 EVT VT = Node->getValueType(0); 1399 SDValue InChain = Node->getOperand(0); 1400 SDValue VAListPtr = Node->getOperand(1); 1401 EVT PtrVT = VAListPtr.getValueType(); 1402 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1403 SDLoc DL(Node); 1404 SDValue VAList = 1405 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1406 SDValue Chain = VAList.getValue(1); 1407 SDValue NextPtr; 1408 1409 if (VT == MVT::f128) { 1410 // VE f128 values must be stored with 16 bytes alignment. We doesn't 1411 // know the actual alignment of VAList, so we take alignment of it 1412 // dyanmically. 1413 int Align = 16; 1414 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1415 DAG.getConstant(Align - 1, DL, PtrVT)); 1416 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1417 DAG.getConstant(-Align, DL, PtrVT)); 1418 // Increment the pointer, VAList, by 16 to the next vaarg. 1419 NextPtr = 1420 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1421 } else if (VT == MVT::f32) { 1422 // float --> need special handling like below. 1423 // 0 4 1424 // +------+------+ 1425 // | empty| float| 1426 // +------+------+ 1427 // Increment the pointer, VAList, by 8 to the next vaarg. 1428 NextPtr = 1429 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1430 // Then, adjust VAList. 1431 unsigned InternalOffset = 4; 1432 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1433 DAG.getConstant(InternalOffset, DL, PtrVT)); 1434 } else { 1435 // Increment the pointer, VAList, by 8 to the next vaarg. 1436 NextPtr = 1437 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1438 } 1439 1440 // Store the incremented VAList to the legalized pointer. 1441 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1442 1443 // Load the actual argument out of the pointer VAList. 1444 // We can't count on greater alignment than the word size. 1445 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 1446 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); 1447 } 1448 1449 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1450 SelectionDAG &DAG) const { 1451 // Generate following code. 1452 // (void)__llvm_grow_stack(size); 1453 // ret = GETSTACKTOP; // pseudo instruction 1454 SDLoc DL(Op); 1455 1456 // Get the inputs. 1457 SDNode *Node = Op.getNode(); 1458 SDValue Chain = Op.getOperand(0); 1459 SDValue Size = Op.getOperand(1); 1460 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1461 EVT VT = Node->getValueType(0); 1462 1463 // Chain the dynamic stack allocation so that it doesn't modify the stack 1464 // pointer when other instructions are using the stack. 1465 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1466 1467 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1468 Align StackAlign = TFI.getStackAlign(); 1469 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1470 1471 // Prepare arguments 1472 TargetLowering::ArgListTy Args; 1473 TargetLowering::ArgListEntry Entry; 1474 Entry.Node = Size; 1475 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1476 Args.push_back(Entry); 1477 if (NeedsAlign) { 1478 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1479 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1480 Args.push_back(Entry); 1481 } 1482 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1483 1484 EVT PtrVT = Op.getValueType(); 1485 SDValue Callee; 1486 if (NeedsAlign) { 1487 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1488 } else { 1489 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1490 } 1491 1492 TargetLowering::CallLoweringInfo CLI(DAG); 1493 CLI.setDebugLoc(DL) 1494 .setChain(Chain) 1495 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1496 .setDiscardResult(true); 1497 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1498 Chain = pair.second; 1499 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1500 if (NeedsAlign) { 1501 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1502 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1503 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1504 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1505 } 1506 // Chain = Result.getValue(1); 1507 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true), 1508 DAG.getIntPtrConstant(0, DL, true), SDValue(), DL); 1509 1510 SDValue Ops[2] = {Result, Chain}; 1511 return DAG.getMergeValues(Ops, DL); 1512 } 1513 1514 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1515 SelectionDAG &DAG) const { 1516 SDLoc DL(Op); 1517 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1518 Op.getOperand(1)); 1519 } 1520 1521 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1522 SelectionDAG &DAG) const { 1523 SDLoc DL(Op); 1524 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1525 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1526 Op.getOperand(1)); 1527 } 1528 1529 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1530 SelectionDAG &DAG) const { 1531 SDLoc DL(Op); 1532 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1533 Op.getOperand(0)); 1534 } 1535 1536 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1537 const VETargetLowering &TLI, 1538 const VESubtarget *Subtarget) { 1539 SDLoc DL(Op); 1540 MachineFunction &MF = DAG.getMachineFunction(); 1541 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1542 1543 MachineFrameInfo &MFI = MF.getFrameInfo(); 1544 MFI.setFrameAddressIsTaken(true); 1545 1546 unsigned Depth = Op.getConstantOperandVal(0); 1547 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1548 unsigned FrameReg = RegInfo->getFrameRegister(MF); 1549 SDValue FrameAddr = 1550 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1551 while (Depth--) 1552 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1553 FrameAddr, MachinePointerInfo()); 1554 return FrameAddr; 1555 } 1556 1557 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1558 const VETargetLowering &TLI, 1559 const VESubtarget *Subtarget) { 1560 MachineFunction &MF = DAG.getMachineFunction(); 1561 MachineFrameInfo &MFI = MF.getFrameInfo(); 1562 MFI.setReturnAddressIsTaken(true); 1563 1564 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1565 return SDValue(); 1566 1567 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1568 1569 SDLoc DL(Op); 1570 EVT VT = Op.getValueType(); 1571 SDValue Offset = DAG.getConstant(8, DL, VT); 1572 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1573 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1574 MachinePointerInfo()); 1575 } 1576 1577 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1578 SelectionDAG &DAG) const { 1579 SDLoc DL(Op); 1580 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1581 switch (IntNo) { 1582 default: // Don't custom lower most intrinsics. 