1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 34 TTI::TargetCostKind CostKind) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty, 68 TTI::TargetCostKind CostKind, 69 Instruction *Inst) { 70 assert(Ty->isIntegerTy()); 71 72 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 73 // There is no cost model for constants with a bit size of 0. Return TCC_Free 74 // here, so that constant hoisting will ignore this constant. 75 if (BitSize == 0) 76 return TTI::TCC_Free; 77 // No cost model for operations on integers larger than 64 bit implemented yet. 78 if (BitSize > 64) 79 return TTI::TCC_Free; 80 81 switch (Opcode) { 82 default: 83 return TTI::TCC_Free; 84 case Instruction::GetElementPtr: 85 // Always hoist the base address of a GetElementPtr. This prevents the 86 // creation of new constants for every base constant that gets constant 87 // folded with the offset. 88 if (Idx == 0) 89 return 2 * TTI::TCC_Basic; 90 return TTI::TCC_Free; 91 case Instruction::Store: 92 if (Idx == 0 && Imm.getBitWidth() <= 64) { 93 // Any 8-bit immediate store can by implemented via mvi. 94 if (BitSize == 8) 95 return TTI::TCC_Free; 96 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 97 if (isInt<16>(Imm.getSExtValue())) 98 return TTI::TCC_Free; 99 } 100 break; 101 case Instruction::ICmp: 102 if (Idx == 1 && Imm.getBitWidth() <= 64) { 103 // Comparisons against signed 32-bit immediates implemented via cgfi. 104 if (isInt<32>(Imm.getSExtValue())) 105 return TTI::TCC_Free; 106 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 107 if (isUInt<32>(Imm.getZExtValue())) 108 return TTI::TCC_Free; 109 } 110 break; 111 case Instruction::Add: 112 case Instruction::Sub: 113 if (Idx == 1 && Imm.getBitWidth() <= 64) { 114 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 115 if (isUInt<32>(Imm.getZExtValue())) 116 return TTI::TCC_Free; 117 // Or their negation, by swapping addition vs. subtraction. 118 if (isUInt<32>(-Imm.getSExtValue())) 119 return TTI::TCC_Free; 120 } 121 break; 122 case Instruction::Mul: 123 if (Idx == 1 && Imm.getBitWidth() <= 64) { 124 // We use msgfi to multiply by 32-bit signed immediates. 125 if (isInt<32>(Imm.getSExtValue())) 126 return TTI::TCC_Free; 127 } 128 break; 129 case Instruction::Or: 130 case Instruction::Xor: 131 if (Idx == 1 && Imm.getBitWidth() <= 64) { 132 // Masks supported by oilf/xilf. 133 if (isUInt<32>(Imm.getZExtValue())) 134 return TTI::TCC_Free; 135 // Masks supported by oihf/xihf. 136 if ((Imm.getZExtValue() & 0xffffffff) == 0) 137 return TTI::TCC_Free; 138 } 139 break; 140 case Instruction::And: 141 if (Idx == 1 && Imm.getBitWidth() <= 64) { 142 // Any 32-bit AND operation can by implemented via nilf. 143 if (BitSize <= 32) 144 return TTI::TCC_Free; 145 // 64-bit masks supported by nilf. 146 if (isUInt<32>(~Imm.getZExtValue())) 147 return TTI::TCC_Free; 148 // 64-bit masks supported by nilh. 149 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 150 return TTI::TCC_Free; 151 // Some 64-bit AND operations can be implemented via risbg. 152 const SystemZInstrInfo *TII = ST->getInstrInfo(); 153 unsigned Start, End; 154 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 155 return TTI::TCC_Free; 156 } 157 break; 158 case Instruction::Shl: 159 case Instruction::LShr: 160 case Instruction::AShr: 161 // Always return TCC_Free for the shift value of a shift instruction. 162 if (Idx == 1) 163 return TTI::TCC_Free; 164 break; 165 case Instruction::UDiv: 166 case Instruction::SDiv: 167 case Instruction::URem: 168 case Instruction::SRem: 169 case Instruction::Trunc: 170 case Instruction::ZExt: 171 case Instruction::SExt: 172 case Instruction::IntToPtr: 173 case Instruction::PtrToInt: 174 case Instruction::BitCast: 175 case Instruction::PHI: 176 case Instruction::Call: 177 case Instruction::Select: 178 case Instruction::Ret: 179 case Instruction::Load: 180 break; 181 } 182 183 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 184 } 185 186 InstructionCost 187 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 188 const APInt &Imm, Type *Ty, 189 TTI::TargetCostKind CostKind) { 190 assert(Ty->isIntegerTy()); 191 192 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 193 // There is no cost model for constants with a bit size of 0. Return TCC_Free 194 // here, so that constant hoisting will ignore this constant. 195 if (BitSize == 0) 196 return TTI::TCC_Free; 197 // No cost model for operations on integers larger than 64 bit implemented yet. 198 if (BitSize > 64) 199 return TTI::TCC_Free; 200 201 switch (IID) { 202 default: 203 return TTI::TCC_Free; 204 case Intrinsic::sadd_with_overflow: 205 case Intrinsic::uadd_with_overflow: 206 case Intrinsic::ssub_with_overflow: 207 case Intrinsic::usub_with_overflow: 208 // These get expanded to include a normal addition/subtraction. 209 if (Idx == 1 && Imm.getBitWidth() <= 64) { 210 if (isUInt<32>(Imm.getZExtValue())) 211 return TTI::TCC_Free; 212 if (isUInt<32>(-Imm.getSExtValue())) 213 return TTI::TCC_Free; 214 } 215 break; 216 case Intrinsic::smul_with_overflow: 217 case Intrinsic::umul_with_overflow: 218 // These get expanded to include a normal multiplication. 