1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 static bool isUsedAsMemCpySource(const Value *V, bool &OtherUse) { 34 bool UsedAsMemCpySource = false; 35 for (const User *U : V->users()) 36 if (const Instruction *User = dyn_cast<Instruction>(U)) { 37 if (isa<BitCastInst>(User) || isa<GetElementPtrInst>(User)) { 38 UsedAsMemCpySource |= isUsedAsMemCpySource(User, OtherUse); 39 continue; 40 } 41 if (const MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(User)) { 42 if (Memcpy->getOperand(1) == V && !Memcpy->isVolatile()) { 43 UsedAsMemCpySource = true; 44 continue; 45 } 46 } 47 OtherUse = true; 48 } 49 return UsedAsMemCpySource; 50 } 51 52 unsigned SystemZTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 53 unsigned Bonus = 0; 54 55 // Increase the threshold if an incoming argument is used only as a memcpy 56 // source. 57 if (Function *Callee = CB->getCalledFunction()) 58 for (Argument &Arg : Callee->args()) { 59 bool OtherUse = false; 60 if (isUsedAsMemCpySource(&Arg, OtherUse) && !OtherUse) 61 Bonus += 150; 62 } 63 64 LLVM_DEBUG(if (Bonus) 65 dbgs() << "++ SZTTI Adding inlining bonus: " << Bonus << "\n";); 66 return Bonus; 67 } 68 69 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 70 TTI::TargetCostKind CostKind) { 71 assert(Ty->isIntegerTy()); 72 73 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 74 // There is no cost model for constants with a bit size of 0. Return TCC_Free 75 // here, so that constant hoisting will ignore this constant. 76 if (BitSize == 0) 77 return TTI::TCC_Free; 78 // No cost model for operations on integers larger than 64 bit implemented yet. 79 if (BitSize > 64) 80 return TTI::TCC_Free; 81 82 if (Imm == 0) 83 return TTI::TCC_Free; 84 85 if (Imm.getBitWidth() <= 64) { 86 // Constants loaded via lgfi. 87 if (isInt<32>(Imm.getSExtValue())) 88 return TTI::TCC_Basic; 89 // Constants loaded via llilf. 90 if (isUInt<32>(Imm.getZExtValue())) 91 return TTI::TCC_Basic; 92 // Constants loaded via llihf: 93 if ((Imm.getZExtValue() & 0xffffffff) == 0) 94 return TTI::TCC_Basic; 95 96 return 2 * TTI::TCC_Basic; 97 } 98 99 return 4 * TTI::TCC_Basic; 100 } 101 102 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 103 const APInt &Imm, Type *Ty, 104 TTI::TargetCostKind CostKind, 105 Instruction *Inst) { 106 assert(Ty->isIntegerTy()); 107 108 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 109 // There is no cost model for constants with a bit size of 0. Return TCC_Free 110 // here, so that constant hoisting will ignore this constant. 111 if (BitSize == 0) 112 return TTI::TCC_Free; 113 // No cost model for operations on integers larger than 64 bit implemented yet. 114 if (BitSize > 64) 115 return TTI::TCC_Free; 116 117 switch (Opcode) { 118 default: 119 return TTI::TCC_Free; 120 case Instruction::GetElementPtr: 121 // Always hoist the base address of a GetElementPtr. This prevents the 122 // creation of new constants for every base constant that gets constant 123 // folded with the offset. 124 if (Idx == 0) 125 return 2 * TTI::TCC_Basic; 126 return TTI::TCC_Free; 127 case Instruction::Store: 128 if (Idx == 0 && Imm.getBitWidth() <= 64) { 129 // Any 8-bit immediate store can by implemented via mvi. 130 if (BitSize == 8) 131 return TTI::TCC_Free; 132 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 133 if (isInt<16>(Imm.getSExtValue())) 134 return TTI::TCC_Free; 135 } 136 break; 137 case Instruction::ICmp: 138 if (Idx == 1 && Imm.getBitWidth() <= 64) { 139 // Comparisons against signed 32-bit immediates implemented via cgfi. 140 if (isInt<32>(Imm.getSExtValue())) 141 return TTI::TCC_Free; 142 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 143 if (isUInt<32>(Imm.getZExtValue())) 144 return TTI::TCC_Free; 145 } 146 break; 147 case Instruction::Add: 148 case Instruction::Sub: 149 if (Idx == 1 && Imm.getBitWidth() <= 64) { 150 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 151 if (isUInt<32>(Imm.getZExtValue())) 152 return TTI::TCC_Free; 153 // Or their negation, by swapping addition vs. subtraction. 