xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a TargetTransformInfo analysis pass specific to the
10 // SystemZ target machine. It uses the target's detailed information to provide
11 // more precise answers to certain TTI queries, while letting the target
12 // independent and default TTI implementations handle the rest.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SystemZTargetTransformInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/BasicTTIImpl.h"
19 #include "llvm/CodeGen/CostTable.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/Debug.h"
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "systemztti"
26 
27 //===----------------------------------------------------------------------===//
28 //
29 // SystemZ cost model.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
34   assert(Ty->isIntegerTy());
35 
36   unsigned BitSize = Ty->getPrimitiveSizeInBits();
37   // There is no cost model for constants with a bit size of 0. Return TCC_Free
38   // here, so that constant hoisting will ignore this constant.
39   if (BitSize == 0)
40     return TTI::TCC_Free;
41   // No cost model for operations on integers larger than 64 bit implemented yet.
42   if (BitSize > 64)
43     return TTI::TCC_Free;
44 
45   if (Imm == 0)
46     return TTI::TCC_Free;
47 
48   if (Imm.getBitWidth() <= 64) {
49     // Constants loaded via lgfi.
50     if (isInt<32>(Imm.getSExtValue()))
51       return TTI::TCC_Basic;
52     // Constants loaded via llilf.
53     if (isUInt<32>(Imm.getZExtValue()))
54       return TTI::TCC_Basic;
55     // Constants loaded via llihf:
56     if ((Imm.getZExtValue() & 0xffffffff) == 0)
57       return TTI::TCC_Basic;
58 
59     return 2 * TTI::TCC_Basic;
60   }
61 
62   return 4 * TTI::TCC_Basic;
63 }
64 
65 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
66                                   const APInt &Imm, Type *Ty) {
67   assert(Ty->isIntegerTy());
68 
69   unsigned BitSize = Ty->getPrimitiveSizeInBits();
70   // There is no cost model for constants with a bit size of 0. Return TCC_Free
71   // here, so that constant hoisting will ignore this constant.
72   if (BitSize == 0)
73     return TTI::TCC_Free;
74   // No cost model for operations on integers larger than 64 bit implemented yet.
75   if (BitSize > 64)
76     return TTI::TCC_Free;
77 
78   switch (Opcode) {
79   default:
80     return TTI::TCC_Free;
81   case Instruction::GetElementPtr:
82     // Always hoist the base address of a GetElementPtr. This prevents the
83     // creation of new constants for every base constant that gets constant
84     // folded with the offset.
85     if (Idx == 0)
86       return 2 * TTI::TCC_Basic;
87     return TTI::TCC_Free;
88   case Instruction::Store:
89     if (Idx == 0 && Imm.getBitWidth() <= 64) {
90       // Any 8-bit immediate store can by implemented via mvi.
91       if (BitSize == 8)
92         return TTI::TCC_Free;
93       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
94       if (isInt<16>(Imm.getSExtValue()))
95         return TTI::TCC_Free;
96     }
97     break;
98   case Instruction::ICmp:
99     if (Idx == 1 && Imm.getBitWidth() <= 64) {
100       // Comparisons against signed 32-bit immediates implemented via cgfi.
101       if (isInt<32>(Imm.getSExtValue()))
102         return TTI::TCC_Free;
103       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
104       if (isUInt<32>(Imm.getZExtValue()))
105         return TTI::TCC_Free;
106     }
107     break;
108   case Instruction::Add:
109   case Instruction::Sub:
110     if (Idx == 1 && Imm.getBitWidth() <= 64) {
111       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
112       if (isUInt<32>(Imm.getZExtValue()))
113         return TTI::TCC_Free;
114       // Or their negation, by swapping addition vs. subtraction.
115       if (isUInt<32>(-Imm.getSExtValue()))
116         return TTI::TCC_Free;
117     }
118     break;
119   case Instruction::Mul:
120     if (Idx == 1 && Imm.getBitWidth() <= 64) {
121       // We use msgfi to multiply by 32-bit signed immediates.
122       if (isInt<32>(Imm.getSExtValue()))
123         return TTI::TCC_Free;
124     }
125     break;
126   case Instruction::Or:
127   case Instruction::Xor:
128     if (Idx == 1 && Imm.getBitWidth() <= 64) {
129       // Masks supported by oilf/xilf.
130       if (isUInt<32>(Imm.getZExtValue()))
131         return TTI::TCC_Free;
132       // Masks supported by oihf/xihf.
133       if ((Imm.getZExtValue() & 0xffffffff) == 0)
134         return TTI::TCC_Free;
135     }
136     break;
137   case Instruction::And:
138     if (Idx == 1 && Imm.getBitWidth() <= 64) {
139       // Any 32-bit AND operation can by implemented via nilf.
140       if (BitSize <= 32)
141         return TTI::TCC_Free;
142       // 64-bit masks supported by nilf.
