1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "systemztti" 30 31 //===----------------------------------------------------------------------===// 32 // 33 // SystemZ cost model. 34 // 35 //===----------------------------------------------------------------------===// 36 37 static bool isUsedAsMemCpySource(const Value *V, bool &OtherUse) { 38 bool UsedAsMemCpySource = false; 39 for (const User *U : V->users()) 40 if (const Instruction *User = dyn_cast<Instruction>(U)) { 41 if (isa<BitCastInst>(User) || isa<GetElementPtrInst>(User)) { 42 UsedAsMemCpySource |= isUsedAsMemCpySource(User, OtherUse); 43 continue; 44 } 45 if (const MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(User)) { 46 if (Memcpy->getOperand(1) == V && !Memcpy->isVolatile()) { 47 UsedAsMemCpySource = true; 48 continue; 49 } 50 } 51 OtherUse = true; 52 } 53 return UsedAsMemCpySource; 54 } 55 56 unsigned SystemZTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 57 unsigned Bonus = 0; 58 59 // Increase the threshold if an incoming argument is used only as a memcpy 60 // source. 61 if (Function *Callee = CB->getCalledFunction()) 62 for (Argument &Arg : Callee->args()) { 63 bool OtherUse = false; 64 if (isUsedAsMemCpySource(&Arg, OtherUse) && !OtherUse) 65 Bonus += 150; 66 } 67 68 LLVM_DEBUG(if (Bonus) 69 dbgs() << "++ SZTTI Adding inlining bonus: " << Bonus << "\n";); 70 return Bonus; 71 } 72 73 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 74 TTI::TargetCostKind CostKind) { 75 assert(Ty->isIntegerTy()); 76 77 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 78 // There is no cost model for constants with a bit size of 0. Return TCC_Free 79 // here, so that constant hoisting will ignore this constant. 80 if (BitSize == 0) 81 return TTI::TCC_Free; 82 // No cost model for operations on integers larger than 128 bit implemented yet. 83 if ((!ST->hasVector() && BitSize > 64) || BitSize > 128) 84 return TTI::TCC_Free; 85 86 if (Imm == 0) 87 return TTI::TCC_Free; 88 89 if (Imm.getBitWidth() <= 64) { 90 // Constants loaded via lgfi. 91 if (isInt<32>(Imm.getSExtValue())) 92 return TTI::TCC_Basic; 93 // Constants loaded via llilf. 94 if (isUInt<32>(Imm.getZExtValue())) 95 return TTI::TCC_Basic; 96 // Constants loaded via llihf: 97 if ((Imm.getZExtValue() & 0xffffffff) == 0) 98 return TTI::TCC_Basic; 99 100 return 2 * TTI::TCC_Basic; 101 } 102 103 // i128 immediates loads from Constant Pool 104 return 2 * TTI::TCC_Basic; 105 } 106 107 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 108 const APInt &Imm, Type *Ty, 109 TTI::TargetCostKind CostKind, 110 Instruction *Inst) { 111 assert(Ty->isIntegerTy()); 112 113 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 114 // There is no cost model for constants with a bit size of 0. Return TCC_Free 115 // here, so that constant hoisting will ignore this constant. 116 if (BitSize == 0) 117 return TTI::TCC_Free; 118 // No cost model for operations on integers larger than 64 bit implemented yet. 119 if (BitSize > 64) 120 return TTI::TCC_Free; 121 122 switch (Opcode) { 123 default: 124 return TTI::TCC_Free; 125 case Instruction::GetElementPtr: 126 // Always hoist the base address of a GetElementPtr. This prevents the 127 // creation of new constants for every base constant that gets constant 128 // folded with the offset. 129 if (Idx == 0) 130 return 2 * TTI::TCC_Basic; 131 return TTI::TCC_Free; 132 case Instruction::Store: 133 if (Idx == 0 && Imm.getBitWidth() <= 64) { 134 // Any 8-bit immediate store can by implemented via mvi. 135 if (BitSize == 8) 136 return TTI::TCC_Free; 137 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 138 if (isInt<16>(Imm.getSExtValue())) 139 return TTI::TCC_Free; 140 } 141 break; 142 case Instruction::ICmp: 143 if (Idx == 1 && Imm.getBitWidth() <= 64) { 144 // Comparisons against signed 32-bit immediates implemented via cgfi. 145 if (isInt<32>(Imm.getSExtValue())) 146 return TTI::TCC_Free; 147 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 148 if (isUInt<32>(Imm.getZExtValue())) 149 return TTI::TCC_Free; 150 } 151 break; 152 case Instruction::Add: 153 case Instruction::Sub: 154 if (Idx == 1 && Imm.getBitWidth() <= 64) { 155 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 156 if (isUInt<32>(Imm.getZExtValue())) 157 return TTI::TCC_Free; 158 // Or their negation, by swapping addition vs. subtraction. 159 if (isUInt<32>(-Imm.getSExtValue())) 160 return TTI::TCC_Free; 161 } 162 break; 163 case Instruction::Mul: 164 if (Idx == 1 && Imm.getBitWidth() <= 64) { 165 // We use msgfi to multiply by 32-bit signed immediates. 166 if (isInt<32>(Imm.getSExtValue())) 167 return TTI::TCC_Free; 168 } 169 break; 170 case Instruction::Or: 171 case Instruction::Xor: 172 if (Idx == 1 && Imm.getBitWidth() <= 64) { 173 // Masks supported by oilf/xilf. 174 if (isUInt<32>(Imm.getZExtValue())) 175 return TTI::TCC_Free; 176 // Masks supported by oihf/xihf. 177 if ((Imm.getZExtValue() & 0xffffffff) == 0) 178 return TTI::TCC_Free; 179 } 180 break; 181 case Instruction::And: 182 if (Idx == 1 && Imm.getBitWidth() <= 64) { 183 // Any 32-bit AND operation can by implemented via nilf. 184 if (BitSize <= 32) 185 return TTI::TCC_Free; 186 // 64-bit masks supported by nilf. 187 if (isUInt<32>(~Imm.getZExtValue())) 188 return TTI::TCC_Free; 189 // 64-bit masks supported by nilh. 190 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 191 return TTI::TCC_Free; 192 // Some 64-bit AND operations can be implemented via risbg. 193 const SystemZInstrInfo *TII = ST->getInstrInfo(); 194 unsigned Start, End; 195 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 196 return TTI::TCC_Free; 197 } 198 break; 199 case Instruction::Shl: 200 case Instruction::LShr: 201 case Instruction::AShr: 202 // Always return TCC_Free for the shift value of a shift instruction. 