xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a TargetTransformInfo analysis pass specific to the
10 // SystemZ target machine. It uses the target's detailed information to provide
11 // more precise answers to certain TTI queries, while letting the target
12 // independent and default TTI implementations handle the rest.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SystemZTargetTransformInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/BasicTTIImpl.h"
19 #include "llvm/CodeGen/CostTable.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "systemztti"
30 
31 //===----------------------------------------------------------------------===//
32 //
33 // SystemZ cost model.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 static bool isUsedAsMemCpySource(const Value *V, bool &OtherUse) {
38   bool UsedAsMemCpySource = false;
39   for (const User *U : V->users())
40     if (const Instruction *User = dyn_cast<Instruction>(U)) {
41       if (isa<BitCastInst>(User) || isa<GetElementPtrInst>(User)) {
42         UsedAsMemCpySource |= isUsedAsMemCpySource(User, OtherUse);
43         continue;
44       }
45       if (const MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(User)) {
46         if (Memcpy->getOperand(1) == V && !Memcpy->isVolatile()) {
47           UsedAsMemCpySource = true;
48           continue;
49         }
50       }
51       OtherUse = true;
52     }
53   return UsedAsMemCpySource;
54 }
55 
56 unsigned SystemZTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
57   unsigned Bonus = 0;
58 
59   // Increase the threshold if an incoming argument is used only as a memcpy
60   // source.
61   if (Function *Callee = CB->getCalledFunction())
62     for (Argument &Arg : Callee->args()) {
63       bool OtherUse = false;
64       if (isUsedAsMemCpySource(&Arg, OtherUse) && !OtherUse)
65         Bonus += 150;
66     }
67 
68   LLVM_DEBUG(if (Bonus)
69                dbgs() << "++ SZTTI Adding inlining bonus: " << Bonus << "\n";);
70   return Bonus;
71 }
72 
73 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
74                                               TTI::TargetCostKind CostKind) {
75   assert(Ty->isIntegerTy());
76 
77   unsigned BitSize = Ty->getPrimitiveSizeInBits();
78   // There is no cost model for constants with a bit size of 0. Return TCC_Free
79   // here, so that constant hoisting will ignore this constant.
80   if (BitSize == 0)
81     return TTI::TCC_Free;
82   // No cost model for operations on integers larger than 128 bit implemented yet.
83   if ((!ST->hasVector() && BitSize > 64) || BitSize > 128)
84     return TTI::TCC_Free;
85 
86   if (Imm == 0)
87     return TTI::TCC_Free;
88 
89   if (Imm.getBitWidth() <= 64) {
90     // Constants loaded via lgfi.
91     if (isInt<32>(Imm.getSExtValue()))
92       return TTI::TCC_Basic;
93     // Constants loaded via llilf.
94     if (isUInt<32>(Imm.getZExtValue()))
95       return TTI::TCC_Basic;
96     // Constants loaded via llihf:
97     if ((Imm.getZExtValue() & 0xffffffff) == 0)
98       return TTI::TCC_Basic;
99 
100     return 2 * TTI::TCC_Basic;
101   }
102 
103   // i128 immediates loads from Constant Pool
104   return 2 * TTI::TCC_Basic;
105 }
106 
107 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
108                                                   const APInt &Imm, Type *Ty,
109                                                   TTI::TargetCostKind CostKind,
110                                                   Instruction *Inst) {
111   assert(Ty->isIntegerTy());
112 
113   unsigned BitSize = Ty->getPrimitiveSizeInBits();
114   // There is no cost model for constants with a bit size of 0. Return TCC_Free
115   // here, so that constant hoisting will ignore this constant.
116   if (BitSize == 0)
117     return TTI::TCC_Free;
118   // No cost model for operations on integers larger than 64 bit implemented yet.
119   if (BitSize > 64)
120     return TTI::TCC_Free;
121 
122   switch (Opcode) {
123   default:
124     return TTI::TCC_Free;
125   case Instruction::GetElementPtr:
126     // Always hoist the base address of a GetElementPtr. This prevents the
127     // creation of new constants for every base constant that gets constant
128     // folded with the offset.
129     if (Idx == 0)
130       return 2 * TTI::TCC_Basic;
131     return TTI::TCC_Free;
132   case Instruction::Store:
133     if (Idx == 0 && Imm.getBitWidth() <= 64) {
134       // Any 8-bit immediate store can by implemented via mvi.
135       if (BitSize == 8)
136         return TTI::TCC_Free;
137       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
138       if (isInt<16>(Imm.getSExtValue()))
139         return TTI::TCC_Free;
140     }
141     break;
142   case Instruction::ICmp:
143     if (Idx == 1 && Imm.getBitWidth() <= 64) {
144       // Comparisons against signed 32-bit immediates implemented via cgfi.
145       if (isInt<32>(Imm.getSExtValue()))
146         return TTI::TCC_Free;
147       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
148       if (isUInt<32>(Imm.getZExtValue()))
149         return TTI::TCC_Free;
150     }
151     break;
152   case Instruction::Add:
153   case Instruction::Sub:
154     if (Idx == 1 && Imm.getBitWidth() <= 64) {
155       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
156       if (isUInt<32>(Imm.getZExtValue()))
157         return TTI::TCC_Free;
158       // Or their negation, by swapping addition vs. subtraction.
159       if (isUInt<32>(-Imm.getSExtValue()))
160         return TTI::TCC_Free;
161     }
162     break;
163   case Instruction::Mul:
164     if (Idx == 1 && Imm.getBitWidth() <= 64) {
165       // We use msgfi to multiply by 32-bit signed immediates.
166       if (isInt<32>(Imm.getSExtValue()))
167         return TTI::TCC_Free;
168     }
169     break;
170   case Instruction::Or:
171   case Instruction::Xor:
172     if (Idx == 1 && Imm.getBitWidth() <= 64) {
173       // Masks supported by oilf/xilf.