143       if (isUInt<32>(~Imm.getZExtValue()))
144         return TTI::TCC_Free;
145       // 64-bit masks supported by nilh.
146       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
147         return TTI::TCC_Free;
148       // Some 64-bit AND operations can be implemented via risbg.
149       const SystemZInstrInfo *TII = ST->getInstrInfo();
150       unsigned Start, End;
151       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
152         return TTI::TCC_Free;
153     }
154     break;
155   case Instruction::Shl:
156   case Instruction::LShr:
157   case Instruction::AShr:
158     // Always return TCC_Free for the shift value of a shift instruction.
159     if (Idx == 1)
160       return TTI::TCC_Free;
161     break;
162   case Instruction::UDiv:
163   case Instruction::SDiv:
164   case Instruction::URem:
165   case Instruction::SRem:
166   case Instruction::Trunc:
167   case Instruction::ZExt:
168   case Instruction::SExt:
169   case Instruction::IntToPtr:
170   case Instruction::PtrToInt:
171   case Instruction::BitCast:
172   case Instruction::PHI:
173   case Instruction::Call:
174   case Instruction::Select:
175   case Instruction::Ret:
176   case Instruction::Load:
177     break;
178   }
179 
180   return SystemZTTIImpl::getIntImmCost(Imm, Ty);
181 }
182 
183 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
184                                   const APInt &Imm, Type *Ty) {
185   assert(Ty->isIntegerTy());
186 
187   unsigned BitSize = Ty->getPrimitiveSizeInBits();
188   // There is no cost model for constants with a bit size of 0. Return TCC_Free
189   // here, so that constant hoisting will ignore this constant.
190   if (BitSize == 0)
191     return TTI::TCC_Free;
192   // No cost model for operations on integers larger than 64 bit implemented yet.
193   if (BitSize > 64)
194     return TTI::TCC_Free;
195 
196   switch (IID) {
197   default:
198     return TTI::TCC_Free;
199   case Intrinsic::sadd_with_overflow:
200   case Intrinsic::uadd_with_overflow:
201   case Intrinsic::ssub_with_overflow:
202   case Intrinsic::usub_with_overflow:
203     // These get expanded to include a normal addition/subtraction.
204     if (Idx == 1 && Imm.getBitWidth() <= 64) {
205       if (isUInt<32>(Imm.getZExtValue()))
206         return TTI::TCC_Free;
207       if (isUInt<32>(-Imm.getSExtValue()))
208         return TTI::TCC_Free;
209     }
210     break;
211   case Intrinsic::smul_with_overflow:
212   case Intrinsic::umul_with_overflow:
213     // These get expanded to include a normal multiplication.
214     if (Idx == 1 && Imm.getBitWidth() <= 64) {
215       if (isInt<32>(Imm.getSExtValue()))
216         return TTI::TCC_Free;
217     }
218     break;
219   case Intrinsic::experimental_stackmap:
220     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
221       return TTI::TCC_Free;
222     break;
223   case Intrinsic::experimental_patchpoint_void:
224   case Intrinsic::experimental_patchpoint_i64:
225     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
226       return TTI::TCC_Free;
227     break;
228   }
229   return SystemZTTIImpl::getIntImmCost(Imm, Ty);
230 }
231 
232 TargetTransformInfo::PopcntSupportKind
233 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
234   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
235   if (ST->hasPopulationCount() && TyWidth <= 64)
236     return TTI::PSK_FastHardware;
237   return TTI::PSK_Software;
238 }
239 
240 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
241                                              TTI::UnrollingPreferences &UP) {
242   // Find out if L contains a call, what the machine instruction count
243   // estimate is, and how many stores there are.
244   bool HasCall = false;
245   unsigned NumStores = 0;
246   for (auto &BB : L->blocks())
247     for (auto &I : *BB) {
248       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
249         ImmutableCallSite CS(&I);
250         if (const Function *F = CS.getCalledFunction()) {
251           if (isLoweredToCall(F))
252             HasCall = true;
253           if (F->getIntrinsicID() == Intrinsic::memcpy ||
254               F->getIntrinsicID() == Intrinsic::memset)
255             NumStores++;
256         } else { // indirect call.
257           HasCall = true;
258         }
259       }
260       if (isa<StoreInst>(&I)) {
261         Type *MemAccessTy = I.getOperand(0)->getType();
262         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
263       }
264     }
265 
266   // The z13 processor will run out of store tags if too many stores
267   // are fed into it too quickly. Therefore make sure there are not
268   // too many stores in the resulting unrolled loop.
269   unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
270 
271   if (HasCall) {
272     // Only allow full unrolling if loop has any calls.
273     UP.FullUnrollMaxCount = Max;
274     UP.MaxCount = 1;
275     return;
276   }
277 
278   UP.MaxCount = Max;
279   if (UP.MaxCount <= 1)
280     return;
281 
282   // Allow partial and runtime trip count unrolling.
