1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 34 TTI::TargetCostKind CostKind) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 int SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty, 68 TTI::TargetCostKind CostKind) { 69 assert(Ty->isIntegerTy()); 70 71 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 72 // There is no cost model for constants with a bit size of 0. Return TCC_Free 73 // here, so that constant hoisting will ignore this constant. 74 if (BitSize == 0) 75 return TTI::TCC_Free; 76 // No cost model for operations on integers larger than 64 bit implemented yet. 77 if (BitSize > 64) 78 return TTI::TCC_Free; 79 80 switch (Opcode) { 81 default: 82 return TTI::TCC_Free; 83 case Instruction::GetElementPtr: 84 // Always hoist the base address of a GetElementPtr. This prevents the 85 // creation of new constants for every base constant that gets constant 86 // folded with the offset. 87 if (Idx == 0) 88 return 2 * TTI::TCC_Basic; 89 return TTI::TCC_Free; 90 case Instruction::Store: 91 if (Idx == 0 && Imm.getBitWidth() <= 64) { 92 // Any 8-bit immediate store can by implemented via mvi. 93 if (BitSize == 8) 94 return TTI::TCC_Free; 95 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 96 if (isInt<16>(Imm.getSExtValue())) 97 return TTI::TCC_Free; 98 } 99 break; 100 case Instruction::ICmp: 101 if (Idx == 1 && Imm.getBitWidth() <= 64) { 102 // Comparisons against signed 32-bit immediates implemented via cgfi. 103 if (isInt<32>(Imm.getSExtValue())) 104 return TTI::TCC_Free; 105 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 106 if (isUInt<32>(Imm.getZExtValue())) 107 return TTI::TCC_Free; 108 } 109 break; 110 case Instruction::Add: 111 case Instruction::Sub: 112 if (Idx == 1 && Imm.getBitWidth() <= 64) { 113 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 114 if (isUInt<32>(Imm.getZExtValue())) 115 return TTI::TCC_Free; 116 // Or their negation, by swapping addition vs. subtraction. 117 if (isUInt<32>(-Imm.getSExtValue())) 118 return TTI::TCC_Free; 119 } 120 break; 121 case Instruction::Mul: 122 if (Idx == 1 && Imm.getBitWidth() <= 64) { 123 // We use msgfi to multiply by 32-bit signed immediates. 124 if (isInt<32>(Imm.getSExtValue())) 125 return TTI::TCC_Free; 126 } 127 break; 128 case Instruction::Or: 129 case Instruction::Xor: 130 if (Idx == 1 && Imm.getBitWidth() <= 64) { 131 // Masks supported by oilf/xilf. 132 if (isUInt<32>(Imm.getZExtValue())) 133 return TTI::TCC_Free; 134 // Masks supported by oihf/xihf. 135 if ((Imm.getZExtValue() & 0xffffffff) == 0) 136 return TTI::TCC_Free; 137 } 138 break; 139 case Instruction::And: 140 if (Idx == 1 && Imm.getBitWidth() <= 64) { 141 // Any 32-bit AND operation can by implemented via nilf. 142 if (BitSize <= 32) 143 return TTI::TCC_Free; 144 // 64-bit masks supported by nilf. 145 if (isUInt<32>(~Imm.getZExtValue())) 146 return TTI::TCC_Free; 147 // 64-bit masks supported by nilh. 148 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 149 return TTI::TCC_Free; 150 // Some 64-bit AND operations can be implemented via risbg. 151 const SystemZInstrInfo *TII = ST->getInstrInfo(); 152 unsigned Start, End; 153 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 154 return TTI::TCC_Free; 155 } 156 break; 157 case Instruction::Shl: 158 case Instruction::LShr: 159 case Instruction::AShr: 160 // Always return TCC_Free for the shift value of a shift instruction. 161 if (Idx == 1) 162 return TTI::TCC_Free; 163 break; 164 case Instruction::UDiv: 165 case Instruction::SDiv: 166 case Instruction::URem: 167 case Instruction::SRem: 168 case Instruction::Trunc: 169 case Instruction::ZExt: 170 case Instruction::SExt: 171 case Instruction::IntToPtr: 172 case Instruction::PtrToInt: 173 case Instruction::BitCast: 174 case Instruction::PHI: 175 case Instruction::Call: 176 case Instruction::Select: 177 case Instruction::Ret: 178 case Instruction::Load: 179 break; 180 } 181 182 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 183 } 184 185 int SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 186 const APInt &Imm, Type *Ty, 187 TTI::TargetCostKind CostKind) { 188 assert(Ty->isIntegerTy()); 189 190 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 191 // There is no cost model for constants with a bit size of 0. Return TCC_Free 192 // here, so that constant hoisting will ignore this constant. 193 if (BitSize == 0) 194 return TTI::TCC_Free; 195 // No cost model for operations on integers larger than 64 bit implemented yet. 196 if (BitSize > 64) 197 return TTI::TCC_Free; 198 199 switch (IID) { 200 default: 201 return TTI::TCC_Free; 202 case Intrinsic::sadd_with_overflow: 203 case Intrinsic::uadd_with_overflow: 204 case Intrinsic::ssub_with_overflow: 205 case Intrinsic::usub_with_overflow: 206 // These get expanded to include a normal addition/subtraction. 