174       if (isUInt<32>(Imm.getZExtValue()))
175         return TTI::TCC_Free;
176       // Masks supported by oihf/xihf.
177       if ((Imm.getZExtValue() & 0xffffffff) == 0)
178         return TTI::TCC_Free;
179     }
180     break;
181   case Instruction::And:
182     if (Idx == 1 && Imm.getBitWidth() <= 64) {
183       // Any 32-bit AND operation can by implemented via nilf.
184       if (BitSize <= 32)
185         return TTI::TCC_Free;
186       // 64-bit masks supported by nilf.
187       if (isUInt<32>(~Imm.getZExtValue()))
188         return TTI::TCC_Free;
189       // 64-bit masks supported by nilh.
190       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
191         return TTI::TCC_Free;
192       // Some 64-bit AND operations can be implemented via risbg.
193       const SystemZInstrInfo *TII = ST->getInstrInfo();
194       unsigned Start, End;
195       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
196         return TTI::TCC_Free;
197     }
198     break;
199   case Instruction::Shl:
200   case Instruction::LShr:
201   case Instruction::AShr:
202     // Always return TCC_Free for the shift value of a shift instruction.
203     if (Idx == 1)
204       return TTI::TCC_Free;
205     break;
206   case Instruction::UDiv:
207   case Instruction::SDiv:
208   case Instruction::URem:
209   case Instruction::SRem:
210   case Instruction::Trunc:
211   case Instruction::ZExt:
212   case Instruction::SExt:
213   case Instruction::IntToPtr:
214   case Instruction::PtrToInt:
215   case Instruction::BitCast:
216   case Instruction::PHI:
217   case Instruction::Call:
218   case Instruction::Select:
219   case Instruction::Ret:
220   case Instruction::Load:
221     break;
222   }
223 
224   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
225 }
226 
227 InstructionCost
228 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
229                                     const APInt &Imm, Type *Ty,
230                                     TTI::TargetCostKind CostKind) {
231   assert(Ty->isIntegerTy());
232 
233   unsigned BitSize = Ty->getPrimitiveSizeInBits();
234   // There is no cost model for constants with a bit size of 0. Return TCC_Free
235   // here, so that constant hoisting will ignore this constant.
236   if (BitSize == 0)
237     return TTI::TCC_Free;
238   // No cost model for operations on integers larger than 64 bit implemented yet.
239   if (BitSize > 64)
240     return TTI::TCC_Free;
241 
242   switch (IID) {
243   default:
244     return TTI::TCC_Free;
245   case Intrinsic::sadd_with_overflow:
246   case Intrinsic::uadd_with_overflow:
247   case Intrinsic::ssub_with_overflow:
248   case Intrinsic::usub_with_overflow:
249     // These get expanded to include a normal addition/subtraction.
250     if (Idx == 1 && Imm.getBitWidth() <= 64) {
251       if (isUInt<32>(Imm.getZExtValue()))
252         return TTI::TCC_Free;
253       if (isUInt<32>(-Imm.getSExtValue()))
254         return TTI::TCC_Free;
255     }
256     break;
257   case Intrinsic::smul_with_overflow:
258   case Intrinsic::umul_with_overflow:
259     // These get expanded to include a normal multiplication.
260     if (Idx == 1 && Imm.getBitWidth() <= 64) {
261       if (isInt<32>(Imm.getSExtValue()))
262         return TTI::TCC_Free;
263     }
264     break;
265   case Intrinsic::experimental_stackmap:
266     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
267       return TTI::TCC_Free;
268     break;
269   case Intrinsic::experimental_patchpoint_void:
270   case Intrinsic::experimental_patchpoint:
271     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
272       return TTI::TCC_Free;
273     break;
274   }
275   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
276 }
277 
278 TargetTransformInfo::PopcntSupportKind
279 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
280   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
281   if (ST->hasPopulationCount() && TyWidth <= 64)
282     return TTI::PSK_FastHardware;
283   return TTI::PSK_Software;
284 }
285 
286 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
287                                              TTI::UnrollingPreferences &UP,
288                                              OptimizationRemarkEmitter *ORE) {
289   // Find out if L contains a call, what the machine instruction count
290   // estimate is, and how many stores there are.
291   bool HasCall = false;
292   InstructionCost NumStores = 0;
293   for (auto &BB : L->blocks())
294     for (auto &I : *BB) {
295       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
296         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
297           if (isLoweredToCall(F))
298             HasCall = true;
299           if (F->getIntrinsicID() == Intrinsic::memcpy ||
300               F->getIntrinsicID() == Intrinsic::memset)
301             NumStores++;
302         } else { // indirect call.
303           HasCall = true;
304         }
305       }
306       if (isa<StoreInst>(&I)) {
307         Type *MemAccessTy = I.getOperand(0)->getType();
308         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy,
309                                      std::nullopt, 0, TTI::TCK_RecipThroughput);
310       }
311     }
312 
313   // The z13 processor will run out of store tags if too many stores
314   // are fed into it too quickly. Therefore make sure there are not
315   // too many stores in the resulting unrolled loop.
316   unsigned const NumStoresVal = *NumStores.getValue();
317   unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX);
318 
319   if (HasCall) {
320     // Only allow full unrolling if loop has any calls.
321     UP.FullUnrollMaxCount = Max;
322     UP.MaxCount = 1;
323     return;
324   }
325 
326   UP.MaxCount = Max;
327   if (UP.MaxCount <= 1)
328     return;
329 
330   // Allow partial and runtime trip count unrolling.
331   UP.Partial = UP.Runtime = true;
332 
333   UP.PartialThreshold = 75;
334   UP.DefaultUnrollRuntimeCount = 4;
335 
336   // Allow expensive instructions in the pre-header of the loop.
