xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp (revision a8089ea5aee578e08acab2438e82fc9a9ae50ed8)
1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a TargetTransformInfo analysis pass specific to the
10 // SystemZ target machine. It uses the target's detailed information to provide
11 // more precise answers to certain TTI queries, while letting the target
12 // independent and default TTI implementations handle the rest.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SystemZTargetTransformInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/BasicTTIImpl.h"
19 #include "llvm/CodeGen/CostTable.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/Debug.h"
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "systemztti"
26 
27 //===----------------------------------------------------------------------===//
28 //
29 // SystemZ cost model.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 static bool isUsedAsMemCpySource(const Value *V, bool &OtherUse) {
34   bool UsedAsMemCpySource = false;
35   for (const User *U : V->users())
36     if (const Instruction *User = dyn_cast<Instruction>(U)) {
37       if (isa<BitCastInst>(User) || isa<GetElementPtrInst>(User)) {
38         UsedAsMemCpySource |= isUsedAsMemCpySource(User, OtherUse);
39         continue;
40       }
41       if (const MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(User)) {
42         if (Memcpy->getOperand(1) == V && !Memcpy->isVolatile()) {
43           UsedAsMemCpySource = true;
44           continue;
45         }
46       }
47       OtherUse = true;
48     }
49   return UsedAsMemCpySource;
50 }
51 
52 unsigned SystemZTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
53   unsigned Bonus = 0;
54 
55   // Increase the threshold if an incoming argument is used only as a memcpy
56   // source.
57   if (Function *Callee = CB->getCalledFunction())
58     for (Argument &Arg : Callee->args()) {
59       bool OtherUse = false;
60       if (isUsedAsMemCpySource(&Arg, OtherUse) && !OtherUse)
61         Bonus += 150;
62     }
63 
64   LLVM_DEBUG(if (Bonus)
65                dbgs() << "++ SZTTI Adding inlining bonus: " << Bonus << "\n";);
66   return Bonus;
67 }
68 
69 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
70                                               TTI::TargetCostKind CostKind) {
71   assert(Ty->isIntegerTy());
72 
73   unsigned BitSize = Ty->getPrimitiveSizeInBits();
74   // There is no cost model for constants with a bit size of 0. Return TCC_Free
75   // here, so that constant hoisting will ignore this constant.
76   if (BitSize == 0)
77     return TTI::TCC_Free;
78   // No cost model for operations on integers larger than 128 bit implemented yet.
79   if ((!ST->hasVector() && BitSize > 64) || BitSize > 128)
80     return TTI::TCC_Free;
81 
82   if (Imm == 0)
83     return TTI::TCC_Free;
84 
85   if (Imm.getBitWidth() <= 64) {
86     // Constants loaded via lgfi.
87     if (isInt<32>(Imm.getSExtValue()))
88       return TTI::TCC_Basic;
89     // Constants loaded via llilf.
90     if (isUInt<32>(Imm.getZExtValue()))
91       return TTI::TCC_Basic;
92     // Constants loaded via llihf:
93     if ((Imm.getZExtValue() & 0xffffffff) == 0)
94       return TTI::TCC_Basic;
95 
96     return 2 * TTI::TCC_Basic;
97   }
98 
99   // i128 immediates loads from Constant Pool
100   return 2 * TTI::TCC_Basic;
101 }
102 
103 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
104                                                   const APInt &Imm, Type *Ty,
105                                                   TTI::TargetCostKind CostKind,
106                                                   Instruction *Inst) {
107   assert(Ty->isIntegerTy());
108 
109   unsigned BitSize = Ty->getPrimitiveSizeInBits();
110   // There is no cost model for constants with a bit size of 0. Return TCC_Free
111   // here, so that constant hoisting will ignore this constant.
112   if (BitSize == 0)
113     return TTI::TCC_Free;
114   // No cost model for operations on integers larger than 64 bit implemented yet.
115   if (BitSize > 64)
116     return TTI::TCC_Free;
117 
118   switch (Opcode) {
119   default:
120     return TTI::TCC_Free;
121   case Instruction::GetElementPtr:
122     // Always hoist the base address of a GetElementPtr. This prevents the
123     // creation of new constants for every base constant that gets constant
124     // folded with the offset.
125     if (Idx == 0)
126       return 2 * TTI::TCC_Basic;
127     return TTI::TCC_Free;
128   case Instruction::Store:
129     if (Idx == 0 && Imm.getBitWidth() <= 64) {
130       // Any 8-bit immediate store can by implemented via mvi.
131       if (BitSize == 8)
132         return TTI::TCC_Free;
133       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
134       if (isInt<16>(Imm.getSExtValue()))
135         return TTI::TCC_Free;
136     }
137     break;
138   case Instruction::ICmp:
139     if (Idx == 1 && Imm.getBitWidth() <= 64) {
140       // Comparisons against signed 32-bit immediates implemented via cgfi.
141       if (isInt<32>(Imm.getSExtValue()))
142         return TTI::TCC_Free;
143       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
144       if (isUInt<32>(Imm.getZExtValue()))
145         return TTI::TCC_Free;
146     }
147     break;
148   case Instruction::Add:
149   case Instruction::Sub:
150     if (Idx == 1 && Imm.getBitWidth() <= 64) {
151       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
152       if (isUInt<32>(Imm.getZExtValue()))
153         return TTI::TCC_Free;
154       // Or their negation, by swapping addition vs. subtraction.
155       if (isUInt<32>(-Imm.getSExtValue()))
156         return TTI::TCC_Free;
157     }
158     break;
159   case Instruction::Mul:
160     if (Idx == 1 && Imm.getBitWidth() <= 64) {
161       // We use msgfi to multiply by 32-bit signed immediates.