207 if (Idx == 1 && Imm.getBitWidth() <= 64) { 208 if (isUInt<32>(Imm.getZExtValue())) 209 return TTI::TCC_Free; 210 if (isUInt<32>(-Imm.getSExtValue())) 211 return TTI::TCC_Free; 212 } 213 break; 214 case Intrinsic::smul_with_overflow: 215 case Intrinsic::umul_with_overflow: 216 // These get expanded to include a normal multiplication. 217 if (Idx == 1 && Imm.getBitWidth() <= 64) { 218 if (isInt<32>(Imm.getSExtValue())) 219 return TTI::TCC_Free; 220 } 221 break; 222 case Intrinsic::experimental_stackmap: 223 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 224 return TTI::TCC_Free; 225 break; 226 case Intrinsic::experimental_patchpoint_void: 227 case Intrinsic::experimental_patchpoint_i64: 228 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 229 return TTI::TCC_Free; 230 break; 231 } 232 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 233 } 234 235 TargetTransformInfo::PopcntSupportKind 236 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 237 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 238 if (ST->hasPopulationCount() && TyWidth <= 64) 239 return TTI::PSK_FastHardware; 240 return TTI::PSK_Software; 241 } 242 243 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 244 TTI::UnrollingPreferences &UP) { 245 // Find out if L contains a call, what the machine instruction count 246 // estimate is, and how many stores there are. 247 bool HasCall = false; 248 unsigned NumStores = 0; 249 for (auto &BB : L->blocks()) 250 for (auto &I : *BB) { 251 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 252 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 253 if (isLoweredToCall(F)) 254 HasCall = true; 255 if (F->getIntrinsicID() == Intrinsic::memcpy || 256 F->getIntrinsicID() == Intrinsic::memset) 257 NumStores++; 258 } else { // indirect call. 259 HasCall = true; 260 } 261 } 262 if (isa<StoreInst>(&I)) { 263 Type *MemAccessTy = I.getOperand(0)->getType(); 264 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0, 265 TTI::TCK_RecipThroughput); 266 } 267 } 268 269 // The z13 processor will run out of store tags if too many stores 270 // are fed into it too quickly. Therefore make sure there are not 271 // too many stores in the resulting unrolled loop. 272 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 273 274 if (HasCall) { 275 // Only allow full unrolling if loop has any calls. 276 UP.FullUnrollMaxCount = Max; 277 UP.MaxCount = 1; 278 return; 279 } 280 281 UP.MaxCount = Max; 282 if (UP.MaxCount <= 1) 283 return; 284 285 // Allow partial and runtime trip count unrolling. 286 UP.Partial = UP.Runtime = true; 287 288 UP.PartialThreshold = 75; 289 UP.DefaultUnrollRuntimeCount = 4; 290 291 // Allow expensive instructions in the pre-header of the loop. 292 UP.AllowExpensiveTripCount = true; 293 294 UP.Force = true; 295 } 296 297 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 298 TTI::PeelingPreferences &PP) { 299 BaseT::getPeelingPreferences(L, SE, PP); 300 } 301 302 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 303 TargetTransformInfo::LSRCost &C2) { 304 // SystemZ specific: check instruction count (first), and don't care about 305 // ImmCost, since offsets are checked explicitly. 306 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 307 C1.NumIVMuls, C1.NumBaseAdds, 308 C1.ScaleCost, C1.SetupCost) < 309 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 310 C2.NumIVMuls, C2.NumBaseAdds, 311 C2.ScaleCost, C2.SetupCost); 312 } 313 314 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 315 bool Vector = (ClassID == 1); 316 if (!Vector) 317 // Discount the stack pointer. Also leave out %r0, since it can't 318 // be used in an address. 319 return 14; 320 if (ST->hasVector()) 321 return 32; 322 return 0; 323 } 324 325 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 326 if (!Vector) 327 return 64; 328 if (ST->hasVector()) 329 return 128; 330 return 0; 331 } 332 333 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, 334 unsigned NumStridedMemAccesses, 335 unsigned NumPrefetches, 336 bool HasCall) const { 337 // Don't prefetch a loop with many far apart accesses. 338 if (NumPrefetches > 16) 339 return UINT_MAX; 340 341 // Emit prefetch instructions for smaller strides in cases where we think 342 // the hardware prefetcher might not be able to keep up. 343 if (NumStridedMemAccesses > 32 && 344 NumStridedMemAccesses == NumMemAccesses && !HasCall) 345 return 1; 346 347 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; 348 } 349 350 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 351 EVT VT = TLI->getValueType(DL, DataType); 352 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 353 } 354 355 // Return the bit size for the scalar type or vector element 356 // type. getScalarSizeInBits() returns 0 for a pointer type. 357 static unsigned getScalarSizeInBits(Type *Ty) { 358 unsigned Size = 359 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 360 assert(Size > 0 && "Element must have non-zero size."); 361 return Size; 362 } 363 364 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 365 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 366 // 3. 