337   UP.AllowExpensiveTripCount = true;
338 
339   UP.Force = true;
340 }
341 
342 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
343                                            TTI::PeelingPreferences &PP) {
344   BaseT::getPeelingPreferences(L, SE, PP);
345 }
346 
347 bool SystemZTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
348                                    const TargetTransformInfo::LSRCost &C2) {
349   // SystemZ specific: check instruction count (first), and don't care about
350   // ImmCost, since offsets are checked explicitly.
351   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
352                   C1.NumIVMuls, C1.NumBaseAdds,
353                   C1.ScaleCost, C1.SetupCost) <
354     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
355              C2.NumIVMuls, C2.NumBaseAdds,
356              C2.ScaleCost, C2.SetupCost);
357 }
358 
359 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
360   bool Vector = (ClassID == 1);
361   if (!Vector)
362     // Discount the stack pointer.  Also leave out %r0, since it can't
363     // be used in an address.
364     return 14;
365   if (ST->hasVector())
366     return 32;
367   return 0;
368 }
369 
370 TypeSize
371 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
372   switch (K) {
373   case TargetTransformInfo::RGK_Scalar:
374     return TypeSize::getFixed(64);
375   case TargetTransformInfo::RGK_FixedWidthVector:
376     return TypeSize::getFixed(ST->hasVector() ? 128 : 0);
377   case TargetTransformInfo::RGK_ScalableVector:
378     return TypeSize::getScalable(0);
379   }
380 
381   llvm_unreachable("Unsupported register kind");
382 }
383 
384 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses,
385                                               unsigned NumStridedMemAccesses,
386                                               unsigned NumPrefetches,
387                                               bool HasCall) const {
388   // Don't prefetch a loop with many far apart accesses.
389   if (NumPrefetches > 16)
390     return UINT_MAX;
391 
392   // Emit prefetch instructions for smaller strides in cases where we think
393   // the hardware prefetcher might not be able to keep up.
394   if (NumStridedMemAccesses > 32 && !HasCall &&
395       (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses)
396     return 1;
397 
398   return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
399 }
400 
401 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
402   EVT VT = TLI->getValueType(DL, DataType);
403   return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
404 }
405 
406 // Return the bit size for the scalar type or vector element
407 // type. getScalarSizeInBits() returns 0 for a pointer type.
408 static unsigned getScalarSizeInBits(Type *Ty) {
409   unsigned Size =
410     (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
411   assert(Size > 0 && "Element must have non-zero size.");
412   return Size;
413 }
414 
415 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
416 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
417 // 3.
418 static unsigned getNumVectorRegs(Type *Ty) {
419   auto *VTy = cast<FixedVectorType>(Ty);
420   unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements();
421   assert(WideBits > 0 && "Could not compute size of vector");
422   return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
423 }
424 
425 InstructionCost SystemZTTIImpl::getArithmeticInstrCost(
426     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
427     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
428     ArrayRef<const Value *> Args,
429     const Instruction *CxtI) {
430 
431   // TODO: Handle more cost kinds.
432   if (CostKind != TTI::TCK_RecipThroughput)
433     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
434                                          Op2Info, Args, CxtI);
435 
436   // TODO: return a good value for BB-VECTORIZER that includes the
437   // immediate loads, which we do not want to count for the loop
438   // vectorizer, since they are hopefully hoisted out of the loop. This
439   // would require a new parameter 'InLoop', but not sure if constant
440   // args are common enough to motivate this.
441 
442   unsigned ScalarBits = Ty->getScalarSizeInBits();
443 
444   // There are thre cases of division and remainder: Dividing with a register
445   // needs a divide instruction. A divisor which is a power of two constant
446   // can be implemented with a sequence of shifts. Any other constant needs a
447   // multiply and shifts.
448   const unsigned DivInstrCost = 20;
449   const unsigned DivMulSeqCost = 10;
450   const unsigned SDivPow2Cost = 4;
451 
452   bool SignedDivRem =
453       Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
454   bool UnsignedDivRem =
455       Opcode == Instruction::UDiv || Opcode == Instruction::URem;
456 
457   // Check for a constant divisor.
458   bool DivRemConst = false;
459   bool DivRemConstPow2 = false;
460   if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
461     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
462       const ConstantInt *CVal =
463           (C->getType()->isVectorTy()
464                ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
465                : dyn_cast<const ConstantInt>(C));
466       if (CVal && (CVal->getValue().isPowerOf2() ||
467                    CVal->getValue().isNegatedPowerOf2()))
468         DivRemConstPow2 = true;
469       else
470         DivRemConst = true;
471     }
472   }
473 
474   if (!Ty->isVectorTy()) {
475     // These FP operations are supported with a dedicated instruction for
476     // float, double and fp128 (base implementation assumes float generally
477     // costs 2).
478     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
479         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
480       return 1;
481 
482     // There is no native support for FRem.
483     if (Opcode == Instruction::FRem)
484       return LIBCALL_COST;
485 
486     // Give discount for some combined logical operations if supported.
487     if (Args.size() == 2) {
488       if (Opcode == Instruction::Xor) {
489         for (const Value *A : Args) {
490           if (const Instruction *I = dyn_cast<Instruction>(A))
491             if (I->hasOneUse() &&
492                 (I->getOpcode() == Instruction::Or ||
493                  I->getOpcode() == Instruction::And ||
494                  I->getOpcode() == Instruction::Xor))
495               if ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
496                   (isInt128InVR(Ty) &&
497                    (I->getOpcode() == Instruction::Or || ST->hasVectorEnhancements1())))
498                 return 0;
499         }
500       }
501       else if (Opcode == Instruction::And || Opcode == Instruction::Or) {
502         for (const Value *A : Args) {
503           if (const Instruction *I = dyn_cast<Instruction>(A))
504             if ((I->hasOneUse() && I->getOpcode() == Instruction::Xor) &&
505                 ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
506                  (isInt128InVR(Ty) &&
507                   (Opcode == Instruction::And || ST->hasVectorEnhancements1()))))
508               return 0;
509         }
510       }
511     }
512 
513     // Or requires one instruction, although it has custom handling for i64.