162       if (isInt<32>(Imm.getSExtValue()))
163         return TTI::TCC_Free;
164     }
165     break;
166   case Instruction::Or:
167   case Instruction::Xor:
168     if (Idx == 1 && Imm.getBitWidth() <= 64) {
169       // Masks supported by oilf/xilf.
170       if (isUInt<32>(Imm.getZExtValue()))
171         return TTI::TCC_Free;
172       // Masks supported by oihf/xihf.
173       if ((Imm.getZExtValue() & 0xffffffff) == 0)
174         return TTI::TCC_Free;
175     }
176     break;
177   case Instruction::And:
178     if (Idx == 1 && Imm.getBitWidth() <= 64) {
179       // Any 32-bit AND operation can by implemented via nilf.
180       if (BitSize <= 32)
181         return TTI::TCC_Free;
182       // 64-bit masks supported by nilf.
183       if (isUInt<32>(~Imm.getZExtValue()))
184         return TTI::TCC_Free;
185       // 64-bit masks supported by nilh.
186       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
187         return TTI::TCC_Free;
188       // Some 64-bit AND operations can be implemented via risbg.
189       const SystemZInstrInfo *TII = ST->getInstrInfo();
190       unsigned Start, End;
191       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
192         return TTI::TCC_Free;
193     }
194     break;
195   case Instruction::Shl:
196   case Instruction::LShr:
197   case Instruction::AShr:
198     // Always return TCC_Free for the shift value of a shift instruction.
199     if (Idx == 1)
200       return TTI::TCC_Free;
201     break;
202   case Instruction::UDiv:
203   case Instruction::SDiv:
204   case Instruction::URem:
205   case Instruction::SRem:
206   case Instruction::Trunc:
207   case Instruction::ZExt:
208   case Instruction::SExt:
209   case Instruction::IntToPtr:
210   case Instruction::PtrToInt:
211   case Instruction::BitCast:
212   case Instruction::PHI:
213   case Instruction::Call:
214   case Instruction::Select:
215   case Instruction::Ret:
216   case Instruction::Load:
217     break;
218   }
219 
220   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
221 }
222 
223 InstructionCost
224 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
225                                     const APInt &Imm, Type *Ty,
226                                     TTI::TargetCostKind CostKind) {
227   assert(Ty->isIntegerTy());
228 
229   unsigned BitSize = Ty->getPrimitiveSizeInBits();
230   // There is no cost model for constants with a bit size of 0. Return TCC_Free
231   // here, so that constant hoisting will ignore this constant.
232   if (BitSize == 0)
233     return TTI::TCC_Free;
234   // No cost model for operations on integers larger than 64 bit implemented yet.
235   if (BitSize > 64)
236     return TTI::TCC_Free;
237 
238   switch (IID) {
239   default:
240     return TTI::TCC_Free;
241   case Intrinsic::sadd_with_overflow:
242   case Intrinsic::uadd_with_overflow:
243   case Intrinsic::ssub_with_overflow:
244   case Intrinsic::usub_with_overflow:
245     // These get expanded to include a normal addition/subtraction.
246     if (Idx == 1 && Imm.getBitWidth() <= 64) {
247       if (isUInt<32>(Imm.getZExtValue()))
248         return TTI::TCC_Free;
249       if (isUInt<32>(-Imm.getSExtValue()))
250         return TTI::TCC_Free;
251     }
252     break;
253   case Intrinsic::smul_with_overflow:
254   case Intrinsic::umul_with_overflow:
255     // These get expanded to include a normal multiplication.
256     if (Idx == 1 && Imm.getBitWidth() <= 64) {
257       if (isInt<32>(Imm.getSExtValue()))
258         return TTI::TCC_Free;
259     }
260     break;
261   case Intrinsic::experimental_stackmap:
262     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
263       return TTI::TCC_Free;
264     break;
265   case Intrinsic::experimental_patchpoint_void:
266   case Intrinsic::experimental_patchpoint_i64:
267     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
268       return TTI::TCC_Free;
269     break;
270   }
271   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
272 }
273 
274 TargetTransformInfo::PopcntSupportKind
275 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
276   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
277   if (ST->hasPopulationCount() && TyWidth <= 64)
278     return TTI::PSK_FastHardware;
279   return TTI::PSK_Software;
280 }
281 
282 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
283                                              TTI::UnrollingPreferences &UP,
284                                              OptimizationRemarkEmitter *ORE) {
285   // Find out if L contains a call, what the machine instruction count
286   // estimate is, and how many stores there are.
287   bool HasCall = false;
288   InstructionCost NumStores = 0;
289   for (auto &BB : L->blocks())
290     for (auto &I : *BB) {
291       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
292         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
293           if (isLoweredToCall(F))
294             HasCall = true;
295           if (F->getIntrinsicID() == Intrinsic::memcpy ||
296               F->getIntrinsicID() == Intrinsic::memset)
297             NumStores++;
298         } else { // indirect call.
299           HasCall = true;
300         }
301       }
302       if (isa<StoreInst>(&I)) {
303         Type *MemAccessTy = I.getOperand(0)->getType();
304         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy,
305                                      std::nullopt, 0, TTI::TCK_RecipThroughput);
306       }
307     }
308 
309   // The z13 processor will run out of store tags if too many stores
310   // are fed into it too quickly. Therefore make sure there are not
311   // too many stores in the resulting unrolled loop.
312   unsigned const NumStoresVal = *NumStores.getValue();
313   unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX);
314 
315   if (HasCall) {
316     // Only allow full unrolling if loop has any calls.
