xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a TargetTransformInfo analysis pass specific to the
10 // SystemZ target machine. It uses the target's detailed information to provide
11 // more precise answers to certain TTI queries, while letting the target
12 // independent and default TTI implementations handle the rest.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SystemZTargetTransformInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/BasicTTIImpl.h"
19 #include "llvm/CodeGen/CostTable.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/Debug.h"
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "systemztti"
26 
27 //===----------------------------------------------------------------------===//
28 //
29 // SystemZ cost model.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 static bool isUsedAsMemCpySource(const Value *V, bool &OtherUse) {
34   bool UsedAsMemCpySource = false;
35   for (const User *U : V->users())
36     if (const Instruction *User = dyn_cast<Instruction>(U)) {
37       if (isa<BitCastInst>(User) || isa<GetElementPtrInst>(User)) {
38         UsedAsMemCpySource |= isUsedAsMemCpySource(User, OtherUse);
39         continue;
40       }
41       if (const MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(User)) {
42         if (Memcpy->getOperand(1) == V && !Memcpy->isVolatile()) {
43           UsedAsMemCpySource = true;
44           continue;
45         }
46       }
47       OtherUse = true;
48     }
49   return UsedAsMemCpySource;
50 }
51 
52 unsigned SystemZTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
53   unsigned Bonus = 0;
54 
55   // Increase the threshold if an incoming argument is used only as a memcpy
56   // source.
57   if (Function *Callee = CB->getCalledFunction())
58     for (Argument &Arg : Callee->args()) {
59       bool OtherUse = false;
60       if (isUsedAsMemCpySource(&Arg, OtherUse) && !OtherUse)
61         Bonus += 150;
62     }
63 
64   LLVM_DEBUG(if (Bonus)
65                dbgs() << "++ SZTTI Adding inlining bonus: " << Bonus << "\n";);
66   return Bonus;
67 }
68 
69 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
70                                               TTI::TargetCostKind CostKind) {
71   assert(Ty->isIntegerTy());
72 
73   unsigned BitSize = Ty->getPrimitiveSizeInBits();
74   // There is no cost model for constants with a bit size of 0. Return TCC_Free
75   // here, so that constant hoisting will ignore this constant.
76   if (BitSize == 0)
77     return TTI::TCC_Free;
78   // No cost model for operations on integers larger than 64 bit implemented yet.
79   if (BitSize > 64)
80     return TTI::TCC_Free;
81 
82   if (Imm == 0)
83     return TTI::TCC_Free;
84 
85   if (Imm.getBitWidth() <= 64) {
86     // Constants loaded via lgfi.
87     if (isInt<32>(Imm.getSExtValue()))
88       return TTI::TCC_Basic;
89     // Constants loaded via llilf.
90     if (isUInt<32>(Imm.getZExtValue()))
91       return TTI::TCC_Basic;
92     // Constants loaded via llihf:
93     if ((Imm.getZExtValue() & 0xffffffff) == 0)
94       return TTI::TCC_Basic;
95 
96     return 2 * TTI::TCC_Basic;
97   }
98 
99   return 4 * TTI::TCC_Basic;
100 }
101 
102 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
103                                                   const APInt &Imm, Type *Ty,
104                                                   TTI::TargetCostKind CostKind,
105                                                   Instruction *Inst) {
106   assert(Ty->isIntegerTy());
107 
108   unsigned BitSize = Ty->getPrimitiveSizeInBits();
109   // There is no cost model for constants with a bit size of 0. Return TCC_Free
110   // here, so that constant hoisting will ignore this constant.
111   if (BitSize == 0)
112     return TTI::TCC_Free;
113   // No cost model for operations on integers larger than 64 bit implemented yet.
114   if (BitSize > 64)
115     return TTI::TCC_Free;
116 
117   switch (Opcode) {
118   default:
119     return TTI::TCC_Free;
120   case Instruction::GetElementPtr:
121     // Always hoist the base address of a GetElementPtr. This prevents the
122     // creation of new constants for every base constant that gets constant
123     // folded with the offset.
124     if (Idx == 0)
125       return 2 * TTI::TCC_Basic;
126     return TTI::TCC_Free;
127   case Instruction::Store:
128     if (Idx == 0 && Imm.getBitWidth() <= 64) {
129       // Any 8-bit immediate store can by implemented via mvi.
130       if (BitSize == 8)
131         return TTI::TCC_Free;
132       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
133       if (isInt<16>(Imm.getSExtValue()))
134         return TTI::TCC_Free;
135     }
136     break;
137   case Instruction::ICmp:
138     if (Idx == 1 && Imm.getBitWidth() <= 64) {
139       // Comparisons against signed 32-bit immediates implemented via cgfi.
140       if (isInt<32>(Imm.getSExtValue()))
141         return TTI::TCC_Free;
142       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
143       if (isUInt<32>(Imm.getZExtValue()))
144         return TTI::TCC_Free;
145     }
146     break;
147   case Instruction::Add:
148   case Instruction::Sub:
149     if (Idx == 1 && Imm.getBitWidth() <= 64) {
150       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
151       if (isUInt<32>(Imm.getZExtValue()))
152         return TTI::TCC_Free;
153       // Or their negation, by swapping addition vs. subtraction.