1583 return SDValue(); 1584 case Intrinsic::eh_sjlj_lsda: { 1585 MachineFunction &MF = DAG.getMachineFunction(); 1586 MVT VT = Op.getSimpleValueType(); 1587 const VETargetMachine *TM = 1588 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1589 1590 // Create GCC_except_tableXX string. The real symbol for that will be 1591 // generated in EHStreamer::emitExceptionTable() later. So, we just 1592 // borrow it's name here. 1593 TM->getStrList()->push_back(std::string( 1594 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1595 SDValue Addr = 1596 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1597 if (isPositionIndependent()) { 1598 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1599 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1600 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1601 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1602 } 1603 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1604 } 1605 } 1606 } 1607 1608 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1609 if (!isa<BuildVectorSDNode>(N)) 1610 return false; 1611 const auto *BVN = cast<BuildVectorSDNode>(N); 1612 1613 // Find first non-undef insertion. 1614 unsigned Idx; 1615 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1616 auto ElemV = BVN->getOperand(Idx); 1617 if (!ElemV->isUndef()) 1618 break; 1619 } 1620 // Catch the (hypothetical) all-undef case. 1621 if (Idx == BVN->getNumOperands()) 1622 return false; 1623 // Remember insertion. 1624 UniqueIdx = Idx++; 1625 // Verify that all other insertions are undef. 1626 for (; Idx < BVN->getNumOperands(); ++Idx) { 1627 auto ElemV = BVN->getOperand(Idx); 1628 if (!ElemV->isUndef()) 1629 return false; 1630 } 1631 return true; 1632 } 1633 1634 static SDValue getSplatValue(SDNode *N) { 1635 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1636 return BuildVec->getSplatValue(); 1637 } 1638 return SDValue(); 1639 } 1640 1641 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1642 SelectionDAG &DAG) const { 1643 SDLoc DL(Op); 1644 unsigned NumEls = Op.getValueType().getVectorNumElements(); 1645 MVT ElemVT = Op.getSimpleValueType().getVectorElementType(); 1646 1647 // If there is just one element, expand to INSERT_VECTOR_ELT. 1648 unsigned UniqueIdx; 1649 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1650 SDValue AccuV = DAG.getUNDEF(Op.getValueType()); 1651 auto ElemV = Op->getOperand(UniqueIdx); 1652 SDValue IdxV = DAG.getConstant(UniqueIdx, DL, MVT::i64); 1653 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(), AccuV, 1654 ElemV, IdxV); 1655 } 1656 1657 // Else emit a broadcast. 1658 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1659 // lower to VEC_BROADCAST 1660 MVT LegalResVT = MVT::getVectorVT(ElemVT, 256); 1661 1662 auto AVL = DAG.getConstant(NumEls, DL, MVT::i32); 1663 return DAG.getNode(VEISD::VEC_BROADCAST, DL, LegalResVT, Op.getOperand(0), 1664 AVL); 1665 } 1666 1667 // Expand 1668 return SDValue(); 1669 } 1670 1671 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1672 unsigned Opcode = Op.getOpcode(); 1673 if (ISD::isVPOpcode(Opcode)) 1674 return lowerToVVP(Op, DAG); 1675 1676 switch (Opcode) { 1677 default: 1678 llvm_unreachable("Should not custom lower this!"); 1679 case ISD::ATOMIC_FENCE: 1680 return lowerATOMIC_FENCE(Op, DAG); 1681 case ISD::ATOMIC_SWAP: 1682 return lowerATOMIC_SWAP(Op, DAG); 1683 case ISD::BlockAddress: 1684 return lowerBlockAddress(Op, DAG); 1685 case ISD::ConstantPool: 1686 return lowerConstantPool(Op, DAG); 1687 case ISD::DYNAMIC_STACKALLOC: 1688 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1689 case ISD::EH_SJLJ_LONGJMP: 1690 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1691 case ISD::EH_SJLJ_SETJMP: 1692 return lowerEH_SJLJ_SETJMP(Op, DAG); 1693 case ISD::EH_SJLJ_SETUP_DISPATCH: 1694 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1695 case ISD::FRAMEADDR: 1696 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1697 case ISD::GlobalAddress: 1698 return lowerGlobalAddress(Op, DAG); 1699 case ISD::GlobalTLSAddress: 1700 return lowerGlobalTLSAddress(Op, DAG); 1701 case ISD::INTRINSIC_WO_CHAIN: 1702 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1703 case ISD::JumpTable: 1704 return lowerJumpTable(Op, DAG); 1705 case ISD::LOAD: 1706 return lowerLOAD(Op, DAG); 1707 case ISD::RETURNADDR: 1708 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1709 case ISD::BUILD_VECTOR: 1710 return lowerBUILD_VECTOR(Op, DAG); 1711 case ISD::STORE: 1712 return lowerSTORE(Op, DAG); 1713 case ISD::VASTART: 1714 return lowerVASTART(Op, DAG); 1715 case ISD::VAARG: 1716 return lowerVAARG(Op, DAG); 1717 1718 case ISD::INSERT_VECTOR_ELT: 1719 return lowerINSERT_VECTOR_ELT(Op, DAG); 1720 case ISD::EXTRACT_VECTOR_ELT: 1721 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1722 1723 #define ADD_BINARY_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1724 #include "VVPNodes.def" 1725 return lowerToVVP(Op, DAG); 1726 } 1727 } 1728 /// } Custom Lower 1729 1730 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1731 SmallVectorImpl<SDValue> &Results, 1732 SelectionDAG &DAG) const { 1733 switch (N->getOpcode()) { 1734 case ISD::ATOMIC_SWAP: 1735 // Let LLVM expand atomic swap instruction through LowerOperation. 1736 return; 1737 default: 1738 LLVM_DEBUG(N->dumpr(&DAG)); 1739 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1740 } 1741 } 1742 1743 /// JumpTable for VE. 1744 /// 1745 /// VE cannot generate relocatable symbol in jump table. VE cannot 1746 /// generate expressions using symbols in both text segment and data 1747 /// segment like below. 1748 /// .4byte .LBB0_2-.LJTI0_0 1749 /// So, we generate offset from the top of function like below as 1750 /// a custom label. 1751 /// .4byte .LBB0_2-<function name> 1752 1753 unsigned VETargetLowering::getJumpTableEncoding() const { 1754 // Use custom label for PIC. 1755 if (isPositionIndependent()) 1756 return MachineJumpTableInfo::EK_Custom32; 1757 1758 // Otherwise, use the normal jump table encoding heuristics. 