203 if (Idx == 1) 204 return TTI::TCC_Free; 205 break; 206 case Instruction::UDiv: 207 case Instruction::SDiv: 208 case Instruction::URem: 209 case Instruction::SRem: 210 case Instruction::Trunc: 211 case Instruction::ZExt: 212 case Instruction::SExt: 213 case Instruction::IntToPtr: 214 case Instruction::PtrToInt: 215 case Instruction::BitCast: 216 case Instruction::PHI: 217 case Instruction::Call: 218 case Instruction::Select: 219 case Instruction::Ret: 220 case Instruction::Load: 221 break; 222 } 223 224 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 225 } 226 227 InstructionCost 228 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 229 const APInt &Imm, Type *Ty, 230 TTI::TargetCostKind CostKind) { 231 assert(Ty->isIntegerTy()); 232 233 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 234 // There is no cost model for constants with a bit size of 0. Return TCC_Free 235 // here, so that constant hoisting will ignore this constant. 236 if (BitSize == 0) 237 return TTI::TCC_Free; 238 // No cost model for operations on integers larger than 64 bit implemented yet. 239 if (BitSize > 64) 240 return TTI::TCC_Free; 241 242 switch (IID) { 243 default: 244 return TTI::TCC_Free; 245 case Intrinsic::sadd_with_overflow: 246 case Intrinsic::uadd_with_overflow: 247 case Intrinsic::ssub_with_overflow: 248 case Intrinsic::usub_with_overflow: 249 // These get expanded to include a normal addition/subtraction. 250 if (Idx == 1 && Imm.getBitWidth() <= 64) { 251 if (isUInt<32>(Imm.getZExtValue())) 252 return TTI::TCC_Free; 253 if (isUInt<32>(-Imm.getSExtValue())) 254 return TTI::TCC_Free; 255 } 256 break; 257 case Intrinsic::smul_with_overflow: 258 case Intrinsic::umul_with_overflow: 259 // These get expanded to include a normal multiplication. 260 if (Idx == 1 && Imm.getBitWidth() <= 64) { 261 if (isInt<32>(Imm.getSExtValue())) 262 return TTI::TCC_Free; 263 } 264 break; 265 case Intrinsic::experimental_stackmap: 266 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 267 return TTI::TCC_Free; 268 break; 269 case Intrinsic::experimental_patchpoint_void: 270 case Intrinsic::experimental_patchpoint: 271 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 272 return TTI::TCC_Free; 273 break; 274 } 275 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 276 } 277 278 TargetTransformInfo::PopcntSupportKind 279 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 280 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 281 if (ST->hasPopulationCount() && TyWidth <= 64) 282 return TTI::PSK_FastHardware; 283 return TTI::PSK_Software; 284 } 285 286 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 287 TTI::UnrollingPreferences &UP, 288 OptimizationRemarkEmitter *ORE) { 289 // Find out if L contains a call, what the machine instruction count 290 // estimate is, and how many stores there are. 291 bool HasCall = false; 292 InstructionCost NumStores = 0; 293 for (auto &BB : L->blocks()) 294 for (auto &I : *BB) { 295 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 296 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 297 if (isLoweredToCall(F)) 298 HasCall = true; 299 if (F->getIntrinsicID() == Intrinsic::memcpy || 300 F->getIntrinsicID() == Intrinsic::memset) 301 NumStores++; 302 } else { // indirect call. 303 HasCall = true; 304 } 305 } 306 if (isa<StoreInst>(&I)) { 307 Type *MemAccessTy = I.getOperand(0)->getType(); 308 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 309 std::nullopt, 0, TTI::TCK_RecipThroughput); 310 } 311 } 312 313 // The z13 processor will run out of store tags if too many stores 314 // are fed into it too quickly. Therefore make sure there are not 315 // too many stores in the resulting unrolled loop. 316 unsigned const NumStoresVal = *NumStores.getValue(); 317 unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX); 318 319 if (HasCall) { 320 // Only allow full unrolling if loop has any calls. 321 UP.FullUnrollMaxCount = Max; 322 UP.MaxCount = 1; 323 return; 324 } 325 326 UP.MaxCount = Max; 327 if (UP.MaxCount <= 1) 328 return; 329 330 // Allow partial and runtime trip count unrolling. 331 UP.Partial = UP.Runtime = true; 332 333 UP.PartialThreshold = 75; 334 UP.DefaultUnrollRuntimeCount = 4; 335 336 // Allow expensive instructions in the pre-header of the loop. 337 UP.AllowExpensiveTripCount = true; 338 339 UP.Force = true; 340 } 341 342 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 343 TTI::PeelingPreferences &PP) { 344 BaseT::getPeelingPreferences(L, SE, PP); 345 } 346 347 bool SystemZTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, 348 const TargetTransformInfo::LSRCost &C2) { 349 // SystemZ specific: check instruction count (first), and don't care about 350 // ImmCost, since offsets are checked explicitly. 351 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 352 C1.NumIVMuls, C1.NumBaseAdds, 353 C1.ScaleCost, C1.SetupCost) < 354 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 355 C2.NumIVMuls, C2.NumBaseAdds, 356 C2.ScaleCost, C2.SetupCost); 357 } 358 359 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 360 bool Vector = (ClassID == 1); 361 if (!Vector) 362 // Discount the stack pointer. Also leave out %r0, since it can't 363 // be used in an address. 364 return 14; 365 if (ST->hasVector()) 366 return 32; 367 return 0; 368 } 369 370 TypeSize 371 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 372 switch (K) { 373 case TargetTransformInfo::RGK_Scalar: 374 return TypeSize::getFixed(64); 375 case TargetTransformInfo::RGK_FixedWidthVector: 376 return TypeSize::getFixed(ST->hasVector() ? 128 : 0); 377 case TargetTransformInfo::RGK_ScalableVector: 378 return TypeSize::getScalable(0); 379 } 380 381 llvm_unreachable("Unsupported register kind"); 382 } 383 384 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, 385 unsigned NumStridedMemAccesses, 386 unsigned NumPrefetches, 387 bool HasCall) const { 388 // Don't prefetch a loop with many far apart accesses. 