283   UP.Partial = UP.Runtime = true;
284 
285   UP.PartialThreshold = 75;
286   UP.DefaultUnrollRuntimeCount = 4;
287 
288   // Allow expensive instructions in the pre-header of the loop.
289   UP.AllowExpensiveTripCount = true;
290 
291   UP.Force = true;
292 }
293 
294 
295 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
296                                    TargetTransformInfo::LSRCost &C2) {
297   // SystemZ specific: check instruction count (first), and don't care about
298   // ImmCost, since offsets are checked explicitly.
299   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
300                   C1.NumIVMuls, C1.NumBaseAdds,
301                   C1.ScaleCost, C1.SetupCost) <
302     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
303              C2.NumIVMuls, C2.NumBaseAdds,
304              C2.ScaleCost, C2.SetupCost);
305 }
306 
307 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
308   bool Vector = (ClassID == 1);
309   if (!Vector)
310     // Discount the stack pointer.  Also leave out %r0, since it can't
311     // be used in an address.
312     return 14;
313   if (ST->hasVector())
314     return 32;
315   return 0;
316 }
317 
318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
319   if (!Vector)
320     return 64;
321   if (ST->hasVector())
322     return 128;
323   return 0;
324 }
325 
326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
327   EVT VT = TLI->getValueType(DL, DataType);
328   return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
329 }
330 
331 // Return the bit size for the scalar type or vector element
332 // type. getScalarSizeInBits() returns 0 for a pointer type.
333 static unsigned getScalarSizeInBits(Type *Ty) {
334   unsigned Size =
335     (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
336   assert(Size > 0 && "Element must have non-zero size.");
337   return Size;
338 }
339 
340 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
341 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
342 // 3.
343 static unsigned getNumVectorRegs(Type *Ty) {
344   assert(Ty->isVectorTy() && "Expected vector type");
345   unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements();
346   assert(WideBits > 0 && "Could not compute size of vector");
347   return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
348 }
349 
350 int SystemZTTIImpl::getArithmeticInstrCost(
351     unsigned Opcode, Type *Ty,
352     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
353     TTI::OperandValueProperties Opd1PropInfo,
354     TTI::OperandValueProperties Opd2PropInfo,
355     ArrayRef<const Value *> Args) {
356 
357   // TODO: return a good value for BB-VECTORIZER that includes the
358   // immediate loads, which we do not want to count for the loop
359   // vectorizer, since they are hopefully hoisted out of the loop. This
360   // would require a new parameter 'InLoop', but not sure if constant
361   // args are common enough to motivate this.
362 
363   unsigned ScalarBits = Ty->getScalarSizeInBits();
364 
365   // There are thre cases of division and remainder: Dividing with a register
366   // needs a divide instruction. A divisor which is a power of two constant
367   // can be implemented with a sequence of shifts. Any other constant needs a
368   // multiply and shifts.
369   const unsigned DivInstrCost = 20;
370   const unsigned DivMulSeqCost = 10;
371   const unsigned SDivPow2Cost = 4;
372 
373   bool SignedDivRem =
374       Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
375   bool UnsignedDivRem =
376       Opcode == Instruction::UDiv || Opcode == Instruction::URem;
377 
378   // Check for a constant divisor.
379   bool DivRemConst = false;
380   bool DivRemConstPow2 = false;
381   if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
382     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
383       const ConstantInt *CVal =
384           (C->getType()->isVectorTy()
385                ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
386                : dyn_cast<const ConstantInt>(C));
387       if (CVal != nullptr &&
388           (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2()))
389         DivRemConstPow2 = true;
390       else
391         DivRemConst = true;
392     }
393   }
394 
395   if (Ty->isVectorTy()) {
396     assert(ST->hasVector() &&
397            "getArithmeticInstrCost() called with vector type.");
398     unsigned VF = Ty->getVectorNumElements();
399     unsigned NumVectors = getNumVectorRegs(Ty);
400 
401     // These vector operations are custom handled, but are still supported
402     // with one instruction per vector, regardless of element size.
403     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
404         Opcode == Instruction::AShr) {
405       return NumVectors;
406     }
407 
408     if (DivRemConstPow2)
409       return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
410     if (DivRemConst)
411       return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args);
412     if ((SignedDivRem || UnsignedDivRem) && VF > 4)
413       // Temporary hack: disable high vectorization factors with integer
414       // division/remainder, which will get scalarized and handled with
415       // GR128 registers. The mischeduler is not clever enough to avoid
416       // spilling yet.
417       return 1000;
418 
419     // These FP operations are supported with a single vector instruction for
420     // double (base implementation assumes float generally costs 2). For
421     // FP128, the scalar cost is 1, and there is no overhead since the values
422     // are already in scalar registers.