1759 return TargetLowering::getJumpTableEncoding(); 1760 } 1761 1762 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1763 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1764 unsigned Uid, MCContext &Ctx) const { 1765 assert(isPositionIndependent()); 1766 1767 // Generate custom label for PIC like below. 1768 // .4bytes .LBB0_2-<function name> 1769 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1770 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1771 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1772 return MCBinaryExpr::createSub(Value, Base, Ctx); 1773 } 1774 1775 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 1776 SelectionDAG &DAG) const { 1777 assert(isPositionIndependent()); 1778 SDLoc DL(Table); 1779 Function *Function = &DAG.getMachineFunction().getFunction(); 1780 assert(Function != nullptr); 1781 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 1782 1783 // In the jump table, we have following values in PIC mode. 1784 // .4bytes .LBB0_2-<function name> 1785 // We need to add this value and the address of this function to generate 1786 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 1787 // instructions: 1788 // lea %reg, fun@gotoff_lo 1789 // and %reg, %reg, (32)0 1790 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 1791 // In order to do so, we need to genarate correctly marked DAG node using 1792 // makeHiLoPair. 1793 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 1794 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1795 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1796 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 1797 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 1798 } 1799 1800 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 1801 MachineBasicBlock::iterator I, 1802 MachineBasicBlock *TargetBB, 1803 const DebugLoc &DL) const { 1804 MachineFunction *MF = MBB.getParent(); 1805 MachineRegisterInfo &MRI = MF->getRegInfo(); 1806 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1807 1808 const TargetRegisterClass *RC = &VE::I64RegClass; 1809 Register Tmp1 = MRI.createVirtualRegister(RC); 1810 Register Tmp2 = MRI.createVirtualRegister(RC); 1811 Register Result = MRI.createVirtualRegister(RC); 1812 1813 if (isPositionIndependent()) { 1814 // Create following instructions for local linkage PIC code. 1815 // lea %Tmp1, TargetBB@gotoff_lo 1816 // and %Tmp2, %Tmp1, (32)0 1817 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1818 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1819 .addImm(0) 1820 .addImm(0) 1821 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 1822 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1823 .addReg(Tmp1, getKillRegState(true)) 1824 .addImm(M0(32)); 1825 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1826 .addReg(VE::SX15) 1827 .addReg(Tmp2, getKillRegState(true)) 1828 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 1829 } else { 1830 // Create following instructions for non-PIC code. 1831 // lea %Tmp1, TargetBB@lo 1832 // and %Tmp2, %Tmp1, (32)0 1833 // lea.sl %Result, TargetBB@hi(%Tmp2) 1834 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1835 .addImm(0) 1836 .addImm(0) 1837 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 1838 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1839 .addReg(Tmp1, getKillRegState(true)) 1840 .addImm(M0(32)); 1841 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 1842 .addReg(Tmp2, getKillRegState(true)) 1843 .addImm(0) 1844 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 1845 } 1846 return Result; 1847 } 1848 1849 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 1850 MachineBasicBlock::iterator I, 1851 StringRef Symbol, const DebugLoc &DL, 1852 bool IsLocal = false, 1853 bool IsCall = false) const { 1854 MachineFunction *MF = MBB.getParent(); 1855 MachineRegisterInfo &MRI = MF->getRegInfo(); 1856 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1857 1858 const TargetRegisterClass *RC = &VE::I64RegClass; 1859 Register Result = MRI.createVirtualRegister(RC); 1860 1861 if (isPositionIndependent()) { 1862 if (IsCall && !IsLocal) { 1863 // Create following instructions for non-local linkage PIC code function 1864 // calls. These instructions uses IC and magic number -24, so we expand 1865 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 1866 // lea %Reg, Symbol@plt_lo(-24) 1867 // and %Reg, %Reg, (32)0 1868 // sic %s16 1869 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 1870 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 1871 .addExternalSymbol("abort"); 1872 } else if (IsLocal) { 1873 Register Tmp1 = MRI.createVirtualRegister(RC); 1874 Register Tmp2 = MRI.createVirtualRegister(RC); 1875 // Create following instructions for local linkage PIC code. 1876 // lea %Tmp1, Symbol@gotoff_lo 1877 // and %Tmp2, %Tmp1, (32)0 1878 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1879 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1880 .addImm(0) 1881 .addImm(0) 1882 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 1883 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1884 .addReg(Tmp1, getKillRegState(true)) 1885 .addImm(M0(32)); 1886 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1887 .addReg(VE::SX15) 1888 .addReg(Tmp2, getKillRegState(true)) 1889 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 1890 } else { 1891 Register Tmp1 = MRI.createVirtualRegister(RC); 1892 Register Tmp2 = MRI.createVirtualRegister(RC); 1893 // Create following instructions for not local linkage PIC code. 1894 // lea %Tmp1, Symbol@got_lo 1895 // and %Tmp2, %Tmp1, (32)0 1896 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1897 // ld %Result, 0(%Tmp3) 1898 Register Tmp3 = MRI.createVirtualRegister(RC); 1899 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1900 .addImm(0) 1901 .addImm(0) 1902 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 1903 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1904 .addReg(Tmp1, getKillRegState(true)) 1905 .addImm(M0(32)); 1906 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 1907 .addReg(VE::SX15) 1908 .addReg(Tmp2, getKillRegState(true)) 1909 