219 if (Idx == 1 && Imm.getBitWidth() <= 64) { 220 if (isInt<32>(Imm.getSExtValue())) 221 return TTI::TCC_Free; 222 } 223 break; 224 case Intrinsic::experimental_stackmap: 225 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 case Intrinsic::experimental_patchpoint_void: 229 case Intrinsic::experimental_patchpoint_i64: 230 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 231 return TTI::TCC_Free; 232 break; 233 } 234 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 235 } 236 237 TargetTransformInfo::PopcntSupportKind 238 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 239 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 240 if (ST->hasPopulationCount() && TyWidth <= 64) 241 return TTI::PSK_FastHardware; 242 return TTI::PSK_Software; 243 } 244 245 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 246 TTI::UnrollingPreferences &UP) { 247 // Find out if L contains a call, what the machine instruction count 248 // estimate is, and how many stores there are. 249 bool HasCall = false; 250 InstructionCost NumStores = 0; 251 for (auto &BB : L->blocks()) 252 for (auto &I : *BB) { 253 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 254 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 255 if (isLoweredToCall(F)) 256 HasCall = true; 257 if (F->getIntrinsicID() == Intrinsic::memcpy || 258 F->getIntrinsicID() == Intrinsic::memset) 259 NumStores++; 260 } else { // indirect call. 261 HasCall = true; 262 } 263 } 264 if (isa<StoreInst>(&I)) { 265 Type *MemAccessTy = I.getOperand(0)->getType(); 266 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0, 267 TTI::TCK_RecipThroughput); 268 } 269 } 270 271 // The z13 processor will run out of store tags if too many stores 272 // are fed into it too quickly. Therefore make sure there are not 273 // too many stores in the resulting unrolled loop. 274 unsigned const NumStoresVal = *NumStores.getValue(); 275 unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX); 276 277 if (HasCall) { 278 // Only allow full unrolling if loop has any calls. 279 UP.FullUnrollMaxCount = Max; 280 UP.MaxCount = 1; 281 return; 282 } 283 284 UP.MaxCount = Max; 285 if (UP.MaxCount <= 1) 286 return; 287 288 // Allow partial and runtime trip count unrolling. 289 UP.Partial = UP.Runtime = true; 290 291 UP.PartialThreshold = 75; 292 UP.DefaultUnrollRuntimeCount = 4; 293 294 // Allow expensive instructions in the pre-header of the loop. 295 UP.AllowExpensiveTripCount = true; 296 297 UP.Force = true; 298 } 299 300 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 301 TTI::PeelingPreferences &PP) { 302 BaseT::getPeelingPreferences(L, SE, PP); 303 } 304 305 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 306 TargetTransformInfo::LSRCost &C2) { 307 // SystemZ specific: check instruction count (first), and don't care about 308 // ImmCost, since offsets are checked explicitly. 309 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 310 C1.NumIVMuls, C1.NumBaseAdds, 311 C1.ScaleCost, C1.SetupCost) < 312 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 313 C2.NumIVMuls, C2.NumBaseAdds, 314 C2.ScaleCost, C2.SetupCost); 315 } 316 317 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 318 bool Vector = (ClassID == 1); 319 if (!Vector) 320 // Discount the stack pointer. Also leave out %r0, since it can't 321 // be used in an address. 322 return 14; 323 if (ST->hasVector()) 324 return 32; 325 return 0; 326 } 327 328 TypeSize 329 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 330 switch (K) { 331 case TargetTransformInfo::RGK_Scalar: 332 return TypeSize::getFixed(64); 333 case TargetTransformInfo::RGK_FixedWidthVector: 334 return TypeSize::getFixed(ST->hasVector() ? 128 : 0); 335 case TargetTransformInfo::RGK_ScalableVector: 336 return TypeSize::getScalable(0); 337 } 338 339 llvm_unreachable("Unsupported register kind"); 340 } 341 342 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, 343 unsigned NumStridedMemAccesses, 344 unsigned NumPrefetches, 345 bool HasCall) const { 346 // Don't prefetch a loop with many far apart accesses. 347 if (NumPrefetches > 16) 348 return UINT_MAX; 349 350 // Emit prefetch instructions for smaller strides in cases where we think 351 // the hardware prefetcher might not be able to keep up. 352 if (NumStridedMemAccesses > 32 && !HasCall && 353 (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses) 354 return 1; 355 356 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; 357 } 358 359 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 360 EVT VT = TLI->getValueType(DL, DataType); 361 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 362 } 363 364 // Return the bit size for the scalar type or vector element 365 // type. getScalarSizeInBits() returns 0 for a pointer type. 366 static unsigned getScalarSizeInBits(Type *Ty) { 367 unsigned Size = 368 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 369 assert(Size > 0 && "Element must have non-zero size."); 370 return Size; 371 } 372 373 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 374 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 375 // 3. 