317     UP.FullUnrollMaxCount = Max;
318     UP.MaxCount = 1;
319     return;
320   }
321 
322   UP.MaxCount = Max;
323   if (UP.MaxCount <= 1)
324     return;
325 
326   // Allow partial and runtime trip count unrolling.
327   UP.Partial = UP.Runtime = true;
328 
329   UP.PartialThreshold = 75;
330   UP.DefaultUnrollRuntimeCount = 4;
331 
332   // Allow expensive instructions in the pre-header of the loop.
333   UP.AllowExpensiveTripCount = true;
334 
335   UP.Force = true;
336 }
337 
338 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
339                                            TTI::PeelingPreferences &PP) {
340   BaseT::getPeelingPreferences(L, SE, PP);
341 }
342 
343 bool SystemZTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
344                                    const TargetTransformInfo::LSRCost &C2) {
345   // SystemZ specific: check instruction count (first), and don't care about
346   // ImmCost, since offsets are checked explicitly.
347   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
348                   C1.NumIVMuls, C1.NumBaseAdds,
349                   C1.ScaleCost, C1.SetupCost) <
350     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
351              C2.NumIVMuls, C2.NumBaseAdds,
352              C2.ScaleCost, C2.SetupCost);
353 }
354 
355 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
356   bool Vector = (ClassID == 1);
357   if (!Vector)
358     // Discount the stack pointer.  Also leave out %r0, since it can't
359     // be used in an address.
360     return 14;
361   if (ST->hasVector())
362     return 32;
363   return 0;
364 }
365 
366 TypeSize
367 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
368   switch (K) {
369   case TargetTransformInfo::RGK_Scalar:
370     return TypeSize::getFixed(64);
371   case TargetTransformInfo::RGK_FixedWidthVector:
372     return TypeSize::getFixed(ST->hasVector() ? 128 : 0);
373   case TargetTransformInfo::RGK_ScalableVector:
374     return TypeSize::getScalable(0);
375   }
376 
377   llvm_unreachable("Unsupported register kind");
378 }
379 
380 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses,
381                                               unsigned NumStridedMemAccesses,
382                                               unsigned NumPrefetches,
383                                               bool HasCall) const {
384   // Don't prefetch a loop with many far apart accesses.
385   if (NumPrefetches > 16)
386     return UINT_MAX;
387 
388   // Emit prefetch instructions for smaller strides in cases where we think
389   // the hardware prefetcher might not be able to keep up.
390   if (NumStridedMemAccesses > 32 && !HasCall &&
391       (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses)
392     return 1;
393 
394   return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
395 }
396 
397 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
398   EVT VT = TLI->getValueType(DL, DataType);
399   return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
400 }
401 
402 // Return the bit size for the scalar type or vector element
403 // type. getScalarSizeInBits() returns 0 for a pointer type.
404 static unsigned getScalarSizeInBits(Type *Ty) {
405   unsigned Size =
406     (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
407   assert(Size > 0 && "Element must have non-zero size.");
408   return Size;
409 }
410 
411 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
412 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
413 // 3.
414 static unsigned getNumVectorRegs(Type *Ty) {
415   auto *VTy = cast<FixedVectorType>(Ty);
416   unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements();
417   assert(WideBits > 0 && "Could not compute size of vector");
418   return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
419 }
420 
421 InstructionCost SystemZTTIImpl::getArithmeticInstrCost(
422     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
423     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
424     ArrayRef<const Value *> Args,
425     const Instruction *CxtI) {
426 
427   // TODO: Handle more cost kinds.
428   if (CostKind != TTI::TCK_RecipThroughput)
429     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
430                                          Op2Info, Args, CxtI);
431 
432   // TODO: return a good value for BB-VECTORIZER that includes the
433   // immediate loads, which we do not want to count for the loop
434   // vectorizer, since they are hopefully hoisted out of the loop. This
435   // would require a new parameter 'InLoop', but not sure if constant
436   // args are common enough to motivate this.
437 
438   unsigned ScalarBits = Ty->getScalarSizeInBits();
439 
440   // There are thre cases of division and remainder: Dividing with a register
441   // needs a divide instruction. A divisor which is a power of two constant
442   // can be implemented with a sequence of shifts. Any other constant needs a
443   // multiply and shifts.
444   const unsigned DivInstrCost = 20;
445   const unsigned DivMulSeqCost = 10;
446   const unsigned SDivPow2Cost = 4;
447 
448   bool SignedDivRem =
449       Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
450   bool UnsignedDivRem =
451       Opcode == Instruction::UDiv || Opcode == Instruction::URem;
452 
453   // Check for a constant divisor.
454   bool DivRemConst = false;
455   bool DivRemConstPow2 = false;
456   if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
457     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
458       const ConstantInt *CVal =
459           (C->getType()->isVectorTy()
460                ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
461                : dyn_cast<const ConstantInt>(C));
462       if (CVal && (CVal->getValue().isPowerOf2() ||
463                    CVal->getValue().isNegatedPowerOf2()))
464         DivRemConstPow2 = true;
465       else
466         DivRemConst = true;
467     }
468   }
469 
470   if (!Ty->isVectorTy()) {
471     // These FP operations are supported with a dedicated instruction for
472     // float, double and fp128 (base implementation assumes float generally
473     // costs 2).
474     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
475         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
476       return 1;
477 
478     // There is no native support for FRem.
479     if (Opcode == Instruction::FRem)
480       return LIBCALL_COST;
481 
482     // Give discount for some combined logical operations if supported.