367 static unsigned getNumVectorRegs(Type *Ty) { 368 auto *VTy = cast<FixedVectorType>(Ty); 369 unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements(); 370 assert(WideBits > 0 && "Could not compute size of vector"); 371 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 372 } 373 374 int SystemZTTIImpl::getArithmeticInstrCost( 375 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 376 TTI::OperandValueKind Op1Info, 377 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 378 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 379 const Instruction *CxtI) { 380 381 // TODO: Handle more cost kinds. 382 if (CostKind != TTI::TCK_RecipThroughput) 383 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 384 Op2Info, Opd1PropInfo, 385 Opd2PropInfo, Args, CxtI); 386 387 // TODO: return a good value for BB-VECTORIZER that includes the 388 // immediate loads, which we do not want to count for the loop 389 // vectorizer, since they are hopefully hoisted out of the loop. This 390 // would require a new parameter 'InLoop', but not sure if constant 391 // args are common enough to motivate this. 392 393 unsigned ScalarBits = Ty->getScalarSizeInBits(); 394 395 // There are thre cases of division and remainder: Dividing with a register 396 // needs a divide instruction. A divisor which is a power of two constant 397 // can be implemented with a sequence of shifts. Any other constant needs a 398 // multiply and shifts. 399 const unsigned DivInstrCost = 20; 400 const unsigned DivMulSeqCost = 10; 401 const unsigned SDivPow2Cost = 4; 402 403 bool SignedDivRem = 404 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 405 bool UnsignedDivRem = 406 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 407 408 // Check for a constant divisor. 409 bool DivRemConst = false; 410 bool DivRemConstPow2 = false; 411 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 412 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 413 const ConstantInt *CVal = 414 (C->getType()->isVectorTy() 415 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 416 : dyn_cast<const ConstantInt>(C)); 417 if (CVal != nullptr && 418 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 419 DivRemConstPow2 = true; 420 else 421 DivRemConst = true; 422 } 423 } 424 425 if (!Ty->isVectorTy()) { 426 // These FP operations are supported with a dedicated instruction for 427 // float, double and fp128 (base implementation assumes float generally 428 // costs 2). 429 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 430 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 431 return 1; 432 433 // There is no native support for FRem. 434 if (Opcode == Instruction::FRem) 435 return LIBCALL_COST; 436 437 // Give discount for some combined logical operations if supported. 438 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 439 if (Opcode == Instruction::Xor) { 440 for (const Value *A : Args) { 441 if (const Instruction *I = dyn_cast<Instruction>(A)) 442 if (I->hasOneUse() && 443 (I->getOpcode() == Instruction::And || 444 I->getOpcode() == Instruction::Or || 445 I->getOpcode() == Instruction::Xor)) 446 return 0; 447 } 448 } 449 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 450 for (const Value *A : Args) { 451 if (const Instruction *I = dyn_cast<Instruction>(A)) 452 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 453 return 0; 454 } 455 } 456 } 457 458 // Or requires one instruction, although it has custom handling for i64. 459 if (Opcode == Instruction::Or) 460 return 1; 461 462 if (Opcode == Instruction::Xor && ScalarBits == 1) { 463 if (ST->hasLoadStoreOnCond2()) 464 return 5; // 2 * (li 0; loc 1); xor 465 return 7; // 2 * ipm sequences ; xor ; shift ; compare 466 } 467 468 if (DivRemConstPow2) 469 return (SignedDivRem ? SDivPow2Cost : 1); 470 if (DivRemConst) 471 return DivMulSeqCost; 472 if (SignedDivRem || UnsignedDivRem) 473 return DivInstrCost; 474 } 475 else if (ST->hasVector()) { 476 auto *VTy = cast<FixedVectorType>(Ty); 477 unsigned VF = VTy->getNumElements(); 478 unsigned NumVectors = getNumVectorRegs(Ty); 479 480 // These vector operations are custom handled, but are still supported 481 // with one instruction per vector, regardless of element size. 482 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 483 Opcode == Instruction::AShr) { 484 return NumVectors; 485 } 486 487 if (DivRemConstPow2) 488 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 489 if (DivRemConst) 490 return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args); 491 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 492 // Temporary hack: disable high vectorization factors with integer 493 // division/remainder, which will get scalarized and handled with 494 // GR128 registers. The mischeduler is not clever enough to avoid 495 // spilling yet. 496 return 1000; 497 498 // These FP operations are supported with a single vector instruction for 499 // double (base implementation assumes float generally costs 2). For 500 // FP128, the scalar cost is 1, and there is no overhead since the values 501 // are already in scalar registers. 