423     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
424         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
425       switch (ScalarBits) {
426       case 32: {
427         // The vector enhancements facility 1 provides v4f32 instructions.
428         if (ST->hasVectorEnhancements1())
429           return NumVectors;
430         // Return the cost of multiple scalar invocation plus the cost of
431         // inserting and extracting the values.
432         unsigned ScalarCost =
433             getArithmeticInstrCost(Opcode, Ty->getScalarType());
434         unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
435         // FIXME: VF 2 for these FP operations are currently just as
436         // expensive as for VF 4.
437         if (VF == 2)
438           Cost *= 2;
439         return Cost;
440       }
441       case 64:
442       case 128:
443         return NumVectors;
444       default:
445         break;
446       }
447     }
448 
449     // There is no native support for FRem.
450     if (Opcode == Instruction::FRem) {
451       unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
452       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
453       if (VF == 2 && ScalarBits == 32)
454         Cost *= 2;
455       return Cost;
456     }
457   }
458   else {  // Scalar:
459     // These FP operations are supported with a dedicated instruction for
460     // float, double and fp128 (base implementation assumes float generally
461     // costs 2).
462     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
463         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
464       return 1;
465 
466     // There is no native support for FRem.
467     if (Opcode == Instruction::FRem)
468       return LIBCALL_COST;
469 
470     // Give discount for some combined logical operations if supported.
471     if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) {
472       if (Opcode == Instruction::Xor) {
473         for (const Value *A : Args) {
474           if (const Instruction *I = dyn_cast<Instruction>(A))
475             if (I->hasOneUse() &&
476                 (I->getOpcode() == Instruction::And ||
477                  I->getOpcode() == Instruction::Or ||
478                  I->getOpcode() == Instruction::Xor))
479               return 0;
480         }
481       }
482       else if (Opcode == Instruction::Or || Opcode == Instruction::And) {
483         for (const Value *A : Args) {
484           if (const Instruction *I = dyn_cast<Instruction>(A))
485             if (I->hasOneUse() && I->getOpcode() == Instruction::Xor)
486               return 0;
487         }
488       }
489     }
490 
491     // Or requires one instruction, although it has custom handling for i64.
492     if (Opcode == Instruction::Or)
493       return 1;
494 
495     if (Opcode == Instruction::Xor && ScalarBits == 1) {
496       if (ST->hasLoadStoreOnCond2())
497         return 5; // 2 * (li 0; loc 1); xor
498       return 7; // 2 * ipm sequences ; xor ; shift ; compare
499     }
500 
501     if (DivRemConstPow2)
502       return (SignedDivRem ? SDivPow2Cost : 1);
503     if (DivRemConst)
504       return DivMulSeqCost;
505     if (SignedDivRem || UnsignedDivRem)
506       return DivInstrCost;
507   }
508 
509   // Fallback to the default implementation.
510   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
511                                        Opd1PropInfo, Opd2PropInfo, Args);
512 }
513 
514 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
515                                    Type *SubTp) {
516   assert (Tp->isVectorTy());
517   assert (ST->hasVector() && "getShuffleCost() called.");
518   unsigned NumVectors = getNumVectorRegs(Tp);
519 
520   // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
521 
522   // FP128 values are always in scalar registers, so there is no work
523   // involved with a shuffle, except for broadcast. In that case register
524   // moves are done with a single instruction per element.
525   if (Tp->getScalarType()->isFP128Ty())
526     return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
527 
528   switch (Kind) {
529   case  TargetTransformInfo::SK_ExtractSubvector:
530     // ExtractSubvector Index indicates start offset.
531 
532     // Extracting a subvector from first index is a noop.
533     return (Index == 0 ? 0 : NumVectors);
534 
535   case TargetTransformInfo::SK_Broadcast:
536     // Loop vectorizer calls here to figure out the extra cost of
537     // broadcasting a loaded value to all elements of a vector. Since vlrep
538     // loads and replicates with a single instruction, adjust the returned
539     // value.
540     return NumVectors - 1;
541 
542   default:
543 
544     // SystemZ supports single instruction permutation / replication.
545     return NumVectors;
546   }
547 
548   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
549 }
550 
551 // Return the log2 difference of the element sizes of the two vector types.
552 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
553   unsigned Bits0 = Ty0->getScalarSizeInBits();
554   unsigned Bits1 = Ty1->getScalarSizeInBits();
555 
556   if (Bits1 >  Bits0)
557     return (Log2_32(Bits1) - Log2_32(Bits0));
558 
559   return (Log2_32(Bits0) - Log2_32(Bits1));
560 }
561 
562 // Return the number of instructions needed to truncate SrcTy to DstTy.
563 unsigned SystemZTTIImpl::
564 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
565   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
566   assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
567           "Packing must reduce size of vector type.");
568   assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
569           "Packing should not change number of elements.");
570 
571   // TODO: Since fp32 is expanded, the extract cost should always be 0.