483     if (Args.size() == 2) {
484       if (Opcode == Instruction::Xor) {
485         for (const Value *A : Args) {
486           if (const Instruction *I = dyn_cast<Instruction>(A))
487             if (I->hasOneUse() &&
488                 (I->getOpcode() == Instruction::Or ||
489                  I->getOpcode() == Instruction::And ||
490                  I->getOpcode() == Instruction::Xor))
491               if ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
492                   (isInt128InVR(Ty) &&
493                    (I->getOpcode() == Instruction::Or || ST->hasVectorEnhancements1())))
494                 return 0;
495         }
496       }
497       else if (Opcode == Instruction::And || Opcode == Instruction::Or) {
498         for (const Value *A : Args) {
499           if (const Instruction *I = dyn_cast<Instruction>(A))
500             if ((I->hasOneUse() && I->getOpcode() == Instruction::Xor) &&
501                 ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
502                  (isInt128InVR(Ty) &&
503                   (Opcode == Instruction::And || ST->hasVectorEnhancements1()))))
504               return 0;
505         }
506       }
507     }
508 
509     // Or requires one instruction, although it has custom handling for i64.
510     if (Opcode == Instruction::Or)
511       return 1;
512 
513     if (Opcode == Instruction::Xor && ScalarBits == 1) {
514       if (ST->hasLoadStoreOnCond2())
515         return 5; // 2 * (li 0; loc 1); xor
516       return 7; // 2 * ipm sequences ; xor ; shift ; compare
517     }
518 
519     if (DivRemConstPow2)
520       return (SignedDivRem ? SDivPow2Cost : 1);
521     if (DivRemConst)
522       return DivMulSeqCost;
523     if (SignedDivRem || UnsignedDivRem)
524       return DivInstrCost;
525   }
526   else if (ST->hasVector()) {
527     auto *VTy = cast<FixedVectorType>(Ty);
528     unsigned VF = VTy->getNumElements();
529     unsigned NumVectors = getNumVectorRegs(Ty);
530 
531     // These vector operations are custom handled, but are still supported
532     // with one instruction per vector, regardless of element size.
533     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
534         Opcode == Instruction::AShr) {
535       return NumVectors;
536     }
537 
538     if (DivRemConstPow2)
539       return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
540     if (DivRemConst) {
541       SmallVector<Type *> Tys(Args.size(), Ty);
542       return VF * DivMulSeqCost +
543              getScalarizationOverhead(VTy, Args, Tys, CostKind);
544     }
545     if ((SignedDivRem || UnsignedDivRem) && VF > 4)
546       // Temporary hack: disable high vectorization factors with integer
547       // division/remainder, which will get scalarized and handled with
548       // GR128 registers. The mischeduler is not clever enough to avoid
549       // spilling yet.
550       return 1000;
551 
552     // These FP operations are supported with a single vector instruction for
553     // double (base implementation assumes float generally costs 2). For
554     // FP128, the scalar cost is 1, and there is no overhead since the values
555     // are already in scalar registers.
556     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
557         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
558       switch (ScalarBits) {
559       case 32: {
560         // The vector enhancements facility 1 provides v4f32 instructions.
561         if (ST->hasVectorEnhancements1())
562           return NumVectors;
563         // Return the cost of multiple scalar invocation plus the cost of
564         // inserting and extracting the values.
565         InstructionCost ScalarCost =
566             getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
567         SmallVector<Type *> Tys(Args.size(), Ty);
568         InstructionCost Cost =
569             (VF * ScalarCost) +
570             getScalarizationOverhead(VTy, Args, Tys, CostKind);
571         // FIXME: VF 2 for these FP operations are currently just as
572         // expensive as for VF 4.
573         if (VF == 2)
574           Cost *= 2;
575         return Cost;
576       }
577       case 64:
578       case 128:
579         return NumVectors;
580       default:
581         break;
582       }
583     }
584 
585     // There is no native support for FRem.
586     if (Opcode == Instruction::FRem) {
587       SmallVector<Type *> Tys(Args.size(), Ty);
588       InstructionCost Cost = (VF * LIBCALL_COST) +
589                              getScalarizationOverhead(VTy, Args, Tys, CostKind);
590       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
591       if (VF == 2 && ScalarBits == 32)
592         Cost *= 2;
593       return Cost;
594     }
595   }
596 
597   // Fallback to the default implementation.
598   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
599                                        Args, CxtI);
600 }
601 
602 InstructionCost SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
603                                                VectorType *Tp,
604                                                ArrayRef<int> Mask,
605                                                TTI::TargetCostKind CostKind,
606                                                int Index, VectorType *SubTp,
607                                                ArrayRef<const Value *> Args) {
608   Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
609   if (ST->hasVector()) {
610     unsigned NumVectors = getNumVectorRegs(Tp);
611 
612     // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
613 
614     // FP128 values are always in scalar registers, so there is no work
615     // involved with a shuffle, except for broadcast. In that case register
616     // moves are done with a single instruction per element.
617     if (Tp->getScalarType()->isFP128Ty())
618       return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
619 
620     switch (Kind) {
621     case  TargetTransformInfo::SK_ExtractSubvector:
622       // ExtractSubvector Index indicates start offset.
623 
624       // Extracting a subvector from first index is a noop.
625       return (Index == 0 ? 0 : NumVectors);
626 
627     case TargetTransformInfo::SK_Broadcast:
628       // Loop vectorizer calls here to figure out the extra cost of
629       // broadcasting a loaded value to all elements of a vector. Since vlrep
630       // loads and replicates with a single instruction, adjust the returned
631       // value.
632       return NumVectors - 1;
633 
634     default:
635 
636       // SystemZ supports single instruction permutation / replication.
637       return NumVectors;
638     }
639   }
640 
641   return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
642 }
643 
644 // Return the log2 difference of the element sizes of the two vector types.