514     if (Opcode == Instruction::Or)
515       return 1;
516 
517     if (Opcode == Instruction::Xor && ScalarBits == 1) {
518       if (ST->hasLoadStoreOnCond2())
519         return 5; // 2 * (li 0; loc 1); xor
520       return 7; // 2 * ipm sequences ; xor ; shift ; compare
521     }
522 
523     if (DivRemConstPow2)
524       return (SignedDivRem ? SDivPow2Cost : 1);
525     if (DivRemConst)
526       return DivMulSeqCost;
527     if (SignedDivRem || UnsignedDivRem)
528       return DivInstrCost;
529   }
530   else if (ST->hasVector()) {
531     auto *VTy = cast<FixedVectorType>(Ty);
532     unsigned VF = VTy->getNumElements();
533     unsigned NumVectors = getNumVectorRegs(Ty);
534 
535     // These vector operations are custom handled, but are still supported
536     // with one instruction per vector, regardless of element size.
537     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
538         Opcode == Instruction::AShr) {
539       return NumVectors;
540     }
541 
542     if (DivRemConstPow2)
543       return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
544     if (DivRemConst) {
545       SmallVector<Type *> Tys(Args.size(), Ty);
546       return VF * DivMulSeqCost +
547              getScalarizationOverhead(VTy, Args, Tys, CostKind);
548     }
549     if ((SignedDivRem || UnsignedDivRem) && VF > 4)
550       // Temporary hack: disable high vectorization factors with integer
551       // division/remainder, which will get scalarized and handled with
552       // GR128 registers. The mischeduler is not clever enough to avoid
553       // spilling yet.
554       return 1000;
555 
556     // These FP operations are supported with a single vector instruction for
557     // double (base implementation assumes float generally costs 2). For
558     // FP128, the scalar cost is 1, and there is no overhead since the values
559     // are already in scalar registers.
560     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
561         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
562       switch (ScalarBits) {
563       case 32: {
564         // The vector enhancements facility 1 provides v4f32 instructions.
565         if (ST->hasVectorEnhancements1())
566           return NumVectors;
567         // Return the cost of multiple scalar invocation plus the cost of
568         // inserting and extracting the values.
569         InstructionCost ScalarCost =
570             getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
571         SmallVector<Type *> Tys(Args.size(), Ty);
572         InstructionCost Cost =
573             (VF * ScalarCost) +
574             getScalarizationOverhead(VTy, Args, Tys, CostKind);
575         // FIXME: VF 2 for these FP operations are currently just as
576         // expensive as for VF 4.
577         if (VF == 2)
578           Cost *= 2;
579         return Cost;
580       }
581       case 64:
582       case 128:
583         return NumVectors;
584       default:
585         break;
586       }
587     }
588 
589     // There is no native support for FRem.
590     if (Opcode == Instruction::FRem) {
591       SmallVector<Type *> Tys(Args.size(), Ty);
592       InstructionCost Cost = (VF * LIBCALL_COST) +
593                              getScalarizationOverhead(VTy, Args, Tys, CostKind);
594       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
595       if (VF == 2 && ScalarBits == 32)
596         Cost *= 2;
597       return Cost;
598     }
599   }
600 
601   // Fallback to the default implementation.
602   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
603                                        Args, CxtI);
604 }
605 
606 InstructionCost SystemZTTIImpl::getShuffleCost(
607     TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask,
608     TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
609     ArrayRef<const Value *> Args, const Instruction *CxtI) {
610   Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
611   if (ST->hasVector()) {
612     unsigned NumVectors = getNumVectorRegs(Tp);
613 
614     // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
615 
616     // FP128 values are always in scalar registers, so there is no work
617     // involved with a shuffle, except for broadcast. In that case register
618     // moves are done with a single instruction per element.
619     if (Tp->getScalarType()->isFP128Ty())
620       return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
621 
622     switch (Kind) {
623     case  TargetTransformInfo::SK_ExtractSubvector:
624       // ExtractSubvector Index indicates start offset.
625 
626       // Extracting a subvector from first index is a noop.
627       return (Index == 0 ? 0 : NumVectors);
628 
629     case TargetTransformInfo::SK_Broadcast:
630       // Loop vectorizer calls here to figure out the extra cost of
631       // broadcasting a loaded value to all elements of a vector. Since vlrep
632       // loads and replicates with a single instruction, adjust the returned
633       // value.
634       return NumVectors - 1;
635 
636     default:
637 
638       // SystemZ supports single instruction permutation / replication.
639       return NumVectors;
640     }
641   }
642 
643   return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
644 }
645 
646 // Return the log2 difference of the element sizes of the two vector types.
647 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
648   unsigned Bits0 = Ty0->getScalarSizeInBits();
649   unsigned Bits1 = Ty1->getScalarSizeInBits();
650 
651   if (Bits1 >  Bits0)
652     return (Log2_32(Bits1) - Log2_32(Bits0));
653 
654   return (Log2_32(Bits0) - Log2_32(Bits1));
655 }
656 
657 // Return the number of instructions needed to truncate SrcTy to DstTy.
658 unsigned SystemZTTIImpl::
659 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
660   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
661   assert(SrcTy->getPrimitiveSizeInBits().getFixedValue() >
662              DstTy->getPrimitiveSizeInBits().getFixedValue() &&
663          "Packing must reduce size of vector type.");
664   assert(cast<FixedVectorType>(SrcTy)->getNumElements() ==
665              cast<FixedVectorType>(DstTy)->getNumElements() &&
666          "Packing should not change number of elements.");
667 
668   // TODO: Since fp32 is expanded, the extract cost should always be 0.