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 1910 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 1911 .addReg(Tmp3, getKillRegState(true)) 1912 .addImm(0) 1913 .addImm(0); 1914 } 1915 } else { 1916 Register Tmp1 = MRI.createVirtualRegister(RC); 1917 Register Tmp2 = MRI.createVirtualRegister(RC); 1918 // Create following instructions for non-PIC code. 1919 // lea %Tmp1, Symbol@lo 1920 // and %Tmp2, %Tmp1, (32)0 1921 // lea.sl %Result, Symbol@hi(%Tmp2) 1922 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1923 .addImm(0) 1924 .addImm(0) 1925 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 1926 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1927 .addReg(Tmp1, getKillRegState(true)) 1928 .addImm(M0(32)); 1929 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 1930 .addReg(Tmp2, getKillRegState(true)) 1931 .addImm(0) 1932 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 1933 } 1934 return Result; 1935 } 1936 1937 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 1938 MachineBasicBlock *MBB, 1939 MachineBasicBlock *DispatchBB, 1940 int FI, int Offset) const { 1941 DebugLoc DL = MI.getDebugLoc(); 1942 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1943 1944 Register LabelReg = 1945 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 1946 1947 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 1948 // referenced by longjmp (throw) later. 1949 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 1950 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 1951 MIB.addReg(LabelReg, getKillRegState(true)); 1952 } 1953 1954 MachineBasicBlock * 1955 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 1956 MachineBasicBlock *MBB) const { 1957 DebugLoc DL = MI.getDebugLoc(); 1958 MachineFunction *MF = MBB->getParent(); 1959 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1960 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1961 MachineRegisterInfo &MRI = MF->getRegInfo(); 1962 1963 const BasicBlock *BB = MBB->getBasicBlock(); 1964 MachineFunction::iterator I = ++MBB->getIterator(); 1965 1966 // Memory Reference. 1967 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 1968 MI.memoperands_end()); 1969 Register BufReg = MI.getOperand(1).getReg(); 1970 1971 Register DstReg; 1972 1973 DstReg = MI.getOperand(0).getReg(); 1974 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 1975 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 1976 (void)TRI; 1977 Register MainDestReg = MRI.createVirtualRegister(RC); 1978 Register RestoreDestReg = MRI.createVirtualRegister(RC); 1979 1980 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 1981 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 1982 // 1983 // ThisMBB: 1984 // buf[3] = %s17 iff %s17 is used as BP 1985 // buf[1] = RestoreMBB as IC after longjmp 1986 // # SjLjSetup RestoreMBB 1987 // 1988 // MainMBB: 1989 // v_main = 0 1990 // 1991 // SinkMBB: 1992 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 1993 // ... 1994 // 1995 // RestoreMBB: 1996 // %s17 = buf[3] = iff %s17 is used as BP 1997 // v_restore = 1 1998 // goto SinkMBB 1999 2000 MachineBasicBlock *ThisMBB = MBB; 2001 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2002 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2003 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2004 MF->insert(I, MainMBB); 2005 MF->insert(I, SinkMBB); 2006 MF->push_back(RestoreMBB); 2007 RestoreMBB->setHasAddressTaken(); 2008 2009 // Transfer the remainder of BB and its successor edges to SinkMBB. 2010 SinkMBB->splice(SinkMBB->begin(), MBB, 2011 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2012 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2013 2014 // ThisMBB: 2015 Register LabelReg = 2016 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2017 2018 // Store BP in buf[3] iff this function is using BP. 2019 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2020 if (TFI->hasBP(*MF)) { 2021 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2022 MIB.addReg(BufReg); 2023 MIB.addImm(0); 2024 MIB.addImm(24); 2025 MIB.addReg(VE::SX17); 2026 MIB.setMemRefs(MMOs); 2027 } 2028 2029 // Store IP in buf[1]. 2030 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2031 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2032 MIB.addImm(0); 2033 MIB.addImm(8); 2034 MIB.addReg(LabelReg, getKillRegState(true)); 2035 MIB.setMemRefs(MMOs); 2036 2037 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2038 2039 // Insert setup. 2040 MIB = 2041 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2042 2043 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2044 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2045 ThisMBB->addSuccessor(MainMBB); 2046 ThisMBB->addSuccessor(RestoreMBB); 2047 2048 // MainMBB: 2049 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2050 .addImm(0) 2051 .addImm(0) 2052 .addImm(0); 2053 MainMBB->addSuccessor(SinkMBB); 2054 2055 // SinkMBB: 2056 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2057 .addReg(MainDestReg) 2058 .addMBB(MainMBB) 2059 .addReg(RestoreDestReg) 2060 .addMBB(RestoreMBB); 2061 2062 // RestoreMBB: 2063 // Restore BP from buf[3] iff this function is using BP. The address of 2064 // buf is in SX10. 2065 // FIXME: Better to not use SX10 here 2066 if (TFI->hasBP(*MF)) { 2067 MachineInstrBuilder MIB = 2068 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2069 MIB.addReg(VE::SX10); 2070 MIB.addImm(0); 2071 MIB.addImm(24); 2072 MIB.setMemRefs(MMOs); 2073 } 2074 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2075 .addImm(0) 2076 .addImm(0) 2077 .addImm(1); 2078 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2079 RestoreMBB->addSuccessor(SinkMBB); 2080 2081 MI.eraseFromParent(); 2082 return SinkMBB; 2083 } 2084 2085 MachineBasicBlock * 2086 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2087 MachineBasicBlock *MBB) const { 2088 DebugLoc DL = MI.getDebugLoc(); 2089 MachineFunction *MF = MBB->getParent(); 2090 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2091 MachineRegisterInfo &MRI = MF->getRegInfo(); 2092 2093 // Memory Reference. 