502 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 503 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 504 switch (ScalarBits) { 505 case 32: { 506 // The vector enhancements facility 1 provides v4f32 instructions. 507 if (ST->hasVectorEnhancements1()) 508 return NumVectors; 509 // Return the cost of multiple scalar invocation plus the cost of 510 // inserting and extracting the values. 511 unsigned ScalarCost = 512 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 513 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(VTy, Args); 514 // FIXME: VF 2 for these FP operations are currently just as 515 // expensive as for VF 4. 516 if (VF == 2) 517 Cost *= 2; 518 return Cost; 519 } 520 case 64: 521 case 128: 522 return NumVectors; 523 default: 524 break; 525 } 526 } 527 528 // There is no native support for FRem. 529 if (Opcode == Instruction::FRem) { 530 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args); 531 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 532 if (VF == 2 && ScalarBits == 32) 533 Cost *= 2; 534 return Cost; 535 } 536 } 537 538 // Fallback to the default implementation. 539 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, 540 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 541 } 542 543 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 544 int Index, VectorType *SubTp) { 545 if (ST->hasVector()) { 546 unsigned NumVectors = getNumVectorRegs(Tp); 547 548 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 549 550 // FP128 values are always in scalar registers, so there is no work 551 // involved with a shuffle, except for broadcast. In that case register 552 // moves are done with a single instruction per element. 553 if (Tp->getScalarType()->isFP128Ty()) 554 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 555 556 switch (Kind) { 557 case TargetTransformInfo::SK_ExtractSubvector: 558 // ExtractSubvector Index indicates start offset. 559 560 // Extracting a subvector from first index is a noop. 561 return (Index == 0 ? 0 : NumVectors); 562 563 case TargetTransformInfo::SK_Broadcast: 564 // Loop vectorizer calls here to figure out the extra cost of 565 // broadcasting a loaded value to all elements of a vector. Since vlrep 566 // loads and replicates with a single instruction, adjust the returned 567 // value. 568 return NumVectors - 1; 569 570 default: 571 572 // SystemZ supports single instruction permutation / replication. 573 return NumVectors; 574 } 575 } 576 577 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 578 } 579 580 // Return the log2 difference of the element sizes of the two vector types. 581 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 582 unsigned Bits0 = Ty0->getScalarSizeInBits(); 583 unsigned Bits1 = Ty1->getScalarSizeInBits(); 584 585 if (Bits1 > Bits0) 586 return (Log2_32(Bits1) - Log2_32(Bits0)); 587 588 return (Log2_32(Bits0) - Log2_32(Bits1)); 589 } 590 591 // Return the number of instructions needed to truncate SrcTy to DstTy. 592 unsigned SystemZTTIImpl:: 593 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 594 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 595 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 596 "Packing must reduce size of vector type."); 597 assert(cast<FixedVectorType>(SrcTy)->getNumElements() == 598 cast<FixedVectorType>(DstTy)->getNumElements() && 599 "Packing should not change number of elements."); 600 601 // TODO: Since fp32 is expanded, the extract cost should always be 0. 602 603 unsigned NumParts = getNumVectorRegs(SrcTy); 604 if (NumParts <= 2) 605 // Up to 2 vector registers can be truncated efficiently with pack or 606 // permute. The latter requires an immediate mask to be loaded, which 607 // typically gets hoisted out of a loop. TODO: return a good value for 608 // BB-VECTORIZER that includes the immediate loads, which we do not want 609 // to count for the loop vectorizer. 610 return 1; 611 612 unsigned Cost = 0; 613 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 614 unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements(); 615 for (unsigned P = 0; P < Log2Diff; ++P) { 616 if (NumParts > 1) 617 NumParts /= 2; 618 Cost += NumParts; 619 } 620 621 // Currently, a general mix of permutes and pack instructions is output by 622 // isel, which follow the cost computation above except for this case which 623 // is one instruction less: 624 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 625 DstTy->getScalarSizeInBits() == 8) 626 Cost--; 627 628 return Cost; 629 } 630 631 // Return the cost of converting a vector bitmask produced by a compare 632 // (SrcTy), to the type of the select or extend instruction (DstTy). 