1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 34 TTI::TargetCostKind CostKind) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty, 68 TTI::TargetCostKind CostKind, 69 Instruction *Inst) { 70 assert(Ty->isIntegerTy()); 71 72 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 73 // There is no cost model for constants with a bit size of 0. Return TCC_Free 74 // here, so that constant hoisting will ignore this constant. 75 if (BitSize == 0) 76 return TTI::TCC_Free; 77 // No cost model for operations on integers larger than 64 bit implemented yet. 78 if (BitSize > 64) 79 return TTI::TCC_Free; 80 81 switch (Opcode) { 82 default: 83 return TTI::TCC_Free; 84 case Instruction::GetElementPtr: 85 // Always hoist the base address of a GetElementPtr. This prevents the 86 // creation of new constants for every base constant that gets constant 87 // folded with the offset. 88 if (Idx == 0) 89 return 2 * TTI::TCC_Basic; 90 return TTI::TCC_Free; 91 case Instruction::Store: 92 if (Idx == 0 && Imm.getBitWidth() <= 64) { 93 // Any 8-bit immediate store can by implemented via mvi. 94 if (BitSize == 8) 95 return TTI::TCC_Free; 96 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 97 if (isInt<16>(Imm.getSExtValue())) 98 return TTI::TCC_Free; 99 } 100 break; 101 case Instruction::ICmp: 102 if (Idx == 1 && Imm.getBitWidth() <= 64) { 103 // Comparisons against signed 32-bit immediates implemented via cgfi. 104 if (isInt<32>(Imm.getSExtValue())) 105 return TTI::TCC_Free; 106 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 107 if (isUInt<32>(Imm.getZExtValue())) 108 return TTI::TCC_Free; 109 } 110 break; 111 case Instruction::Add: 112 case Instruction::Sub: 113 if (Idx == 1 && Imm.getBitWidth() <= 64) { 114 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 115 if (isUInt<32>(Imm.getZExtValue())) 116 return TTI::TCC_Free; 117 // Or their negation, by swapping addition vs. subtraction. 118 if (isUInt<32>(-Imm.getSExtValue())) 119 return TTI::TCC_Free; 120 } 121 break; 122 case Instruction::Mul: 123 if (Idx == 1 && Imm.getBitWidth() <= 64) { 124 // We use msgfi to multiply by 32-bit signed immediates. 125 if (isInt<32>(Imm.getSExtValue())) 126 return TTI::TCC_Free; 127 } 128 break; 129 case Instruction::Or: 130 case Instruction::Xor: 131 if (Idx == 1 && Imm.getBitWidth() <= 64) { 132 // Masks supported by oilf/xilf. 133 if (isUInt<32>(Imm.getZExtValue())) 134 return TTI::TCC_Free; 135 // Masks supported by oihf/xihf. 136 if ((Imm.getZExtValue() & 0xffffffff) == 0) 137 return TTI::TCC_Free; 138 } 139 break; 140 case Instruction::And: 141 if (Idx == 1 && Imm.getBitWidth() <= 64) { 142 // Any 32-bit AND operation can by implemented via nilf. 143 if (BitSize <= 32) 144 return TTI::TCC_Free; 145 // 64-bit masks supported by nilf. 146 if (isUInt<32>(~Imm.getZExtValue())) 147 return TTI::TCC_Free; 148 // 64-bit masks supported by nilh. 149 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 150 return TTI::TCC_Free; 151 // Some 64-bit AND operations can be implemented via risbg. 152 const SystemZInstrInfo *TII = ST->getInstrInfo(); 153 unsigned Start, End; 154 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 155 return TTI::TCC_Free; 156 } 157 break; 158 case Instruction::Shl: 159 case Instruction::LShr: 160 case Instruction::AShr: 161 // Always return TCC_Free for the shift value of a shift instruction. 162 if (Idx == 1) 163 return TTI::TCC_Free; 164 break; 165 case Instruction::UDiv: 166 case Instruction::SDiv: 167 case Instruction::URem: 168 case Instruction::SRem: 169 case Instruction::Trunc: 170 case Instruction::ZExt: 171 case Instruction::SExt: 172 case Instruction::IntToPtr: 173 case Instruction::PtrToInt: 174 case Instruction::BitCast: 175 case Instruction::PHI: 176 case Instruction::Call: 177 case Instruction::Select: 178 case Instruction::Ret: 179 case Instruction::Load: 180 break; 181 } 182 183 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 184 } 185 186 InstructionCost 187 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 188 const APInt &Imm, Type *Ty, 189 TTI::TargetCostKind CostKind) { 190 assert(Ty->isIntegerTy()); 191 192 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 193 // There is no cost model for constants with a bit size of 0. Return TCC_Free 194 // here, so that constant hoisting will ignore this constant. 195 if (BitSize == 0) 196 return TTI::TCC_Free; 197 // No cost model for operations on integers larger than 64 bit implemented yet. 198 if (BitSize > 64) 199 return TTI::TCC_Free; 200 201 switch (IID) { 202 default: 203 return TTI::TCC_Free; 204 case Intrinsic::sadd_with_overflow: 205 case Intrinsic::uadd_with_overflow: 206 case Intrinsic::ssub_with_overflow: 207 case Intrinsic::usub_with_overflow: 208 // These get expanded to include a normal addition/subtraction. 209 if (Idx == 1 && Imm.getBitWidth() <= 64) { 210 if (isUInt<32>(Imm.getZExtValue())) 211 return TTI::TCC_Free; 212 if (isUInt<32>(-Imm.getSExtValue())) 213 return TTI::TCC_Free; 214 } 215 break; 216 case Intrinsic::smul_with_overflow: 217 case Intrinsic::umul_with_overflow: 218 // These get expanded to include a normal multiplication. 