389 if (NumPrefetches > 16) 390 return UINT_MAX; 391 392 // Emit prefetch instructions for smaller strides in cases where we think 393 // the hardware prefetcher might not be able to keep up. 394 if (NumStridedMemAccesses > 32 && !HasCall && 395 (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses) 396 return 1; 397 398 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; 399 } 400 401 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 402 EVT VT = TLI->getValueType(DL, DataType); 403 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 404 } 405 406 // Return the bit size for the scalar type or vector element 407 // type. getScalarSizeInBits() returns 0 for a pointer type. 408 static unsigned getScalarSizeInBits(Type *Ty) { 409 unsigned Size = 410 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 411 assert(Size > 0 && "Element must have non-zero size."); 412 return Size; 413 } 414 415 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 416 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 417 // 3. 418 static unsigned getNumVectorRegs(Type *Ty) { 419 auto *VTy = cast<FixedVectorType>(Ty); 420 unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements(); 421 assert(WideBits > 0 && "Could not compute size of vector"); 422 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 423 } 424 425 InstructionCost SystemZTTIImpl::getArithmeticInstrCost( 426 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 427 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 428 ArrayRef<const Value *> Args, 429 const Instruction *CxtI) { 430 431 // TODO: Handle more cost kinds. 432 if (CostKind != TTI::TCK_RecipThroughput) 433 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 434 Op2Info, Args, CxtI); 435 436 // TODO: return a good value for BB-VECTORIZER that includes the 437 // immediate loads, which we do not want to count for the loop 438 // vectorizer, since they are hopefully hoisted out of the loop. This 439 // would require a new parameter 'InLoop', but not sure if constant 440 // args are common enough to motivate this. 441 442 unsigned ScalarBits = Ty->getScalarSizeInBits(); 443 444 // There are thre cases of division and remainder: Dividing with a register 445 // needs a divide instruction. A divisor which is a power of two constant 446 // can be implemented with a sequence of shifts. Any other constant needs a 447 // multiply and shifts. 448 const unsigned DivInstrCost = 20; 449 const unsigned DivMulSeqCost = 10; 450 const unsigned SDivPow2Cost = 4; 451 452 bool SignedDivRem = 453 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 454 bool UnsignedDivRem = 455 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 456 457 // Check for a constant divisor. 458 bool DivRemConst = false; 459 bool DivRemConstPow2 = false; 460 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 461 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 462 const ConstantInt *CVal = 463 (C->getType()->isVectorTy() 464 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 465 : dyn_cast<const ConstantInt>(C)); 466 if (CVal && (CVal->getValue().isPowerOf2() || 467 CVal->getValue().isNegatedPowerOf2())) 468 DivRemConstPow2 = true; 469 else 470 DivRemConst = true; 471 } 472 } 473 474 if (!Ty->isVectorTy()) { 475 // These FP operations are supported with a dedicated instruction for 476 // float, double and fp128 (base implementation assumes float generally 477 // costs 2). 478 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 479 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 480 return 1; 481 482 // There is no native support for FRem. 483 if (Opcode == Instruction::FRem) 484 return LIBCALL_COST; 485 486 // Give discount for some combined logical operations if supported. 487 if (Args.size() == 2) { 488 if (Opcode == Instruction::Xor) { 489 for (const Value *A : Args) { 490 if (const Instruction *I = dyn_cast<Instruction>(A)) 491 if (I->hasOneUse() && 492 (I->getOpcode() == Instruction::Or || 493 I->getOpcode() == Instruction::And || 494 I->getOpcode() == Instruction::Xor)) 495 if ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) || 496 (isInt128InVR(Ty) && 497 (I->getOpcode() == Instruction::Or || ST->hasVectorEnhancements1()))) 498 return 0; 499 } 500 } 501 else if (Opcode == Instruction::And || Opcode == Instruction::Or) { 502 for (const Value *A : Args) { 503 if (const Instruction *I = dyn_cast<Instruction>(A)) 504 if ((I->hasOneUse() && I->getOpcode() == Instruction::Xor) && 505 ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) || 506 (isInt128InVR(Ty) && 507 (Opcode == Instruction::And || ST->hasVectorEnhancements1())))) 508 return 0; 509 } 510 } 511 } 512 513 // Or requires one instruction, although it has custom handling for i64. 514 if (Opcode == Instruction::Or) 515 return 1; 516 517 if (Opcode == Instruction::Xor && ScalarBits == 1) { 518 if (ST->hasLoadStoreOnCond2()) 519 return 5; // 2 * (li 0; loc 1); xor 520 return 7; // 2 * ipm sequences ; xor ; shift ; compare 521 } 522 523 if (DivRemConstPow2) 524 return (SignedDivRem ? SDivPow2Cost : 1); 525 if (DivRemConst) 526 return DivMulSeqCost; 527 if (SignedDivRem || UnsignedDivRem) 528 return DivInstrCost; 529 } 530 else if (ST->hasVector()) { 531 auto *VTy = cast<FixedVectorType>(Ty); 532 unsigned VF = VTy->getNumElements(); 533 unsigned NumVectors = getNumVectorRegs(Ty); 534 535 // These vector operations are custom handled, but are still supported 536 // with one instruction per vector, regardless of element size. 537 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 538 Opcode == Instruction::AShr) { 539 return NumVectors; 540 } 541 542 if (DivRemConstPow2) 543 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 544 if (DivRemConst) { 545 SmallVector<Type *> Tys(Args.size(), Ty); 546 return VF * DivMulSeqCost + 547 getScalarizationOverhead(VTy, Args, Tys, CostKind); 548 } 549 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 550 // Temporary hack: disable high vectorization factors with integer 551 // division/remainder, which will get scalarized and handled with 552 // GR128 registers. The mischeduler is not clever enough to avoid 553 // spilling yet. 554 return 1000; 555 556 // These FP operations are supported with a single vector instruction for 557 // double (base implementation assumes float generally costs 2). For 558 // FP128, the scalar cost is 1, and there is no overhead since the values 559 // are already in scalar registers. 