2094 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2095 MI.memoperands_end()); 2096 Register BufReg = MI.getOperand(0).getReg(); 2097 2098 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2099 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2100 Register FP = VE::SX9; 2101 Register SP = VE::SX11; 2102 2103 MachineInstrBuilder MIB; 2104 2105 MachineBasicBlock *ThisMBB = MBB; 2106 2107 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2108 // 2109 // ThisMBB: 2110 // %fp = load buf[0] 2111 // %jmp = load buf[1] 2112 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2113 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2114 // jmp %jmp 2115 2116 // Reload FP. 2117 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2118 MIB.addReg(BufReg); 2119 MIB.addImm(0); 2120 MIB.addImm(0); 2121 MIB.setMemRefs(MMOs); 2122 2123 // Reload IP. 2124 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2125 MIB.addReg(BufReg); 2126 MIB.addImm(0); 2127 MIB.addImm(8); 2128 MIB.setMemRefs(MMOs); 2129 2130 // Copy BufReg to SX10 for later use in setjmp. 2131 // FIXME: Better to not use SX10 here 2132 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2133 .addReg(BufReg) 2134 .addImm(0); 2135 2136 // Reload SP. 2137 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2138 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2139 MIB.addImm(0); 2140 MIB.addImm(16); 2141 MIB.setMemRefs(MMOs); 2142 2143 // Jump. 2144 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2145 .addReg(Tmp, getKillRegState(true)) 2146 .addImm(0); 2147 2148 MI.eraseFromParent(); 2149 return ThisMBB; 2150 } 2151 2152 MachineBasicBlock * 2153 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2154 MachineBasicBlock *BB) const { 2155 DebugLoc DL = MI.getDebugLoc(); 2156 MachineFunction *MF = BB->getParent(); 2157 MachineFrameInfo &MFI = MF->getFrameInfo(); 2158 MachineRegisterInfo &MRI = MF->getRegInfo(); 2159 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2160 int FI = MFI.getFunctionContextIndex(); 2161 2162 // Get a mapping of the call site numbers to all of the landing pads they're 2163 // associated with. 2164 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2165 unsigned MaxCSNum = 0; 2166 for (auto &MBB : *MF) { 2167 if (!MBB.isEHPad()) 2168 continue; 2169 2170 MCSymbol *Sym = nullptr; 2171 for (const auto &MI : MBB) { 2172 if (MI.isDebugInstr()) 2173 continue; 2174 2175 assert(MI.isEHLabel() && "expected EH_LABEL"); 2176 Sym = MI.getOperand(0).getMCSymbol(); 2177 break; 2178 } 2179 2180 if (!MF->hasCallSiteLandingPad(Sym)) 2181 continue; 2182 2183 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2184 CallSiteNumToLPad[CSI].push_back(&MBB); 2185 MaxCSNum = std::max(MaxCSNum, CSI); 2186 } 2187 } 2188 2189 // Get an ordered list of the machine basic blocks for the jump table. 2190 std::vector<MachineBasicBlock *> LPadList; 2191 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2192 LPadList.reserve(CallSiteNumToLPad.size()); 2193 2194 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2195 for (auto &LP : CallSiteNumToLPad[CSI]) { 2196 LPadList.push_back(LP); 2197 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2198 } 2199 } 2200 2201 assert(!LPadList.empty() && 2202 "No landing pad destinations for the dispatch jump table!"); 2203 2204 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2205 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2206 // 2207 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2208 // First `i64` is callsite, so callsite is FI+8. 2209 static const int OffsetIC = 72; 2210 static const int OffsetCS = 8; 2211 2212 // Create the MBBs for the dispatch code like following: 2213 // 2214 // ThisMBB: 2215 // Prepare DispatchBB address and store it to buf[1]. 2216 // ... 2217 // 2218 // DispatchBB: 2219 // %s15 = GETGOT iff isPositionIndependent 2220 // %callsite = load callsite 2221 // brgt.l.t #size of callsites, %callsite, DispContBB 2222 // 2223 // TrapBB: 2224 // Call abort. 2225 // 2226 // DispContBB: 2227 // %breg = address of jump table 2228 // %pc = load and calculate next pc from %breg and %callsite 2229 // jmp %pc 2230 2231 // Shove the dispatch's address into the return slot in the function context. 2232 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2233 DispatchBB->setIsEHPad(true); 2234 2235 // Trap BB will causes trap like `assert(0)`. 2236 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2237 DispatchBB->addSuccessor(TrapBB); 2238 2239 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2240 DispatchBB->addSuccessor(DispContBB); 2241 2242 // Insert MBBs. 2243 MF->push_back(DispatchBB); 2244 MF->push_back(DispContBB); 2245 MF->push_back(TrapBB); 2246 2247 // Insert code to call abort in the TrapBB. 2248 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2249 /* Local */ false, /* Call */ true); 2250 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2251 .addReg(Abort, getKillRegState(true)) 2252 .addImm(0) 2253 .addImm(0); 2254 2255 // Insert code into the entry block that creates and registers the function 2256 // context. 2257 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2258 2259 // Create the jump table and associated information 2260 unsigned JTE = getJumpTableEncoding(); 2261 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2262 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2263 2264 const VERegisterInfo &RI = TII->getRegisterInfo(); 2265 // Add a register mask with no preserved registers. This results in all 2266 // registers being marked as clobbered. 2267 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2268 .addRegMask(RI.getNoPreservedMask()); 2269 2270 if (isPositionIndependent()) { 2271 // Force to generate GETGOT, since current implementation doesn't store GOT 2272 // register. 