1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 34 assert(Ty->isIntegerTy()); 35 36 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 37 // There is no cost model for constants with a bit size of 0. Return TCC_Free 38 // here, so that constant hoisting will ignore this constant. 39 if (BitSize == 0) 40 return TTI::TCC_Free; 41 // No cost model for operations on integers larger than 64 bit implemented yet. 42 if (BitSize > 64) 43 return TTI::TCC_Free; 44 45 if (Imm == 0) 46 return TTI::TCC_Free; 47 48 if (Imm.getBitWidth() <= 64) { 49 // Constants loaded via lgfi. 50 if (isInt<32>(Imm.getSExtValue())) 51 return TTI::TCC_Basic; 52 // Constants loaded via llilf. 53 if (isUInt<32>(Imm.getZExtValue())) 54 return TTI::TCC_Basic; 55 // Constants loaded via llihf: 56 if ((Imm.getZExtValue() & 0xffffffff) == 0) 57 return TTI::TCC_Basic; 58 59 return 2 * TTI::TCC_Basic; 60 } 61 62 return 4 * TTI::TCC_Basic; 63 } 64 65 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 66 const APInt &Imm, Type *Ty) { 67 assert(Ty->isIntegerTy()); 68 69 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 70 // There is no cost model for constants with a bit size of 0. Return TCC_Free 71 // here, so that constant hoisting will ignore this constant. 72 if (BitSize == 0) 73 return TTI::TCC_Free; 74 // No cost model for operations on integers larger than 64 bit implemented yet. 75 if (BitSize > 64) 76 return TTI::TCC_Free; 77 78 switch (Opcode) { 79 default: 80 return TTI::TCC_Free; 81 case Instruction::GetElementPtr: 82 // Always hoist the base address of a GetElementPtr. This prevents the 83 // creation of new constants for every base constant that gets constant 84 // folded with the offset. 85 if (Idx == 0) 86 return 2 * TTI::TCC_Basic; 87 return TTI::TCC_Free; 88 case Instruction::Store: 89 if (Idx == 0 && Imm.getBitWidth() <= 64) { 90 // Any 8-bit immediate store can by implemented via mvi. 91 if (BitSize == 8) 92 return TTI::TCC_Free; 93 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 94 if (isInt<16>(Imm.getSExtValue())) 95 return TTI::TCC_Free; 96 } 97 break; 98 case Instruction::ICmp: 99 if (Idx == 1 && Imm.getBitWidth() <= 64) { 100 // Comparisons against signed 32-bit immediates implemented via cgfi. 101 if (isInt<32>(Imm.getSExtValue())) 102 return TTI::TCC_Free; 103 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 104 if (isUInt<32>(Imm.getZExtValue())) 105 return TTI::TCC_Free; 106 } 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 if (Idx == 1 && Imm.getBitWidth() <= 64) { 111 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 112 if (isUInt<32>(Imm.getZExtValue())) 113 return TTI::TCC_Free; 114 // Or their negation, by swapping addition vs. subtraction. 115 if (isUInt<32>(-Imm.getSExtValue())) 116 return TTI::TCC_Free; 117 } 118 break; 119 case Instruction::Mul: 120 if (Idx == 1 && Imm.getBitWidth() <= 64) { 121 // We use msgfi to multiply by 32-bit signed immediates. 122 if (isInt<32>(Imm.getSExtValue())) 123 return TTI::TCC_Free; 124 } 125 break; 126 case Instruction::Or: 127 case Instruction::Xor: 128 if (Idx == 1 && Imm.getBitWidth() <= 64) { 129 // Masks supported by oilf/xilf. 130 if (isUInt<32>(Imm.getZExtValue())) 131 return TTI::TCC_Free; 132 // Masks supported by oihf/xihf. 133 if ((Imm.getZExtValue() & 0xffffffff) == 0) 134 return TTI::TCC_Free; 135 } 136 break; 137 case Instruction::And: 138 if (Idx == 1 && Imm.getBitWidth() <= 64) { 139 // Any 32-bit AND operation can by implemented via nilf. 140 if (BitSize <= 32) 141 return TTI::TCC_Free; 142 // 64-bit masks supported by nilf. 143 if (isUInt<32>(~Imm.getZExtValue())) 144 return TTI::TCC_Free; 145 // 64-bit masks supported by nilh. 146 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 147 return TTI::TCC_Free; 148 // Some 64-bit AND operations can be implemented via risbg. 149 const SystemZInstrInfo *TII = ST->getInstrInfo(); 150 unsigned Start, End; 151 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 152 return TTI::TCC_Free; 153 } 154 break; 155 case Instruction::Shl: 156 case Instruction::LShr: 157 case Instruction::AShr: 158 // Always return TCC_Free for the shift value of a shift instruction. 159 if (Idx == 1) 160 return TTI::TCC_Free; 161 break; 162 case Instruction::UDiv: 163 case Instruction::SDiv: 164 case Instruction::URem: 165 case Instruction::SRem: 166 case Instruction::Trunc: 167 case Instruction::ZExt: 168 case Instruction::SExt: 169 case Instruction::IntToPtr: 170 case Instruction::PtrToInt: 171 case Instruction::BitCast: 172 case Instruction::PHI: 173 case Instruction::Call: 174 case Instruction::Select: 175 case Instruction::Ret: 176 case Instruction::Load: 177 break; 178 } 179 180 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 181 } 182 183 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 184 const APInt &Imm, Type *Ty) { 185 assert(Ty->isIntegerTy()); 186 187 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 188 // There is no cost model for constants with a bit size of 0. Return TCC_Free 189 // here, so that constant hoisting will ignore this constant. 