645 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
646   unsigned Bits0 = Ty0->getScalarSizeInBits();
647   unsigned Bits1 = Ty1->getScalarSizeInBits();
648 
649   if (Bits1 >  Bits0)
650     return (Log2_32(Bits1) - Log2_32(Bits0));
651 
652   return (Log2_32(Bits0) - Log2_32(Bits1));
653 }
654 
655 // Return the number of instructions needed to truncate SrcTy to DstTy.
656 unsigned SystemZTTIImpl::
657 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
658   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
659   assert(SrcTy->getPrimitiveSizeInBits().getFixedValue() >
660              DstTy->getPrimitiveSizeInBits().getFixedValue() &&
661          "Packing must reduce size of vector type.");
662   assert(cast<FixedVectorType>(SrcTy)->getNumElements() ==
663              cast<FixedVectorType>(DstTy)->getNumElements() &&
664          "Packing should not change number of elements.");
665 
666   // TODO: Since fp32 is expanded, the extract cost should always be 0.
667 
668   unsigned NumParts = getNumVectorRegs(SrcTy);
669   if (NumParts <= 2)
670     // Up to 2 vector registers can be truncated efficiently with pack or
671     // permute. The latter requires an immediate mask to be loaded, which
672     // typically gets hoisted out of a loop.  TODO: return a good value for
673     // BB-VECTORIZER that includes the immediate loads, which we do not want
674     // to count for the loop vectorizer.
675     return 1;
676 
677   unsigned Cost = 0;
678   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
679   unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements();
680   for (unsigned P = 0; P < Log2Diff; ++P) {
681     if (NumParts > 1)
682       NumParts /= 2;
683     Cost += NumParts;
684   }
685 
686   // Currently, a general mix of permutes and pack instructions is output by
687   // isel, which follow the cost computation above except for this case which
688   // is one instruction less:
689   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
690       DstTy->getScalarSizeInBits() == 8)
691     Cost--;
692 
693   return Cost;
694 }
695 
696 // Return the cost of converting a vector bitmask produced by a compare
697 // (SrcTy), to the type of the select or extend instruction (DstTy).
698 unsigned SystemZTTIImpl::
699 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
700   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
701           "Should only be called with vector types.");
702 
703   unsigned PackCost = 0;
704   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
705   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
706   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
707   if (SrcScalarBits > DstScalarBits)
708     // The bitmask will be truncated.
709     PackCost = getVectorTruncCost(SrcTy, DstTy);
710   else if (SrcScalarBits < DstScalarBits) {
711     unsigned DstNumParts = getNumVectorRegs(DstTy);
712     // Each vector select needs its part of the bitmask unpacked.
713     PackCost = Log2Diff * DstNumParts;
714     // Extra cost for moving part of mask before unpacking.
715     PackCost += DstNumParts - 1;
716   }
717 
718   return PackCost;
719 }
720 
721 // Return the type of the compared operands. This is needed to compute the
722 // cost for a Select / ZExt or SExt instruction.
723 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
724   Type *OpTy = nullptr;
725   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
726     OpTy = CI->getOperand(0)->getType();
727   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
728     if (LogicI->getNumOperands() == 2)
729       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
730         if (isa<CmpInst>(LogicI->getOperand(1)))
731           OpTy = CI0->getOperand(0)->getType();
732 
733   if (OpTy != nullptr) {
734     if (VF == 1) {
735       assert (!OpTy->isVectorTy() && "Expected scalar type");
736       return OpTy;
737     }
738     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
739     // be either scalar or already vectorized with a same or lesser VF.
740     Type *ElTy = OpTy->getScalarType();
741     return FixedVectorType::get(ElTy, VF);
742   }
743 
744   return nullptr;
745 }
746 
747 // Get the cost of converting a boolean vector to a vector with same width
748 // and element size as Dst, plus the cost of zero extending if needed.
749 unsigned SystemZTTIImpl::
750 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
751                               const Instruction *I) {
752   auto *DstVTy = cast<FixedVectorType>(Dst);
753   unsigned VF = DstVTy->getNumElements();
754   unsigned Cost = 0;
755   // If we know what the widths of the compared operands, get any cost of
756   // converting it to match Dst. Otherwise assume same widths.
757   Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
758   if (CmpOpTy != nullptr)
759     Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
760   if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
761     // One 'vn' per dst vector with an immediate mask.
762     Cost += getNumVectorRegs(Dst);
763   return Cost;
764 }
765 
766 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
767                                                  Type *Src,
768                                                  TTI::CastContextHint CCH,
769                                                  TTI::TargetCostKind CostKind,
770                                                  const Instruction *I) {
771   // FIXME: Can the logic below also be used for these cost kinds?
772   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) {
773     auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
774     return BaseCost == 0 ? BaseCost : 1;
775   }
776 
777   unsigned DstScalarBits = Dst->getScalarSizeInBits();
778   unsigned SrcScalarBits = Src->getScalarSizeInBits();
779 
780   if (!Src->isVectorTy()) {
781     assert (!Dst->isVectorTy());
782 
783     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
784       if (Src->isIntegerTy(128))
785         return LIBCALL_COST;
786       if (SrcScalarBits >= 32 ||
787           (I != nullptr && isa<LoadInst>(I->getOperand(0))))
788         return 1;
789       return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
790     }
791 
792     if ((Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) &&
793         Dst->isIntegerTy(128))
794       return LIBCALL_COST;
795 
796     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt)) {
797       if (Src->isIntegerTy(1)) {
798         if (DstScalarBits == 128)
799           return 5 /*branch seq.*/;
800 
801         if (ST->hasLoadStoreOnCond2())
802           return 2; // li 0; loc 1
803 
804         // This should be extension of a compare i1 result, which is done with
805         // ipm and a varying sequence of instructions.