572 
573   unsigned NumParts = getNumVectorRegs(SrcTy);
574   if (NumParts <= 2)
575     // Up to 2 vector registers can be truncated efficiently with pack or
576     // permute. The latter requires an immediate mask to be loaded, which
577     // typically gets hoisted out of a loop.  TODO: return a good value for
578     // BB-VECTORIZER that includes the immediate loads, which we do not want
579     // to count for the loop vectorizer.
580     return 1;
581 
582   unsigned Cost = 0;
583   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
584   unsigned VF = SrcTy->getVectorNumElements();
585   for (unsigned P = 0; P < Log2Diff; ++P) {
586     if (NumParts > 1)
587       NumParts /= 2;
588     Cost += NumParts;
589   }
590 
591   // Currently, a general mix of permutes and pack instructions is output by
592   // isel, which follow the cost computation above except for this case which
593   // is one instruction less:
594   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
595       DstTy->getScalarSizeInBits() == 8)
596     Cost--;
597 
598   return Cost;
599 }
600 
601 // Return the cost of converting a vector bitmask produced by a compare
602 // (SrcTy), to the type of the select or extend instruction (DstTy).
603 unsigned SystemZTTIImpl::
604 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
605   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
606           "Should only be called with vector types.");
607 
608   unsigned PackCost = 0;
609   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
610   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
611   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
612   if (SrcScalarBits > DstScalarBits)
613     // The bitmask will be truncated.
614     PackCost = getVectorTruncCost(SrcTy, DstTy);
615   else if (SrcScalarBits < DstScalarBits) {
616     unsigned DstNumParts = getNumVectorRegs(DstTy);
617     // Each vector select needs its part of the bitmask unpacked.
618     PackCost = Log2Diff * DstNumParts;
619     // Extra cost for moving part of mask before unpacking.
620     PackCost += DstNumParts - 1;
621   }
622 
623   return PackCost;
624 }
625 
626 // Return the type of the compared operands. This is needed to compute the
627 // cost for a Select / ZExt or SExt instruction.
628 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
629   Type *OpTy = nullptr;
630   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
631     OpTy = CI->getOperand(0)->getType();
632   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
633     if (LogicI->getNumOperands() == 2)
634       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
635         if (isa<CmpInst>(LogicI->getOperand(1)))
636           OpTy = CI0->getOperand(0)->getType();
637 
638   if (OpTy != nullptr) {
639     if (VF == 1) {
640       assert (!OpTy->isVectorTy() && "Expected scalar type");
641       return OpTy;
642     }
643     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
644     // be either scalar or already vectorized with a same or lesser VF.
645     Type *ElTy = OpTy->getScalarType();
646     return VectorType::get(ElTy, VF);
647   }
648 
649   return nullptr;
650 }
651 
652 // Get the cost of converting a boolean vector to a vector with same width
653 // and element size as Dst, plus the cost of zero extending if needed.
654 unsigned SystemZTTIImpl::
655 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
656                               const Instruction *I) {
657   assert (Dst->isVectorTy());
658   unsigned VF = Dst->getVectorNumElements();
659   unsigned Cost = 0;
660   // If we know what the widths of the compared operands, get any cost of
661   // converting it to match Dst. Otherwise assume same widths.
662   Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
663   if (CmpOpTy != nullptr)
664     Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
665   if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
666     // One 'vn' per dst vector with an immediate mask.
667     Cost += getNumVectorRegs(Dst);
668   return Cost;
669 }
670 
671 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
672                                      const Instruction *I) {
673   unsigned DstScalarBits = Dst->getScalarSizeInBits();
674   unsigned SrcScalarBits = Src->getScalarSizeInBits();
675 
676   if (Src->isVectorTy()) {
677     assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
678     assert (Dst->isVectorTy());
679     unsigned VF = Src->getVectorNumElements();
680     unsigned NumDstVectors = getNumVectorRegs(Dst);
681     unsigned NumSrcVectors = getNumVectorRegs(Src);
682 
683     if (Opcode == Instruction::Trunc) {
684       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
685         return 0; // Check for NOOP conversions.
686       return getVectorTruncCost(Src, Dst);
687     }
688 
689     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
690       if (SrcScalarBits >= 8) {
691         // ZExt/SExt will be handled with one unpack per doubling of width.
692         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
693 
694         // For types that spans multiple vector registers, some additional
695         // instructions are used to setup the unpacking.
696         unsigned NumSrcVectorOps =
697           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
698                           : (NumDstVectors / 2));
699 
700         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
701       }
702       else if (SrcScalarBits == 1)
703         return getBoolVecToIntConversionCost(Opcode, Dst, I);
704     }
705 
706     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
707         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
708       // TODO: Fix base implementation which could simplify things a bit here
709       // (seems to miss on differentiating on scalar/vector types).