190 if (BitSize == 0) 191 return TTI::TCC_Free; 192 // No cost model for operations on integers larger than 64 bit implemented yet. 193 if (BitSize > 64) 194 return TTI::TCC_Free; 195 196 switch (IID) { 197 default: 198 return TTI::TCC_Free; 199 case Intrinsic::sadd_with_overflow: 200 case Intrinsic::uadd_with_overflow: 201 case Intrinsic::ssub_with_overflow: 202 case Intrinsic::usub_with_overflow: 203 // These get expanded to include a normal addition/subtraction. 204 if (Idx == 1 && Imm.getBitWidth() <= 64) { 205 if (isUInt<32>(Imm.getZExtValue())) 206 return TTI::TCC_Free; 207 if (isUInt<32>(-Imm.getSExtValue())) 208 return TTI::TCC_Free; 209 } 210 break; 211 case Intrinsic::smul_with_overflow: 212 case Intrinsic::umul_with_overflow: 213 // These get expanded to include a normal multiplication. 214 if (Idx == 1 && Imm.getBitWidth() <= 64) { 215 if (isInt<32>(Imm.getSExtValue())) 216 return TTI::TCC_Free; 217 } 218 break; 219 case Intrinsic::experimental_stackmap: 220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 221 return TTI::TCC_Free; 222 break; 223 case Intrinsic::experimental_patchpoint_void: 224 case Intrinsic::experimental_patchpoint_i64: 225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 } 229 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 230 } 231 232 TargetTransformInfo::PopcntSupportKind 233 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 234 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 235 if (ST->hasPopulationCount() && TyWidth <= 64) 236 return TTI::PSK_FastHardware; 237 return TTI::PSK_Software; 238 } 239 240 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 241 TTI::UnrollingPreferences &UP) { 242 // Find out if L contains a call, what the machine instruction count 243 // estimate is, and how many stores there are. 244 bool HasCall = false; 245 unsigned NumStores = 0; 246 for (auto &BB : L->blocks()) 247 for (auto &I : *BB) { 248 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 249 ImmutableCallSite CS(&I); 250 if (const Function *F = CS.getCalledFunction()) { 251 if (isLoweredToCall(F)) 252 HasCall = true; 253 if (F->getIntrinsicID() == Intrinsic::memcpy || 254 F->getIntrinsicID() == Intrinsic::memset) 255 NumStores++; 256 } else { // indirect call. 257 HasCall = true; 258 } 259 } 260 if (isa<StoreInst>(&I)) { 261 Type *MemAccessTy = I.getOperand(0)->getType(); 262 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); 263 } 264 } 265 266 // The z13 processor will run out of store tags if too many stores 267 // are fed into it too quickly. Therefore make sure there are not 268 // too many stores in the resulting unrolled loop. 269 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 270 271 if (HasCall) { 272 // Only allow full unrolling if loop has any calls. 273 UP.FullUnrollMaxCount = Max; 274 UP.MaxCount = 1; 275 return; 276 } 277 278 UP.MaxCount = Max; 279 if (UP.MaxCount <= 1) 280 return; 281 282 // Allow partial and runtime trip count unrolling. 283 UP.Partial = UP.Runtime = true; 284 285 UP.PartialThreshold = 75; 286 UP.DefaultUnrollRuntimeCount = 4; 287 288 // Allow expensive instructions in the pre-header of the loop. 289 UP.AllowExpensiveTripCount = true; 290 291 UP.Force = true; 292 } 293 294 295 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 296 TargetTransformInfo::LSRCost &C2) { 297 // SystemZ specific: check instruction count (first), and don't care about 298 // ImmCost, since offsets are checked explicitly. 299 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 300 C1.NumIVMuls, C1.NumBaseAdds, 301 C1.ScaleCost, C1.SetupCost) < 302 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 303 C2.NumIVMuls, C2.NumBaseAdds, 304 C2.ScaleCost, C2.SetupCost); 305 } 306 307 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { 308 if (!Vector) 309 // Discount the stack pointer. Also leave out %r0, since it can't 310 // be used in an address. 311 return 14; 312 if (ST->hasVector()) 313 return 32; 314 return 0; 315 } 316 317 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 318 if (!Vector) 319 return 64; 320 if (ST->hasVector()) 321 return 128; 322 return 0; 323 } 324 325 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 326 EVT VT = TLI->getValueType(DL, DataType); 327 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 328 } 329 330 // Return the bit size for the scalar type or vector element 331 // type. getScalarSizeInBits() returns 0 for a pointer type. 332 static unsigned getScalarSizeInBits(Type *Ty) { 333 unsigned Size = 334 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 335 assert(Size > 0 && "Element must have non-zero size."); 336 return Size; 337 } 338 339 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 340 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 341 // 3. 