376 static unsigned getNumVectorRegs(Type *Ty) { 377 auto *VTy = cast<FixedVectorType>(Ty); 378 unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements(); 379 assert(WideBits > 0 && "Could not compute size of vector"); 380 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 381 } 382 383 InstructionCost SystemZTTIImpl::getArithmeticInstrCost( 384 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 385 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 386 TTI::OperandValueProperties Opd1PropInfo, 387 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 388 const Instruction *CxtI) { 389 390 // TODO: Handle more cost kinds. 391 if (CostKind != TTI::TCK_RecipThroughput) 392 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 393 Op2Info, Opd1PropInfo, 394 Opd2PropInfo, Args, CxtI); 395 396 // TODO: return a good value for BB-VECTORIZER that includes the 397 // immediate loads, which we do not want to count for the loop 398 // vectorizer, since they are hopefully hoisted out of the loop. This 399 // would require a new parameter 'InLoop', but not sure if constant 400 // args are common enough to motivate this. 401 402 unsigned ScalarBits = Ty->getScalarSizeInBits(); 403 404 // There are thre cases of division and remainder: Dividing with a register 405 // needs a divide instruction. A divisor which is a power of two constant 406 // can be implemented with a sequence of shifts. Any other constant needs a 407 // multiply and shifts. 408 const unsigned DivInstrCost = 20; 409 const unsigned DivMulSeqCost = 10; 410 const unsigned SDivPow2Cost = 4; 411 412 bool SignedDivRem = 413 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 414 bool UnsignedDivRem = 415 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 416 417 // Check for a constant divisor. 418 bool DivRemConst = false; 419 bool DivRemConstPow2 = false; 420 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 421 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 422 const ConstantInt *CVal = 423 (C->getType()->isVectorTy() 424 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 425 : dyn_cast<const ConstantInt>(C)); 426 if (CVal != nullptr && 427 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 428 DivRemConstPow2 = true; 429 else 430 DivRemConst = true; 431 } 432 } 433 434 if (!Ty->isVectorTy()) { 435 // These FP operations are supported with a dedicated instruction for 436 // float, double and fp128 (base implementation assumes float generally 437 // costs 2). 438 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 439 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 440 return 1; 441 442 // There is no native support for FRem. 443 if (Opcode == Instruction::FRem) 444 return LIBCALL_COST; 445 446 // Give discount for some combined logical operations if supported. 447 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 448 if (Opcode == Instruction::Xor) { 449 for (const Value *A : Args) { 450 if (const Instruction *I = dyn_cast<Instruction>(A)) 451 if (I->hasOneUse() && 452 (I->getOpcode() == Instruction::And || 453 I->getOpcode() == Instruction::Or || 454 I->getOpcode() == Instruction::Xor)) 455 return 0; 456 } 457 } 458 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 459 for (const Value *A : Args) { 460 if (const Instruction *I = dyn_cast<Instruction>(A)) 461 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 462 return 0; 463 } 464 } 465 } 466 467 // Or requires one instruction, although it has custom handling for i64. 468 if (Opcode == Instruction::Or) 469 return 1; 470 471 if (Opcode == Instruction::Xor && ScalarBits == 1) { 472 if (ST->hasLoadStoreOnCond2()) 473 return 5; // 2 * (li 0; loc 1); xor 474 return 7; // 2 * ipm sequences ; xor ; shift ; compare 475 } 476 477 if (DivRemConstPow2) 478 return (SignedDivRem ? SDivPow2Cost : 1); 479 if (DivRemConst) 480 return DivMulSeqCost; 481 if (SignedDivRem || UnsignedDivRem) 482 return DivInstrCost; 483 } 484 else if (ST->hasVector()) { 485 auto *VTy = cast<FixedVectorType>(Ty); 486 unsigned VF = VTy->getNumElements(); 487 unsigned NumVectors = getNumVectorRegs(Ty); 488 489 // These vector operations are custom handled, but are still supported 490 // with one instruction per vector, regardless of element size. 491 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 492 Opcode == Instruction::AShr) { 493 return NumVectors; 494 } 495 496 if (DivRemConstPow2) 497 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 498 if (DivRemConst) { 499 SmallVector<Type *> Tys(Args.size(), Ty); 500 return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args, Tys); 501 } 502 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 503 // Temporary hack: disable high vectorization factors with integer 504 // division/remainder, which will get scalarized and handled with 505 // GR128 registers. The mischeduler is not clever enough to avoid 506 // spilling yet. 507 return 1000; 508 509 // These FP operations are supported with a single vector instruction for 510 // double (base implementation assumes float generally costs 2). For 511 // FP128, the scalar cost is 1, and there is no overhead since the values 512 // are already in scalar registers. 