710 
711       // Only 64 bit vector conversions are natively supported before z15.
712       if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
713         if (SrcScalarBits == DstScalarBits)
714           return NumDstVectors;
715 
716         if (SrcScalarBits == 1)
717           return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
718       }
719 
720       // Return the cost of multiple scalar invocation plus the cost of
721       // inserting and extracting the values. Base implementation does not
722       // realize float->int gets scalarized.
723       unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
724                                              Src->getScalarType());
725       unsigned TotCost = VF * ScalarCost;
726       bool NeedsInserts = true, NeedsExtracts = true;
727       // FP128 registers do not get inserted or extracted.
728       if (DstScalarBits == 128 &&
729           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
730         NeedsInserts = false;
731       if (SrcScalarBits == 128 &&
732           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
733         NeedsExtracts = false;
734 
735       TotCost += getScalarizationOverhead(Src, false, NeedsExtracts);
736       TotCost += getScalarizationOverhead(Dst, NeedsInserts, false);
737 
738       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
739       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
740         TotCost *= 2;
741 
742       return TotCost;
743     }
744 
745     if (Opcode == Instruction::FPTrunc) {
746       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
747         return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
748       else // double -> float
749         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
750     }
751 
752     if (Opcode == Instruction::FPExt) {
753       if (SrcScalarBits == 32 && DstScalarBits == 64) {
754         // float -> double is very rare and currently unoptimized. Instead of
755         // using vldeb, which can do two at a time, all conversions are
756         // scalarized.
757         return VF * 2;
758       }
759       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
760       return VF + getScalarizationOverhead(Src, false, true);
761     }
762   }
763   else { // Scalar
764     assert (!Dst->isVectorTy());
765 
766     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
767       if (SrcScalarBits >= 32 ||
768           (I != nullptr && isa<LoadInst>(I->getOperand(0))))
769         return 1;
770       return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
771     }
772 
773     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
774         Src->isIntegerTy(1)) {
775       if (ST->hasLoadStoreOnCond2())
776         return 2; // li 0; loc 1
777 
778       // This should be extension of a compare i1 result, which is done with
779       // ipm and a varying sequence of instructions.
780       unsigned Cost = 0;
781       if (Opcode == Instruction::SExt)
782         Cost = (DstScalarBits < 64 ? 3 : 4);
783       if (Opcode == Instruction::ZExt)
784         Cost = 3;
785       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
786       if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
787         // If operands of an fp-type was compared, this costs +1.
788         Cost++;
789       return Cost;
790     }
791   }
792 
793   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
794 }
795 
796 // Scalar i8 / i16 operations will typically be made after first extending
797 // the operands to i32.
798 static unsigned getOperandsExtensionCost(const Instruction *I) {
799   unsigned ExtCost = 0;
800   for (Value *Op : I->operands())
801     // A load of i8 or i16 sign/zero extends to i32.
802     if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
803       ExtCost++;
804 
805   return ExtCost;
806 }
807 
808 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
809                                        Type *CondTy, const Instruction *I) {
810   if (ValTy->isVectorTy()) {
811     assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
812     unsigned VF = ValTy->getVectorNumElements();
813 
814     // Called with a compare instruction.
815     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
816       unsigned PredicateExtraCost = 0;
817       if (I != nullptr) {
818         // Some predicates cost one or two extra instructions.
819         switch (cast<CmpInst>(I)->getPredicate()) {
820         case CmpInst::Predicate::ICMP_NE:
821         case CmpInst::Predicate::ICMP_UGE:
822         case CmpInst::Predicate::ICMP_ULE:
823         case CmpInst::Predicate::ICMP_SGE:
824         case CmpInst::Predicate::ICMP_SLE:
825           PredicateExtraCost = 1;
826           break;
827         case CmpInst::Predicate::FCMP_ONE:
828         case CmpInst::Predicate::FCMP_ORD:
829         case CmpInst::Predicate::FCMP_UEQ:
830         case CmpInst::Predicate::FCMP_UNO:
831           PredicateExtraCost = 2;
832           break;
833         default:
834           break;
835         }
836       }
837 
838       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
839       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
840       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
841       unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
842 
843       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
844       return Cost;
845     }
846     else { // Called with a select instruction.
847       assert (Opcode == Instruction::Select);
848 
849       // We can figure out the extra cost of packing / unpacking if the
850       // instruction was passed and the compare instruction is found.
851       unsigned PackCost = 0;
852       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
853       if (CmpOpTy != nullptr)
854         PackCost =
855           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
856 
857       return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
858     }
859   }
860   else { // Scalar
861     switch (Opcode) {
862     case Instruction::ICmp: {
863       // A loaded value compared with 0 with multiple users becomes Load and
864       // Test. The load is then not foldable, so return 0 cost for the ICmp.