342 static unsigned getNumVectorRegs(Type *Ty) { 343 assert(Ty->isVectorTy() && "Expected vector type"); 344 unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements(); 345 assert(WideBits > 0 && "Could not compute size of vector"); 346 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 347 } 348 349 int SystemZTTIImpl::getArithmeticInstrCost( 350 unsigned Opcode, Type *Ty, 351 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 352 TTI::OperandValueProperties Opd1PropInfo, 353 TTI::OperandValueProperties Opd2PropInfo, 354 ArrayRef<const Value *> Args) { 355 356 // TODO: return a good value for BB-VECTORIZER that includes the 357 // immediate loads, which we do not want to count for the loop 358 // vectorizer, since they are hopefully hoisted out of the loop. This 359 // would require a new parameter 'InLoop', but not sure if constant 360 // args are common enough to motivate this. 361 362 unsigned ScalarBits = Ty->getScalarSizeInBits(); 363 364 // There are thre cases of division and remainder: Dividing with a register 365 // needs a divide instruction. A divisor which is a power of two constant 366 // can be implemented with a sequence of shifts. Any other constant needs a 367 // multiply and shifts. 368 const unsigned DivInstrCost = 20; 369 const unsigned DivMulSeqCost = 10; 370 const unsigned SDivPow2Cost = 4; 371 372 bool SignedDivRem = 373 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 374 bool UnsignedDivRem = 375 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 376 377 // Check for a constant divisor. 378 bool DivRemConst = false; 379 bool DivRemConstPow2 = false; 380 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 381 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 382 const ConstantInt *CVal = 383 (C->getType()->isVectorTy() 384 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 385 : dyn_cast<const ConstantInt>(C)); 386 if (CVal != nullptr && 387 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 388 DivRemConstPow2 = true; 389 else 390 DivRemConst = true; 391 } 392 } 393 394 if (Ty->isVectorTy()) { 395 assert(ST->hasVector() && 396 "getArithmeticInstrCost() called with vector type."); 397 unsigned VF = Ty->getVectorNumElements(); 398 unsigned NumVectors = getNumVectorRegs(Ty); 399 400 // These vector operations are custom handled, but are still supported 401 // with one instruction per vector, regardless of element size. 402 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 403 Opcode == Instruction::AShr) { 404 return NumVectors; 405 } 406 407 if (DivRemConstPow2) 408 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 409 if (DivRemConst) 410 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args); 411 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 412 // Temporary hack: disable high vectorization factors with integer 413 // division/remainder, which will get scalarized and handled with 414 // GR128 registers. The mischeduler is not clever enough to avoid 415 // spilling yet. 416 return 1000; 417 418 // These FP operations are supported with a single vector instruction for 419 // double (base implementation assumes float generally costs 2). For 420 // FP128, the scalar cost is 1, and there is no overhead since the values 421 // are already in scalar registers. 422 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 423 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 424 switch (ScalarBits) { 425 case 32: { 426 // The vector enhancements facility 1 provides v4f32 instructions. 427 if (ST->hasVectorEnhancements1()) 428 return NumVectors; 429 // Return the cost of multiple scalar invocation plus the cost of 430 // inserting and extracting the values. 431 unsigned ScalarCost = 432 getArithmeticInstrCost(Opcode, Ty->getScalarType()); 433 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 434 // FIXME: VF 2 for these FP operations are currently just as 435 // expensive as for VF 4. 436 if (VF == 2) 437 Cost *= 2; 438 return Cost; 439 } 440 case 64: 441 case 128: 442 return NumVectors; 443 default: 444 break; 445 } 446 } 447 448 // There is no native support for FRem. 449 if (Opcode == Instruction::FRem) { 450 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 451 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 452 if (VF == 2 && ScalarBits == 32) 453 Cost *= 2; 454 return Cost; 455 } 456 } 457 else { // Scalar: 458 // These FP operations are supported with a dedicated instruction for 459 // float, double and fp128 (base implementation assumes float generally 460 // costs 2). 461 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 462 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 463 return 1; 464 465 // There is no native support for FRem. 466 if (Opcode == Instruction::FRem) 467 return LIBCALL_COST; 468 469 // Give discount for some combined logical operations if supported. 