806         unsigned Cost = 0;
807         if (Opcode == Instruction::SExt)
808           Cost = (DstScalarBits < 64 ? 3 : 4);
809         if (Opcode == Instruction::ZExt)
810           Cost = 3;
811         Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
812         if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
813           // If operands of an fp-type was compared, this costs +1.
814           Cost++;
815         return Cost;
816       }
817       else if (isInt128InVR(Dst)) {
818         // Extensions from GPR to i128 (in VR) typically costs two instructions,
819         // but a zero-extending load would be just one extra instruction.
820         if (Opcode == Instruction::ZExt && I != nullptr)
821           if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
822             if (Ld->hasOneUse())
823               return 1;
824         return 2;
825       }
826     }
827 
828     if (Opcode == Instruction::Trunc && isInt128InVR(Src) && I != nullptr) {
829       if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
830         if (Ld->hasOneUse())
831           return 0;  // Will be converted to GPR load.
832       bool OnlyTruncatingStores = true;
833       for (const User *U : I->users())
834         if (!isa<StoreInst>(U)) {
835           OnlyTruncatingStores = false;
836           break;
837         }
838       if (OnlyTruncatingStores)
839         return 0;
840       return 2; // Vector element extraction.
841     }
842   }
843   else if (ST->hasVector()) {
844     // Vector to scalar cast.
845     auto *SrcVecTy = cast<FixedVectorType>(Src);
846     auto *DstVecTy = dyn_cast<FixedVectorType>(Dst);
847     if (!DstVecTy) {
848       // TODO: tune vector-to-scalar cast.
849       return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
850     }
851     unsigned VF = SrcVecTy->getNumElements();
852     unsigned NumDstVectors = getNumVectorRegs(Dst);
853     unsigned NumSrcVectors = getNumVectorRegs(Src);
854 
855     if (Opcode == Instruction::Trunc) {
856       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
857         return 0; // Check for NOOP conversions.
858       return getVectorTruncCost(Src, Dst);
859     }
860 
861     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
862       if (SrcScalarBits >= 8) {
863         // ZExt will use either a single unpack or a vector permute.
864         if (Opcode == Instruction::ZExt)
865           return NumDstVectors;
866 
867         // SExt will be handled with one unpack per doubling of width.
868         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
869 
870         // For types that spans multiple vector registers, some additional
871         // instructions are used to setup the unpacking.
872         unsigned NumSrcVectorOps =
873           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
874                           : (NumDstVectors / 2));
875 
876         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
877       }
878       else if (SrcScalarBits == 1)
879         return getBoolVecToIntConversionCost(Opcode, Dst, I);
880     }
881 
882     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
883         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
884       // TODO: Fix base implementation which could simplify things a bit here
885       // (seems to miss on differentiating on scalar/vector types).
886 
887       // Only 64 bit vector conversions are natively supported before z15.
888       if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
889         if (SrcScalarBits == DstScalarBits)
890           return NumDstVectors;
891 
892         if (SrcScalarBits == 1)
893           return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
894       }
895 
896       // Return the cost of multiple scalar invocation plus the cost of
897       // inserting and extracting the values. Base implementation does not
898       // realize float->int gets scalarized.
899       InstructionCost ScalarCost = getCastInstrCost(
900           Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind);
901       InstructionCost TotCost = VF * ScalarCost;
902       bool NeedsInserts = true, NeedsExtracts = true;
903       // FP128 registers do not get inserted or extracted.
904       if (DstScalarBits == 128 &&
905           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
906         NeedsInserts = false;
907       if (SrcScalarBits == 128 &&
908           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
909         NeedsExtracts = false;
910 
911       TotCost += getScalarizationOverhead(SrcVecTy, /*Insert*/ false,
912                                           NeedsExtracts, CostKind);
913       TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts,
914                                           /*Extract*/ false, CostKind);
915 
916       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
917       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
918         TotCost *= 2;
919 
920       return TotCost;
921     }
922 
923     if (Opcode == Instruction::FPTrunc) {
924       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
925         return VF /*ldxbr/lexbr*/ +
926                getScalarizationOverhead(DstVecTy, /*Insert*/ true,
927                                         /*Extract*/ false, CostKind);
928       else // double -> float
929         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
930     }
931 
932     if (Opcode == Instruction::FPExt) {
933       if (SrcScalarBits == 32 && DstScalarBits == 64) {
934         // float -> double is very rare and currently unoptimized. Instead of
935         // using vldeb, which can do two at a time, all conversions are
936         // scalarized.
937         return VF * 2;
938       }
939       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
940       return VF + getScalarizationOverhead(SrcVecTy, /*Insert*/ false,
941                                            /*Extract*/ true, CostKind);
942     }
943   }
944 
945   return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
946 }
947 
948 // Scalar i8 / i16 operations will typically be made after first extending
949 // the operands to i32.
950 static unsigned getOperandsExtensionCost(const Instruction *I) {
951   unsigned ExtCost = 0;
952   for (Value *Op : I->operands())
953     // A load of i8 or i16 sign/zero extends to i32.
954     if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
955       ExtCost++;
956 
957   return ExtCost;
958 }
959 
960 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
961                                                    Type *CondTy,
962                                                    CmpInst::Predicate VecPred,
963                                                    TTI::TargetCostKind CostKind,
964                                                    const Instruction *I) {
965   if (CostKind != TTI::TCK_RecipThroughput)
966     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
967 
968   if (!ValTy->isVectorTy()) {
969     switch (Opcode) {
970     case Instruction::ICmp: {
971       // A loaded value compared with 0 with multiple users becomes Load and
972       // Test. The load is then not foldable, so return 0 cost for the ICmp.