560 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 561 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 562 switch (ScalarBits) { 563 case 32: { 564 // The vector enhancements facility 1 provides v4f32 instructions. 565 if (ST->hasVectorEnhancements1()) 566 return NumVectors; 567 // Return the cost of multiple scalar invocation plus the cost of 568 // inserting and extracting the values. 569 InstructionCost ScalarCost = 570 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 571 SmallVector<Type *> Tys(Args.size(), Ty); 572 InstructionCost Cost = 573 (VF * ScalarCost) + 574 getScalarizationOverhead(VTy, Args, Tys, CostKind); 575 // FIXME: VF 2 for these FP operations are currently just as 576 // expensive as for VF 4. 577 if (VF == 2) 578 Cost *= 2; 579 return Cost; 580 } 581 case 64: 582 case 128: 583 return NumVectors; 584 default: 585 break; 586 } 587 } 588 589 // There is no native support for FRem. 590 if (Opcode == Instruction::FRem) { 591 SmallVector<Type *> Tys(Args.size(), Ty); 592 InstructionCost Cost = (VF * LIBCALL_COST) + 593 getScalarizationOverhead(VTy, Args, Tys, CostKind); 594 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 595 if (VF == 2 && ScalarBits == 32) 596 Cost *= 2; 597 return Cost; 598 } 599 } 600 601 // Fallback to the default implementation. 602 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, 603 Args, CxtI); 604 } 605 606 InstructionCost SystemZTTIImpl::getShuffleCost( 607 TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask, 608 TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, 609 ArrayRef<const Value *> Args, const Instruction *CxtI) { 610 Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp); 611 if (ST->hasVector()) { 612 unsigned NumVectors = getNumVectorRegs(Tp); 613 614 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 615 616 // FP128 values are always in scalar registers, so there is no work 617 // involved with a shuffle, except for broadcast. In that case register 618 // moves are done with a single instruction per element. 619 if (Tp->getScalarType()->isFP128Ty()) 620 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 621 622 switch (Kind) { 623 case TargetTransformInfo::SK_ExtractSubvector: 624 // ExtractSubvector Index indicates start offset. 625 626 // Extracting a subvector from first index is a noop. 627 return (Index == 0 ? 0 : NumVectors); 628 629 case TargetTransformInfo::SK_Broadcast: 630 // Loop vectorizer calls here to figure out the extra cost of 631 // broadcasting a loaded value to all elements of a vector. Since vlrep 632 // loads and replicates with a single instruction, adjust the returned 633 // value. 634 return NumVectors - 1; 635 636 default: 637 638 // SystemZ supports single instruction permutation / replication. 639 return NumVectors; 640 } 641 } 642 643 return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp); 644 } 645 646 // Return the log2 difference of the element sizes of the two vector types. 647 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 648 unsigned Bits0 = Ty0->getScalarSizeInBits(); 649 unsigned Bits1 = Ty1->getScalarSizeInBits(); 650 651 if (Bits1 > Bits0) 652 return (Log2_32(Bits1) - Log2_32(Bits0)); 653 654 return (Log2_32(Bits0) - Log2_32(Bits1)); 655 } 656 657 // Return the number of instructions needed to truncate SrcTy to DstTy. 658 unsigned SystemZTTIImpl:: 659 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 660 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 661 assert(SrcTy->getPrimitiveSizeInBits().getFixedValue() > 662 DstTy->getPrimitiveSizeInBits().getFixedValue() && 663 "Packing must reduce size of vector type."); 664 assert(cast<FixedVectorType>(SrcTy)->getNumElements() == 665 cast<FixedVectorType>(DstTy)->getNumElements() && 666 "Packing should not change number of elements."); 667 668 // TODO: Since fp32 is expanded, the extract cost should always be 0. 669 670 unsigned NumParts = getNumVectorRegs(SrcTy); 671 if (NumParts <= 2) 672 // Up to 2 vector registers can be truncated efficiently with pack or 673 // permute. The latter requires an immediate mask to be loaded, which 674 // typically gets hoisted out of a loop. TODO: return a good value for 675 // BB-VECTORIZER that includes the immediate loads, which we do not want 676 // to count for the loop vectorizer. 677 return 1; 678 679 unsigned Cost = 0; 680 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 681 unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements(); 682 for (unsigned P = 0; P < Log2Diff; ++P) { 683 if (NumParts > 1) 684 NumParts /= 2; 685 Cost += NumParts; 686 } 687 688 // Currently, a general mix of permutes and pack instructions is output by 689 // isel, which follow the cost computation above except for this case which 690 // is one instruction less: 691 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 692 DstTy->getScalarSizeInBits() == 8) 693 Cost--; 694 695 return Cost; 696 } 697 698 // Return the cost of converting a vector bitmask produced by a compare 699 // (SrcTy), to the type of the select or extend instruction (DstTy). 700 unsigned SystemZTTIImpl:: 701 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 702 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 703 "Should only be called with vector types."); 704 705 unsigned PackCost = 0; 706 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 707 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 708 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 709 if (SrcScalarBits > DstScalarBits) 710 // The bitmask will be truncated. 