154       if (isUInt<32>(-Imm.getSExtValue()))
155         return TTI::TCC_Free;
156     }
157     break;
158   case Instruction::Mul:
159     if (Idx == 1 && Imm.getBitWidth() <= 64) {
160       // We use msgfi to multiply by 32-bit signed immediates.
161       if (isInt<32>(Imm.getSExtValue()))
162         return TTI::TCC_Free;
163     }
164     break;
165   case Instruction::Or:
166   case Instruction::Xor:
167     if (Idx == 1 && Imm.getBitWidth() <= 64) {
168       // Masks supported by oilf/xilf.
169       if (isUInt<32>(Imm.getZExtValue()))
170         return TTI::TCC_Free;
171       // Masks supported by oihf/xihf.
172       if ((Imm.getZExtValue() & 0xffffffff) == 0)
173         return TTI::TCC_Free;
174     }
175     break;
176   case Instruction::And:
177     if (Idx == 1 && Imm.getBitWidth() <= 64) {
178       // Any 32-bit AND operation can by implemented via nilf.
179       if (BitSize <= 32)
180         return TTI::TCC_Free;
181       // 64-bit masks supported by nilf.
182       if (isUInt<32>(~Imm.getZExtValue()))
183         return TTI::TCC_Free;
184       // 64-bit masks supported by nilh.
185       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
186         return TTI::TCC_Free;
187       // Some 64-bit AND operations can be implemented via risbg.
188       const SystemZInstrInfo *TII = ST->getInstrInfo();
189       unsigned Start, End;
190       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
191         return TTI::TCC_Free;
192     }
193     break;
194   case Instruction::Shl:
195   case Instruction::LShr:
196   case Instruction::AShr:
197     // Always return TCC_Free for the shift value of a shift instruction.
198     if (Idx == 1)
199       return TTI::TCC_Free;
200     break;
201   case Instruction::UDiv:
202   case Instruction::SDiv:
203   case Instruction::URem:
204   case Instruction::SRem:
205   case Instruction::Trunc:
206   case Instruction::ZExt:
207   case Instruction::SExt:
208   case Instruction::IntToPtr:
209   case Instruction::PtrToInt:
210   case Instruction::BitCast:
211   case Instruction::PHI:
212   case Instruction::Call:
213   case Instruction::Select:
214   case Instruction::Ret:
215   case Instruction::Load:
216     break;
217   }
218 
219   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
220 }
221 
222 InstructionCost
223 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
224                                     const APInt &Imm, Type *Ty,
225                                     TTI::TargetCostKind CostKind) {
226   assert(Ty->isIntegerTy());
227 
228   unsigned BitSize = Ty->getPrimitiveSizeInBits();
229   // There is no cost model for constants with a bit size of 0. Return TCC_Free
230   // here, so that constant hoisting will ignore this constant.
231   if (BitSize == 0)
232     return TTI::TCC_Free;
233   // No cost model for operations on integers larger than 64 bit implemented yet.
234   if (BitSize > 64)
235     return TTI::TCC_Free;
236 
237   switch (IID) {
238   default:
239     return TTI::TCC_Free;
240   case Intrinsic::sadd_with_overflow:
241   case Intrinsic::uadd_with_overflow:
242   case Intrinsic::ssub_with_overflow:
243   case Intrinsic::usub_with_overflow:
244     // These get expanded to include a normal addition/subtraction.
245     if (Idx == 1 && Imm.getBitWidth() <= 64) {
246       if (isUInt<32>(Imm.getZExtValue()))
247         return TTI::TCC_Free;
248       if (isUInt<32>(-Imm.getSExtValue()))
249         return TTI::TCC_Free;
250     }
251     break;
252   case Intrinsic::smul_with_overflow:
253   case Intrinsic::umul_with_overflow:
254     // These get expanded to include a normal multiplication.
255     if (Idx == 1 && Imm.getBitWidth() <= 64) {
256       if (isInt<32>(Imm.getSExtValue()))
257         return TTI::TCC_Free;
258     }
259     break;
260   case Intrinsic::experimental_stackmap:
261     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
262       return TTI::TCC_Free;
263     break;
264   case Intrinsic::experimental_patchpoint_void:
265   case Intrinsic::experimental_patchpoint_i64:
266     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
267       return TTI::TCC_Free;
268     break;
269   }
270   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
271 }
272 
273 TargetTransformInfo::PopcntSupportKind
274 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
275   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
276   if (ST->hasPopulationCount() && TyWidth <= 64)
277     return TTI::PSK_FastHardware;
278   return TTI::PSK_Software;
279 }
280 
281 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
282                                              TTI::UnrollingPreferences &UP,
283                                              OptimizationRemarkEmitter *ORE) {
284   // Find out if L contains a call, what the machine instruction count
285   // estimate is, and how many stores there are.
286   bool HasCall = false;
287   InstructionCost NumStores = 0;
288   for (auto &BB : L->blocks())
289     for (auto &I : *BB) {
290       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
291         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
292           if (isLoweredToCall(F))
293             HasCall = true;
294           if (F->getIntrinsicID() == Intrinsic::memcpy ||
295               F->getIntrinsicID() == Intrinsic::memset)
296             NumStores++;
297         } else { // indirect call.
298           HasCall = true;
299         }
300       }
301       if (isa<StoreInst>(&I)) {
302         Type *MemAccessTy = I.getOperand(0)->getType();
303         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0,
304                                      TTI::TCK_RecipThroughput);
305       }
306     }
307 
308   // The z13 processor will run out of store tags if too many stores
309   // are fed into it too quickly. Therefore make sure there are not
310   // too many stores in the resulting unrolled loop.