973       unsigned ScalarBits = ValTy->getScalarSizeInBits();
974       if (I != nullptr && (ScalarBits == 32 || ScalarBits == 64))
975         if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
976           if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
977             if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
978                 C->isZero())
979               return 0;
980 
981       unsigned Cost = 1;
982       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
983         Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
984       return Cost;
985     }
986     case Instruction::Select:
987       if (ValTy->isFloatingPointTy() || isInt128InVR(ValTy))
988         return 4; // No LOC for FP / i128 - costs a conditional jump.
989       return 1; // Load On Condition / Select Register.
990     }
991   }
992   else if (ST->hasVector()) {
993     unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements();
994 
995     // Called with a compare instruction.
996     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
997       unsigned PredicateExtraCost = 0;
998       if (I != nullptr) {
999         // Some predicates cost one or two extra instructions.
1000         switch (cast<CmpInst>(I)->getPredicate()) {
1001         case CmpInst::Predicate::ICMP_NE:
1002         case CmpInst::Predicate::ICMP_UGE:
1003         case CmpInst::Predicate::ICMP_ULE:
1004         case CmpInst::Predicate::ICMP_SGE:
1005         case CmpInst::Predicate::ICMP_SLE:
1006           PredicateExtraCost = 1;
1007           break;
1008         case CmpInst::Predicate::FCMP_ONE:
1009         case CmpInst::Predicate::FCMP_ORD:
1010         case CmpInst::Predicate::FCMP_UEQ:
1011         case CmpInst::Predicate::FCMP_UNO:
1012           PredicateExtraCost = 2;
1013           break;
1014         default:
1015           break;
1016         }
1017       }
1018 
1019       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
1020       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
1021       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
1022       unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
1023 
1024       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
1025       return Cost;
1026     }
1027     else { // Called with a select instruction.
1028       assert (Opcode == Instruction::Select);
1029 
1030       // We can figure out the extra cost of packing / unpacking if the
1031       // instruction was passed and the compare instruction is found.
1032       unsigned PackCost = 0;
1033       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
1034       if (CmpOpTy != nullptr)
1035         PackCost =
1036           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
1037 
1038       return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
1039     }
1040   }
1041 
1042   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
1043 }
1044 
1045 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1046                                                    TTI::TargetCostKind CostKind,
1047                                                    unsigned Index, Value *Op0,
1048                                                    Value *Op1) {
1049   // vlvgp will insert two grs into a vector register, so only count half the
1050   // number of instructions.
1051   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
1052     return ((Index % 2 == 0) ? 1 : 0);
1053 
1054   if (Opcode == Instruction::ExtractElement) {
1055     int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
1056 
1057     // Give a slight penalty for moving out of vector pipeline to FXU unit.
1058     if (Index == 0 && Val->isIntOrIntVectorTy())
1059       Cost += 1;
1060 
1061     return Cost;
1062   }
1063 
1064   return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
1065 }
1066 
1067 // Check if a load may be folded as a memory operand in its user.
1068 bool SystemZTTIImpl::
1069 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
1070   if (!Ld->hasOneUse())
1071     return false;
1072   FoldedValue = Ld;
1073   const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
1074   unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
1075   unsigned TruncBits = 0;
1076   unsigned SExtBits = 0;
1077   unsigned ZExtBits = 0;
1078   if (UserI->hasOneUse()) {
1079     unsigned UserBits = UserI->getType()->getScalarSizeInBits();
1080     if (isa<TruncInst>(UserI))
1081       TruncBits = UserBits;
1082     else if (isa<SExtInst>(UserI))
1083       SExtBits = UserBits;
1084     else if (isa<ZExtInst>(UserI))
1085       ZExtBits = UserBits;
1086   }
1087   if (TruncBits || SExtBits || ZExtBits) {
1088     FoldedValue = UserI;
1089     UserI = cast<Instruction>(*UserI->user_begin());
1090     // Load (single use) -> trunc/extend (single use) -> UserI
1091   }
1092   if ((UserI->getOpcode() == Instruction::Sub ||
1093        UserI->getOpcode() == Instruction::SDiv ||
1094        UserI->getOpcode() == Instruction::UDiv) &&
1095       UserI->getOperand(1) != FoldedValue)
1096     return false; // Not commutative, only RHS foldable.
1097   // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
1098   // extension was made of the load.
1099   unsigned LoadOrTruncBits =
1100       ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
1101   switch (UserI->getOpcode()) {
1102   case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
1103   case Instruction::Sub:
1104   case Instruction::ICmp:
1105     if (LoadedBits == 32 && ZExtBits == 64)
1106       return true;
1107     [[fallthrough]];
1108   case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
1109     if (UserI->getOpcode() != Instruction::ICmp) {
1110       if (LoadedBits == 16 &&
1111           (SExtBits == 32 ||
1112            (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
1113         return true;
1114       if (LoadOrTruncBits == 16)
1115         return true;
1116     }
1117     [[fallthrough]];
1118   case Instruction::SDiv:// SE: 32->64
1119     if (LoadedBits == 32 && SExtBits == 64)
1120       return true;
1121     [[fallthrough]];
1122   case Instruction::UDiv:
1123   case Instruction::And:
1124   case Instruction::Or:
1125   case Instruction::Xor:
1126     // This also makes sense for float operations, but disabled for now due
1127     // to regressions.
1128     // case Instruction::FCmp:
1129     // case Instruction::FAdd:
1130     // case Instruction::FSub:
1131     // case Instruction::FMul:
1132     // case Instruction::FDiv:
1133 
1134     // All possible extensions of memory checked above.