2273 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2274 } 2275 2276 // IReg is used as an index in a memory operand and therefore can't be SP 2277 const TargetRegisterClass *RC = &VE::I64RegClass; 2278 Register IReg = MRI.createVirtualRegister(RC); 2279 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2280 OffsetCS); 2281 if (LPadList.size() < 64) { 2282 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2283 .addImm(VECC::CC_ILE) 2284 .addImm(LPadList.size()) 2285 .addReg(IReg) 2286 .addMBB(TrapBB); 2287 } else { 2288 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2289 Register TmpReg = MRI.createVirtualRegister(RC); 2290 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2291 .addImm(0) 2292 .addImm(0) 2293 .addImm(LPadList.size()); 2294 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2295 .addImm(VECC::CC_ILE) 2296 .addReg(TmpReg, getKillRegState(true)) 2297 .addReg(IReg) 2298 .addMBB(TrapBB); 2299 } 2300 2301 Register BReg = MRI.createVirtualRegister(RC); 2302 Register Tmp1 = MRI.createVirtualRegister(RC); 2303 Register Tmp2 = MRI.createVirtualRegister(RC); 2304 2305 if (isPositionIndependent()) { 2306 // Create following instructions for local linkage PIC code. 2307 // lea %Tmp1, .LJTI0_0@gotoff_lo 2308 // and %Tmp2, %Tmp1, (32)0 2309 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2310 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2311 .addImm(0) 2312 .addImm(0) 2313 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2314 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2315 .addReg(Tmp1, getKillRegState(true)) 2316 .addImm(M0(32)); 2317 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2318 .addReg(VE::SX15) 2319 .addReg(Tmp2, getKillRegState(true)) 2320 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2321 } else { 2322 // Create following instructions for non-PIC code. 2323 // lea %Tmp1, .LJTI0_0@lo 2324 // and %Tmp2, %Tmp1, (32)0 2325 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2326 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2327 .addImm(0) 2328 .addImm(0) 2329 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2330 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2331 .addReg(Tmp1, getKillRegState(true)) 2332 .addImm(M0(32)); 2333 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2334 .addReg(Tmp2, getKillRegState(true)) 2335 .addImm(0) 2336 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2337 } 2338 2339 switch (JTE) { 2340 case MachineJumpTableInfo::EK_BlockAddress: { 2341 // Generate simple block address code for no-PIC model. 2342 // sll %Tmp1, %IReg, 3 2343 // lds %TReg, 0(%Tmp1, %BReg) 2344 // bcfla %TReg 2345 2346 Register TReg = MRI.createVirtualRegister(RC); 2347 Register Tmp1 = MRI.createVirtualRegister(RC); 2348 2349 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2350 .addReg(IReg, getKillRegState(true)) 2351 .addImm(3); 2352 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2353 .addReg(BReg, getKillRegState(true)) 2354 .addReg(Tmp1, getKillRegState(true)) 2355 .addImm(0); 2356 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2357 .addReg(TReg, getKillRegState(true)) 2358 .addImm(0); 2359 break; 2360 } 2361 case MachineJumpTableInfo::EK_Custom32: { 2362 // Generate block address code using differences from the function pointer 2363 // for PIC model. 2364 // sll %Tmp1, %IReg, 2 2365 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2366 // Prepare function address in BReg2. 2367 // adds.l %TReg, %BReg2, %OReg 2368 // bcfla %TReg 2369 2370 assert(isPositionIndependent()); 2371 Register OReg = MRI.createVirtualRegister(RC); 2372 Register TReg = MRI.createVirtualRegister(RC); 2373 Register Tmp1 = MRI.createVirtualRegister(RC); 2374 2375 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2376 .addReg(IReg, getKillRegState(true)) 2377 .addImm(2); 2378 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2379 .addReg(BReg, getKillRegState(true)) 2380 .addReg(Tmp1, getKillRegState(true)) 2381 .addImm(0); 2382 Register BReg2 = 2383 prepareSymbol(*DispContBB, DispContBB->end(), 2384 DispContBB->getParent()->getName(), DL, /* Local */ true); 2385 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2386 .addReg(OReg, getKillRegState(true)) 2387 .addReg(BReg2, getKillRegState(true)); 2388 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2389 .addReg(TReg, getKillRegState(true)) 2390 .addImm(0); 2391 break; 2392 } 2393 default: 2394 llvm_unreachable("Unexpected jump table encoding"); 2395 } 2396 2397 // Add the jump table entries as successors to the MBB. 2398 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2399 for (auto &LP : LPadList) 2400 if (SeenMBBs.insert(LP).second) 2401 DispContBB->addSuccessor(LP); 2402 2403 // N.B. the order the invoke BBs are processed in doesn't matter here. 2404 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2405 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2406 for (MachineBasicBlock *MBB : InvokeBBs) { 2407 // Remove the landing pad successor from the invoke block and replace it 2408 // with the new dispatch block. 2409 // Keep a copy of Successors since it's modified inside the loop. 2410 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2411 MBB->succ_rend()); 2412 // FIXME: Avoid quadratic complexity. 2413 for (auto MBBS : Successors) { 2414 if (MBBS->isEHPad()) { 2415 MBB->removeSuccessor(MBBS); 2416 MBBLPads.push_back(MBBS); 2417 } 2418 } 2419 2420 MBB->addSuccessor(DispatchBB); 2421 2422 // Find the invoke call and mark all of the callee-saved registers as 2423 // 'implicit defined' so that they're spilled. This prevents code from 2424 // moving instructions to before the EH block, where they will never be 2425 // executed. 2426 for (auto &II : reverse(*MBB)) { 2427 if (!II.isCall()) 2428 continue; 2429 2430 DenseMap<Register, bool> DefRegs; 2431 for (auto &MOp : II.operands()) 2432 if (MOp.isReg()) 2433 DefRegs[MOp.getReg()] = true; 2434 2435 MachineInstrBuilder MIB(*MF, &II); 2436 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2437 Register Reg = SavedRegs[RI]; 2438 if (!DefRegs[Reg]) 2439 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2440 } 2441 2442 break; 2443 } 2444 } 2445 2446 // Mark all former landing pads as non-landing pads. The dispatch is the only 2447 // landing pad now. 2448 for (auto &LP : MBBLPads) 2449 LP->setIsEHPad(false); 2450 2451 // The instruction is gone now. 2452 MI.eraseFromParent(); 2453 return BB; 2454 } 2455 2456 MachineBasicBlock * 2457 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2458 MachineBasicBlock *BB) const { 2459 switch (MI.getOpcode()) { 2460 default: 2461 llvm_unreachable("Unknown Custom Instruction!"); 2462 case VE::EH_SjLj_LongJmp: 2463 return emitEHSjLjLongJmp(MI, BB); 2464 case VE::EH_SjLj_SetJmp: 2465 return emitEHSjLjSetJmp(MI, BB); 2466 case VE::EH_SjLj_Setup_Dispatch: 2467 return emitSjLjDispatchBlock(MI, BB); 2468 } 2469 } 2470 2471 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2472 