513 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 514 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 515 switch (ScalarBits) { 516 case 32: { 517 // The vector enhancements facility 1 provides v4f32 instructions. 518 if (ST->hasVectorEnhancements1()) 519 return NumVectors; 520 // Return the cost of multiple scalar invocation plus the cost of 521 // inserting and extracting the values. 522 InstructionCost ScalarCost = 523 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 524 SmallVector<Type *> Tys(Args.size(), Ty); 525 InstructionCost Cost = 526 (VF * ScalarCost) + getScalarizationOverhead(VTy, Args, Tys); 527 // FIXME: VF 2 for these FP operations are currently just as 528 // expensive as for VF 4. 529 if (VF == 2) 530 Cost *= 2; 531 return Cost; 532 } 533 case 64: 534 case 128: 535 return NumVectors; 536 default: 537 break; 538 } 539 } 540 541 // There is no native support for FRem. 542 if (Opcode == Instruction::FRem) { 543 SmallVector<Type *> Tys(Args.size(), Ty); 544 InstructionCost Cost = 545 (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args, Tys); 546 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 547 if (VF == 2 && ScalarBits == 32) 548 Cost *= 2; 549 return Cost; 550 } 551 } 552 553 // Fallback to the default implementation. 554 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, 555 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 556 } 557 558 InstructionCost SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 559 VectorType *Tp, 560 ArrayRef<int> Mask, int Index, 561 VectorType *SubTp) { 562 Kind = improveShuffleKindFromMask(Kind, Mask); 563 if (ST->hasVector()) { 564 unsigned NumVectors = getNumVectorRegs(Tp); 565 566 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 567 568 // FP128 values are always in scalar registers, so there is no work 569 // involved with a shuffle, except for broadcast. In that case register 570 // moves are done with a single instruction per element. 571 if (Tp->getScalarType()->isFP128Ty()) 572 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 573 574 switch (Kind) { 575 case TargetTransformInfo::SK_ExtractSubvector: 576 // ExtractSubvector Index indicates start offset. 577 578 // Extracting a subvector from first index is a noop. 579 return (Index == 0 ? 0 : NumVectors); 580 581 case TargetTransformInfo::SK_Broadcast: 582 // Loop vectorizer calls here to figure out the extra cost of 583 // broadcasting a loaded value to all elements of a vector. Since vlrep 584 // loads and replicates with a single instruction, adjust the returned 585 // value. 586 return NumVectors - 1; 587 588 default: 589 590 // SystemZ supports single instruction permutation / replication. 591 return NumVectors; 592 } 593 } 594 595 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 596 } 597 598 // Return the log2 difference of the element sizes of the two vector types. 599 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 600 unsigned Bits0 = Ty0->getScalarSizeInBits(); 601 unsigned Bits1 = Ty1->getScalarSizeInBits(); 602 603 if (Bits1 > Bits0) 604 return (Log2_32(Bits1) - Log2_32(Bits0)); 605 606 return (Log2_32(Bits0) - Log2_32(Bits1)); 607 } 608 609 // Return the number of instructions needed to truncate SrcTy to DstTy. 610 unsigned SystemZTTIImpl:: 611 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 612 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 613 assert(SrcTy->getPrimitiveSizeInBits().getFixedSize() > 614 DstTy->getPrimitiveSizeInBits().getFixedSize() && 615 "Packing must reduce size of vector type."); 616 assert(cast<FixedVectorType>(SrcTy)->getNumElements() == 617 cast<FixedVectorType>(DstTy)->getNumElements() && 618 "Packing should not change number of elements."); 619 620 // TODO: Since fp32 is expanded, the extract cost should always be 0. 621 622 unsigned NumParts = getNumVectorRegs(SrcTy); 623 if (NumParts <= 2) 624 // Up to 2 vector registers can be truncated efficiently with pack or 625 // permute. The latter requires an immediate mask to be loaded, which 626 // typically gets hoisted out of a loop. TODO: return a good value for 627 // BB-VECTORIZER that includes the immediate loads, which we do not want 628 // to count for the loop vectorizer. 629 return 1; 630 631 unsigned Cost = 0; 632 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 633 unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements(); 634 for (unsigned P = 0; P < Log2Diff; ++P) { 635 if (NumParts > 1) 636 NumParts /= 2; 637 Cost += NumParts; 638 } 639 640 // Currently, a general mix of permutes and pack instructions is output by 641 // isel, which follow the cost computation above except for this case which 642 // is one instruction less: 643 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 644 DstTy->getScalarSizeInBits() == 8) 645 Cost--; 646 647 return Cost; 648 } 649 650 // Return the cost of converting a vector bitmask produced by a compare 651 // (SrcTy), to the type of the select or extend instruction (DstTy). 