865       unsigned ScalarBits = ValTy->getScalarSizeInBits();
866       if (I != nullptr && ScalarBits >= 32)
867         if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
868           if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
869             if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
870                 C->getZExtValue() == 0)
871               return 0;
872 
873       unsigned Cost = 1;
874       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
875         Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
876       return Cost;
877     }
878     case Instruction::Select:
879       if (ValTy->isFloatingPointTy())
880         return 4; // No load on condition for FP - costs a conditional jump.
881       return 1; // Load On Condition / Select Register.
882     }
883   }
884 
885   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
886 }
887 
888 int SystemZTTIImpl::
889 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
890   // vlvgp will insert two grs into a vector register, so only count half the
891   // number of instructions.
892   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
893     return ((Index % 2 == 0) ? 1 : 0);
894 
895   if (Opcode == Instruction::ExtractElement) {
896     int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
897 
898     // Give a slight penalty for moving out of vector pipeline to FXU unit.
899     if (Index == 0 && Val->isIntOrIntVectorTy())
900       Cost += 1;
901 
902     return Cost;
903   }
904 
905   return BaseT::getVectorInstrCost(Opcode, Val, Index);
906 }
907 
908 // Check if a load may be folded as a memory operand in its user.
909 bool SystemZTTIImpl::
910 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
911   if (!Ld->hasOneUse())
912     return false;
913   FoldedValue = Ld;
914   const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
915   unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
916   unsigned TruncBits = 0;
917   unsigned SExtBits = 0;
918   unsigned ZExtBits = 0;
919   if (UserI->hasOneUse()) {
920     unsigned UserBits = UserI->getType()->getScalarSizeInBits();
921     if (isa<TruncInst>(UserI))
922       TruncBits = UserBits;
923     else if (isa<SExtInst>(UserI))
924       SExtBits = UserBits;
925     else if (isa<ZExtInst>(UserI))
926       ZExtBits = UserBits;
927   }
928   if (TruncBits || SExtBits || ZExtBits) {
929     FoldedValue = UserI;
930     UserI = cast<Instruction>(*UserI->user_begin());
931     // Load (single use) -> trunc/extend (single use) -> UserI
932   }
933   if ((UserI->getOpcode() == Instruction::Sub ||
934        UserI->getOpcode() == Instruction::SDiv ||
935        UserI->getOpcode() == Instruction::UDiv) &&
936       UserI->getOperand(1) != FoldedValue)
937     return false; // Not commutative, only RHS foldable.
938   // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
939   // extension was made of the load.
940   unsigned LoadOrTruncBits =
941       ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
942   switch (UserI->getOpcode()) {
943   case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
944   case Instruction::Sub:
945   case Instruction::ICmp:
946     if (LoadedBits == 32 && ZExtBits == 64)
947       return true;
948     LLVM_FALLTHROUGH;
949   case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
950     if (UserI->getOpcode() != Instruction::ICmp) {
951       if (LoadedBits == 16 &&
952           (SExtBits == 32 ||
953            (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
954         return true;
955       if (LoadOrTruncBits == 16)
956         return true;
957     }
958     LLVM_FALLTHROUGH;
959   case Instruction::SDiv:// SE: 32->64
960     if (LoadedBits == 32 && SExtBits == 64)
961       return true;
962     LLVM_FALLTHROUGH;
963   case Instruction::UDiv:
964   case Instruction::And:
965   case Instruction::Or:
966   case Instruction::Xor:
967     // This also makes sense for float operations, but disabled for now due
968     // to regressions.
969     // case Instruction::FCmp:
970     // case Instruction::FAdd:
971     // case Instruction::FSub:
972     // case Instruction::FMul:
973     // case Instruction::FDiv:
974 
975     // All possible extensions of memory checked above.
976 
977     // Comparison between memory and immediate.
978     if (UserI->getOpcode() == Instruction::ICmp)
979       if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
980         if (isUInt<16>(CI->getZExtValue()))
981           return true;
982     return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
983     break;
984   }
985   return false;
986 }
987 
988 static bool isBswapIntrinsicCall(const Value *V) {
989   if (const Instruction *I = dyn_cast<Instruction>(V))
990     if (auto *CI = dyn_cast<CallInst>(I))
991       if (auto *F = CI->getCalledFunction())
992         if (F->getIntrinsicID() == Intrinsic::bswap)
993           return true;
994   return false;
995 }
996 
997 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
998                                     unsigned Alignment, unsigned AddressSpace,
999                                     const Instruction *I) {
1000   assert(!Src->isVoidTy() && "Invalid type");
1001 
1002   if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
1003     // Store the load or its truncated or extended value in FoldedValue.
1004     const Instruction *FoldedValue = nullptr;
1005     if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
1006       const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
1007       assert (UserI->getNumOperands() == 2 && "Expected a binop.");
1008 
1009       // UserI can't fold two loads, so in that case return 0 cost only
1010       // half of the time.