669 
670   unsigned NumParts = getNumVectorRegs(SrcTy);
671   if (NumParts <= 2)
672     // Up to 2 vector registers can be truncated efficiently with pack or
673     // permute. The latter requires an immediate mask to be loaded, which
674     // typically gets hoisted out of a loop.  TODO: return a good value for
675     // BB-VECTORIZER that includes the immediate loads, which we do not want
676     // to count for the loop vectorizer.
677     return 1;
678 
679   unsigned Cost = 0;
680   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
681   unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements();
682   for (unsigned P = 0; P < Log2Diff; ++P) {
683     if (NumParts > 1)
684       NumParts /= 2;
685     Cost += NumParts;
686   }
687 
688   // Currently, a general mix of permutes and pack instructions is output by
689   // isel, which follow the cost computation above except for this case which
690   // is one instruction less:
691   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
692       DstTy->getScalarSizeInBits() == 8)
693     Cost--;
694 
695   return Cost;
696 }
697 
698 // Return the cost of converting a vector bitmask produced by a compare
699 // (SrcTy), to the type of the select or extend instruction (DstTy).
700 unsigned SystemZTTIImpl::
701 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
702   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
703           "Should only be called with vector types.");
704 
705   unsigned PackCost = 0;
706   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
707   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
708   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
709   if (SrcScalarBits > DstScalarBits)
710     // The bitmask will be truncated.
711     PackCost = getVectorTruncCost(SrcTy, DstTy);
712   else if (SrcScalarBits < DstScalarBits) {
713     unsigned DstNumParts = getNumVectorRegs(DstTy);
714     // Each vector select needs its part of the bitmask unpacked.
715     PackCost = Log2Diff * DstNumParts;
716     // Extra cost for moving part of mask before unpacking.
717     PackCost += DstNumParts - 1;
718   }
719 
720   return PackCost;
721 }
722 
723 // Return the type of the compared operands. This is needed to compute the
724 // cost for a Select / ZExt or SExt instruction.
725 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
726   Type *OpTy = nullptr;
727   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
728     OpTy = CI->getOperand(0)->getType();
729   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
730     if (LogicI->getNumOperands() == 2)
731       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
732         if (isa<CmpInst>(LogicI->getOperand(1)))
733           OpTy = CI0->getOperand(0)->getType();
734 
735   if (OpTy != nullptr) {
736     if (VF == 1) {
737       assert (!OpTy->isVectorTy() && "Expected scalar type");
738       return OpTy;
739     }
740     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
741     // be either scalar or already vectorized with a same or lesser VF.
742     Type *ElTy = OpTy->getScalarType();
743     return FixedVectorType::get(ElTy, VF);
744   }
745 
746   return nullptr;
747 }
748 
749 // Get the cost of converting a boolean vector to a vector with same width
750 // and element size as Dst, plus the cost of zero extending if needed.
751 unsigned SystemZTTIImpl::
752 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
753                               const Instruction *I) {
754   auto *DstVTy = cast<FixedVectorType>(Dst);
755   unsigned VF = DstVTy->getNumElements();
756   unsigned Cost = 0;
757   // If we know what the widths of the compared operands, get any cost of
758   // converting it to match Dst. Otherwise assume same widths.
759   Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
760   if (CmpOpTy != nullptr)
761     Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
762   if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
763     // One 'vn' per dst vector with an immediate mask.
764     Cost += getNumVectorRegs(Dst);
765   return Cost;
766 }
767 
768 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
769                                                  Type *Src,
770                                                  TTI::CastContextHint CCH,
771                                                  TTI::TargetCostKind CostKind,
772                                                  const Instruction *I) {
773   // FIXME: Can the logic below also be used for these cost kinds?
774   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) {
775     auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
776     return BaseCost == 0 ? BaseCost : 1;
777   }
778 
779   unsigned DstScalarBits = Dst->getScalarSizeInBits();
780   unsigned SrcScalarBits = Src->getScalarSizeInBits();
781 
782   if (!Src->isVectorTy()) {
783     assert (!Dst->isVectorTy());
784 
785     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
786       if (Src->isIntegerTy(128))
787         return LIBCALL_COST;
788       if (SrcScalarBits >= 32 ||
789           (I != nullptr && isa<LoadInst>(I->getOperand(0))))
790         return 1;
791       return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
792     }
793 
794     if ((Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) &&
795         Dst->isIntegerTy(128))
796       return LIBCALL_COST;
797 
798     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt)) {
799       if (Src->isIntegerTy(1)) {
800         if (DstScalarBits == 128)
801           return 5 /*branch seq.*/;
802 
803         if (ST->hasLoadStoreOnCond2())
804           return 2; // li 0; loc 1
805 
806         // This should be extension of a compare i1 result, which is done with
807         // ipm and a varying sequence of instructions.
808         unsigned Cost = 0;
809         if (Opcode == Instruction::SExt)
810           Cost = (DstScalarBits < 64 ? 3 : 4);
811         if (Opcode == Instruction::ZExt)
812           Cost = 3;
813         Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
814         if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
815           // If operands of an fp-type was compared, this costs +1.
816           Cost++;
817         return Cost;
818       }
819       else if (isInt128InVR(Dst)) {
820         // Extensions from GPR to i128 (in VR) typically costs two instructions,
821         // but a zero-extending load would be just one extra instruction.
822         if (Opcode == Instruction::ZExt && I != nullptr)
823           if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
824             if (Ld->hasOneUse())
825               return 1;
826         return 2;
827       }
828     }
829 
830     if (Opcode == Instruction::Trunc && isInt128InVR(Src) && I != nullptr) {
831       if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
832         if (Ld->hasOneUse())
833           return 0;  // Will be converted to GPR load.
834       bool OnlyTruncatingStores = true;
835       for (const User *U : I->users())
836         if (!isa<StoreInst>(U)) {
837           OnlyTruncatingStores = false;
838           break;
839         }
840       if (OnlyTruncatingStores)
841         return 0;
842       return 2; // Vector element extraction.