switch (User->getOpcode()) { 2473 default: 2474 return false; 2475 case ISD::ADD: 2476 case ISD::SUB: 2477 case ISD::MUL: 2478 case ISD::SDIV: 2479 case ISD::UDIV: 2480 case ISD::SETCC: 2481 case ISD::SMIN: 2482 case ISD::SMAX: 2483 case ISD::SHL: 2484 case ISD::SRA: 2485 case ISD::BSWAP: 2486 case ISD::SINT_TO_FP: 2487 case ISD::UINT_TO_FP: 2488 case ISD::BR_CC: 2489 case ISD::BITCAST: 2490 case ISD::ATOMIC_CMP_SWAP: 2491 case ISD::ATOMIC_SWAP: 2492 return true; 2493 case ISD::SRL: 2494 if (N->getOperand(0).getOpcode() != ISD::SRL) 2495 return true; 2496 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2497 // doesn't optimize trunc now. 2498 return false; 2499 case ISD::SELECT_CC: 2500 if (User->getOperand(2).getNode() != N && 2501 User->getOperand(3).getNode() != N) 2502 return true; 2503 LLVM_FALLTHROUGH; 2504 case ISD::AND: 2505 case ISD::OR: 2506 case ISD::XOR: 2507 case ISD::SELECT: 2508 case ISD::CopyToReg: 2509 // Check all use of selections, bit operations, and copies. If all of them 2510 // are safe, optimize truncate to extract_subreg. 2511 for (SDNode::use_iterator UI = User->use_begin(), UE = User->use_end(); 2512 UI != UE; ++UI) { 2513 switch ((*UI)->getOpcode()) { 2514 default: 2515 // If the use is an instruction which treats the source operand as i32, 2516 // it is safe to avoid truncate here. 2517 if (isI32Insn(*UI, N)) 2518 continue; 2519 break; 2520 case ISD::ANY_EXTEND: 2521 case ISD::SIGN_EXTEND: 2522 case ISD::ZERO_EXTEND: { 2523 // Special optimizations to the combination of ext and trunc. 2524 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2525 // since this truncate instruction clears higher 32 bits which is filled 2526 // by one of ext instructions later. 2527 assert(N->getValueType(0) == MVT::i32 && 2528 "find truncate to not i32 integer"); 2529 if (User->getOpcode() == ISD::SELECT_CC || 2530 User->getOpcode() == ISD::SELECT) 2531 continue; 2532 break; 2533 } 2534 } 2535 return false; 2536 } 2537 return true; 2538 } 2539 } 2540 2541 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2542 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2543 // is sometime too late. So, doing it at here. 2544 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2545 DAGCombinerInfo &DCI) const { 2546 assert(N->getOpcode() == ISD::TRUNCATE && 2547 "Should be called with a TRUNCATE node"); 2548 2549 SelectionDAG &DAG = DCI.DAG; 2550 SDLoc DL(N); 2551 EVT VT = N->getValueType(0); 2552 2553 // We prefer to do this when all types are legal. 2554 if (!DCI.isAfterLegalizeDAG()) 2555 return SDValue(); 2556 2557 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 2558 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 2559 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 2560 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 2561 return SDValue(); 2562 2563 // Check all use of this TRUNCATE. 2564 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; 2565 ++UI) { 2566 SDNode *User = *UI; 2567 2568 // Make sure that we're not going to replace TRUNCATE for non i32 2569 // instructions. 2570 // 2571 // FIXME: Although we could sometimes handle this, and it does occur in 2572 // practice that one of the condition inputs to the select is also one of 2573 // the outputs, we currently can't deal with this. 2574 if (isI32Insn(User, N)) 2575 continue; 2576 2577 return SDValue(); 2578 } 2579 2580 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2581 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 2582 N->getOperand(0), SubI32), 2583 0); 2584 } 2585 2586 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 2587 DAGCombinerInfo &DCI) const { 2588 switch (N->getOpcode()) { 2589 default: 2590 break; 2591 case ISD::TRUNCATE: 2592 return combineTRUNCATE(N, DCI); 2593 } 2594 2595 return SDValue(); 2596 } 2597 2598 //===----------------------------------------------------------------------===// 2599 // VE Inline Assembly Support 2600 //===----------------------------------------------------------------------===// 2601 2602 VETargetLowering::ConstraintType 2603 VETargetLowering::getConstraintType(StringRef Constraint) const { 2604 if (Constraint.size() == 1) { 2605 switch (Constraint[0]) { 2606 default: 2607 break; 2608 case 'v': // vector registers 2609 return C_RegisterClass; 2610 } 2611 } 2612 return TargetLowering::getConstraintType(Constraint); 2613 } 2614 2615 std::pair<unsigned, const TargetRegisterClass *> 2616 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2617 StringRef Constraint, 2618 MVT VT) const { 2619 const TargetRegisterClass *RC = nullptr; 2620 if (Constraint.size() == 1) { 2621 switch (Constraint[0]) { 2622 default: 2623 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2624 case 'r': 2625 RC = &VE::I64RegClass; 2626 break; 2627 case 'v': 2628 RC = &VE::V64RegClass; 2629 break; 2630 } 2631 return std::make_pair(0U, RC); 2632 } 2633 2634 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2635 } 2636 2637 //===----------------------------------------------------------------------===// 2638 // VE Target Optimization Support 2639 //===----------------------------------------------------------------------===// 2640 2641 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 2642 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 2643 if (isJumpTableRelative()) 2644 return 8; 2645 2646 return TargetLowering::getMinimumJumpTableEntries(); 2647 } 2648 2649 bool VETargetLowering::hasAndNot(SDValue Y) const { 2650 EVT VT = Y.getValueType(); 2651 2652 // VE doesn't have vector and not instruction. 2653 if (VT.isVector()) 2654 return false; 2655 2656 // VE allows different immediate values for X and Y where ~X & Y. 2657 // Only simm7 works for X, and only mimm works for Y on VE. However, this 2658 // function is used to check whether an immediate value is OK for and-not 2659 // instruction as both X and Y. Generating additional instruction to 2660 // retrieve an immediate value is no good since the purpose of this 2661 // function is to convert a series of 3 instructions to another series of 2662 // 3 instructions with better parallelism. Therefore, we return false 2663 // for all immediate values now. 2664 // FIXME: Change hasAndNot function to have two operands to make it work 2665 // correctly with Aurora VE. 2666 if (isa<ConstantSDNode>(Y)) 2667 return false; 2668 2669 // It's ok for generic registers. 