219 if (Idx == 1 && Imm.getBitWidth() <= 64) { 220 if (isInt<32>(Imm.getSExtValue())) 221 return TTI::TCC_Free; 222 } 223 break; 224 case Intrinsic::experimental_stackmap: 225 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 case Intrinsic::experimental_patchpoint_void: 229 case Intrinsic::experimental_patchpoint_i64: 230 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 231 return TTI::TCC_Free; 232 break; 233 } 234 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 235 } 236 237 TargetTransformInfo::PopcntSupportKind 238 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 239 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 240 if (ST->hasPopulationCount() && TyWidth <= 64) 241 return TTI::PSK_FastHardware; 242 return TTI::PSK_Software; 243 } 244 245 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 246 TTI::UnrollingPreferences &UP, 247 OptimizationRemarkEmitter *ORE) { 248 // Find out if L contains a call, what the machine instruction count 249 // estimate is, and how many stores there are. 250 bool HasCall = false; 251 InstructionCost NumStores = 0; 252 for (auto &BB : L->blocks()) 253 for (auto &I : *BB) { 254 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 255 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 256 if (isLoweredToCall(F)) 257 HasCall = true; 258 if (F->getIntrinsicID() == Intrinsic::memcpy || 259 F->getIntrinsicID() == Intrinsic::memset) 260 NumStores++; 261 } else { // indirect call. 262 HasCall = true; 263 } 264 } 265 if (isa<StoreInst>(&I)) { 266 Type *MemAccessTy = I.getOperand(0)->getType(); 267 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0, 268 TTI::TCK_RecipThroughput); 269 } 270 } 271 272 // The z13 processor will run out of store tags if too many stores 273 // are fed into it too quickly. Therefore make sure there are not 274 // too many stores in the resulting unrolled loop. 275 unsigned const NumStoresVal = *NumStores.getValue(); 276 unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX); 277 278 if (HasCall) { 279 // Only allow full unrolling if loop has any calls. 280 UP.FullUnrollMaxCount = Max; 281 UP.MaxCount = 1; 282 return; 283 } 284 285 UP.MaxCount = Max; 286 if (UP.MaxCount <= 1) 287 return; 288 289 // Allow partial and runtime trip count unrolling. 290 UP.Partial = UP.Runtime = true; 291 292 UP.PartialThreshold = 75; 293 UP.DefaultUnrollRuntimeCount = 4; 294 295 // Allow expensive instructions in the pre-header of the loop. 296 UP.AllowExpensiveTripCount = true; 297 298 UP.Force = true; 299 } 300 301 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 302 TTI::PeelingPreferences &PP) { 303 BaseT::getPeelingPreferences(L, SE, PP); 304 } 305 306 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 307 TargetTransformInfo::LSRCost &C2) { 308 // SystemZ specific: check instruction count (first), and don't care about 309 // ImmCost, since offsets are checked explicitly. 310 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 311 C1.NumIVMuls, C1.NumBaseAdds, 312 C1.ScaleCost, C1.SetupCost) < 313 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 314 C2.NumIVMuls, C2.NumBaseAdds, 315 C2.ScaleCost, C2.SetupCost); 316 } 317 318 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 319 bool Vector = (ClassID == 1); 320 if (!Vector) 321 // Discount the stack pointer. Also leave out %r0, since it can't 322 // be used in an address. 323 return 14; 324 if (ST->hasVector()) 325 return 32; 326 return 0; 327 } 328 329 TypeSize 330 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 331 switch (K) { 332 case TargetTransformInfo::RGK_Scalar: 333 return TypeSize::getFixed(64); 334 case TargetTransformInfo::RGK_FixedWidthVector: 335 return TypeSize::getFixed(ST->hasVector() ? 128 : 0); 336 case TargetTransformInfo::RGK_ScalableVector: 337 return TypeSize::getScalable(0); 338 } 339 340 llvm_unreachable("Unsupported register kind"); 341 } 342 343 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, 344 unsigned NumStridedMemAccesses, 345 unsigned NumPrefetches, 346 bool HasCall) const { 347 // Don't prefetch a loop with many far apart accesses. 348 if (NumPrefetches > 16) 349 return UINT_MAX; 350 351 // Emit prefetch instructions for smaller strides in cases where we think 352 // the hardware prefetcher might not be able to keep up. 353 if (NumStridedMemAccesses > 32 && !HasCall && 354 (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses) 355 return 1; 356 357 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; 358 } 359 360 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 361 EVT VT = TLI->getValueType(DL, DataType); 362 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 363 } 364 365 // Return the bit size for the scalar type or vector element 366 // type. getScalarSizeInBits() returns 0 for a pointer type. 367 static unsigned getScalarSizeInBits(Type *Ty) { 368 unsigned Size = 369 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 370 assert(Size > 0 && "Element must have non-zero size."); 371 return Size; 372 } 373 374 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 375 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 376 // 3. 