311   unsigned const NumStoresVal = *NumStores.getValue();
312   unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX);
313 
314   if (HasCall) {
315     // Only allow full unrolling if loop has any calls.
316     UP.FullUnrollMaxCount = Max;
317     UP.MaxCount = 1;
318     return;
319   }
320 
321   UP.MaxCount = Max;
322   if (UP.MaxCount <= 1)
323     return;
324 
325   // Allow partial and runtime trip count unrolling.
326   UP.Partial = UP.Runtime = true;
327 
328   UP.PartialThreshold = 75;
329   UP.DefaultUnrollRuntimeCount = 4;
330 
331   // Allow expensive instructions in the pre-header of the loop.
332   UP.AllowExpensiveTripCount = true;
333 
334   UP.Force = true;
335 }
336 
337 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
338                                            TTI::PeelingPreferences &PP) {
339   BaseT::getPeelingPreferences(L, SE, PP);
340 }
341 
342 bool SystemZTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
343                                    const TargetTransformInfo::LSRCost &C2) {
344   // SystemZ specific: check instruction count (first), and don't care about
345   // ImmCost, since offsets are checked explicitly.
346   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
347                   C1.NumIVMuls, C1.NumBaseAdds,
348                   C1.ScaleCost, C1.SetupCost) <
349     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
350              C2.NumIVMuls, C2.NumBaseAdds,
351              C2.ScaleCost, C2.SetupCost);
352 }
353 
354 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
355   bool Vector = (ClassID == 1);
356   if (!Vector)
357     // Discount the stack pointer.  Also leave out %r0, since it can't
358     // be used in an address.
359     return 14;
360   if (ST->hasVector())
361     return 32;
362   return 0;
363 }
364 
365 TypeSize
366 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
367   switch (K) {
368   case TargetTransformInfo::RGK_Scalar:
369     return TypeSize::getFixed(64);
370   case TargetTransformInfo::RGK_FixedWidthVector:
371     return TypeSize::getFixed(ST->hasVector() ? 128 : 0);
372   case TargetTransformInfo::RGK_ScalableVector:
373     return TypeSize::getScalable(0);
374   }
375 
376   llvm_unreachable("Unsupported register kind");
377 }
378 
379 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses,
380                                               unsigned NumStridedMemAccesses,
381                                               unsigned NumPrefetches,
382                                               bool HasCall) const {
383   // Don't prefetch a loop with many far apart accesses.
384   if (NumPrefetches > 16)
385     return UINT_MAX;
386 
387   // Emit prefetch instructions for smaller strides in cases where we think
388   // the hardware prefetcher might not be able to keep up.
389   if (NumStridedMemAccesses > 32 && !HasCall &&
390       (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses)
391     return 1;
392 
393   return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
394 }
395 
396 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
397   EVT VT = TLI->getValueType(DL, DataType);
398   return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
399 }
400 
401 // Return the bit size for the scalar type or vector element
402 // type. getScalarSizeInBits() returns 0 for a pointer type.
403 static unsigned getScalarSizeInBits(Type *Ty) {
404   unsigned Size =
405     (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
406   assert(Size > 0 && "Element must have non-zero size.");
407   return Size;
408 }
409 
410 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
411 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
412 // 3.
413 static unsigned getNumVectorRegs(Type *Ty) {
414   auto *VTy = cast<FixedVectorType>(Ty);
415   unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements();
416   assert(WideBits > 0 && "Could not compute size of vector");
417   return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
418 }
419 
420 InstructionCost SystemZTTIImpl::getArithmeticInstrCost(
421     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
422     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
423     TTI::OperandValueProperties Opd1PropInfo,
424     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
425     const Instruction *CxtI) {
426 
427   // TODO: Handle more cost kinds.
428   if (CostKind != TTI::TCK_RecipThroughput)
429     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
430                                          Op2Info, Opd1PropInfo,
431                                          Opd2PropInfo, Args, CxtI);
432 
433   // TODO: return a good value for BB-VECTORIZER that includes the
434   // immediate loads, which we do not want to count for the loop
435   // vectorizer, since they are hopefully hoisted out of the loop. This
436   // would require a new parameter 'InLoop', but not sure if constant
437   // args are common enough to motivate this.
438 
439   unsigned ScalarBits = Ty->getScalarSizeInBits();
440 
441   // There are thre cases of division and remainder: Dividing with a register
442   // needs a divide instruction. A divisor which is a power of two constant
443   // can be implemented with a sequence of shifts. Any other constant needs a
444   // multiply and shifts.
445   const unsigned DivInstrCost = 20;
446   const unsigned DivMulSeqCost = 10;
447   const unsigned SDivPow2Cost = 4;
448 
449   bool SignedDivRem =
450       Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
451   bool UnsignedDivRem =
452       Opcode == Instruction::UDiv || Opcode == Instruction::URem;
453 
454   // Check for a constant divisor.