2670 return true; 2671 } 2672 2673 /// \returns the VVP_* SDNode opcode corresponsing to \p OC. 2674 static Optional<unsigned> getVVPOpcode(unsigned Opcode) { 2675 switch (Opcode) { 2676 #define HANDLE_VP_TO_VVP(VPOPC, VVPNAME) \ 2677 case ISD::VPOPC: \ 2678 return VEISD::VVPNAME; 2679 #define ADD_VVP_OP(VVPNAME, SDNAME) \ 2680 case VEISD::VVPNAME: \ 2681 case ISD::SDNAME: \ 2682 return VEISD::VVPNAME; 2683 #include "VVPNodes.def" 2684 } 2685 return None; 2686 } 2687 2688 SDValue VETargetLowering::lowerToVVP(SDValue Op, SelectionDAG &DAG) const { 2689 // Can we represent this as a VVP node. 2690 const unsigned Opcode = Op->getOpcode(); 2691 auto VVPOpcodeOpt = getVVPOpcode(Opcode); 2692 if (!VVPOpcodeOpt.hasValue()) 2693 return SDValue(); 2694 unsigned VVPOpcode = VVPOpcodeOpt.getValue(); 2695 const bool FromVP = ISD::isVPOpcode(Opcode); 2696 2697 // The representative and legalized vector type of this operation. 2698 SDLoc DL(Op); 2699 MVT MaskVT = MVT::v256i1; // TODO: packed mode. 2700 EVT OpVecVT = Op.getValueType(); 2701 EVT LegalVecVT = getTypeToTransformTo(*DAG.getContext(), OpVecVT); 2702 2703 SDValue AVL; 2704 SDValue Mask; 2705 2706 if (FromVP) { 2707 // All upstream VP SDNodes always have a mask and avl. 2708 auto MaskIdx = ISD::getVPMaskIdx(Opcode).getValue(); 2709 auto AVLIdx = ISD::getVPExplicitVectorLengthIdx(Opcode).getValue(); 2710 Mask = Op->getOperand(MaskIdx); 2711 AVL = Op->getOperand(AVLIdx); 2712 2713 } else { 2714 // Materialize the VL parameter. 2715 AVL = DAG.getConstant(OpVecVT.getVectorNumElements(), DL, MVT::i32); 2716 SDValue ConstTrue = DAG.getConstant(1, DL, MVT::i32); 2717 Mask = DAG.getNode(VEISD::VEC_BROADCAST, DL, MaskVT, 2718 ConstTrue); // emit a VEISD::VEC_BROADCAST here. 2719 } 2720 2721 // Categories we are interested in. 2722 bool IsBinaryOp = false; 2723 2724 switch (VVPOpcode) { 2725 #define ADD_BINARY_VVP_OP(VVPNAME, ...) \ 2726 case VEISD::VVPNAME: \ 2727 IsBinaryOp = true; \ 2728 break; 2729 #include "VVPNodes.def" 2730 } 2731 2732 if (IsBinaryOp) { 2733 assert(LegalVecVT.isSimple()); 2734 return DAG.getNode(VVPOpcode, DL, LegalVecVT, Op->getOperand(0), 2735 Op->getOperand(1), Mask, AVL); 2736 } 2737 llvm_unreachable("lowerToVVP called for unexpected SDNode."); 2738 } 2739 2740 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2741 SelectionDAG &DAG) const { 2742 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 2743 MVT VT = Op.getOperand(0).getSimpleValueType(); 2744 2745 // Special treatment for packed V64 types. 2746 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2747 (void)VT; 2748 // Example of codes: 2749 // %packed_v = extractelt %vr, %idx / 2 2750 // %v = %packed_v >> (%idx % 2 * 32) 2751 // %res = %v & 0xffffffff 2752 2753 SDValue Vec = Op.getOperand(0); 2754 SDValue Idx = Op.getOperand(1); 2755 SDLoc DL(Op); 2756 SDValue Result = Op; 2757 if (0 /* Idx->isConstant() */) { 2758 // TODO: optimized implementation using constant values 2759 } else { 2760 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2761 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2762 SDValue PackedElt = 2763 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2764 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2765 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2766 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2767 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2768 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 2769 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 2770 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2771 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2772 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 2773 MVT::i32, PackedElt, SubI32), 2774 0); 2775 2776 if (Op.getSimpleValueType() == MVT::f32) { 2777 Result = DAG.getBitcast(MVT::f32, Result); 2778 } else { 2779 assert(Op.getSimpleValueType() == MVT::i32); 2780 } 2781 } 2782 return Result; 2783 } 2784 2785 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2786 SelectionDAG &DAG) const { 2787 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 2788 MVT VT = Op.getOperand(0).getSimpleValueType(); 2789 2790 // Special treatment for packed V64 types. 2791 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2792 (void)VT; 2793 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 2794 // bits" required `val << 32` from C implementation's point of view. 2795 // 2796 // Example of codes: 2797 // %packed_elt = extractelt %vr, (%idx >> 1) 2798 // %shift = ((%idx & 1) ^ 1) << 5 2799 // %packed_elt &= 0xffffffff00000000 >> shift 2800 // %packed_elt |= (zext %val) << shift 2801 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 2802 2803 SDLoc DL(Op); 2804 SDValue Vec = Op.getOperand(0); 2805 SDValue Val = Op.getOperand(1); 2806 SDValue Idx = Op.getOperand(2); 2807 if (Idx.getSimpleValueType() == MVT::i32) 2808 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 2809 if (Val.getSimpleValueType() == MVT::f32) 2810 Val = DAG.getBitcast(MVT::i32, Val); 2811 assert(Val.getSimpleValueType() == MVT::i32); 2812 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 2813 2814 SDValue Result = Op; 2815 if (0 /* Idx->isConstant()*/) { 2816 // TODO: optimized implementation using constant values 2817 } else { 2818 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2819 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2820 SDValue PackedElt = 2821 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2822 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2823 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2824 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2825 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2826 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 2827 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 2828 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2829 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 2830 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 2831 Result = 2832 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 2833 {HalfIdx, PackedElt, Vec}), 2834 0); 2835 } 2836 return Result; 2837 } 2838