711 PackCost = getVectorTruncCost(SrcTy, DstTy); 712 else if (SrcScalarBits < DstScalarBits) { 713 unsigned DstNumParts = getNumVectorRegs(DstTy); 714 // Each vector select needs its part of the bitmask unpacked. 715 PackCost = Log2Diff * DstNumParts; 716 // Extra cost for moving part of mask before unpacking. 717 PackCost += DstNumParts - 1; 718 } 719 720 return PackCost; 721 } 722 723 // Return the type of the compared operands. This is needed to compute the 724 // cost for a Select / ZExt or SExt instruction. 725 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 726 Type *OpTy = nullptr; 727 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 728 OpTy = CI->getOperand(0)->getType(); 729 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 730 if (LogicI->getNumOperands() == 2) 731 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 732 if (isa<CmpInst>(LogicI->getOperand(1))) 733 OpTy = CI0->getOperand(0)->getType(); 734 735 if (OpTy != nullptr) { 736 if (VF == 1) { 737 assert (!OpTy->isVectorTy() && "Expected scalar type"); 738 return OpTy; 739 } 740 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 741 // be either scalar or already vectorized with a same or lesser VF. 742 Type *ElTy = OpTy->getScalarType(); 743 return FixedVectorType::get(ElTy, VF); 744 } 745 746 return nullptr; 747 } 748 749 // Get the cost of converting a boolean vector to a vector with same width 750 // and element size as Dst, plus the cost of zero extending if needed. 751 unsigned SystemZTTIImpl:: 752 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 753 const Instruction *I) { 754 auto *DstVTy = cast<FixedVectorType>(Dst); 755 unsigned VF = DstVTy->getNumElements(); 756 unsigned Cost = 0; 757 // If we know what the widths of the compared operands, get any cost of 758 // converting it to match Dst. Otherwise assume same widths. 759 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 760 if (CmpOpTy != nullptr) 761 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 762 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 763 // One 'vn' per dst vector with an immediate mask. 764 Cost += getNumVectorRegs(Dst); 765 return Cost; 766 } 767 768 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 769 Type *Src, 770 TTI::CastContextHint CCH, 771 TTI::TargetCostKind CostKind, 772 const Instruction *I) { 773 // FIXME: Can the logic below also be used for these cost kinds? 774 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) { 775 auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 776 return BaseCost == 0 ? BaseCost : 1; 777 } 778 779 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 780 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 781 782 if (!Src->isVectorTy()) { 783 assert (!Dst->isVectorTy()); 784 785 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 786 if (Src->isIntegerTy(128)) 787 return LIBCALL_COST; 788 if (SrcScalarBits >= 32 || 789 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 790 return 1; 791 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 792 } 793 794 if ((Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) && 795 Dst->isIntegerTy(128)) 796 return LIBCALL_COST; 797 798 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt)) { 799 if (Src->isIntegerTy(1)) { 800 if (DstScalarBits == 128) 801 return 5 /*branch seq.*/; 802 803 if (ST->hasLoadStoreOnCond2()) 804 return 2; // li 0; loc 1 805 806 // This should be extension of a compare i1 result, which is done with 807 // ipm and a varying sequence of instructions. 808 unsigned Cost = 0; 809 if (Opcode == Instruction::SExt) 810 Cost = (DstScalarBits < 64 ? 3 : 4); 811 if (Opcode == Instruction::ZExt) 812 Cost = 3; 813 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 814 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 815 // If operands of an fp-type was compared, this costs +1. 816 Cost++; 817 return Cost; 818 } 819 else if (isInt128InVR(Dst)) { 820 // Extensions from GPR to i128 (in VR) typically costs two instructions, 821 // but a zero-extending load would be just one extra instruction. 822 if (Opcode == Instruction::ZExt && I != nullptr) 823 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 824 if (Ld->hasOneUse()) 825 return 1; 826 return 2; 827 } 828 } 829 830 if (Opcode == Instruction::Trunc && isInt128InVR(Src) && I != nullptr) { 831 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 832 if (Ld->hasOneUse()) 833 return 0; // Will be converted to GPR load. 834 bool OnlyTruncatingStores = true; 835 for (const User *U : I->users()) 836 if (!isa<StoreInst>(U)) { 837 OnlyTruncatingStores = false; 838 break; 839 } 840 if (OnlyTruncatingStores) 841 return 0; 842 return 2; // Vector element extraction. 843 } 844 } 845 else if (ST->hasVector()) { 846 // Vector to scalar cast. 847 auto *SrcVecTy = cast<FixedVectorType>(Src); 848 auto *DstVecTy = dyn_cast<FixedVectorType>(Dst); 849 if (!DstVecTy) { 850 // TODO: tune vector-to-scalar cast. 851 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 852 } 853 unsigned VF = SrcVecTy->getNumElements(); 854 unsigned NumDstVectors = getNumVectorRegs(Dst); 855 unsigned NumSrcVectors = getNumVectorRegs(Src); 856 857 if (Opcode == Instruction::Trunc) { 858 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 859 return 0; // Check for NOOP conversions. 860 return getVectorTruncCost(Src, Dst); 861 } 862 863 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 864 if (SrcScalarBits >= 8) { 865 // ZExt will use either a single unpack or a vector permute. 866 if (Opcode == Instruction::ZExt) 867 return NumDstVectors; 868 869 // SExt will be handled with one unpack per doubling of width. 