455   bool DivRemConst = false;
456   bool DivRemConstPow2 = false;
457   if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
458     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
459       const ConstantInt *CVal =
460           (C->getType()->isVectorTy()
461                ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
462                : dyn_cast<const ConstantInt>(C));
463       if (CVal && (CVal->getValue().isPowerOf2() ||
464                    CVal->getValue().isNegatedPowerOf2()))
465         DivRemConstPow2 = true;
466       else
467         DivRemConst = true;
468     }
469   }
470 
471   if (!Ty->isVectorTy()) {
472     // These FP operations are supported with a dedicated instruction for
473     // float, double and fp128 (base implementation assumes float generally
474     // costs 2).
475     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
476         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
477       return 1;
478 
479     // There is no native support for FRem.
480     if (Opcode == Instruction::FRem)
481       return LIBCALL_COST;
482 
483     // Give discount for some combined logical operations if supported.
484     if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) {
485       if (Opcode == Instruction::Xor) {
486         for (const Value *A : Args) {
487           if (const Instruction *I = dyn_cast<Instruction>(A))
488             if (I->hasOneUse() &&
489                 (I->getOpcode() == Instruction::And ||
490                  I->getOpcode() == Instruction::Or ||
491                  I->getOpcode() == Instruction::Xor))
492               return 0;
493         }
494       }
495       else if (Opcode == Instruction::Or || Opcode == Instruction::And) {
496         for (const Value *A : Args) {
497           if (const Instruction *I = dyn_cast<Instruction>(A))
498             if (I->hasOneUse() && I->getOpcode() == Instruction::Xor)
499               return 0;
500         }
501       }
502     }
503 
504     // Or requires one instruction, although it has custom handling for i64.
505     if (Opcode == Instruction::Or)
506       return 1;
507 
508     if (Opcode == Instruction::Xor && ScalarBits == 1) {
509       if (ST->hasLoadStoreOnCond2())
510         return 5; // 2 * (li 0; loc 1); xor
511       return 7; // 2 * ipm sequences ; xor ; shift ; compare
512     }
513 
514     if (DivRemConstPow2)
515       return (SignedDivRem ? SDivPow2Cost : 1);
516     if (DivRemConst)
517       return DivMulSeqCost;
518     if (SignedDivRem || UnsignedDivRem)
519       return DivInstrCost;
520   }
521   else if (ST->hasVector()) {
522     auto *VTy = cast<FixedVectorType>(Ty);
523     unsigned VF = VTy->getNumElements();
524     unsigned NumVectors = getNumVectorRegs(Ty);
525 
526     // These vector operations are custom handled, but are still supported
527     // with one instruction per vector, regardless of element size.
528     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
529         Opcode == Instruction::AShr) {
530       return NumVectors;
531     }
532 
533     if (DivRemConstPow2)
534       return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
535     if (DivRemConst) {
536       SmallVector<Type *> Tys(Args.size(), Ty);
537       return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args, Tys);
538     }
539     if ((SignedDivRem || UnsignedDivRem) && VF > 4)
540       // Temporary hack: disable high vectorization factors with integer
541       // division/remainder, which will get scalarized and handled with
542       // GR128 registers. The mischeduler is not clever enough to avoid
543       // spilling yet.
544       return 1000;
545 
546     // These FP operations are supported with a single vector instruction for
547     // double (base implementation assumes float generally costs 2). For
548     // FP128, the scalar cost is 1, and there is no overhead since the values
549     // are already in scalar registers.
550     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
551         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
552       switch (ScalarBits) {
553       case 32: {
554         // The vector enhancements facility 1 provides v4f32 instructions.
555         if (ST->hasVectorEnhancements1())
556           return NumVectors;
557         // Return the cost of multiple scalar invocation plus the cost of
558         // inserting and extracting the values.
559         InstructionCost ScalarCost =
560             getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
561         SmallVector<Type *> Tys(Args.size(), Ty);
562         InstructionCost Cost =
563             (VF * ScalarCost) + getScalarizationOverhead(VTy, Args, Tys);
564         // FIXME: VF 2 for these FP operations are currently just as
565         // expensive as for VF 4.
566         if (VF == 2)
567           Cost *= 2;
568         return Cost;
569       }
570       case 64:
571       case 128:
572         return NumVectors;
573       default:
574         break;
575       }
576     }
577 
578     // There is no native support for FRem.
579     if (Opcode == Instruction::FRem) {
580       SmallVector<Type *> Tys(Args.size(), Ty);
581       InstructionCost Cost =
582           (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args, Tys);
583       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
584       if (VF == 2 && ScalarBits == 32)
585         Cost *= 2;
586       return Cost;
587     }
588   }
589 
590   // Fallback to the default implementation.
591   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
592                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
593 }
594 
595 InstructionCost SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
596                                                VectorType *Tp,
597                                                ArrayRef<int> Mask, int Index,
598                                                VectorType *SubTp,
599                                                ArrayRef<const Value *> Args) {
600   Kind = improveShuffleKindFromMask(Kind, Mask);
601   if (ST->hasVector()) {
602     unsigned NumVectors = getNumVectorRegs(Tp);
603 
604     // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
605 
606     // FP128 values are always in scalar registers, so there is no work
607     // involved with a shuffle, except for broadcast. In that case register
608     // moves are done with a single instruction per element.
609     if (Tp->getScalarType()->isFP128Ty())
610       return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
611 
612     switch (Kind) {
613     case  TargetTransformInfo::SK_ExtractSubvector:
614       // ExtractSubvector Index indicates start offset.
615 
616       // Extracting a subvector from first index is a noop.