1011       for (unsigned i = 0; i < 2; ++i) {
1012         if (UserI->getOperand(i) == FoldedValue)
1013           continue;
1014 
1015         if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
1016           LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
1017           if (!OtherLoad &&
1018               (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
1019                isa<ZExtInst>(OtherOp)))
1020             OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
1021           if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
1022             return i == 0; // Both operands foldable.
1023         }
1024       }
1025 
1026       return 0; // Only I is foldable in user.
1027     }
1028   }
1029 
1030   unsigned NumOps =
1031     (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
1032 
1033   // Store/Load reversed saves one instruction.
1034   if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
1035       I != nullptr) {
1036     if (Opcode == Instruction::Load && I->hasOneUse()) {
1037       const Instruction *LdUser = cast<Instruction>(*I->user_begin());
1038       // In case of load -> bswap -> store, return normal cost for the load.
1039       if (isBswapIntrinsicCall(LdUser) &&
1040           (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
1041         return 0;
1042     }
1043     else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
1044       const Value *StoredVal = SI->getValueOperand();
1045       if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
1046         return 0;
1047     }
1048   }
1049 
1050   if (Src->getScalarSizeInBits() == 128)
1051     // 128 bit scalars are held in a pair of two 64 bit registers.
1052     NumOps *= 2;
1053 
1054   return  NumOps;
1055 }
1056 
1057 // The generic implementation of getInterleavedMemoryOpCost() is based on
1058 // adding costs of the memory operations plus all the extracts and inserts
1059 // needed for using / defining the vector operands. The SystemZ version does
1060 // roughly the same but bases the computations on vector permutations
1061 // instead.
1062 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
1063                                                unsigned Factor,
1064                                                ArrayRef<unsigned> Indices,
1065                                                unsigned Alignment,
1066                                                unsigned AddressSpace,
1067                                                bool UseMaskForCond,
1068                                                bool UseMaskForGaps) {
1069   if (UseMaskForCond || UseMaskForGaps)
1070     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1071                                              Alignment, AddressSpace,
1072                                              UseMaskForCond, UseMaskForGaps);
1073   assert(isa<VectorType>(VecTy) &&
1074          "Expect a vector type for interleaved memory op");
1075 
1076   // Return the ceiling of dividing A by B.
1077   auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
1078 
1079   unsigned NumElts = VecTy->getVectorNumElements();
1080   assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1081   unsigned VF = NumElts / Factor;
1082   unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1083   unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1084   unsigned NumPermutes = 0;
1085 
1086   if (Opcode == Instruction::Load) {
1087     // Loading interleave groups may have gaps, which may mean fewer
1088     // loads. Find out how many vectors will be loaded in total, and in how
1089     // many of them each value will be in.
1090     BitVector UsedInsts(NumVectorMemOps, false);
1091     std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1092     for (unsigned Index : Indices)
1093       for (unsigned Elt = 0; Elt < VF; ++Elt) {
1094         unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1095         UsedInsts.set(Vec);
1096         ValueVecs[Index].set(Vec);
1097       }
1098     NumVectorMemOps = UsedInsts.count();
1099 
1100     for (unsigned Index : Indices) {
1101       // Estimate that each loaded source vector containing this Index
1102       // requires one operation, except that vperm can handle two input
1103       // registers first time for each dst vector.
1104       unsigned NumSrcVecs = ValueVecs[Index].count();
1105       unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U);
1106       assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1107       NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1108     }
1109   } else {
1110     // Estimate the permutes for each stored vector as the smaller of the
1111     // number of elements and the number of source vectors. Subtract one per
1112     // dst vector for vperm (S.A.).
1113     unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1114     unsigned NumDstVecs = NumVectorMemOps;
1115     assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
1116     NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1117   }
1118 
1119   // Cost of load/store operations and the permutations needed.
1120   return NumVectorMemOps + NumPermutes;
1121 }
1122 
1123 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
1124   if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
1125     return getNumVectorRegs(RetTy); // VPERM
1126   return -1;
1127 }
1128 
1129 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1130                                           ArrayRef<Value *> Args,
1131                                           FastMathFlags FMF, unsigned VF) {
1132   int Cost = getVectorIntrinsicInstrCost(ID, RetTy);
1133   if (Cost != -1)
1134     return Cost;
1135   return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
1136 }
1137 
1138 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1139                                           ArrayRef<Type *> Tys,
1140                                           FastMathFlags FMF,
1141                                           unsigned ScalarizationCostPassed) {
1142   int Cost = getVectorIntrinsicInstrCost(ID, RetTy);
1143   if (Cost != -1)
1144     return Cost;
1145   return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys,
1146                                       FMF, ScalarizationCostPassed);
1147 }
1148