633 unsigned SystemZTTIImpl:: 634 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 635 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 636 "Should only be called with vector types."); 637 638 unsigned PackCost = 0; 639 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 640 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 641 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 642 if (SrcScalarBits > DstScalarBits) 643 // The bitmask will be truncated. 644 PackCost = getVectorTruncCost(SrcTy, DstTy); 645 else if (SrcScalarBits < DstScalarBits) { 646 unsigned DstNumParts = getNumVectorRegs(DstTy); 647 // Each vector select needs its part of the bitmask unpacked. 648 PackCost = Log2Diff * DstNumParts; 649 // Extra cost for moving part of mask before unpacking. 650 PackCost += DstNumParts - 1; 651 } 652 653 return PackCost; 654 } 655 656 // Return the type of the compared operands. This is needed to compute the 657 // cost for a Select / ZExt or SExt instruction. 658 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 659 Type *OpTy = nullptr; 660 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 661 OpTy = CI->getOperand(0)->getType(); 662 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 663 if (LogicI->getNumOperands() == 2) 664 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 665 if (isa<CmpInst>(LogicI->getOperand(1))) 666 OpTy = CI0->getOperand(0)->getType(); 667 668 if (OpTy != nullptr) { 669 if (VF == 1) { 670 assert (!OpTy->isVectorTy() && "Expected scalar type"); 671 return OpTy; 672 } 673 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 674 // be either scalar or already vectorized with a same or lesser VF. 675 Type *ElTy = OpTy->getScalarType(); 676 return FixedVectorType::get(ElTy, VF); 677 } 678 679 return nullptr; 680 } 681 682 // Get the cost of converting a boolean vector to a vector with same width 683 // and element size as Dst, plus the cost of zero extending if needed. 684 unsigned SystemZTTIImpl:: 685 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 686 const Instruction *I) { 687 auto *DstVTy = cast<FixedVectorType>(Dst); 688 unsigned VF = DstVTy->getNumElements(); 689 unsigned Cost = 0; 690 // If we know what the widths of the compared operands, get any cost of 691 // converting it to match Dst. Otherwise assume same widths. 692 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 693 if (CmpOpTy != nullptr) 694 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 695 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 696 // One 'vn' per dst vector with an immediate mask. 697 Cost += getNumVectorRegs(Dst); 698 return Cost; 699 } 700 701 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 702 TTI::TargetCostKind CostKind, 703 const Instruction *I) { 704 // FIXME: Can the logic below also be used for these cost kinds? 705 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) { 706 int BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 707 return BaseCost == 0 ? BaseCost : 1; 708 } 709 710 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 711 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 712 713 if (!Src->isVectorTy()) { 714 assert (!Dst->isVectorTy()); 715 716 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 717 if (SrcScalarBits >= 32 || 718 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 719 return 1; 720 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 721 } 722 723 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 724 Src->isIntegerTy(1)) { 725 if (ST->hasLoadStoreOnCond2()) 726 return 2; // li 0; loc 1 727 728 // This should be extension of a compare i1 result, which is done with 729 // ipm and a varying sequence of instructions. 730 unsigned Cost = 0; 731 if (Opcode == Instruction::SExt) 732 Cost = (DstScalarBits < 64 ? 3 : 4); 733 if (Opcode == Instruction::ZExt) 734 Cost = 3; 735 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 736 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 737 // If operands of an fp-type was compared, this costs +1. 738 Cost++; 739 return Cost; 740 } 741 } 742 else if (ST->hasVector()) { 743 auto *SrcVecTy = cast<FixedVectorType>(Src); 744 auto *DstVecTy = cast<FixedVectorType>(Dst); 745 unsigned VF = SrcVecTy->getNumElements(); 746 unsigned NumDstVectors = getNumVectorRegs(Dst); 747 unsigned NumSrcVectors = getNumVectorRegs(Src); 748 749 if (Opcode == Instruction::Trunc) { 750 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 751 return 0; // Check for NOOP conversions. 752 return getVectorTruncCost(Src, Dst); 753 } 754 755 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 756 if (SrcScalarBits >= 8) { 757 // ZExt/SExt will be handled with one unpack per doubling of width. 758 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 759 760 // For types that spans multiple vector registers, some additional 761 // instructions are used to setup the unpacking. 