617       return (Index == 0 ? 0 : NumVectors);
618 
619     case TargetTransformInfo::SK_Broadcast:
620       // Loop vectorizer calls here to figure out the extra cost of
621       // broadcasting a loaded value to all elements of a vector. Since vlrep
622       // loads and replicates with a single instruction, adjust the returned
623       // value.
624       return NumVectors - 1;
625 
626     default:
627 
628       // SystemZ supports single instruction permutation / replication.
629       return NumVectors;
630     }
631   }
632 
633   return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
634 }
635 
636 // Return the log2 difference of the element sizes of the two vector types.
637 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
638   unsigned Bits0 = Ty0->getScalarSizeInBits();
639   unsigned Bits1 = Ty1->getScalarSizeInBits();
640 
641   if (Bits1 >  Bits0)
642     return (Log2_32(Bits1) - Log2_32(Bits0));
643 
644   return (Log2_32(Bits0) - Log2_32(Bits1));
645 }
646 
647 // Return the number of instructions needed to truncate SrcTy to DstTy.
648 unsigned SystemZTTIImpl::
649 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
650   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
651   assert(SrcTy->getPrimitiveSizeInBits().getFixedSize() >
652              DstTy->getPrimitiveSizeInBits().getFixedSize() &&
653          "Packing must reduce size of vector type.");
654   assert(cast<FixedVectorType>(SrcTy)->getNumElements() ==
655              cast<FixedVectorType>(DstTy)->getNumElements() &&
656          "Packing should not change number of elements.");
657 
658   // TODO: Since fp32 is expanded, the extract cost should always be 0.
659 
660   unsigned NumParts = getNumVectorRegs(SrcTy);
661   if (NumParts <= 2)
662     // Up to 2 vector registers can be truncated efficiently with pack or
663     // permute. The latter requires an immediate mask to be loaded, which
664     // typically gets hoisted out of a loop.  TODO: return a good value for
665     // BB-VECTORIZER that includes the immediate loads, which we do not want
666     // to count for the loop vectorizer.
667     return 1;
668 
669   unsigned Cost = 0;
670   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
671   unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements();
672   for (unsigned P = 0; P < Log2Diff; ++P) {
673     if (NumParts > 1)
674       NumParts /= 2;
675     Cost += NumParts;
676   }
677 
678   // Currently, a general mix of permutes and pack instructions is output by
679   // isel, which follow the cost computation above except for this case which
680   // is one instruction less:
681   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
682       DstTy->getScalarSizeInBits() == 8)
683     Cost--;
684 
685   return Cost;
686 }
687 
688 // Return the cost of converting a vector bitmask produced by a compare
689 // (SrcTy), to the type of the select or extend instruction (DstTy).
690 unsigned SystemZTTIImpl::
691 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
692   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
693           "Should only be called with vector types.");
694 
695   unsigned PackCost = 0;
696   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
697   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
698   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
699   if (SrcScalarBits > DstScalarBits)
700     // The bitmask will be truncated.
701     PackCost = getVectorTruncCost(SrcTy, DstTy);
702   else if (SrcScalarBits < DstScalarBits) {
703     unsigned DstNumParts = getNumVectorRegs(DstTy);
704     // Each vector select needs its part of the bitmask unpacked.
705     PackCost = Log2Diff * DstNumParts;
706     // Extra cost for moving part of mask before unpacking.
707     PackCost += DstNumParts - 1;
708   }
709 
710   return PackCost;
711 }
712 
713 // Return the type of the compared operands. This is needed to compute the
714 // cost for a Select / ZExt or SExt instruction.
715 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
716   Type *OpTy = nullptr;
717   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
718     OpTy = CI->getOperand(0)->getType();
719   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
720     if (LogicI->getNumOperands() == 2)
721       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
722         if (isa<CmpInst>(LogicI->getOperand(1)))
723           OpTy = CI0->getOperand(0)->getType();
724 
725   if (OpTy != nullptr) {
726     if (VF == 1) {
727       assert (!OpTy->isVectorTy() && "Expected scalar type");
728       return OpTy;
729     }
730     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
731     // be either scalar or already vectorized with a same or lesser VF.
732     Type *ElTy = OpTy->getScalarType();
733     return FixedVectorType::get(ElTy, VF);
734   }
735 
736   return nullptr;
737 }
738 
739 // Get the cost of converting a boolean vector to a vector with same width
740 // and element size as Dst, plus the cost of zero extending if needed.
741 unsigned SystemZTTIImpl::
742 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
743                               const Instruction *I) {
744   auto *DstVTy = cast<FixedVectorType>(Dst);
745   unsigned VF = DstVTy->getNumElements();
746   unsigned Cost = 0;
747   // If we know what the widths of the compared operands, get any cost of
748   // converting it to match Dst. Otherwise assume same widths.
749   Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
750   if (CmpOpTy != nullptr)
751     Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
752   if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
753     // One 'vn' per dst vector with an immediate mask.
754     Cost += getNumVectorRegs(Dst);
755   return Cost;
756 }
757 
758 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
759                                                  Type *Src,
760                                                  TTI::CastContextHint CCH,
761                                                  TTI::TargetCostKind CostKind,
762                                                  const Instruction *I) {
763   // FIXME: Can the logic below also be used for these cost kinds?