377 static unsigned getNumVectorRegs(Type *Ty) { 378 auto *VTy = cast<FixedVectorType>(Ty); 379 unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements(); 380 assert(WideBits > 0 && "Could not compute size of vector"); 381 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 382 } 383 384 InstructionCost SystemZTTIImpl::getArithmeticInstrCost( 385 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 386 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 387 TTI::OperandValueProperties Opd1PropInfo, 388 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 389 const Instruction *CxtI) { 390 391 // TODO: Handle more cost kinds. 392 if (CostKind != TTI::TCK_RecipThroughput) 393 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 394 Op2Info, Opd1PropInfo, 395 Opd2PropInfo, Args, CxtI); 396 397 // TODO: return a good value for BB-VECTORIZER that includes the 398 // immediate loads, which we do not want to count for the loop 399 // vectorizer, since they are hopefully hoisted out of the loop. This 400 // would require a new parameter 'InLoop', but not sure if constant 401 // args are common enough to motivate this. 402 403 unsigned ScalarBits = Ty->getScalarSizeInBits(); 404 405 // There are thre cases of division and remainder: Dividing with a register 406 // needs a divide instruction. A divisor which is a power of two constant 407 // can be implemented with a sequence of shifts. Any other constant needs a 408 // multiply and shifts. 409 const unsigned DivInstrCost = 20; 410 const unsigned DivMulSeqCost = 10; 411 const unsigned SDivPow2Cost = 4; 412 413 bool SignedDivRem = 414 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 415 bool UnsignedDivRem = 416 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 417 418 // Check for a constant divisor. 419 bool DivRemConst = false; 420 bool DivRemConstPow2 = false; 421 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 422 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 423 const ConstantInt *CVal = 424 (C->getType()->isVectorTy() 425 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 426 : dyn_cast<const ConstantInt>(C)); 427 if (CVal && (CVal->getValue().isPowerOf2() || 428 CVal->getValue().isNegatedPowerOf2())) 429 DivRemConstPow2 = true; 430 else 431 DivRemConst = true; 432 } 433 } 434 435 if (!Ty->isVectorTy()) { 436 // These FP operations are supported with a dedicated instruction for 437 // float, double and fp128 (base implementation assumes float generally 438 // costs 2). 439 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 440 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 441 return 1; 442 443 // There is no native support for FRem. 444 if (Opcode == Instruction::FRem) 445 return LIBCALL_COST; 446 447 // Give discount for some combined logical operations if supported. 448 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 449 if (Opcode == Instruction::Xor) { 450 for (const Value *A : Args) { 451 if (const Instruction *I = dyn_cast<Instruction>(A)) 452 if (I->hasOneUse() && 453 (I->getOpcode() == Instruction::And || 454 I->getOpcode() == Instruction::Or || 455 I->getOpcode() == Instruction::Xor)) 456 return 0; 457 } 458 } 459 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 460 for (const Value *A : Args) { 461 if (const Instruction *I = dyn_cast<Instruction>(A)) 462 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 463 return 0; 464 } 465 } 466 } 467 468 // Or requires one instruction, although it has custom handling for i64. 469 if (Opcode == Instruction::Or) 470 return 1; 471 472 if (Opcode == Instruction::Xor && ScalarBits == 1) { 473 if (ST->hasLoadStoreOnCond2()) 474 return 5; // 2 * (li 0; loc 1); xor 475 return 7; // 2 * ipm sequences ; xor ; shift ; compare 476 } 477 478 if (DivRemConstPow2) 479 return (SignedDivRem ? SDivPow2Cost : 1); 480 if (DivRemConst) 481 return DivMulSeqCost; 482 if (SignedDivRem || UnsignedDivRem) 483 return DivInstrCost; 484 } 485 else if (ST->hasVector()) { 486 auto *VTy = cast<FixedVectorType>(Ty); 487 unsigned VF = VTy->getNumElements(); 488 unsigned NumVectors = getNumVectorRegs(Ty); 489 490 // These vector operations are custom handled, but are still supported 491 // with one instruction per vector, regardless of element size. 492 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 493 Opcode == Instruction::AShr) { 494 return NumVectors; 495 } 496 497 if (DivRemConstPow2) 498 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 499 if (DivRemConst) { 500 SmallVector<Type *> Tys(Args.size(), Ty); 501 return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args, Tys); 502 } 503 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 504 // Temporary hack: disable high vectorization factors with integer 505 // division/remainder, which will get scalarized and handled with 506 // GR128 registers. The mischeduler is not clever enough to avoid 507 // spilling yet. 508 return 1000; 509 510 // These FP operations are supported with a single vector instruction for 511 // double (base implementation assumes float generally costs 2). For 512 // FP128, the scalar cost is 1, and there is no overhead since the values 513 // are already in scalar registers. 