870 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 871 872 // For types that spans multiple vector registers, some additional 873 // instructions are used to setup the unpacking. 874 unsigned NumSrcVectorOps = 875 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 876 : (NumDstVectors / 2)); 877 878 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 879 } 880 else if (SrcScalarBits == 1) 881 return getBoolVecToIntConversionCost(Opcode, Dst, I); 882 } 883 884 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 885 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 886 // TODO: Fix base implementation which could simplify things a bit here 887 // (seems to miss on differentiating on scalar/vector types). 888 889 // Only 64 bit vector conversions are natively supported before z15. 890 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 891 if (SrcScalarBits == DstScalarBits) 892 return NumDstVectors; 893 894 if (SrcScalarBits == 1) 895 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 896 } 897 898 // Return the cost of multiple scalar invocation plus the cost of 899 // inserting and extracting the values. Base implementation does not 900 // realize float->int gets scalarized. 901 InstructionCost ScalarCost = getCastInstrCost( 902 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind); 903 InstructionCost TotCost = VF * ScalarCost; 904 bool NeedsInserts = true, NeedsExtracts = true; 905 // FP128 registers do not get inserted or extracted. 906 if (DstScalarBits == 128 && 907 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 908 NeedsInserts = false; 909 if (SrcScalarBits == 128 && 910 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 911 NeedsExtracts = false; 912 913 TotCost += getScalarizationOverhead(SrcVecTy, /*Insert*/ false, 914 NeedsExtracts, CostKind); 915 TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, 916 /*Extract*/ false, CostKind); 917 918 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 919 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 920 TotCost *= 2; 921 922 return TotCost; 923 } 924 925 if (Opcode == Instruction::FPTrunc) { 926 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 927 return VF /*ldxbr/lexbr*/ + 928 getScalarizationOverhead(DstVecTy, /*Insert*/ true, 929 /*Extract*/ false, CostKind); 930 else // double -> float 931 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 932 } 933 934 if (Opcode == Instruction::FPExt) { 935 if (SrcScalarBits == 32 && DstScalarBits == 64) { 936 // float -> double is very rare and currently unoptimized. Instead of 937 // using vldeb, which can do two at a time, all conversions are 938 // scalarized. 939 return VF * 2; 940 } 941 // -> fp128. VF * lxdb/lxeb + extraction of elements. 942 return VF + getScalarizationOverhead(SrcVecTy, /*Insert*/ false, 943 /*Extract*/ true, CostKind); 944 } 945 } 946 947 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 948 } 949 950 // Scalar i8 / i16 operations will typically be made after first extending 951 // the operands to i32. 952 static unsigned getOperandsExtensionCost(const Instruction *I) { 953 unsigned ExtCost = 0; 954 for (Value *Op : I->operands()) 955 // A load of i8 or i16 sign/zero extends to i32. 956 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 957 ExtCost++; 958 959 return ExtCost; 960 } 961 962 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 963 Type *CondTy, 964 CmpInst::Predicate VecPred, 965 TTI::TargetCostKind CostKind, 966 const Instruction *I) { 967 if (CostKind != TTI::TCK_RecipThroughput) 968 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); 969 970 if (!ValTy->isVectorTy()) { 971 switch (Opcode) { 972 case Instruction::ICmp: { 973 // A loaded value compared with 0 with multiple users becomes Load and 974 // Test. The load is then not foldable, so return 0 cost for the ICmp. 975 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 976 if (I != nullptr && (ScalarBits == 32 || ScalarBits == 64)) 977 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 978 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 979 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 980 C->isZero()) 981 return 0; 982 983 unsigned Cost = 1; 984 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 985 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 986 return Cost; 987 } 988 case Instruction::Select: 989 if (ValTy->isFloatingPointTy() || isInt128InVR(ValTy)) 990 return 4; // No LOC for FP / i128 - costs a conditional jump. 991 return 1; // Load On Condition / Select Register. 992 } 993 } 994 else if (ST->hasVector()) { 995 unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements(); 996 997 // Called with a compare instruction. 998 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 999 unsigned PredicateExtraCost = 0; 1000 if (I != nullptr) { 1001 // Some predicates cost one or two extra instructions. 1002 switch (cast<CmpInst>(I)->getPredicate()) { 1003 case CmpInst::Predicate::ICMP_NE: 1004 case CmpInst::Predicate::ICMP_UGE: 1005 case CmpInst::Predicate::ICMP_ULE: 1006 case CmpInst::Predicate::ICMP_SGE: 1007 case CmpInst::Predicate::ICMP_SLE: 1008 PredicateExtraCost = 1; 1009 break; 1010 case CmpInst::Predicate::FCMP_ONE: 1011 case CmpInst::Predicate::FCMP_ORD: 1012 case CmpInst::Predicate::FCMP_UEQ: 1013 case CmpInst::Predicate::FCMP_UNO: 1014 PredicateExtraCost = 2; 1015 break; 1016 default: 1017 break; 1018 } 1019 } 1020 1021 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 1022 // floats. FIXME: <2 x float> generates same code as <4 x float>. 1023 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 1024 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 1025 1026 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 1027 return Cost; 1028 } 1029 else { // Called with a select instruction. 1030 assert (Opcode == Instruction::Select); 1031 1032 // We can figure out the extra cost of packing / unpacking if the 1033 // instruction was passed and the compare instruction is found. 