470 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 471 if (Opcode == Instruction::Xor) { 472 for (const Value *A : Args) { 473 if (const Instruction *I = dyn_cast<Instruction>(A)) 474 if (I->hasOneUse() && 475 (I->getOpcode() == Instruction::And || 476 I->getOpcode() == Instruction::Or || 477 I->getOpcode() == Instruction::Xor)) 478 return 0; 479 } 480 } 481 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 482 for (const Value *A : Args) { 483 if (const Instruction *I = dyn_cast<Instruction>(A)) 484 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 485 return 0; 486 } 487 } 488 } 489 490 // Or requires one instruction, although it has custom handling for i64. 491 if (Opcode == Instruction::Or) 492 return 1; 493 494 if (Opcode == Instruction::Xor && ScalarBits == 1) { 495 if (ST->hasLoadStoreOnCond2()) 496 return 5; // 2 * (li 0; loc 1); xor 497 return 7; // 2 * ipm sequences ; xor ; shift ; compare 498 } 499 500 if (DivRemConstPow2) 501 return (SignedDivRem ? SDivPow2Cost : 1); 502 if (DivRemConst) 503 return DivMulSeqCost; 504 if (SignedDivRem || UnsignedDivRem) 505 return DivInstrCost; 506 } 507 508 // Fallback to the default implementation. 509 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 510 Opd1PropInfo, Opd2PropInfo, Args); 511 } 512 513 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 514 Type *SubTp) { 515 assert (Tp->isVectorTy()); 516 assert (ST->hasVector() && "getShuffleCost() called."); 517 unsigned NumVectors = getNumVectorRegs(Tp); 518 519 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 520 521 // FP128 values are always in scalar registers, so there is no work 522 // involved with a shuffle, except for broadcast. In that case register 523 // moves are done with a single instruction per element. 524 if (Tp->getScalarType()->isFP128Ty()) 525 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 526 527 switch (Kind) { 528 case TargetTransformInfo::SK_ExtractSubvector: 529 // ExtractSubvector Index indicates start offset. 530 531 // Extracting a subvector from first index is a noop. 532 return (Index == 0 ? 0 : NumVectors); 533 534 case TargetTransformInfo::SK_Broadcast: 535 // Loop vectorizer calls here to figure out the extra cost of 536 // broadcasting a loaded value to all elements of a vector. Since vlrep 537 // loads and replicates with a single instruction, adjust the returned 538 // value. 539 return NumVectors - 1; 540 541 default: 542 543 // SystemZ supports single instruction permutation / replication. 544 return NumVectors; 545 } 546 547 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 548 } 549 550 // Return the log2 difference of the element sizes of the two vector types. 551 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 552 unsigned Bits0 = Ty0->getScalarSizeInBits(); 553 unsigned Bits1 = Ty1->getScalarSizeInBits(); 554 555 if (Bits1 > Bits0) 556 return (Log2_32(Bits1) - Log2_32(Bits0)); 557 558 return (Log2_32(Bits0) - Log2_32(Bits1)); 559 } 560 561 // Return the number of instructions needed to truncate SrcTy to DstTy. 562 unsigned SystemZTTIImpl:: 563 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 564 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 565 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 566 "Packing must reduce size of vector type."); 567 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 568 "Packing should not change number of elements."); 569 570 // TODO: Since fp32 is expanded, the extract cost should always be 0. 571 572 unsigned NumParts = getNumVectorRegs(SrcTy); 573 if (NumParts <= 2) 574 // Up to 2 vector registers can be truncated efficiently with pack or 575 // permute. The latter requires an immediate mask to be loaded, which 576 // typically gets hoisted out of a loop. TODO: return a good value for 577 // BB-VECTORIZER that includes the immediate loads, which we do not want 578 // to count for the loop vectorizer. 579 return 1; 580 581 unsigned Cost = 0; 582 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 583 unsigned VF = SrcTy->getVectorNumElements(); 584 for (unsigned P = 0; P < Log2Diff; ++P) { 585 if (NumParts > 1) 586 NumParts /= 2; 587 Cost += NumParts; 588 } 589 590 // Currently, a general mix of permutes and pack instructions is output by 591 // isel, which follow the cost computation above except for this case which 592 // is one instruction less: 593 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 594 DstTy->getScalarSizeInBits() == 8) 595 Cost--; 596 597 return Cost; 598 } 599 600 // Return the cost of converting a vector bitmask produced by a compare 601 // (SrcTy), to the type of the select or extend instruction (DstTy). 