514 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 515 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 516 switch (ScalarBits) { 517 case 32: { 518 // The vector enhancements facility 1 provides v4f32 instructions. 519 if (ST->hasVectorEnhancements1()) 520 return NumVectors; 521 // Return the cost of multiple scalar invocation plus the cost of 522 // inserting and extracting the values. 523 InstructionCost ScalarCost = 524 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 525 SmallVector<Type *> Tys(Args.size(), Ty); 526 InstructionCost Cost = 527 (VF * ScalarCost) + getScalarizationOverhead(VTy, Args, Tys); 528 // FIXME: VF 2 for these FP operations are currently just as 529 // expensive as for VF 4. 530 if (VF == 2) 531 Cost *= 2; 532 return Cost; 533 } 534 case 64: 535 case 128: 536 return NumVectors; 537 default: 538 break; 539 } 540 } 541 542 // There is no native support for FRem. 543 if (Opcode == Instruction::FRem) { 544 SmallVector<Type *> Tys(Args.size(), Ty); 545 InstructionCost Cost = 546 (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args, Tys); 547 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 548 if (VF == 2 && ScalarBits == 32) 549 Cost *= 2; 550 return Cost; 551 } 552 } 553 554 // Fallback to the default implementation. 555 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, 556 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 557 } 558 559 InstructionCost SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 560 VectorType *Tp, 561 ArrayRef<int> Mask, int Index, 562 VectorType *SubTp) { 563 Kind = improveShuffleKindFromMask(Kind, Mask); 564 if (ST->hasVector()) { 565 unsigned NumVectors = getNumVectorRegs(Tp); 566 567 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 568 569 // FP128 values are always in scalar registers, so there is no work 570 // involved with a shuffle, except for broadcast. In that case register 571 // moves are done with a single instruction per element. 572 if (Tp->getScalarType()->isFP128Ty()) 573 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 574 575 switch (Kind) { 576 case TargetTransformInfo::SK_ExtractSubvector: 577 // ExtractSubvector Index indicates start offset. 578 579 // Extracting a subvector from first index is a noop. 580 return (Index == 0 ? 0 : NumVectors); 581 582 case TargetTransformInfo::SK_Broadcast: 583 // Loop vectorizer calls here to figure out the extra cost of 584 // broadcasting a loaded value to all elements of a vector. Since vlrep 585 // loads and replicates with a single instruction, adjust the returned 586 // value. 587 return NumVectors - 1; 588 589 default: 590 591 // SystemZ supports single instruction permutation / replication. 592 return NumVectors; 593 } 594 } 595 596 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 597 } 598 599 // Return the log2 difference of the element sizes of the two vector types. 600 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 601 unsigned Bits0 = Ty0->getScalarSizeInBits(); 602 unsigned Bits1 = Ty1->getScalarSizeInBits(); 603 604 if (Bits1 > Bits0) 605 return (Log2_32(Bits1) - Log2_32(Bits0)); 606 607 return (Log2_32(Bits0) - Log2_32(Bits1)); 608 } 609 610 // Return the number of instructions needed to truncate SrcTy to DstTy. 611 unsigned SystemZTTIImpl:: 612 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 613 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 614 assert(SrcTy->getPrimitiveSizeInBits().getFixedSize() > 615 DstTy->getPrimitiveSizeInBits().getFixedSize() && 616 "Packing must reduce size of vector type."); 617 assert(cast<FixedVectorType>(SrcTy)->getNumElements() == 618 cast<FixedVectorType>(DstTy)->getNumElements() && 619 "Packing should not change number of elements."); 620 621 // TODO: Since fp32 is expanded, the extract cost should always be 0. 622 623 unsigned NumParts = getNumVectorRegs(SrcTy); 624 if (NumParts <= 2) 625 // Up to 2 vector registers can be truncated efficiently with pack or 626 // permute. The latter requires an immediate mask to be loaded, which 627 // typically gets hoisted out of a loop. TODO: return a good value for 628 // BB-VECTORIZER that includes the immediate loads, which we do not want 629 // to count for the loop vectorizer. 630 return 1; 631 632 unsigned Cost = 0; 633 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 634 unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements(); 635 for (unsigned P = 0; P < Log2Diff; ++P) { 636 if (NumParts > 1) 637 NumParts /= 2; 638 Cost += NumParts; 639 } 640 641 // Currently, a general mix of permutes and pack instructions is output by 642 // isel, which follow the cost computation above except for this case which 643 // is one instruction less: 644 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 645 DstTy->getScalarSizeInBits() == 8) 646 Cost--; 647 648 return Cost; 649 } 650 651 // Return the cost of converting a vector bitmask produced by a compare 652 // (SrcTy), to the type of the select or extend instruction (DstTy). 