1034 unsigned PackCost = 0; 1035 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 1036 if (CmpOpTy != nullptr) 1037 PackCost = 1038 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 1039 1040 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 1041 } 1042 } 1043 1044 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); 1045 } 1046 1047 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 1048 TTI::TargetCostKind CostKind, 1049 unsigned Index, Value *Op0, 1050 Value *Op1) { 1051 // vlvgp will insert two grs into a vector register, so only count half the 1052 // number of instructions. 1053 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 1054 return ((Index % 2 == 0) ? 1 : 0); 1055 1056 if (Opcode == Instruction::ExtractElement) { 1057 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 1058 1059 // Give a slight penalty for moving out of vector pipeline to FXU unit. 1060 if (Index == 0 && Val->isIntOrIntVectorTy()) 1061 Cost += 1; 1062 1063 return Cost; 1064 } 1065 1066 return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); 1067 } 1068 1069 // Check if a load may be folded as a memory operand in its user. 1070 bool SystemZTTIImpl:: 1071 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 1072 if (!Ld->hasOneUse()) 1073 return false; 1074 FoldedValue = Ld; 1075 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 1076 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 1077 unsigned TruncBits = 0; 1078 unsigned SExtBits = 0; 1079 unsigned ZExtBits = 0; 1080 if (UserI->hasOneUse()) { 1081 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 1082 if (isa<TruncInst>(UserI)) 1083 TruncBits = UserBits; 1084 else if (isa<SExtInst>(UserI)) 1085 SExtBits = UserBits; 1086 else if (isa<ZExtInst>(UserI)) 1087 ZExtBits = UserBits; 1088 } 1089 if (TruncBits || SExtBits || ZExtBits) { 1090 FoldedValue = UserI; 1091 UserI = cast<Instruction>(*UserI->user_begin()); 1092 // Load (single use) -> trunc/extend (single use) -> UserI 1093 } 1094 if ((UserI->getOpcode() == Instruction::Sub || 1095 UserI->getOpcode() == Instruction::SDiv || 1096 UserI->getOpcode() == Instruction::UDiv) && 1097 UserI->getOperand(1) != FoldedValue) 1098 return false; // Not commutative, only RHS foldable. 1099 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 1100 // extension was made of the load. 1101 unsigned LoadOrTruncBits = 1102 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 1103 switch (UserI->getOpcode()) { 1104 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 1105 case Instruction::Sub: 1106 case Instruction::ICmp: 1107 if (LoadedBits == 32 && ZExtBits == 64) 1108 return true; 1109 [[fallthrough]]; 1110 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 1111 if (UserI->getOpcode() != Instruction::ICmp) { 1112 if (LoadedBits == 16 && 1113 (SExtBits == 32 || 1114 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 1115 return true; 1116 if (LoadOrTruncBits == 16) 1117 return true; 1118 } 1119 [[fallthrough]]; 1120 case Instruction::SDiv:// SE: 32->64 1121 if (LoadedBits == 32 && SExtBits == 64) 1122 return true; 1123 [[fallthrough]]; 1124 case Instruction::UDiv: 1125 case Instruction::And: 1126 case Instruction::Or: 1127 case Instruction::Xor: 1128 // This also makes sense for float operations, but disabled for now due 1129 // to regressions. 1130 // case Instruction::FCmp: 1131 // case Instruction::FAdd: 1132 // case Instruction::FSub: 1133 // case Instruction::FMul: 1134 // case Instruction::FDiv: 1135 1136 // All possible extensions of memory checked above. 1137 1138 // Comparison between memory and immediate. 1139 if (UserI->getOpcode() == Instruction::ICmp) 1140 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 1141 if (CI->getValue().isIntN(16)) 1142 return true; 1143 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 1144 break; 1145 } 1146 return false; 1147 } 1148 1149 static bool isBswapIntrinsicCall(const Value *V) { 1150 if (const Instruction *I = dyn_cast<Instruction>(V)) 1151 if (auto *CI = dyn_cast<CallInst>(I)) 1152 if (auto *F = CI->getCalledFunction()) 1153 if (F->getIntrinsicID() == Intrinsic::bswap) 1154 return true; 1155 return false; 1156 } 1157 1158 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1159 MaybeAlign Alignment, 1160 unsigned AddressSpace, 1161 TTI::TargetCostKind CostKind, 1162 TTI::OperandValueInfo OpInfo, 1163 const Instruction *I) { 1164 assert(!Src->isVoidTy() && "Invalid type"); 1165 1166 // TODO: Handle other cost kinds. 1167 if (CostKind != TTI::TCK_RecipThroughput) 1168 return 1; 1169 1170 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1171 // Store the load or its truncated or extended value in FoldedValue. 1172 const Instruction *FoldedValue = nullptr; 1173 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1174 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1175 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1176 1177 // UserI can't fold two loads, so in that case return 0 cost only 1178 // half of the time. 1179 for (unsigned i = 0; i < 2; ++i) { 1180 if (UserI->getOperand(i) == FoldedValue) 1181 continue; 1182 1183 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1184 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1185 if (!OtherLoad && 1186 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1187 isa<ZExtInst>(OtherOp))) 1188 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1189 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1190 return i == 0; // Both operands foldable. 1191 } 1192 } 1193 1194 return 0; // Only I is foldable in user. 1195 } 1196 } 1197 1198 // Type legalization (via getNumberOfParts) can't handle structs 1199 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1200 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1201 CostKind); 1202 1203 // FP128 is a legal type but kept in a register pair on older CPUs. 1204 if (Src->isFP128Ty() && !ST->hasVectorEnhancements1()) 1205 return 2; 1206 1207 unsigned NumOps = 1208 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1209 1210 // Store/Load reversed saves one instruction. 