602 unsigned SystemZTTIImpl:: 603 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 604 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 605 "Should only be called with vector types."); 606 607 unsigned PackCost = 0; 608 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 609 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 610 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 611 if (SrcScalarBits > DstScalarBits) 612 // The bitmask will be truncated. 613 PackCost = getVectorTruncCost(SrcTy, DstTy); 614 else if (SrcScalarBits < DstScalarBits) { 615 unsigned DstNumParts = getNumVectorRegs(DstTy); 616 // Each vector select needs its part of the bitmask unpacked. 617 PackCost = Log2Diff * DstNumParts; 618 // Extra cost for moving part of mask before unpacking. 619 PackCost += DstNumParts - 1; 620 } 621 622 return PackCost; 623 } 624 625 // Return the type of the compared operands. This is needed to compute the 626 // cost for a Select / ZExt or SExt instruction. 627 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 628 Type *OpTy = nullptr; 629 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 630 OpTy = CI->getOperand(0)->getType(); 631 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 632 if (LogicI->getNumOperands() == 2) 633 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 634 if (isa<CmpInst>(LogicI->getOperand(1))) 635 OpTy = CI0->getOperand(0)->getType(); 636 637 if (OpTy != nullptr) { 638 if (VF == 1) { 639 assert (!OpTy->isVectorTy() && "Expected scalar type"); 640 return OpTy; 641 } 642 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 643 // be either scalar or already vectorized with a same or lesser VF. 644 Type *ElTy = OpTy->getScalarType(); 645 return VectorType::get(ElTy, VF); 646 } 647 648 return nullptr; 649 } 650 651 // Get the cost of converting a boolean vector to a vector with same width 652 // and element size as Dst, plus the cost of zero extending if needed. 653 unsigned SystemZTTIImpl:: 654 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 655 const Instruction *I) { 656 assert (Dst->isVectorTy()); 657 unsigned VF = Dst->getVectorNumElements(); 658 unsigned Cost = 0; 659 // If we know what the widths of the compared operands, get any cost of 660 // converting it to match Dst. Otherwise assume same widths. 661 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 662 if (CmpOpTy != nullptr) 663 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 664 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 665 // One 'vn' per dst vector with an immediate mask. 666 Cost += getNumVectorRegs(Dst); 667 return Cost; 668 } 669 670 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 671 const Instruction *I) { 672 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 673 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 674 675 if (Src->isVectorTy()) { 676 assert (ST->hasVector() && "getCastInstrCost() called with vector type."); 677 assert (Dst->isVectorTy()); 678 unsigned VF = Src->getVectorNumElements(); 679 unsigned NumDstVectors = getNumVectorRegs(Dst); 680 unsigned NumSrcVectors = getNumVectorRegs(Src); 681 682 if (Opcode == Instruction::Trunc) { 683 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 684 return 0; // Check for NOOP conversions. 685 return getVectorTruncCost(Src, Dst); 686 } 687 688 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 689 if (SrcScalarBits >= 8) { 690 // ZExt/SExt will be handled with one unpack per doubling of width. 691 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 692 693 // For types that spans multiple vector registers, some additional 694 // instructions are used to setup the unpacking. 695 unsigned NumSrcVectorOps = 696 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 697 : (NumDstVectors / 2)); 698 699 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 700 } 701 else if (SrcScalarBits == 1) 702 return getBoolVecToIntConversionCost(Opcode, Dst, I); 703 } 704 705 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 706 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 707 // TODO: Fix base implementation which could simplify things a bit here 708 // (seems to miss on differentiating on scalar/vector types). 709 710 // Only 64 bit vector conversions are natively supported before arch13. 711 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 712 if (SrcScalarBits == DstScalarBits) 713 return NumDstVectors; 714 715 if (SrcScalarBits == 1) 716 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 717 } 718 719 // Return the cost of multiple scalar invocation plus the cost of 720 // inserting and extracting the values. Base implementation does not 721 // realize float->int gets scalarized. 722 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 723 Src->getScalarType()); 724 unsigned TotCost = VF * ScalarCost; 725 bool NeedsInserts = true, NeedsExtracts = true; 726 // FP128 registers do not get inserted or extracted. 