653 unsigned SystemZTTIImpl:: 654 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 655 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 656 "Should only be called with vector types."); 657 658 unsigned PackCost = 0; 659 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 660 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 661 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 662 if (SrcScalarBits > DstScalarBits) 663 // The bitmask will be truncated. 664 PackCost = getVectorTruncCost(SrcTy, DstTy); 665 else if (SrcScalarBits < DstScalarBits) { 666 unsigned DstNumParts = getNumVectorRegs(DstTy); 667 // Each vector select needs its part of the bitmask unpacked. 668 PackCost = Log2Diff * DstNumParts; 669 // Extra cost for moving part of mask before unpacking. 670 PackCost += DstNumParts - 1; 671 } 672 673 return PackCost; 674 } 675 676 // Return the type of the compared operands. This is needed to compute the 677 // cost for a Select / ZExt or SExt instruction. 678 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 679 Type *OpTy = nullptr; 680 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 681 OpTy = CI->getOperand(0)->getType(); 682 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 683 if (LogicI->getNumOperands() == 2) 684 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 685 if (isa<CmpInst>(LogicI->getOperand(1))) 686 OpTy = CI0->getOperand(0)->getType(); 687 688 if (OpTy != nullptr) { 689 if (VF == 1) { 690 assert (!OpTy->isVectorTy() && "Expected scalar type"); 691 return OpTy; 692 } 693 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 694 // be either scalar or already vectorized with a same or lesser VF. 695 Type *ElTy = OpTy->getScalarType(); 696 return FixedVectorType::get(ElTy, VF); 697 } 698 699 return nullptr; 700 } 701 702 // Get the cost of converting a boolean vector to a vector with same width 703 // and element size as Dst, plus the cost of zero extending if needed. 704 unsigned SystemZTTIImpl:: 705 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 706 const Instruction *I) { 707 auto *DstVTy = cast<FixedVectorType>(Dst); 708 unsigned VF = DstVTy->getNumElements(); 709 unsigned Cost = 0; 710 // If we know what the widths of the compared operands, get any cost of 711 // converting it to match Dst. Otherwise assume same widths. 712 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 713 if (CmpOpTy != nullptr) 714 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 715 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 716 // One 'vn' per dst vector with an immediate mask. 717 Cost += getNumVectorRegs(Dst); 718 return Cost; 719 } 720 721 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 722 Type *Src, 723 TTI::CastContextHint CCH, 724 TTI::TargetCostKind CostKind, 725 const Instruction *I) { 726 // FIXME: Can the logic below also be used for these cost kinds? 727 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) { 728 auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 729 return BaseCost == 0 ? BaseCost : 1; 730 } 731 732 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 733 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 734 735 if (!Src->isVectorTy()) { 736 assert (!Dst->isVectorTy()); 737 738 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 739 if (SrcScalarBits >= 32 || 740 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 741 return 1; 742 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 743 } 744 745 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 746 Src->isIntegerTy(1)) { 747 if (ST->hasLoadStoreOnCond2()) 748 return 2; // li 0; loc 1 749 750 // This should be extension of a compare i1 result, which is done with 751 // ipm and a varying sequence of instructions. 752 unsigned Cost = 0; 753 if (Opcode == Instruction::SExt) 754 Cost = (DstScalarBits < 64 ? 3 : 4); 755 if (Opcode == Instruction::ZExt) 756 Cost = 3; 757 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 758 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 759 // If operands of an fp-type was compared, this costs +1. 760 Cost++; 761 return Cost; 762 } 763 } 764 else if (ST->hasVector()) { 765 // Vector to scalar cast. 766 auto *SrcVecTy = cast<FixedVectorType>(Src); 767 auto *DstVecTy = dyn_cast<FixedVectorType>(Dst); 768 if (!DstVecTy) { 769 // TODO: tune vector-to-scalar cast. 770 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 771 } 772 unsigned VF = SrcVecTy->getNumElements(); 773 unsigned NumDstVectors = getNumVectorRegs(Dst); 774 unsigned NumSrcVectors = getNumVectorRegs(Src); 775 776 if (Opcode == Instruction::Trunc) { 777 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 778 return 0; // Check for NOOP conversions. 779 return getVectorTruncCost(Src, Dst); 780 } 781 782 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 783 if (SrcScalarBits >= 8) { 784 // ZExt/SExt will be handled with one unpack per doubling of width. 785 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 786 787 // For types that spans multiple vector registers, some additional 788 // instructions are used to setup the unpacking. 