762 unsigned NumSrcVectorOps = 763 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 764 : (NumDstVectors / 2)); 765 766 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 767 } 768 else if (SrcScalarBits == 1) 769 return getBoolVecToIntConversionCost(Opcode, Dst, I); 770 } 771 772 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 773 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 774 // TODO: Fix base implementation which could simplify things a bit here 775 // (seems to miss on differentiating on scalar/vector types). 776 777 // Only 64 bit vector conversions are natively supported before z15. 778 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 779 if (SrcScalarBits == DstScalarBits) 780 return NumDstVectors; 781 782 if (SrcScalarBits == 1) 783 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 784 } 785 786 // Return the cost of multiple scalar invocation plus the cost of 787 // inserting and extracting the values. Base implementation does not 788 // realize float->int gets scalarized. 789 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 790 Src->getScalarType(), CostKind); 791 unsigned TotCost = VF * ScalarCost; 792 bool NeedsInserts = true, NeedsExtracts = true; 793 // FP128 registers do not get inserted or extracted. 794 if (DstScalarBits == 128 && 795 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 796 NeedsInserts = false; 797 if (SrcScalarBits == 128 && 798 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 799 NeedsExtracts = false; 800 801 TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts); 802 TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false); 803 804 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 805 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 806 TotCost *= 2; 807 808 return TotCost; 809 } 810 811 if (Opcode == Instruction::FPTrunc) { 812 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 813 return VF /*ldxbr/lexbr*/ + 814 getScalarizationOverhead(DstVecTy, true, false); 815 else // double -> float 816 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 817 } 818 819 if (Opcode == Instruction::FPExt) { 820 if (SrcScalarBits == 32 && DstScalarBits == 64) { 821 // float -> double is very rare and currently unoptimized. Instead of 822 // using vldeb, which can do two at a time, all conversions are 823 // scalarized. 824 return VF * 2; 825 } 826 // -> fp128. VF * lxdb/lxeb + extraction of elements. 827 return VF + getScalarizationOverhead(SrcVecTy, false, true); 828 } 829 } 830 831 return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 832 } 833 834 // Scalar i8 / i16 operations will typically be made after first extending 835 // the operands to i32. 836 static unsigned getOperandsExtensionCost(const Instruction *I) { 837 unsigned ExtCost = 0; 838 for (Value *Op : I->operands()) 839 // A load of i8 or i16 sign/zero extends to i32. 840 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 841 ExtCost++; 842 843 return ExtCost; 844 } 845 846 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 847 Type *CondTy, 848 TTI::TargetCostKind CostKind, 849 const Instruction *I) { 850 if (CostKind != TTI::TCK_RecipThroughput) 851 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind); 852 853 if (!ValTy->isVectorTy()) { 854 switch (Opcode) { 855 case Instruction::ICmp: { 856 // A loaded value compared with 0 with multiple users becomes Load and 857 // Test. The load is then not foldable, so return 0 cost for the ICmp. 858 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 859 if (I != nullptr && ScalarBits >= 32) 860 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 861 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 862 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 863 C->getZExtValue() == 0) 864 return 0; 865 866 unsigned Cost = 1; 867 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 868 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 869 return Cost; 870 } 871 case Instruction::Select: 872 if (ValTy->isFloatingPointTy()) 873 return 4; // No load on condition for FP - costs a conditional jump. 874 return 1; // Load On Condition / Select Register. 875 } 876 } 877 else if (ST->hasVector()) { 878 unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements(); 879 880 // Called with a compare instruction. 881 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 882 unsigned PredicateExtraCost = 0; 883 if (I != nullptr) { 884 // Some predicates cost one or two extra instructions. 885 switch (cast<CmpInst>(I)->getPredicate()) { 886 case CmpInst::Predicate::ICMP_NE: 887 case CmpInst::Predicate::ICMP_UGE: 888 case CmpInst::Predicate::ICMP_ULE: 889 case CmpInst::Predicate::ICMP_SGE: 890 case CmpInst::Predicate::ICMP_SLE: 891 PredicateExtraCost = 1; 892 break; 893 case CmpInst::Predicate::FCMP_ONE: 894 case CmpInst::Predicate::FCMP_ORD: 895 case CmpInst::Predicate::FCMP_UEQ: 896 case CmpInst::Predicate::FCMP_UNO: 897 PredicateExtraCost = 2; 898 break; 899 default: 900 break; 901 } 902 } 903 904 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 905 // floats. FIXME: <2 x float> generates same code as <4 x float>. 