843     }
844   }
845   else if (ST->hasVector()) {
846     // Vector to scalar cast.
847     auto *SrcVecTy = cast<FixedVectorType>(Src);
848     auto *DstVecTy = dyn_cast<FixedVectorType>(Dst);
849     if (!DstVecTy) {
850       // TODO: tune vector-to-scalar cast.
851       return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
852     }
853     unsigned VF = SrcVecTy->getNumElements();
854     unsigned NumDstVectors = getNumVectorRegs(Dst);
855     unsigned NumSrcVectors = getNumVectorRegs(Src);
856 
857     if (Opcode == Instruction::Trunc) {
858       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
859         return 0; // Check for NOOP conversions.
860       return getVectorTruncCost(Src, Dst);
861     }
862 
863     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
864       if (SrcScalarBits >= 8) {
865         // ZExt will use either a single unpack or a vector permute.
866         if (Opcode == Instruction::ZExt)
867           return NumDstVectors;
868 
869         // SExt will be handled with one unpack per doubling of width.
870         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
871 
872         // For types that spans multiple vector registers, some additional
873         // instructions are used to setup the unpacking.
874         unsigned NumSrcVectorOps =
875           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
876                           : (NumDstVectors / 2));
877 
878         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
879       }
880       else if (SrcScalarBits == 1)
881         return getBoolVecToIntConversionCost(Opcode, Dst, I);
882     }
883 
884     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
885         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
886       // TODO: Fix base implementation which could simplify things a bit here
887       // (seems to miss on differentiating on scalar/vector types).
888 
889       // Only 64 bit vector conversions are natively supported before z15.
890       if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
891         if (SrcScalarBits == DstScalarBits)
892           return NumDstVectors;
893 
894         if (SrcScalarBits == 1)
895           return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
896       }
897 
898       // Return the cost of multiple scalar invocation plus the cost of
899       // inserting and extracting the values. Base implementation does not
900       // realize float->int gets scalarized.
901       InstructionCost ScalarCost = getCastInstrCost(
902           Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind);
903       InstructionCost TotCost = VF * ScalarCost;
904       bool NeedsInserts = true, NeedsExtracts = true;
905       // FP128 registers do not get inserted or extracted.
906       if (DstScalarBits == 128 &&
907           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
908         NeedsInserts = false;
909       if (SrcScalarBits == 128 &&
910           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
911         NeedsExtracts = false;
912 
913       TotCost += getScalarizationOverhead(SrcVecTy, /*Insert*/ false,
914                                           NeedsExtracts, CostKind);
915       TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts,
916                                           /*Extract*/ false, CostKind);
917 
918       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
919       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
920         TotCost *= 2;
921 
922       return TotCost;
923     }
924 
925     if (Opcode == Instruction::FPTrunc) {
926       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
927         return VF /*ldxbr/lexbr*/ +
928                getScalarizationOverhead(DstVecTy, /*Insert*/ true,
929                                         /*Extract*/ false, CostKind);
930       else // double -> float
931         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
932     }
933 
934     if (Opcode == Instruction::FPExt) {
935       if (SrcScalarBits == 32 && DstScalarBits == 64) {
936         // float -> double is very rare and currently unoptimized. Instead of
937         // using vldeb, which can do two at a time, all conversions are
938         // scalarized.
939         return VF * 2;
940       }
941       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
942       return VF + getScalarizationOverhead(SrcVecTy, /*Insert*/ false,
943                                            /*Extract*/ true, CostKind);
944     }
945   }
946 
947   return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
948 }
949 
950 // Scalar i8 / i16 operations will typically be made after first extending
951 // the operands to i32.
952 static unsigned getOperandsExtensionCost(const Instruction *I) {
953   unsigned ExtCost = 0;
954   for (Value *Op : I->operands())
955     // A load of i8 or i16 sign/zero extends to i32.
956     if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
957       ExtCost++;
958 
959   return ExtCost;
960 }
961 
962 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
963                                                    Type *CondTy,
964                                                    CmpInst::Predicate VecPred,
965                                                    TTI::TargetCostKind CostKind,
966                                                    const Instruction *I) {
967   if (CostKind != TTI::TCK_RecipThroughput)
968     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
969 
970   if (!ValTy->isVectorTy()) {
971     switch (Opcode) {
972     case Instruction::ICmp: {
973       // A loaded value compared with 0 with multiple users becomes Load and
974       // Test. The load is then not foldable, so return 0 cost for the ICmp.
975       unsigned ScalarBits = ValTy->getScalarSizeInBits();
976       if (I != nullptr && (ScalarBits == 32 || ScalarBits == 64))
977         if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
978           if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
979             if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
980                 C->isZero())
981               return 0;
982 
983       unsigned Cost = 1;
984       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
985         Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
986       return Cost;
987     }
988     case Instruction::Select:
989       if (ValTy->isFloatingPointTy() || isInt128InVR(ValTy))
990         return 4; // No LOC for FP / i128 - costs a conditional jump.
991       return 1; // Load On Condition / Select Register.
992     }
993   }
994   else if (ST->hasVector()) {
995     unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements();
996 
997     // Called with a compare instruction.
998     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
999       unsigned PredicateExtraCost = 0;
1000       if (I != nullptr) {
1001         // Some predicates cost one or two extra instructions.
1002         switch (cast<CmpInst>(I)->getPredicate()) {
1003         case CmpInst::Predicate::ICMP_NE:
1004         case CmpInst::Predicate::ICMP_UGE:
1005         case CmpInst::Predicate::ICMP_ULE:
1006         case CmpInst::Predicate::ICMP_SGE:
1007         case CmpInst::Predicate::ICMP_SLE:
1008           PredicateExtraCost = 1;
1009           break;
1010         case CmpInst::Predicate::FCMP_ONE:
1011         case CmpInst::Predicate::FCMP_ORD:
1012         case CmpInst::Predicate::FCMP_UEQ:
1013         case CmpInst::Predicate::FCMP_UNO:
1014           PredicateExtraCost = 2;
1015           break;
1016         default:
1017           break;
1018         }
1019       }
1020 
1021       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
1022       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
1023       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
1024       unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
1025 
1026       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
1027       return Cost;
1028     }
1029     else { // Called with a select instruction.