789 unsigned NumSrcVectorOps = 790 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 791 : (NumDstVectors / 2)); 792 793 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 794 } 795 else if (SrcScalarBits == 1) 796 return getBoolVecToIntConversionCost(Opcode, Dst, I); 797 } 798 799 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 800 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 801 // TODO: Fix base implementation which could simplify things a bit here 802 // (seems to miss on differentiating on scalar/vector types). 803 804 // Only 64 bit vector conversions are natively supported before z15. 805 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 806 if (SrcScalarBits == DstScalarBits) 807 return NumDstVectors; 808 809 if (SrcScalarBits == 1) 810 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 811 } 812 813 // Return the cost of multiple scalar invocation plus the cost of 814 // inserting and extracting the values. Base implementation does not 815 // realize float->int gets scalarized. 816 InstructionCost ScalarCost = getCastInstrCost( 817 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind); 818 InstructionCost TotCost = VF * ScalarCost; 819 bool NeedsInserts = true, NeedsExtracts = true; 820 // FP128 registers do not get inserted or extracted. 821 if (DstScalarBits == 128 && 822 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 823 NeedsInserts = false; 824 if (SrcScalarBits == 128 && 825 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 826 NeedsExtracts = false; 827 828 TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts); 829 TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false); 830 831 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 832 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 833 TotCost *= 2; 834 835 return TotCost; 836 } 837 838 if (Opcode == Instruction::FPTrunc) { 839 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 840 return VF /*ldxbr/lexbr*/ + 841 getScalarizationOverhead(DstVecTy, true, false); 842 else // double -> float 843 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 844 } 845 846 if (Opcode == Instruction::FPExt) { 847 if (SrcScalarBits == 32 && DstScalarBits == 64) { 848 // float -> double is very rare and currently unoptimized. Instead of 849 // using vldeb, which can do two at a time, all conversions are 850 // scalarized. 851 return VF * 2; 852 } 853 // -> fp128. VF * lxdb/lxeb + extraction of elements. 854 return VF + getScalarizationOverhead(SrcVecTy, false, true); 855 } 856 } 857 858 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 859 } 860 861 // Scalar i8 / i16 operations will typically be made after first extending 862 // the operands to i32. 863 static unsigned getOperandsExtensionCost(const Instruction *I) { 864 unsigned ExtCost = 0; 865 for (Value *Op : I->operands()) 866 // A load of i8 or i16 sign/zero extends to i32. 867 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 868 ExtCost++; 869 870 return ExtCost; 871 } 872 873 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 874 Type *CondTy, 875 CmpInst::Predicate VecPred, 876 TTI::TargetCostKind CostKind, 877 const Instruction *I) { 878 if (CostKind != TTI::TCK_RecipThroughput) 879 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); 880 881 if (!ValTy->isVectorTy()) { 882 switch (Opcode) { 883 case Instruction::ICmp: { 884 // A loaded value compared with 0 with multiple users becomes Load and 885 // Test. The load is then not foldable, so return 0 cost for the ICmp. 886 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 887 if (I != nullptr && ScalarBits >= 32) 888 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 889 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 890 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 891 C->isZero()) 892 return 0; 893 894 unsigned Cost = 1; 895 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 896 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 897 return Cost; 898 } 899 case Instruction::Select: 900 if (ValTy->isFloatingPointTy()) 901 return 4; // No load on condition for FP - costs a conditional jump. 902 return 1; // Load On Condition / Select Register. 903 } 904 } 905 else if (ST->hasVector()) { 906 unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements(); 907 908 // Called with a compare instruction. 909 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 910 unsigned PredicateExtraCost = 0; 911 if (I != nullptr) { 912 // Some predicates cost one or two extra instructions. 913 switch (cast<CmpInst>(I)->getPredicate()) { 914 case CmpInst::Predicate::ICMP_NE: 915 case CmpInst::Predicate::ICMP_UGE: 916 case CmpInst::Predicate::ICMP_ULE: 917 case CmpInst::Predicate::ICMP_SGE: 918 case CmpInst::Predicate::ICMP_SLE: 919 PredicateExtraCost = 1; 920 break; 921 case CmpInst::Predicate::FCMP_ONE: 922 case CmpInst::Predicate::FCMP_ORD: 923 case CmpInst::Predicate::FCMP_UEQ: 924 case CmpInst::Predicate::FCMP_UNO: 925 PredicateExtraCost = 2; 926 break; 927 default: 928 break; 929 } 930 } 931 932 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 933 // floats. FIXME: <2 x float> generates same code as <4 x float>. 