1211 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1212 I != nullptr) { 1213 if (Opcode == Instruction::Load && I->hasOneUse()) { 1214 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1215 // In case of load -> bswap -> store, return normal cost for the load. 1216 if (isBswapIntrinsicCall(LdUser) && 1217 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1218 return 0; 1219 } 1220 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1221 const Value *StoredVal = SI->getValueOperand(); 1222 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1223 return 0; 1224 } 1225 } 1226 1227 return NumOps; 1228 } 1229 1230 // The generic implementation of getInterleavedMemoryOpCost() is based on 1231 // adding costs of the memory operations plus all the extracts and inserts 1232 // needed for using / defining the vector operands. The SystemZ version does 1233 // roughly the same but bases the computations on vector permutations 1234 // instead. 1235 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost( 1236 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1237 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1238 bool UseMaskForCond, bool UseMaskForGaps) { 1239 if (UseMaskForCond || UseMaskForGaps) 1240 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1241 Alignment, AddressSpace, CostKind, 1242 UseMaskForCond, UseMaskForGaps); 1243 assert(isa<VectorType>(VecTy) && 1244 "Expect a vector type for interleaved memory op"); 1245 1246 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1247 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1248 unsigned VF = NumElts / Factor; 1249 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1250 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1251 unsigned NumPermutes = 0; 1252 1253 if (Opcode == Instruction::Load) { 1254 // Loading interleave groups may have gaps, which may mean fewer 1255 // loads. Find out how many vectors will be loaded in total, and in how 1256 // many of them each value will be in. 1257 BitVector UsedInsts(NumVectorMemOps, false); 1258 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1259 for (unsigned Index : Indices) 1260 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1261 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1262 UsedInsts.set(Vec); 1263 ValueVecs[Index].set(Vec); 1264 } 1265 NumVectorMemOps = UsedInsts.count(); 1266 1267 for (unsigned Index : Indices) { 1268 // Estimate that each loaded source vector containing this Index 1269 // requires one operation, except that vperm can handle two input 1270 // registers first time for each dst vector. 1271 unsigned NumSrcVecs = ValueVecs[Index].count(); 1272 unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U); 1273 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1274 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1275 } 1276 } else { 1277 // Estimate the permutes for each stored vector as the smaller of the 1278 // number of elements and the number of source vectors. Subtract one per 1279 // dst vector for vperm (S.A.). 1280 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1281 unsigned NumDstVecs = NumVectorMemOps; 1282 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1283 } 1284 1285 // Cost of load/store operations and the permutations needed. 1286 return NumVectorMemOps + NumPermutes; 1287 } 1288 1289 static int 1290 getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1291 const SmallVectorImpl<Type *> &ParamTys) { 1292 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1293 return getNumVectorRegs(RetTy); // VPERM 1294 1295 if (ID == Intrinsic::vector_reduce_add) { 1296 // Retrieve number and size of elements for the vector op. 1297 auto *VTy = cast<FixedVectorType>(ParamTys.front()); 1298 unsigned ScalarSize = VTy->getScalarSizeInBits(); 1299 // For scalar sizes >128 bits, we fall back to the generic cost estimate. 1300 if (ScalarSize > SystemZ::VectorBits) 1301 return -1; 1302 // This many vector regs are needed to represent the input elements (V). 1303 unsigned VectorRegsNeeded = getNumVectorRegs(VTy); 1304 // This many instructions are needed for the final sum of vector elems (S). 1305 unsigned LastVectorHandling = (ScalarSize < 32) ? 3 : 2; 1306 // We use vector adds to create a sum vector, which takes 1307 // V/2 + V/4 + ... = V - 1 operations. 1308 // Then, we need S operations to sum up the elements of that sum vector, 1309 // for a total of V + S - 1 operations. 1310 int Cost = VectorRegsNeeded + LastVectorHandling - 1; 1311 return Cost; 1312 } 1313 return -1; 1314 } 1315 1316 InstructionCost 1317 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1318 TTI::TargetCostKind CostKind) { 1319 InstructionCost Cost = getVectorIntrinsicInstrCost( 1320 ICA.getID(), ICA.getReturnType(), ICA.getArgTypes()); 1321 if (Cost != -1) 1322 return Cost; 1323 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1324 } 1325 1326 bool SystemZTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const { 1327 // Always expand on Subtargets without vector instructions. 1328 if (!ST->hasVector()) 1329 return true; 1330 1331 // Whether or not to expand is a per-intrinsic decision. 1332 switch (II->getIntrinsicID()) { 1333 default: 1334 return true; 1335 // Do not expand vector.reduce.add... 1336 case Intrinsic::vector_reduce_add: 1337 auto *VType = cast<FixedVectorType>(II->getOperand(0)->getType()); 1338 // ...unless the scalar size is i64 or larger, 1339 // or the operand vector is not full, since the 1340 // performance benefit is dubious in those cases. 1341 return VType->getScalarSizeInBits() >= 64 || 1342 VType->getPrimitiveSizeInBits() < SystemZ::VectorBits; 1343 } 1344 } 1345