727 if (DstScalarBits == 128 && 728 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 729 NeedsInserts = false; 730 if (SrcScalarBits == 128 && 731 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 732 NeedsExtracts = false; 733 734 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts); 735 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false); 736 737 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 738 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 739 TotCost *= 2; 740 741 return TotCost; 742 } 743 744 if (Opcode == Instruction::FPTrunc) { 745 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 746 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 747 else // double -> float 748 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 749 } 750 751 if (Opcode == Instruction::FPExt) { 752 if (SrcScalarBits == 32 && DstScalarBits == 64) { 753 // float -> double is very rare and currently unoptimized. Instead of 754 // using vldeb, which can do two at a time, all conversions are 755 // scalarized. 756 return VF * 2; 757 } 758 // -> fp128. VF * lxdb/lxeb + extraction of elements. 759 return VF + getScalarizationOverhead(Src, false, true); 760 } 761 } 762 else { // Scalar 763 assert (!Dst->isVectorTy()); 764 765 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 766 if (SrcScalarBits >= 32 || 767 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 768 return 1; 769 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 770 } 771 772 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 773 Src->isIntegerTy(1)) { 774 if (ST->hasLoadStoreOnCond2()) 775 return 2; // li 0; loc 1 776 777 // This should be extension of a compare i1 result, which is done with 778 // ipm and a varying sequence of instructions. 779 unsigned Cost = 0; 780 if (Opcode == Instruction::SExt) 781 Cost = (DstScalarBits < 64 ? 3 : 4); 782 if (Opcode == Instruction::ZExt) 783 Cost = 3; 784 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 785 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 786 // If operands of an fp-type was compared, this costs +1. 787 Cost++; 788 return Cost; 789 } 790 } 791 792 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 793 } 794 795 // Scalar i8 / i16 operations will typically be made after first extending 796 // the operands to i32. 797 static unsigned getOperandsExtensionCost(const Instruction *I) { 798 unsigned ExtCost = 0; 799 for (Value *Op : I->operands()) 800 // A load of i8 or i16 sign/zero extends to i32. 801 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 802 ExtCost++; 803 804 return ExtCost; 805 } 806 807 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 808 Type *CondTy, const Instruction *I) { 809 if (ValTy->isVectorTy()) { 810 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); 811 unsigned VF = ValTy->getVectorNumElements(); 812 813 // Called with a compare instruction. 814 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 815 unsigned PredicateExtraCost = 0; 816 if (I != nullptr) { 817 // Some predicates cost one or two extra instructions. 818 switch (cast<CmpInst>(I)->getPredicate()) { 819 case CmpInst::Predicate::ICMP_NE: 820 case CmpInst::Predicate::ICMP_UGE: 821 case CmpInst::Predicate::ICMP_ULE: 822 case CmpInst::Predicate::ICMP_SGE: 823 case CmpInst::Predicate::ICMP_SLE: 824 PredicateExtraCost = 1; 825 break; 826 case CmpInst::Predicate::FCMP_ONE: 827 case CmpInst::Predicate::FCMP_ORD: 828 case CmpInst::Predicate::FCMP_UEQ: 829 case CmpInst::Predicate::FCMP_UNO: 830 PredicateExtraCost = 2; 831 break; 832 default: 833 break; 834 } 835 } 836 837 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 838 // floats. FIXME: <2 x float> generates same code as <4 x float>. 839 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 840 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 841 842 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 843 return Cost; 844 } 845 else { // Called with a select instruction. 846 assert (Opcode == Instruction::Select); 847 848 // We can figure out the extra cost of packing / unpacking if the 849 // instruction was passed and the compare instruction is found. 850 unsigned PackCost = 0; 851 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 852 if (CmpOpTy != nullptr) 853 PackCost = 854 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 855 856 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 857 } 858 } 859 else { // Scalar 860 switch (Opcode) { 861 case Instruction::ICmp: { 862 // A loaded value compared with 0 with multiple users becomes Load and 863 // Test. The load is then not foldable, so return 0 cost for the ICmp. 864 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 865 if (I != nullptr && ScalarBits >= 32) 866 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 867 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 868 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 869 C->getZExtValue() == 0) 870 return 0; 871 872 unsigned Cost = 1; 873 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 874 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 875 return Cost; 876 } 877 case Instruction::Select: 878 if (ValTy->isFloatingPointTy()) 879 return 4; // No load on condition for FP - costs a conditional jump. 880 return 1; // Load On Condition / Select Register. 