934 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 935 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 936 937 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 938 return Cost; 939 } 940 else { // Called with a select instruction. 941 assert (Opcode == Instruction::Select); 942 943 // We can figure out the extra cost of packing / unpacking if the 944 // instruction was passed and the compare instruction is found. 945 unsigned PackCost = 0; 946 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 947 if (CmpOpTy != nullptr) 948 PackCost = 949 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 950 951 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 952 } 953 } 954 955 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); 956 } 957 958 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 959 unsigned Index) { 960 // vlvgp will insert two grs into a vector register, so only count half the 961 // number of instructions. 962 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 963 return ((Index % 2 == 0) ? 1 : 0); 964 965 if (Opcode == Instruction::ExtractElement) { 966 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 967 968 // Give a slight penalty for moving out of vector pipeline to FXU unit. 969 if (Index == 0 && Val->isIntOrIntVectorTy()) 970 Cost += 1; 971 972 return Cost; 973 } 974 975 return BaseT::getVectorInstrCost(Opcode, Val, Index); 976 } 977 978 // Check if a load may be folded as a memory operand in its user. 979 bool SystemZTTIImpl:: 980 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 981 if (!Ld->hasOneUse()) 982 return false; 983 FoldedValue = Ld; 984 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 985 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 986 unsigned TruncBits = 0; 987 unsigned SExtBits = 0; 988 unsigned ZExtBits = 0; 989 if (UserI->hasOneUse()) { 990 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 991 if (isa<TruncInst>(UserI)) 992 TruncBits = UserBits; 993 else if (isa<SExtInst>(UserI)) 994 SExtBits = UserBits; 995 else if (isa<ZExtInst>(UserI)) 996 ZExtBits = UserBits; 997 } 998 if (TruncBits || SExtBits || ZExtBits) { 999 FoldedValue = UserI; 1000 UserI = cast<Instruction>(*UserI->user_begin()); 1001 // Load (single use) -> trunc/extend (single use) -> UserI 1002 } 1003 if ((UserI->getOpcode() == Instruction::Sub || 1004 UserI->getOpcode() == Instruction::SDiv || 1005 UserI->getOpcode() == Instruction::UDiv) && 1006 UserI->getOperand(1) != FoldedValue) 1007 return false; // Not commutative, only RHS foldable. 1008 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 1009 // extension was made of the load. 1010 unsigned LoadOrTruncBits = 1011 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 1012 switch (UserI->getOpcode()) { 1013 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 1014 case Instruction::Sub: 1015 case Instruction::ICmp: 1016 if (LoadedBits == 32 && ZExtBits == 64) 1017 return true; 1018 LLVM_FALLTHROUGH; 1019 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 1020 if (UserI->getOpcode() != Instruction::ICmp) { 1021 if (LoadedBits == 16 && 1022 (SExtBits == 32 || 1023 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 1024 return true; 1025 if (LoadOrTruncBits == 16) 1026 return true; 1027 } 1028 LLVM_FALLTHROUGH; 1029 case Instruction::SDiv:// SE: 32->64 1030 if (LoadedBits == 32 && SExtBits == 64) 1031 return true; 1032 LLVM_FALLTHROUGH; 1033 case Instruction::UDiv: 1034 case Instruction::And: 1035 case Instruction::Or: 1036 case Instruction::Xor: 1037 // This also makes sense for float operations, but disabled for now due 1038 // to regressions. 1039 // case Instruction::FCmp: 1040 // case Instruction::FAdd: 1041 // case Instruction::FSub: 1042 // case Instruction::FMul: 1043 // case Instruction::FDiv: 1044 1045 // All possible extensions of memory checked above. 1046 1047 // Comparison between memory and immediate. 1048 if (UserI->getOpcode() == Instruction::ICmp) 1049 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 1050 if (CI->getValue().isIntN(16)) 1051 return true; 1052 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 1053 break; 1054 } 1055 return false; 1056 } 1057 1058 static bool isBswapIntrinsicCall(const Value *V) { 1059 if (const Instruction *I = dyn_cast<Instruction>(V)) 1060 if (auto *CI = dyn_cast<CallInst>(I)) 1061 if (auto *F = CI->getCalledFunction()) 1062 if (F->getIntrinsicID() == Intrinsic::bswap) 1063 return true; 1064 return false; 1065 } 1066 1067 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1068 MaybeAlign Alignment, 1069 unsigned AddressSpace, 1070 TTI::TargetCostKind CostKind, 1071 const Instruction *I) { 1072 assert(!Src->isVoidTy() && "Invalid type"); 1073 1074 // TODO: Handle other cost kinds. 1075 if (CostKind != TTI::TCK_RecipThroughput) 1076 return 1; 1077 1078 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1079 // Store the load or its truncated or extended value in FoldedValue. 