1030       assert (Opcode == Instruction::Select);
1031 
1032       // We can figure out the extra cost of packing / unpacking if the
1033       // instruction was passed and the compare instruction is found.
1034       unsigned PackCost = 0;
1035       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
1036       if (CmpOpTy != nullptr)
1037         PackCost =
1038           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
1039 
1040       return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
1041     }
1042   }
1043 
1044   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
1045 }
1046 
1047 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1048                                                    TTI::TargetCostKind CostKind,
1049                                                    unsigned Index, Value *Op0,
1050                                                    Value *Op1) {
1051   // vlvgp will insert two grs into a vector register, so only count half the
1052   // number of instructions.
1053   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
1054     return ((Index % 2 == 0) ? 1 : 0);
1055 
1056   if (Opcode == Instruction::ExtractElement) {
1057     int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
1058 
1059     // Give a slight penalty for moving out of vector pipeline to FXU unit.
1060     if (Index == 0 && Val->isIntOrIntVectorTy())
1061       Cost += 1;
1062 
1063     return Cost;
1064   }
1065 
1066   return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
1067 }
1068 
1069 // Check if a load may be folded as a memory operand in its user.
1070 bool SystemZTTIImpl::
1071 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
1072   if (!Ld->hasOneUse())
1073     return false;
1074   FoldedValue = Ld;
1075   const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
1076   unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
1077   unsigned TruncBits = 0;
1078   unsigned SExtBits = 0;
1079   unsigned ZExtBits = 0;
1080   if (UserI->hasOneUse()) {
1081     unsigned UserBits = UserI->getType()->getScalarSizeInBits();
1082     if (isa<TruncInst>(UserI))
1083       TruncBits = UserBits;
1084     else if (isa<SExtInst>(UserI))
1085       SExtBits = UserBits;
1086     else if (isa<ZExtInst>(UserI))
1087       ZExtBits = UserBits;
1088   }
1089   if (TruncBits || SExtBits || ZExtBits) {
1090     FoldedValue = UserI;
1091     UserI = cast<Instruction>(*UserI->user_begin());
1092     // Load (single use) -> trunc/extend (single use) -> UserI
1093   }
1094   if ((UserI->getOpcode() == Instruction::Sub ||
1095        UserI->getOpcode() == Instruction::SDiv ||
1096        UserI->getOpcode() == Instruction::UDiv) &&
1097       UserI->getOperand(1) != FoldedValue)
1098     return false; // Not commutative, only RHS foldable.
1099   // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
1100   // extension was made of the load.
1101   unsigned LoadOrTruncBits =
1102       ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
1103   switch (UserI->getOpcode()) {
1104   case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
1105   case Instruction::Sub:
1106   case Instruction::ICmp:
1107     if (LoadedBits == 32 && ZExtBits == 64)
1108       return true;
1109     [[fallthrough]];
1110   case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
1111     if (UserI->getOpcode() != Instruction::ICmp) {
1112       if (LoadedBits == 16 &&
1113           (SExtBits == 32 ||
1114            (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
1115         return true;
1116       if (LoadOrTruncBits == 16)
1117         return true;
1118     }
1119     [[fallthrough]];
1120   case Instruction::SDiv:// SE: 32->64
1121     if (LoadedBits == 32 && SExtBits == 64)
1122       return true;
1123     [[fallthrough]];
1124   case Instruction::UDiv:
1125   case Instruction::And:
1126   case Instruction::Or:
1127   case Instruction::Xor:
1128     // This also makes sense for float operations, but disabled for now due
1129     // to regressions.
1130     // case Instruction::FCmp:
1131     // case Instruction::FAdd:
1132     // case Instruction::FSub:
1133     // case Instruction::FMul:
1134     // case Instruction::FDiv:
1135 
1136     // All possible extensions of memory checked above.
1137 
1138     // Comparison between memory and immediate.
1139     if (UserI->getOpcode() == Instruction::ICmp)
1140       if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
1141         if (CI->getValue().isIntN(16))
1142           return true;
1143     return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
1144     break;
1145   }
1146   return false;
1147 }
1148 
1149 static bool isBswapIntrinsicCall(const Value *V) {
1150   if (const Instruction *I = dyn_cast<Instruction>(V))
1151     if (auto *CI = dyn_cast<CallInst>(I))
1152       if (auto *F = CI->getCalledFunction())
1153         if (F->getIntrinsicID() == Intrinsic::bswap)
1154           return true;
1155   return false;
1156 }
1157 
1158 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1159                                                 MaybeAlign Alignment,
1160                                                 unsigned AddressSpace,
1161                                                 TTI::TargetCostKind CostKind,
1162                                                 TTI::OperandValueInfo OpInfo,
1163                                                 const Instruction *I) {
1164   assert(!Src->isVoidTy() && "Invalid type");
1165 
1166   // TODO: Handle other cost kinds.
1167   if (CostKind != TTI::TCK_RecipThroughput)
1168     return 1;
1169 
1170   if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
1171     // Store the load or its truncated or extended value in FoldedValue.
1172     const Instruction *FoldedValue = nullptr;
1173     if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
1174       const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
1175       assert (UserI->getNumOperands() == 2 && "Expected a binop.");
1176 
1177       // UserI can't fold two loads, so in that case return 0 cost only
1178       // half of the time.
1179       for (unsigned i = 0; i < 2; ++i) {
1180         if (UserI->getOperand(i) == FoldedValue)
1181           continue;
1182 
1183         if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
1184           LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
1185           if (!OtherLoad &&
1186               (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
1187                isa<ZExtInst>(OtherOp)))
1188             OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
1189           if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
1190             return i == 0; // Both operands foldable.