652 unsigned SystemZTTIImpl:: 653 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 654 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 655 "Should only be called with vector types."); 656 657 unsigned PackCost = 0; 658 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 659 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 660 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 661 if (SrcScalarBits > DstScalarBits) 662 // The bitmask will be truncated. 663 PackCost = getVectorTruncCost(SrcTy, DstTy); 664 else if (SrcScalarBits < DstScalarBits) { 665 unsigned DstNumParts = getNumVectorRegs(DstTy); 666 // Each vector select needs its part of the bitmask unpacked. 667 PackCost = Log2Diff * DstNumParts; 668 // Extra cost for moving part of mask before unpacking. 669 PackCost += DstNumParts - 1; 670 } 671 672 return PackCost; 673 } 674 675 // Return the type of the compared operands. This is needed to compute the 676 // cost for a Select / ZExt or SExt instruction. 677 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 678 Type *OpTy = nullptr; 679 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 680 OpTy = CI->getOperand(0)->getType(); 681 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 682 if (LogicI->getNumOperands() == 2) 683 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 684 if (isa<CmpInst>(LogicI->getOperand(1))) 685 OpTy = CI0->getOperand(0)->getType(); 686 687 if (OpTy != nullptr) { 688 if (VF == 1) { 689 assert (!OpTy->isVectorTy() && "Expected scalar type"); 690 return OpTy; 691 } 692 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 693 // be either scalar or already vectorized with a same or lesser VF. 694 Type *ElTy = OpTy->getScalarType(); 695 return FixedVectorType::get(ElTy, VF); 696 } 697 698 return nullptr; 699 } 700 701 // Get the cost of converting a boolean vector to a vector with same width 702 // and element size as Dst, plus the cost of zero extending if needed. 703 unsigned SystemZTTIImpl:: 704 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 705 const Instruction *I) { 706 auto *DstVTy = cast<FixedVectorType>(Dst); 707 unsigned VF = DstVTy->getNumElements(); 708 unsigned Cost = 0; 709 // If we know what the widths of the compared operands, get any cost of 710 // converting it to match Dst. Otherwise assume same widths. 711 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 712 if (CmpOpTy != nullptr) 713 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 714 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 715 // One 'vn' per dst vector with an immediate mask. 716 Cost += getNumVectorRegs(Dst); 717 return Cost; 718 } 719 720 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 721 Type *Src, 722 TTI::CastContextHint CCH, 723 TTI::TargetCostKind CostKind, 724 const Instruction *I) { 725 // FIXME: Can the logic below also be used for these cost kinds? 726 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) { 727 auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 728 return BaseCost == 0 ? BaseCost : 1; 729 } 730 731 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 732 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 733 734 if (!Src->isVectorTy()) { 735 assert (!Dst->isVectorTy()); 736 737 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 738 if (SrcScalarBits >= 32 || 739 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 740 return 1; 741 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 742 } 743 744 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 745 Src->isIntegerTy(1)) { 746 if (ST->hasLoadStoreOnCond2()) 747 return 2; // li 0; loc 1 748 749 // This should be extension of a compare i1 result, which is done with 750 // ipm and a varying sequence of instructions. 751 unsigned Cost = 0; 752 if (Opcode == Instruction::SExt) 753 Cost = (DstScalarBits < 64 ? 3 : 4); 754 if (Opcode == Instruction::ZExt) 755 Cost = 3; 756 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 757 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 758 // If operands of an fp-type was compared, this costs +1. 759 Cost++; 760 return Cost; 761 } 762 } 763 else if (ST->hasVector()) { 764 // Vector to scalar cast. 765 auto *SrcVecTy = cast<FixedVectorType>(Src); 766 auto *DstVecTy = dyn_cast<FixedVectorType>(Dst); 767 if (!DstVecTy) { 768 // TODO: tune vector-to-scalar cast. 769 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 770 } 771 unsigned VF = SrcVecTy->getNumElements(); 772 unsigned NumDstVectors = getNumVectorRegs(Dst); 773 unsigned NumSrcVectors = getNumVectorRegs(Src); 774 775 if (Opcode == Instruction::Trunc) { 776 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 777 return 0; // Check for NOOP conversions. 778 return getVectorTruncCost(Src, Dst); 779 } 780 781 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 782 if (SrcScalarBits >= 8) { 783 // ZExt/SExt will be handled with one unpack per doubling of width. 784 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 785 786 // For types that spans multiple vector registers, some additional 787 // instructions are used to setup the unpacking. 