1080 const Instruction *FoldedValue = nullptr; 1081 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1082 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1083 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1084 1085 // UserI can't fold two loads, so in that case return 0 cost only 1086 // half of the time. 1087 for (unsigned i = 0; i < 2; ++i) { 1088 if (UserI->getOperand(i) == FoldedValue) 1089 continue; 1090 1091 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1092 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1093 if (!OtherLoad && 1094 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1095 isa<ZExtInst>(OtherOp))) 1096 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1097 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1098 return i == 0; // Both operands foldable. 1099 } 1100 } 1101 1102 return 0; // Only I is foldable in user. 1103 } 1104 } 1105 1106 unsigned NumOps = 1107 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1108 1109 // Store/Load reversed saves one instruction. 1110 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1111 I != nullptr) { 1112 if (Opcode == Instruction::Load && I->hasOneUse()) { 1113 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1114 // In case of load -> bswap -> store, return normal cost for the load. 1115 if (isBswapIntrinsicCall(LdUser) && 1116 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1117 return 0; 1118 } 1119 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1120 const Value *StoredVal = SI->getValueOperand(); 1121 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1122 return 0; 1123 } 1124 } 1125 1126 if (Src->getScalarSizeInBits() == 128) 1127 // 128 bit scalars are held in a pair of two 64 bit registers. 1128 NumOps *= 2; 1129 1130 return NumOps; 1131 } 1132 1133 // The generic implementation of getInterleavedMemoryOpCost() is based on 1134 // adding costs of the memory operations plus all the extracts and inserts 1135 // needed for using / defining the vector operands. The SystemZ version does 1136 // roughly the same but bases the computations on vector permutations 1137 // instead. 1138 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost( 1139 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1140 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1141 bool UseMaskForCond, bool UseMaskForGaps) { 1142 if (UseMaskForCond || UseMaskForGaps) 1143 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1144 Alignment, AddressSpace, CostKind, 1145 UseMaskForCond, UseMaskForGaps); 1146 assert(isa<VectorType>(VecTy) && 1147 "Expect a vector type for interleaved memory op"); 1148 1149 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1150 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1151 unsigned VF = NumElts / Factor; 1152 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1153 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1154 unsigned NumPermutes = 0; 1155 1156 if (Opcode == Instruction::Load) { 1157 // Loading interleave groups may have gaps, which may mean fewer 1158 // loads. Find out how many vectors will be loaded in total, and in how 1159 // many of them each value will be in. 1160 BitVector UsedInsts(NumVectorMemOps, false); 1161 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1162 for (unsigned Index : Indices) 1163 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1164 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1165 UsedInsts.set(Vec); 1166 ValueVecs[Index].set(Vec); 1167 } 1168 NumVectorMemOps = UsedInsts.count(); 1169 1170 for (unsigned Index : Indices) { 1171 // Estimate that each loaded source vector containing this Index 1172 // requires one operation, except that vperm can handle two input 1173 // registers first time for each dst vector. 1174 unsigned NumSrcVecs = ValueVecs[Index].count(); 1175 unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U); 1176 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1177 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1178 } 1179 } else { 1180 // Estimate the permutes for each stored vector as the smaller of the 1181 // number of elements and the number of source vectors. Subtract one per 1182 // dst vector for vperm (S.A.). 1183 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1184 unsigned NumDstVecs = NumVectorMemOps; 1185 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1186 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1187 } 1188 1189 // Cost of load/store operations and the permutations needed. 1190 return NumVectorMemOps + NumPermutes; 1191 } 1192 1193 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1194 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1195 return getNumVectorRegs(RetTy); // VPERM 1196 return -1; 1197 } 1198 1199 InstructionCost 1200 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1201 TTI::TargetCostKind CostKind) { 1202 InstructionCost Cost = 1203 getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType()); 1204 if (Cost != -1) 1205 return Cost; 1206 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1207 } 1208