764   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) {
765     auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
766     return BaseCost == 0 ? BaseCost : 1;
767   }
768 
769   unsigned DstScalarBits = Dst->getScalarSizeInBits();
770   unsigned SrcScalarBits = Src->getScalarSizeInBits();
771 
772   if (!Src->isVectorTy()) {
773     assert (!Dst->isVectorTy());
774 
775     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
776       if (SrcScalarBits >= 32 ||
777           (I != nullptr && isa<LoadInst>(I->getOperand(0))))
778         return 1;
779       return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
780     }
781 
782     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
783         Src->isIntegerTy(1)) {
784       if (ST->hasLoadStoreOnCond2())
785         return 2; // li 0; loc 1
786 
787       // This should be extension of a compare i1 result, which is done with
788       // ipm and a varying sequence of instructions.
789       unsigned Cost = 0;
790       if (Opcode == Instruction::SExt)
791         Cost = (DstScalarBits < 64 ? 3 : 4);
792       if (Opcode == Instruction::ZExt)
793         Cost = 3;
794       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
795       if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
796         // If operands of an fp-type was compared, this costs +1.
797         Cost++;
798       return Cost;
799     }
800   }
801   else if (ST->hasVector()) {
802     // Vector to scalar cast.
803     auto *SrcVecTy = cast<FixedVectorType>(Src);
804     auto *DstVecTy = dyn_cast<FixedVectorType>(Dst);
805     if (!DstVecTy) {
806       // TODO: tune vector-to-scalar cast.
807       return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
808     }
809     unsigned VF = SrcVecTy->getNumElements();
810     unsigned NumDstVectors = getNumVectorRegs(Dst);
811     unsigned NumSrcVectors = getNumVectorRegs(Src);
812 
813     if (Opcode == Instruction::Trunc) {
814       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
815         return 0; // Check for NOOP conversions.
816       return getVectorTruncCost(Src, Dst);
817     }
818 
819     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
820       if (SrcScalarBits >= 8) {
821         // ZExt will use either a single unpack or a vector permute.
822         if (Opcode == Instruction::ZExt)
823           return NumDstVectors;
824 
825         // SExt will be handled with one unpack per doubling of width.
826         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
827 
828         // For types that spans multiple vector registers, some additional
829         // instructions are used to setup the unpacking.
830         unsigned NumSrcVectorOps =
831           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
832                           : (NumDstVectors / 2));
833 
834         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
835       }
836       else if (SrcScalarBits == 1)
837         return getBoolVecToIntConversionCost(Opcode, Dst, I);
838     }
839 
840     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
841         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
842       // TODO: Fix base implementation which could simplify things a bit here
843       // (seems to miss on differentiating on scalar/vector types).
844 
845       // Only 64 bit vector conversions are natively supported before z15.
846       if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
847         if (SrcScalarBits == DstScalarBits)
848           return NumDstVectors;
849 
850         if (SrcScalarBits == 1)
851           return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
852       }
853 
854       // Return the cost of multiple scalar invocation plus the cost of
855       // inserting and extracting the values. Base implementation does not
856       // realize float->int gets scalarized.
857       InstructionCost ScalarCost = getCastInstrCost(
858           Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind);
859       InstructionCost TotCost = VF * ScalarCost;
860       bool NeedsInserts = true, NeedsExtracts = true;
861       // FP128 registers do not get inserted or extracted.
862       if (DstScalarBits == 128 &&
863           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
864         NeedsInserts = false;
865       if (SrcScalarBits == 128 &&
866           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
867         NeedsExtracts = false;
868 
869       TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts);
870       TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false);
871 
872       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
873       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
874         TotCost *= 2;
875 
876       return TotCost;
877     }
878 
879     if (Opcode == Instruction::FPTrunc) {
880       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
881         return VF /*ldxbr/lexbr*/ +
882                getScalarizationOverhead(DstVecTy, true, false);
883       else // double -> float
884         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
885     }
886 
887     if (Opcode == Instruction::FPExt) {
888       if (SrcScalarBits == 32 && DstScalarBits == 64) {
889         // float -> double is very rare and currently unoptimized. Instead of
890         // using vldeb, which can do two at a time, all conversions are
891         // scalarized.
892         return VF * 2;
893       }
894       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
895       return VF + getScalarizationOverhead(SrcVecTy, false, true);
896     }
897   }
898 
899   return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
900 }
901 
902 // Scalar i8 / i16 operations will typically be made after first extending
903 // the operands to i32.
904 static unsigned getOperandsExtensionCost(const Instruction *I) {
905   unsigned ExtCost = 0;
906   for (Value *Op : I->operands())
907     // A load of i8 or i16 sign/zero extends to i32.
908     if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
909       ExtCost++;
910 
911   return ExtCost;
912 }
913 
914 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
915                                                    Type *CondTy,
916                                                    CmpInst::Predicate VecPred,
917                                                    TTI::TargetCostKind CostKind,
918                                                    const Instruction *I) {
919   if (CostKind != TTI::TCK_RecipThroughput)
920     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
921 
922   if (!ValTy->isVectorTy()) {
923     switch (Opcode) {
924     case Instruction::ICmp: {
925       // A loaded value compared with 0 with multiple users becomes Load and
926       // Test. The load is then not foldable, so return 0 cost for the ICmp.