906 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 907 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 908 909 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 910 return Cost; 911 } 912 else { // Called with a select instruction. 913 assert (Opcode == Instruction::Select); 914 915 // We can figure out the extra cost of packing / unpacking if the 916 // instruction was passed and the compare instruction is found. 917 unsigned PackCost = 0; 918 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 919 if (CmpOpTy != nullptr) 920 PackCost = 921 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 922 923 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 924 } 925 } 926 927 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind); 928 } 929 930 int SystemZTTIImpl:: 931 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 932 // vlvgp will insert two grs into a vector register, so only count half the 933 // number of instructions. 934 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 935 return ((Index % 2 == 0) ? 1 : 0); 936 937 if (Opcode == Instruction::ExtractElement) { 938 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 939 940 // Give a slight penalty for moving out of vector pipeline to FXU unit. 941 if (Index == 0 && Val->isIntOrIntVectorTy()) 942 Cost += 1; 943 944 return Cost; 945 } 946 947 return BaseT::getVectorInstrCost(Opcode, Val, Index); 948 } 949 950 // Check if a load may be folded as a memory operand in its user. 951 bool SystemZTTIImpl:: 952 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 953 if (!Ld->hasOneUse()) 954 return false; 955 FoldedValue = Ld; 956 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 957 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 958 unsigned TruncBits = 0; 959 unsigned SExtBits = 0; 960 unsigned ZExtBits = 0; 961 if (UserI->hasOneUse()) { 962 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 963 if (isa<TruncInst>(UserI)) 964 TruncBits = UserBits; 965 else if (isa<SExtInst>(UserI)) 966 SExtBits = UserBits; 967 else if (isa<ZExtInst>(UserI)) 968 ZExtBits = UserBits; 969 } 970 if (TruncBits || SExtBits || ZExtBits) { 971 FoldedValue = UserI; 972 UserI = cast<Instruction>(*UserI->user_begin()); 973 // Load (single use) -> trunc/extend (single use) -> UserI 974 } 975 if ((UserI->getOpcode() == Instruction::Sub || 976 UserI->getOpcode() == Instruction::SDiv || 977 UserI->getOpcode() == Instruction::UDiv) && 978 UserI->getOperand(1) != FoldedValue) 979 return false; // Not commutative, only RHS foldable. 980 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 981 // extension was made of the load. 982 unsigned LoadOrTruncBits = 983 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 984 switch (UserI->getOpcode()) { 985 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 986 case Instruction::Sub: 987 case Instruction::ICmp: 988 if (LoadedBits == 32 && ZExtBits == 64) 989 return true; 990 LLVM_FALLTHROUGH; 991 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 992 if (UserI->getOpcode() != Instruction::ICmp) { 993 if (LoadedBits == 16 && 994 (SExtBits == 32 || 995 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 996 return true; 997 if (LoadOrTruncBits == 16) 998 return true; 999 } 1000 LLVM_FALLTHROUGH; 1001 case Instruction::SDiv:// SE: 32->64 1002 if (LoadedBits == 32 && SExtBits == 64) 1003 return true; 1004 LLVM_FALLTHROUGH; 1005 case Instruction::UDiv: 1006 case Instruction::And: 1007 case Instruction::Or: 1008 case Instruction::Xor: 1009 // This also makes sense for float operations, but disabled for now due 1010 // to regressions. 1011 // case Instruction::FCmp: 1012 // case Instruction::FAdd: 1013 // case Instruction::FSub: 1014 // case Instruction::FMul: 1015 // case Instruction::FDiv: 1016 1017 // All possible extensions of memory checked above. 1018 1019 // Comparison between memory and immediate. 1020 if (UserI->getOpcode() == Instruction::ICmp) 1021 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 1022 if (isUInt<16>(CI->getZExtValue())) 1023 return true; 1024 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 1025 break; 1026 } 1027 return false; 1028 } 1029 1030 static bool isBswapIntrinsicCall(const Value *V) { 1031 if (const Instruction *I = dyn_cast<Instruction>(V)) 1032 if (auto *CI = dyn_cast<CallInst>(I)) 1033 if (auto *F = CI->getCalledFunction()) 1034 if (F->getIntrinsicID() == Intrinsic::bswap) 1035 return true; 1036 return false; 1037 } 1038 1039 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1040 MaybeAlign Alignment, unsigned AddressSpace, 1041 TTI::TargetCostKind CostKind, 1042 const Instruction *I) { 1043 assert(!Src->isVoidTy() && "Invalid type"); 1044 1045 // TODO: Handle other cost kinds. 1046 if (CostKind != TTI::TCK_RecipThroughput) 1047 return 1; 1048 1049 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1050 // Store the load or its truncated or extended value in FoldedValue. 