1135 
1136     // Comparison between memory and immediate.
1137     if (UserI->getOpcode() == Instruction::ICmp)
1138       if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
1139         if (CI->getValue().isIntN(16))
1140           return true;
1141     return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
1142     break;
1143   }
1144   return false;
1145 }
1146 
1147 static bool isBswapIntrinsicCall(const Value *V) {
1148   if (const Instruction *I = dyn_cast<Instruction>(V))
1149     if (auto *CI = dyn_cast<CallInst>(I))
1150       if (auto *F = CI->getCalledFunction())
1151         if (F->getIntrinsicID() == Intrinsic::bswap)
1152           return true;
1153   return false;
1154 }
1155 
1156 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1157                                                 MaybeAlign Alignment,
1158                                                 unsigned AddressSpace,
1159                                                 TTI::TargetCostKind CostKind,
1160                                                 TTI::OperandValueInfo OpInfo,
1161                                                 const Instruction *I) {
1162   assert(!Src->isVoidTy() && "Invalid type");
1163 
1164   // TODO: Handle other cost kinds.
1165   if (CostKind != TTI::TCK_RecipThroughput)
1166     return 1;
1167 
1168   if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
1169     // Store the load or its truncated or extended value in FoldedValue.
1170     const Instruction *FoldedValue = nullptr;
1171     if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
1172       const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
1173       assert (UserI->getNumOperands() == 2 && "Expected a binop.");
1174 
1175       // UserI can't fold two loads, so in that case return 0 cost only
1176       // half of the time.
1177       for (unsigned i = 0; i < 2; ++i) {
1178         if (UserI->getOperand(i) == FoldedValue)
1179           continue;
1180 
1181         if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
1182           LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
1183           if (!OtherLoad &&
1184               (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
1185                isa<ZExtInst>(OtherOp)))
1186             OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
1187           if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
1188             return i == 0; // Both operands foldable.
1189         }
1190       }
1191 
1192       return 0; // Only I is foldable in user.
1193     }
1194   }
1195 
1196   // Type legalization (via getNumberOfParts) can't handle structs
1197   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1198     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1199                                   CostKind);
1200 
1201   // FP128 is a legal type but kept in a register pair on older CPUs.
1202   if (Src->isFP128Ty() && !ST->hasVectorEnhancements1())
1203     return 2;
1204 
1205   unsigned NumOps =
1206     (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
1207 
1208   // Store/Load reversed saves one instruction.
1209   if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
1210       I != nullptr) {
1211     if (Opcode == Instruction::Load && I->hasOneUse()) {
1212       const Instruction *LdUser = cast<Instruction>(*I->user_begin());
1213       // In case of load -> bswap -> store, return normal cost for the load.
1214       if (isBswapIntrinsicCall(LdUser) &&
1215           (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
1216         return 0;
1217     }
1218     else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
1219       const Value *StoredVal = SI->getValueOperand();
1220       if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
1221         return 0;
1222     }
1223   }
1224 
1225   return  NumOps;
1226 }
1227 
1228 // The generic implementation of getInterleavedMemoryOpCost() is based on
1229 // adding costs of the memory operations plus all the extracts and inserts
1230 // needed for using / defining the vector operands. The SystemZ version does
1231 // roughly the same but bases the computations on vector permutations
1232 // instead.
1233 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost(
1234     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1235     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1236     bool UseMaskForCond, bool UseMaskForGaps) {
1237   if (UseMaskForCond || UseMaskForGaps)
1238     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1239                                              Alignment, AddressSpace, CostKind,
1240                                              UseMaskForCond, UseMaskForGaps);
1241   assert(isa<VectorType>(VecTy) &&
1242          "Expect a vector type for interleaved memory op");
1243 
1244   unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1245   assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1246   unsigned VF = NumElts / Factor;
1247   unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1248   unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1249   unsigned NumPermutes = 0;
1250 
1251   if (Opcode == Instruction::Load) {
1252     // Loading interleave groups may have gaps, which may mean fewer
1253     // loads. Find out how many vectors will be loaded in total, and in how
1254     // many of them each value will be in.
1255     BitVector UsedInsts(NumVectorMemOps, false);
1256     std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1257     for (unsigned Index : Indices)
1258       for (unsigned Elt = 0; Elt < VF; ++Elt) {
1259         unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1260         UsedInsts.set(Vec);
1261         ValueVecs[Index].set(Vec);
1262       }
1263     NumVectorMemOps = UsedInsts.count();
1264 
1265     for (unsigned Index : Indices) {
1266       // Estimate that each loaded source vector containing this Index
1267       // requires one operation, except that vperm can handle two input
1268       // registers first time for each dst vector.
1269       unsigned NumSrcVecs = ValueVecs[Index].count();
1270       unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U);
1271       assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1272       NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1273     }
1274   } else {
1275     // Estimate the permutes for each stored vector as the smaller of the
1276     // number of elements and the number of source vectors. Subtract one per
1277     // dst vector for vperm (S.A.).
1278     unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1279     unsigned NumDstVecs = NumVectorMemOps;
1280     NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1281   }
1282 
1283   // Cost of load/store operations and the permutations needed.
1284   return NumVectorMemOps + NumPermutes;
1285 }
1286 
1287 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
1288   if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
1289     return getNumVectorRegs(RetTy); // VPERM
1290   return -1;
1291 }
1292 
1293 InstructionCost
1294 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1295                                       TTI::TargetCostKind CostKind) {
1296   InstructionCost Cost =
1297       getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType());
1298   if (Cost != -1)
1299     return Cost;
1300   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1301 }
1302