1191         }
1192       }
1193 
1194       return 0; // Only I is foldable in user.
1195     }
1196   }
1197 
1198   // Type legalization (via getNumberOfParts) can't handle structs
1199   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1200     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1201                                   CostKind);
1202 
1203   // FP128 is a legal type but kept in a register pair on older CPUs.
1204   if (Src->isFP128Ty() && !ST->hasVectorEnhancements1())
1205     return 2;
1206 
1207   unsigned NumOps =
1208     (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
1209 
1210   // Store/Load reversed saves one instruction.
1211   if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
1212       I != nullptr) {
1213     if (Opcode == Instruction::Load && I->hasOneUse()) {
1214       const Instruction *LdUser = cast<Instruction>(*I->user_begin());
1215       // In case of load -> bswap -> store, return normal cost for the load.
1216       if (isBswapIntrinsicCall(LdUser) &&
1217           (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
1218         return 0;
1219     }
1220     else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
1221       const Value *StoredVal = SI->getValueOperand();
1222       if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
1223         return 0;
1224     }
1225   }
1226 
1227   return  NumOps;
1228 }
1229 
1230 // The generic implementation of getInterleavedMemoryOpCost() is based on
1231 // adding costs of the memory operations plus all the extracts and inserts
1232 // needed for using / defining the vector operands. The SystemZ version does
1233 // roughly the same but bases the computations on vector permutations
1234 // instead.
1235 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost(
1236     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1237     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1238     bool UseMaskForCond, bool UseMaskForGaps) {
1239   if (UseMaskForCond || UseMaskForGaps)
1240     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1241                                              Alignment, AddressSpace, CostKind,
1242                                              UseMaskForCond, UseMaskForGaps);
1243   assert(isa<VectorType>(VecTy) &&
1244          "Expect a vector type for interleaved memory op");
1245 
1246   unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1247   assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1248   unsigned VF = NumElts / Factor;
1249   unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1250   unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1251   unsigned NumPermutes = 0;
1252 
1253   if (Opcode == Instruction::Load) {
1254     // Loading interleave groups may have gaps, which may mean fewer
1255     // loads. Find out how many vectors will be loaded in total, and in how
1256     // many of them each value will be in.
1257     BitVector UsedInsts(NumVectorMemOps, false);
1258     std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1259     for (unsigned Index : Indices)
1260       for (unsigned Elt = 0; Elt < VF; ++Elt) {
1261         unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1262         UsedInsts.set(Vec);
1263         ValueVecs[Index].set(Vec);
1264       }
1265     NumVectorMemOps = UsedInsts.count();
1266 
1267     for (unsigned Index : Indices) {
1268       // Estimate that each loaded source vector containing this Index
1269       // requires one operation, except that vperm can handle two input
1270       // registers first time for each dst vector.
1271       unsigned NumSrcVecs = ValueVecs[Index].count();
1272       unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U);
1273       assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1274       NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1275     }
1276   } else {
1277     // Estimate the permutes for each stored vector as the smaller of the
1278     // number of elements and the number of source vectors. Subtract one per
1279     // dst vector for vperm (S.A.).
1280     unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1281     unsigned NumDstVecs = NumVectorMemOps;
1282     NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1283   }
1284 
1285   // Cost of load/store operations and the permutations needed.
1286   return NumVectorMemOps + NumPermutes;
1287 }
1288 
1289 static int
1290 getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1291                             const SmallVectorImpl<Type *> &ParamTys) {
1292   if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
1293     return getNumVectorRegs(RetTy); // VPERM
1294 
1295   if (ID == Intrinsic::vector_reduce_add) {
1296     // Retrieve number and size of elements for the vector op.
1297     auto *VTy = cast<FixedVectorType>(ParamTys.front());
1298     unsigned ScalarSize = VTy->getScalarSizeInBits();
1299     // For scalar sizes >128 bits, we fall back to the generic cost estimate.
1300     if (ScalarSize > SystemZ::VectorBits)
1301       return -1;
1302     // This many vector regs are needed to represent the input elements (V).
1303     unsigned VectorRegsNeeded = getNumVectorRegs(VTy);
1304     // This many instructions are needed for the final sum of vector elems (S).
1305     unsigned LastVectorHandling = (ScalarSize < 32) ? 3 : 2;
1306     // We use vector adds to create a sum vector, which takes
1307     // V/2 + V/4 + ... = V - 1 operations.
1308     // Then, we need S operations to sum up the elements of that sum vector,
1309     // for a total of V + S - 1 operations.
1310     int Cost = VectorRegsNeeded + LastVectorHandling - 1;
1311     return Cost;
1312   }
1313   return -1;
1314 }
1315 
1316 InstructionCost
1317 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1318                                       TTI::TargetCostKind CostKind) {
1319   InstructionCost Cost = getVectorIntrinsicInstrCost(
1320       ICA.getID(), ICA.getReturnType(), ICA.getArgTypes());
1321   if (Cost != -1)
1322     return Cost;
1323   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1324 }
1325 
1326 bool SystemZTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
1327   // Always expand on Subtargets without vector instructions.
1328   if (!ST->hasVector())
1329     return true;
1330 
1331   // Whether or not to expand is a per-intrinsic decision.
1332   switch (II->getIntrinsicID()) {
1333   default:
1334     return true;
1335   // Do not expand vector.reduce.add...
1336   case Intrinsic::vector_reduce_add:
1337     auto *VType = cast<FixedVectorType>(II->getOperand(0)->getType());
1338     // ...unless the scalar size is i64 or larger,
1339     // or the operand vector is not full, since the
1340     // performance benefit is dubious in those cases.
1341     return VType->getScalarSizeInBits() >= 64 ||
1342            VType->getPrimitiveSizeInBits() < SystemZ::VectorBits;
1343   }
1344 }
1345