927       unsigned ScalarBits = ValTy->getScalarSizeInBits();
928       if (I != nullptr && ScalarBits >= 32)
929         if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
930           if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
931             if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
932                 C->isZero())
933               return 0;
934 
935       unsigned Cost = 1;
936       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
937         Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
938       return Cost;
939     }
940     case Instruction::Select:
941       if (ValTy->isFloatingPointTy())
942         return 4; // No load on condition for FP - costs a conditional jump.
943       return 1; // Load On Condition / Select Register.
944     }
945   }
946   else if (ST->hasVector()) {
947     unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements();
948 
949     // Called with a compare instruction.
950     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
951       unsigned PredicateExtraCost = 0;
952       if (I != nullptr) {
953         // Some predicates cost one or two extra instructions.
954         switch (cast<CmpInst>(I)->getPredicate()) {
955         case CmpInst::Predicate::ICMP_NE:
956         case CmpInst::Predicate::ICMP_UGE:
957         case CmpInst::Predicate::ICMP_ULE:
958         case CmpInst::Predicate::ICMP_SGE:
959         case CmpInst::Predicate::ICMP_SLE:
960           PredicateExtraCost = 1;
961           break;
962         case CmpInst::Predicate::FCMP_ONE:
963         case CmpInst::Predicate::FCMP_ORD:
964         case CmpInst::Predicate::FCMP_UEQ:
965         case CmpInst::Predicate::FCMP_UNO:
966           PredicateExtraCost = 2;
967           break;
968         default:
969           break;
970         }
971       }
972 
973       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
974       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
975       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
976       unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
977 
978       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
979       return Cost;
980     }
981     else { // Called with a select instruction.
982       assert (Opcode == Instruction::Select);
983 
984       // We can figure out the extra cost of packing / unpacking if the
985       // instruction was passed and the compare instruction is found.
986       unsigned PackCost = 0;
987       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
988       if (CmpOpTy != nullptr)
989         PackCost =
990           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
991 
992       return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
993     }
994   }
995 
996   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
997 }
998 
999 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1000                                                    unsigned Index) {
1001   // vlvgp will insert two grs into a vector register, so only count half the
1002   // number of instructions.
1003   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
1004     return ((Index % 2 == 0) ? 1 : 0);
1005 
1006   if (Opcode == Instruction::ExtractElement) {
1007     int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
1008 
1009     // Give a slight penalty for moving out of vector pipeline to FXU unit.
1010     if (Index == 0 && Val->isIntOrIntVectorTy())
1011       Cost += 1;
1012 
1013     return Cost;
1014   }
1015 
1016   return BaseT::getVectorInstrCost(Opcode, Val, Index);
1017 }
1018 
1019 // Check if a load may be folded as a memory operand in its user.
1020 bool SystemZTTIImpl::
1021 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
1022   if (!Ld->hasOneUse())
1023     return false;
1024   FoldedValue = Ld;
1025   const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
1026   unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
1027   unsigned TruncBits = 0;
1028   unsigned SExtBits = 0;
1029   unsigned ZExtBits = 0;
1030   if (UserI->hasOneUse()) {
1031     unsigned UserBits = UserI->getType()->getScalarSizeInBits();
1032     if (isa<TruncInst>(UserI))
1033       TruncBits = UserBits;
1034     else if (isa<SExtInst>(UserI))
1035       SExtBits = UserBits;
1036     else if (isa<ZExtInst>(UserI))
1037       ZExtBits = UserBits;
1038   }
1039   if (TruncBits || SExtBits || ZExtBits) {
1040     FoldedValue = UserI;
1041     UserI = cast<Instruction>(*UserI->user_begin());
1042     // Load (single use) -> trunc/extend (single use) -> UserI
1043   }
1044   if ((UserI->getOpcode() == Instruction::Sub ||
1045        UserI->getOpcode() == Instruction::SDiv ||
1046        UserI->getOpcode() == Instruction::UDiv) &&
1047       UserI->getOperand(1) != FoldedValue)
1048     return false; // Not commutative, only RHS foldable.
1049   // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
1050   // extension was made of the load.
1051   unsigned LoadOrTruncBits =
1052       ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
1053   switch (UserI->getOpcode()) {
1054   case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
1055   case Instruction::Sub:
1056   case Instruction::ICmp:
1057     if (LoadedBits == 32 && ZExtBits == 64)
1058       return true;
1059     LLVM_FALLTHROUGH;
1060   case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
1061     if (UserI->getOpcode() != Instruction::ICmp) {
1062       if (LoadedBits == 16 &&
1063           (SExtBits == 32 ||
1064            (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
1065         return true;
1066       if (LoadOrTruncBits == 16)
1067         return true;
1068     }
1069     LLVM_FALLTHROUGH;
1070   case Instruction::SDiv:// SE: 32->64
1071     if (LoadedBits == 32 && SExtBits == 64)
1072       return true;
1073     LLVM_FALLTHROUGH;
1074   case Instruction::UDiv:
1075   case Instruction::And:
1076   case Instruction::Or:
1077   case Instruction::Xor:
1078     // This also makes sense for float operations, but disabled for now due
1079     // to regressions.
1080     // case Instruction::FCmp:
1081     // case Instruction::FAdd:
1082     // case Instruction::FSub:
1083     // case Instruction::FMul:
1084     // case Instruction::FDiv:
1085 
1086     // All possible extensions of memory checked above.
1087 
1088     // Comparison between memory and immediate.