788 unsigned NumSrcVectorOps = 789 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 790 : (NumDstVectors / 2)); 791 792 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 793 } 794 else if (SrcScalarBits == 1) 795 return getBoolVecToIntConversionCost(Opcode, Dst, I); 796 } 797 798 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 799 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 800 // TODO: Fix base implementation which could simplify things a bit here 801 // (seems to miss on differentiating on scalar/vector types). 802 803 // Only 64 bit vector conversions are natively supported before z15. 804 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 805 if (SrcScalarBits == DstScalarBits) 806 return NumDstVectors; 807 808 if (SrcScalarBits == 1) 809 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 810 } 811 812 // Return the cost of multiple scalar invocation plus the cost of 813 // inserting and extracting the values. Base implementation does not 814 // realize float->int gets scalarized. 815 InstructionCost ScalarCost = getCastInstrCost( 816 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind); 817 InstructionCost TotCost = VF * ScalarCost; 818 bool NeedsInserts = true, NeedsExtracts = true; 819 // FP128 registers do not get inserted or extracted. 820 if (DstScalarBits == 128 && 821 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 822 NeedsInserts = false; 823 if (SrcScalarBits == 128 && 824 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 825 NeedsExtracts = false; 826 827 TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts); 828 TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false); 829 830 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 831 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 832 TotCost *= 2; 833 834 return TotCost; 835 } 836 837 if (Opcode == Instruction::FPTrunc) { 838 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 839 return VF /*ldxbr/lexbr*/ + 840 getScalarizationOverhead(DstVecTy, true, false); 841 else // double -> float 842 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 843 } 844 845 if (Opcode == Instruction::FPExt) { 846 if (SrcScalarBits == 32 && DstScalarBits == 64) { 847 // float -> double is very rare and currently unoptimized. Instead of 848 // using vldeb, which can do two at a time, all conversions are 849 // scalarized. 850 return VF * 2; 851 } 852 // -> fp128. VF * lxdb/lxeb + extraction of elements. 853 return VF + getScalarizationOverhead(SrcVecTy, false, true); 854 } 855 } 856 857 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 858 } 859 860 // Scalar i8 / i16 operations will typically be made after first extending 861 // the operands to i32. 862 static unsigned getOperandsExtensionCost(const Instruction *I) { 863 unsigned ExtCost = 0; 864 for (Value *Op : I->operands()) 865 // A load of i8 or i16 sign/zero extends to i32. 866 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 867 ExtCost++; 868 869 return ExtCost; 870 } 871 872 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 873 Type *CondTy, 874 CmpInst::Predicate VecPred, 875 TTI::TargetCostKind CostKind, 876 const Instruction *I) { 877 if (CostKind != TTI::TCK_RecipThroughput) 878 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); 879 880 if (!ValTy->isVectorTy()) { 881 switch (Opcode) { 882 case Instruction::ICmp: { 883 // A loaded value compared with 0 with multiple users becomes Load and 884 // Test. The load is then not foldable, so return 0 cost for the ICmp. 885 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 886 if (I != nullptr && ScalarBits >= 32) 887 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 888 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 889 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 890 C->isZero()) 891 return 0; 892 893 unsigned Cost = 1; 894 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 895 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 896 return Cost; 897 } 898 case Instruction::Select: 899 if (ValTy->isFloatingPointTy()) 900 return 4; // No load on condition for FP - costs a conditional jump. 901 return 1; // Load On Condition / Select Register. 902 } 903 } 904 else if (ST->hasVector()) { 905 unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements(); 906 907 // Called with a compare instruction. 908 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 909 unsigned PredicateExtraCost = 0; 910 if (I != nullptr) { 911 // Some predicates cost one or two extra instructions. 912 switch (cast<CmpInst>(I)->getPredicate()) { 913 case CmpInst::Predicate::ICMP_NE: 914 case CmpInst::Predicate::ICMP_UGE: 915 case CmpInst::Predicate::ICMP_ULE: 916 case CmpInst::Predicate::ICMP_SGE: 917 case CmpInst::Predicate::ICMP_SLE: 918 PredicateExtraCost = 1; 919 break; 920 case CmpInst::Predicate::FCMP_ONE: 921 case CmpInst::Predicate::FCMP_ORD: 922 case CmpInst::Predicate::FCMP_UEQ: 923 case CmpInst::Predicate::FCMP_UNO: 924 PredicateExtraCost = 2; 925 break; 926 default: 927 break; 928 } 929 } 930 931 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 932 // floats. FIXME: <2 x float> generates same code as <4 x float>. 