881 } 882 } 883 884 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 885 } 886 887 int SystemZTTIImpl:: 888 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 889 // vlvgp will insert two grs into a vector register, so only count half the 890 // number of instructions. 891 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 892 return ((Index % 2 == 0) ? 1 : 0); 893 894 if (Opcode == Instruction::ExtractElement) { 895 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 896 897 // Give a slight penalty for moving out of vector pipeline to FXU unit. 898 if (Index == 0 && Val->isIntOrIntVectorTy()) 899 Cost += 1; 900 901 return Cost; 902 } 903 904 return BaseT::getVectorInstrCost(Opcode, Val, Index); 905 } 906 907 // Check if a load may be folded as a memory operand in its user. 908 bool SystemZTTIImpl:: 909 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 910 if (!Ld->hasOneUse()) 911 return false; 912 FoldedValue = Ld; 913 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 914 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 915 unsigned TruncBits = 0; 916 unsigned SExtBits = 0; 917 unsigned ZExtBits = 0; 918 if (UserI->hasOneUse()) { 919 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 920 if (isa<TruncInst>(UserI)) 921 TruncBits = UserBits; 922 else if (isa<SExtInst>(UserI)) 923 SExtBits = UserBits; 924 else if (isa<ZExtInst>(UserI)) 925 ZExtBits = UserBits; 926 } 927 if (TruncBits || SExtBits || ZExtBits) { 928 FoldedValue = UserI; 929 UserI = cast<Instruction>(*UserI->user_begin()); 930 // Load (single use) -> trunc/extend (single use) -> UserI 931 } 932 if ((UserI->getOpcode() == Instruction::Sub || 933 UserI->getOpcode() == Instruction::SDiv || 934 UserI->getOpcode() == Instruction::UDiv) && 935 UserI->getOperand(1) != FoldedValue) 936 return false; // Not commutative, only RHS foldable. 937 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 938 // extension was made of the load. 939 unsigned LoadOrTruncBits = 940 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 941 switch (UserI->getOpcode()) { 942 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 943 case Instruction::Sub: 944 case Instruction::ICmp: 945 if (LoadedBits == 32 && ZExtBits == 64) 946 return true; 947 LLVM_FALLTHROUGH; 948 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 949 if (UserI->getOpcode() != Instruction::ICmp) { 950 if (LoadedBits == 16 && 951 (SExtBits == 32 || 952 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 953 return true; 954 if (LoadOrTruncBits == 16) 955 return true; 956 } 957 LLVM_FALLTHROUGH; 958 case Instruction::SDiv:// SE: 32->64 959 if (LoadedBits == 32 && SExtBits == 64) 960 return true; 961 LLVM_FALLTHROUGH; 962 case Instruction::UDiv: 963 case Instruction::And: 964 case Instruction::Or: 965 case Instruction::Xor: 966 // This also makes sense for float operations, but disabled for now due 967 // to regressions. 968 // case Instruction::FCmp: 969 // case Instruction::FAdd: 970 // case Instruction::FSub: 971 // case Instruction::FMul: 972 // case Instruction::FDiv: 973 974 // All possible extensions of memory checked above. 975 976 // Comparison between memory and immediate. 977 if (UserI->getOpcode() == Instruction::ICmp) 978 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 979 if (isUInt<16>(CI->getZExtValue())) 980 return true; 981 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 982 break; 983 } 984 return false; 985 } 986 987 static bool isBswapIntrinsicCall(const Value *V) { 988 if (const Instruction *I = dyn_cast<Instruction>(V)) 989 if (auto *CI = dyn_cast<CallInst>(I)) 990 if (auto *F = CI->getCalledFunction()) 991 if (F->getIntrinsicID() == Intrinsic::bswap) 992 return true; 993 return false; 994 } 995 996 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 997 unsigned Alignment, unsigned AddressSpace, 998 const Instruction *I) { 999 assert(!Src->isVoidTy() && "Invalid type"); 1000 1001 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1002 // Store the load or its truncated or extended value in FoldedValue. 1003 const Instruction *FoldedValue = nullptr; 1004 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1005 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1006 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1007 1008 // UserI can't fold two loads, so in that case return 0 cost only 1009 // half of the time. 1010 for (unsigned i = 0; i < 2; ++i) { 1011 if (UserI->getOperand(i) == FoldedValue) 1012 continue; 1013 1014 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1015 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1016 if (!OtherLoad && 1017 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1018 isa<ZExtInst>(OtherOp))) 1019 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1020 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1021 return i == 0; // Both operands foldable. 