1051 const Instruction *FoldedValue = nullptr; 1052 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1053 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1054 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1055 1056 // UserI can't fold two loads, so in that case return 0 cost only 1057 // half of the time. 1058 for (unsigned i = 0; i < 2; ++i) { 1059 if (UserI->getOperand(i) == FoldedValue) 1060 continue; 1061 1062 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1063 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1064 if (!OtherLoad && 1065 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1066 isa<ZExtInst>(OtherOp))) 1067 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1068 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1069 return i == 0; // Both operands foldable. 1070 } 1071 } 1072 1073 return 0; // Only I is foldable in user. 1074 } 1075 } 1076 1077 unsigned NumOps = 1078 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1079 1080 // Store/Load reversed saves one instruction. 1081 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1082 I != nullptr) { 1083 if (Opcode == Instruction::Load && I->hasOneUse()) { 1084 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1085 // In case of load -> bswap -> store, return normal cost for the load. 1086 if (isBswapIntrinsicCall(LdUser) && 1087 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1088 return 0; 1089 } 1090 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1091 const Value *StoredVal = SI->getValueOperand(); 1092 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1093 return 0; 1094 } 1095 } 1096 1097 if (Src->getScalarSizeInBits() == 128) 1098 // 128 bit scalars are held in a pair of two 64 bit registers. 1099 NumOps *= 2; 1100 1101 return NumOps; 1102 } 1103 1104 // The generic implementation of getInterleavedMemoryOpCost() is based on 1105 // adding costs of the memory operations plus all the extracts and inserts 1106 // needed for using / defining the vector operands. The SystemZ version does 1107 // roughly the same but bases the computations on vector permutations 1108 // instead. 1109 int SystemZTTIImpl::getInterleavedMemoryOpCost( 1110 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1111 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1112 bool UseMaskForCond, bool UseMaskForGaps) { 1113 if (UseMaskForCond || UseMaskForGaps) 1114 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1115 Alignment, AddressSpace, CostKind, 1116 UseMaskForCond, UseMaskForGaps); 1117 assert(isa<VectorType>(VecTy) && 1118 "Expect a vector type for interleaved memory op"); 1119 1120 // Return the ceiling of dividing A by B. 1121 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1122 1123 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1124 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1125 unsigned VF = NumElts / Factor; 1126 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1127 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1128 unsigned NumPermutes = 0; 1129 1130 if (Opcode == Instruction::Load) { 1131 // Loading interleave groups may have gaps, which may mean fewer 1132 // loads. Find out how many vectors will be loaded in total, and in how 1133 // many of them each value will be in. 1134 BitVector UsedInsts(NumVectorMemOps, false); 1135 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1136 for (unsigned Index : Indices) 1137 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1138 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1139 UsedInsts.set(Vec); 1140 ValueVecs[Index].set(Vec); 1141 } 1142 NumVectorMemOps = UsedInsts.count(); 1143 1144 for (unsigned Index : Indices) { 1145 // Estimate that each loaded source vector containing this Index 1146 // requires one operation, except that vperm can handle two input 1147 // registers first time for each dst vector. 1148 unsigned NumSrcVecs = ValueVecs[Index].count(); 1149 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1150 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1151 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1152 } 1153 } else { 1154 // Estimate the permutes for each stored vector as the smaller of the 1155 // number of elements and the number of source vectors. Subtract one per 1156 // dst vector for vperm (S.A.). 1157 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1158 unsigned NumDstVecs = NumVectorMemOps; 1159 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1160 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1161 } 1162 1163 // Cost of load/store operations and the permutations needed. 1164 return NumVectorMemOps + NumPermutes; 1165 } 1166 1167 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1168 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1169 return getNumVectorRegs(RetTy); // VPERM 1170 return -1; 1171 } 1172 1173 int SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1174 TTI::TargetCostKind CostKind) { 1175 int Cost = getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType()); 1176 if (Cost != -1) 1177 return Cost; 1178 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1179 } 1180