933 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 934 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 935 936 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 937 return Cost; 938 } 939 else { // Called with a select instruction. 940 assert (Opcode == Instruction::Select); 941 942 // We can figure out the extra cost of packing / unpacking if the 943 // instruction was passed and the compare instruction is found. 944 unsigned PackCost = 0; 945 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 946 if (CmpOpTy != nullptr) 947 PackCost = 948 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 949 950 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 951 } 952 } 953 954 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); 955 } 956 957 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 958 unsigned Index) { 959 // vlvgp will insert two grs into a vector register, so only count half the 960 // number of instructions. 961 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 962 return ((Index % 2 == 0) ? 1 : 0); 963 964 if (Opcode == Instruction::ExtractElement) { 965 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 966 967 // Give a slight penalty for moving out of vector pipeline to FXU unit. 968 if (Index == 0 && Val->isIntOrIntVectorTy()) 969 Cost += 1; 970 971 return Cost; 972 } 973 974 return BaseT::getVectorInstrCost(Opcode, Val, Index); 975 } 976 977 // Check if a load may be folded as a memory operand in its user. 978 bool SystemZTTIImpl:: 979 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 980 if (!Ld->hasOneUse()) 981 return false; 982 FoldedValue = Ld; 983 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 984 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 985 unsigned TruncBits = 0; 986 unsigned SExtBits = 0; 987 unsigned ZExtBits = 0; 988 if (UserI->hasOneUse()) { 989 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 990 if (isa<TruncInst>(UserI)) 991 TruncBits = UserBits; 992 else if (isa<SExtInst>(UserI)) 993 SExtBits = UserBits; 994 else if (isa<ZExtInst>(UserI)) 995 ZExtBits = UserBits; 996 } 997 if (TruncBits || SExtBits || ZExtBits) { 998 FoldedValue = UserI; 999 UserI = cast<Instruction>(*UserI->user_begin()); 1000 // Load (single use) -> trunc/extend (single use) -> UserI 1001 } 1002 if ((UserI->getOpcode() == Instruction::Sub || 1003 UserI->getOpcode() == Instruction::SDiv || 1004 UserI->getOpcode() == Instruction::UDiv) && 1005 UserI->getOperand(1) != FoldedValue) 1006 return false; // Not commutative, only RHS foldable. 1007 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 1008 // extension was made of the load. 1009 unsigned LoadOrTruncBits = 1010 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 1011 switch (UserI->getOpcode()) { 1012 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 1013 case Instruction::Sub: 1014 case Instruction::ICmp: 1015 if (LoadedBits == 32 && ZExtBits == 64) 1016 return true; 1017 LLVM_FALLTHROUGH; 1018 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 1019 if (UserI->getOpcode() != Instruction::ICmp) { 1020 if (LoadedBits == 16 && 1021 (SExtBits == 32 || 1022 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 1023 return true; 1024 if (LoadOrTruncBits == 16) 1025 return true; 1026 } 1027 LLVM_FALLTHROUGH; 1028 case Instruction::SDiv:// SE: 32->64 1029 if (LoadedBits == 32 && SExtBits == 64) 1030 return true; 1031 LLVM_FALLTHROUGH; 1032 case Instruction::UDiv: 1033 case Instruction::And: 1034 case Instruction::Or: 1035 case Instruction::Xor: 1036 // This also makes sense for float operations, but disabled for now due 1037 // to regressions. 1038 // case Instruction::FCmp: 1039 // case Instruction::FAdd: 1040 // case Instruction::FSub: 1041 // case Instruction::FMul: 1042 // case Instruction::FDiv: 1043 1044 // All possible extensions of memory checked above. 1045 1046 // Comparison between memory and immediate. 1047 if (UserI->getOpcode() == Instruction::ICmp) 1048 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 1049 if (CI->getValue().isIntN(16)) 1050 return true; 1051 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 1052 break; 1053 } 1054 return false; 1055 } 1056 1057 static bool isBswapIntrinsicCall(const Value *V) { 1058 if (const Instruction *I = dyn_cast<Instruction>(V)) 1059 if (auto *CI = dyn_cast<CallInst>(I)) 1060 if (auto *F = CI->getCalledFunction()) 1061 if (F->getIntrinsicID() == Intrinsic::bswap) 1062 return true; 1063 return false; 1064 } 1065 1066 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1067 MaybeAlign Alignment, 1068 unsigned AddressSpace, 1069 TTI::TargetCostKind CostKind, 1070 const Instruction *I) { 1071 assert(!Src->isVoidTy() && "Invalid type"); 1072 1073 // TODO: Handle other cost kinds. 1074 if (CostKind != TTI::TCK_RecipThroughput) 1075 return 1; 1076 1077 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1078 // Store the load or its truncated or extended value in FoldedValue. 