1022 } 1023 } 1024 1025 return 0; // Only I is foldable in user. 1026 } 1027 } 1028 1029 unsigned NumOps = 1030 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1031 1032 // Store/Load reversed saves one instruction. 1033 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1034 I != nullptr) { 1035 if (Opcode == Instruction::Load && I->hasOneUse()) { 1036 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1037 // In case of load -> bswap -> store, return normal cost for the load. 1038 if (isBswapIntrinsicCall(LdUser) && 1039 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1040 return 0; 1041 } 1042 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1043 const Value *StoredVal = SI->getValueOperand(); 1044 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1045 return 0; 1046 } 1047 } 1048 1049 if (Src->getScalarSizeInBits() == 128) 1050 // 128 bit scalars are held in a pair of two 64 bit registers. 1051 NumOps *= 2; 1052 1053 return NumOps; 1054 } 1055 1056 // The generic implementation of getInterleavedMemoryOpCost() is based on 1057 // adding costs of the memory operations plus all the extracts and inserts 1058 // needed for using / defining the vector operands. The SystemZ version does 1059 // roughly the same but bases the computations on vector permutations 1060 // instead. 1061 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 1062 unsigned Factor, 1063 ArrayRef<unsigned> Indices, 1064 unsigned Alignment, 1065 unsigned AddressSpace, 1066 bool UseMaskForCond, 1067 bool UseMaskForGaps) { 1068 if (UseMaskForCond || UseMaskForGaps) 1069 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1070 Alignment, AddressSpace, 1071 UseMaskForCond, UseMaskForGaps); 1072 assert(isa<VectorType>(VecTy) && 1073 "Expect a vector type for interleaved memory op"); 1074 1075 // Return the ceiling of dividing A by B. 1076 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1077 1078 unsigned NumElts = VecTy->getVectorNumElements(); 1079 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1080 unsigned VF = NumElts / Factor; 1081 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1082 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1083 unsigned NumPermutes = 0; 1084 1085 if (Opcode == Instruction::Load) { 1086 // Loading interleave groups may have gaps, which may mean fewer 1087 // loads. Find out how many vectors will be loaded in total, and in how 1088 // many of them each value will be in. 1089 BitVector UsedInsts(NumVectorMemOps, false); 1090 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1091 for (unsigned Index : Indices) 1092 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1093 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1094 UsedInsts.set(Vec); 1095 ValueVecs[Index].set(Vec); 1096 } 1097 NumVectorMemOps = UsedInsts.count(); 1098 1099 for (unsigned Index : Indices) { 1100 // Estimate that each loaded source vector containing this Index 1101 // requires one operation, except that vperm can handle two input 1102 // registers first time for each dst vector. 1103 unsigned NumSrcVecs = ValueVecs[Index].count(); 1104 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1105 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1106 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1107 } 1108 } else { 1109 // Estimate the permutes for each stored vector as the smaller of the 1110 // number of elements and the number of source vectors. Subtract one per 1111 // dst vector for vperm (S.A.). 1112 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1113 unsigned NumDstVecs = NumVectorMemOps; 1114 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1115 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1116 } 1117 1118 // Cost of load/store operations and the permutations needed. 1119 return NumVectorMemOps + NumPermutes; 1120 } 1121 1122 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1123 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1124 return getNumVectorRegs(RetTy); // VPERM 1125 return -1; 1126 } 1127 1128 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1129 ArrayRef<Value *> Args, 1130 FastMathFlags FMF, unsigned VF) { 1131 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1132 if (Cost != -1) 1133 return Cost; 1134 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 1135 } 1136 1137 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1138 ArrayRef<Type *> Tys, 1139 FastMathFlags FMF, 1140 unsigned ScalarizationCostPassed) { 1141 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1142 if (Cost != -1) 1143 return Cost; 1144 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, 1145 FMF, ScalarizationCostPassed); 1146 } 1147