1089     if (UserI->getOpcode() == Instruction::ICmp)
1090       if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
1091         if (CI->getValue().isIntN(16))
1092           return true;
1093     return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
1094     break;
1095   }
1096   return false;
1097 }
1098 
1099 static bool isBswapIntrinsicCall(const Value *V) {
1100   if (const Instruction *I = dyn_cast<Instruction>(V))
1101     if (auto *CI = dyn_cast<CallInst>(I))
1102       if (auto *F = CI->getCalledFunction())
1103         if (F->getIntrinsicID() == Intrinsic::bswap)
1104           return true;
1105   return false;
1106 }
1107 
1108 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1109                                                 MaybeAlign Alignment,
1110                                                 unsigned AddressSpace,
1111                                                 TTI::TargetCostKind CostKind,
1112                                                 const Instruction *I) {
1113   assert(!Src->isVoidTy() && "Invalid type");
1114 
1115   // TODO: Handle other cost kinds.
1116   if (CostKind != TTI::TCK_RecipThroughput)
1117     return 1;
1118 
1119   if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
1120     // Store the load or its truncated or extended value in FoldedValue.
1121     const Instruction *FoldedValue = nullptr;
1122     if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
1123       const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
1124       assert (UserI->getNumOperands() == 2 && "Expected a binop.");
1125 
1126       // UserI can't fold two loads, so in that case return 0 cost only
1127       // half of the time.
1128       for (unsigned i = 0; i < 2; ++i) {
1129         if (UserI->getOperand(i) == FoldedValue)
1130           continue;
1131 
1132         if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
1133           LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
1134           if (!OtherLoad &&
1135               (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
1136                isa<ZExtInst>(OtherOp)))
1137             OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
1138           if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
1139             return i == 0; // Both operands foldable.
1140         }
1141       }
1142 
1143       return 0; // Only I is foldable in user.
1144     }
1145   }
1146 
1147   unsigned NumOps =
1148     (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
1149 
1150   // Store/Load reversed saves one instruction.
1151   if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
1152       I != nullptr) {
1153     if (Opcode == Instruction::Load && I->hasOneUse()) {
1154       const Instruction *LdUser = cast<Instruction>(*I->user_begin());
1155       // In case of load -> bswap -> store, return normal cost for the load.
1156       if (isBswapIntrinsicCall(LdUser) &&
1157           (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
1158         return 0;
1159     }
1160     else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
1161       const Value *StoredVal = SI->getValueOperand();
1162       if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
1163         return 0;
1164     }
1165   }
1166 
1167   if (Src->getScalarSizeInBits() == 128)
1168     // 128 bit scalars are held in a pair of two 64 bit registers.
1169     NumOps *= 2;
1170 
1171   return  NumOps;
1172 }
1173 
1174 // The generic implementation of getInterleavedMemoryOpCost() is based on
1175 // adding costs of the memory operations plus all the extracts and inserts
1176 // needed for using / defining the vector operands. The SystemZ version does
1177 // roughly the same but bases the computations on vector permutations
1178 // instead.
1179 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost(
1180     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1181     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1182     bool UseMaskForCond, bool UseMaskForGaps) {
1183   if (UseMaskForCond || UseMaskForGaps)
1184     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1185                                              Alignment, AddressSpace, CostKind,
1186                                              UseMaskForCond, UseMaskForGaps);
1187   assert(isa<VectorType>(VecTy) &&
1188          "Expect a vector type for interleaved memory op");
1189 
1190   unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1191   assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1192   unsigned VF = NumElts / Factor;
1193   unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1194   unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1195   unsigned NumPermutes = 0;
1196 
1197   if (Opcode == Instruction::Load) {
1198     // Loading interleave groups may have gaps, which may mean fewer
1199     // loads. Find out how many vectors will be loaded in total, and in how
1200     // many of them each value will be in.
1201     BitVector UsedInsts(NumVectorMemOps, false);
1202     std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1203     for (unsigned Index : Indices)
1204       for (unsigned Elt = 0; Elt < VF; ++Elt) {
1205         unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1206         UsedInsts.set(Vec);
1207         ValueVecs[Index].set(Vec);
1208       }
1209     NumVectorMemOps = UsedInsts.count();
1210 
1211     for (unsigned Index : Indices) {
1212       // Estimate that each loaded source vector containing this Index
1213       // requires one operation, except that vperm can handle two input
1214       // registers first time for each dst vector.
1215       unsigned NumSrcVecs = ValueVecs[Index].count();
1216       unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U);
1217       assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1218       NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1219     }
1220   } else {
1221     // Estimate the permutes for each stored vector as the smaller of the
1222     // number of elements and the number of source vectors. Subtract one per
1223     // dst vector for vperm (S.A.).
1224     unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1225     unsigned NumDstVecs = NumVectorMemOps;
1226     assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
1227     NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1228   }
1229 
1230   // Cost of load/store operations and the permutations needed.
1231   return NumVectorMemOps + NumPermutes;
1232 }
1233 
1234 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
1235   if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
1236     return getNumVectorRegs(RetTy); // VPERM
1237   return -1;
1238 }
1239 
1240 InstructionCost
1241 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1242                                       TTI::TargetCostKind CostKind) {
1243   InstructionCost Cost =
1244       getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType());
1245   if (Cost != -1)
1246     return Cost;
1247   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1248 }
1249