1079 const Instruction *FoldedValue = nullptr; 1080 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1081 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1082 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1083 1084 // UserI can't fold two loads, so in that case return 0 cost only 1085 // half of the time. 1086 for (unsigned i = 0; i < 2; ++i) { 1087 if (UserI->getOperand(i) == FoldedValue) 1088 continue; 1089 1090 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1091 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1092 if (!OtherLoad && 1093 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1094 isa<ZExtInst>(OtherOp))) 1095 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1096 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1097 return i == 0; // Both operands foldable. 1098 } 1099 } 1100 1101 return 0; // Only I is foldable in user. 1102 } 1103 } 1104 1105 unsigned NumOps = 1106 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1107 1108 // Store/Load reversed saves one instruction. 1109 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1110 I != nullptr) { 1111 if (Opcode == Instruction::Load && I->hasOneUse()) { 1112 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1113 // In case of load -> bswap -> store, return normal cost for the load. 1114 if (isBswapIntrinsicCall(LdUser) && 1115 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1116 return 0; 1117 } 1118 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1119 const Value *StoredVal = SI->getValueOperand(); 1120 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1121 return 0; 1122 } 1123 } 1124 1125 if (Src->getScalarSizeInBits() == 128) 1126 // 128 bit scalars are held in a pair of two 64 bit registers. 1127 NumOps *= 2; 1128 1129 return NumOps; 1130 } 1131 1132 // The generic implementation of getInterleavedMemoryOpCost() is based on 1133 // adding costs of the memory operations plus all the extracts and inserts 1134 // needed for using / defining the vector operands. The SystemZ version does 1135 // roughly the same but bases the computations on vector permutations 1136 // instead. 1137 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost( 1138 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1139 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1140 bool UseMaskForCond, bool UseMaskForGaps) { 1141 if (UseMaskForCond || UseMaskForGaps) 1142 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1143 Alignment, AddressSpace, CostKind, 1144 UseMaskForCond, UseMaskForGaps); 1145 assert(isa<VectorType>(VecTy) && 1146 "Expect a vector type for interleaved memory op"); 1147 1148 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1149 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1150 unsigned VF = NumElts / Factor; 1151 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1152 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1153 unsigned NumPermutes = 0; 1154 1155 if (Opcode == Instruction::Load) { 1156 // Loading interleave groups may have gaps, which may mean fewer 1157 // loads. Find out how many vectors will be loaded in total, and in how 1158 // many of them each value will be in. 1159 BitVector UsedInsts(NumVectorMemOps, false); 1160 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1161 for (unsigned Index : Indices) 1162 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1163 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1164 UsedInsts.set(Vec); 1165 ValueVecs[Index].set(Vec); 1166 } 1167 NumVectorMemOps = UsedInsts.count(); 1168 1169 for (unsigned Index : Indices) { 1170 // Estimate that each loaded source vector containing this Index 1171 // requires one operation, except that vperm can handle two input 1172 // registers first time for each dst vector. 1173 unsigned NumSrcVecs = ValueVecs[Index].count(); 1174 unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U); 1175 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1176 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1177 } 1178 } else { 1179 // Estimate the permutes for each stored vector as the smaller of the 1180 // number of elements and the number of source vectors. Subtract one per 1181 // dst vector for vperm (S.A.). 1182 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1183 unsigned NumDstVecs = NumVectorMemOps; 1184 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1185 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1186 } 1187 1188 // Cost of load/store operations and the permutations needed. 1189 return NumVectorMemOps + NumPermutes; 1190 } 1191 1192 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1193 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1194 return getNumVectorRegs(RetTy); // VPERM 1195 return -1; 1196 } 1197 1198 InstructionCost 1199 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1200 TTI::TargetCostKind CostKind) { 1201 InstructionCost Cost = 1202 getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType()); 1203 if (Cost != -1) 1204 return Cost; 1205 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1206 } 1207