154 if (isUInt<32>(-Imm.getSExtValue())) 155 return TTI::TCC_Free; 156 } 157 break; 158 case Instruction::Mul: 159 if (Idx == 1 && Imm.getBitWidth() <= 64) { 160 // We use msgfi to multiply by 32-bit signed immediates. 161 if (isInt<32>(Imm.getSExtValue())) 162 return TTI::TCC_Free; 163 } 164 break; 165 case Instruction::Or: 166 case Instruction::Xor: 167 if (Idx == 1 && Imm.getBitWidth() <= 64) { 168 // Masks supported by oilf/xilf. 169 if (isUInt<32>(Imm.getZExtValue())) 170 return TTI::TCC_Free; 171 // Masks supported by oihf/xihf. 172 if ((Imm.getZExtValue() & 0xffffffff) == 0) 173 return TTI::TCC_Free; 174 } 175 break; 176 case Instruction::And: 177 if (Idx == 1 && Imm.getBitWidth() <= 64) { 178 // Any 32-bit AND operation can by implemented via nilf. 179 if (BitSize <= 32) 180 return TTI::TCC_Free; 181 // 64-bit masks supported by nilf. 182 if (isUInt<32>(~Imm.getZExtValue())) 183 return TTI::TCC_Free; 184 // 64-bit masks supported by nilh. 185 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 186 return TTI::TCC_Free; 187 // Some 64-bit AND operations can be implemented via risbg. 188 const SystemZInstrInfo *TII = ST->getInstrInfo(); 189 unsigned Start, End; 190 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 191 return TTI::TCC_Free; 192 } 193 break; 194 case Instruction::Shl: 195 case Instruction::LShr: 196 case Instruction::AShr: 197 // Always return TCC_Free for the shift value of a shift instruction. 198 if (Idx == 1) 199 return TTI::TCC_Free; 200 break; 201 case Instruction::UDiv: 202 case Instruction::SDiv: 203 case Instruction::URem: 204 case Instruction::SRem: 205 case Instruction::Trunc: 206 case Instruction::ZExt: 207 case Instruction::SExt: 208 case Instruction::IntToPtr: 209 case Instruction::PtrToInt: 210 case Instruction::BitCast: 211 case Instruction::PHI: 212 case Instruction::Call: 213 case Instruction::Select: 214 case Instruction::Ret: 215 case Instruction::Load: 216 break; 217 } 218 219 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 220 } 221 222 InstructionCost 223 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 224 const APInt &Imm, Type *Ty, 225 TTI::TargetCostKind CostKind) { 226 assert(Ty->isIntegerTy()); 227 228 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 229 // There is no cost model for constants with a bit size of 0. Return TCC_Free 230 // here, so that constant hoisting will ignore this constant. 231 if (BitSize == 0) 232 return TTI::TCC_Free; 233 // No cost model for operations on integers larger than 64 bit implemented yet. 234 if (BitSize > 64) 235 return TTI::TCC_Free; 236 237 switch (IID) { 238 default: 239 return TTI::TCC_Free; 240 case Intrinsic::sadd_with_overflow: 241 case Intrinsic::uadd_with_overflow: 242 case Intrinsic::ssub_with_overflow: 243 case Intrinsic::usub_with_overflow: 244 // These get expanded to include a normal addition/subtraction. 245 if (Idx == 1 && Imm.getBitWidth() <= 64) { 246 if (isUInt<32>(Imm.getZExtValue())) 247 return TTI::TCC_Free; 248 if (isUInt<32>(-Imm.getSExtValue())) 249 return TTI::TCC_Free; 250 } 251 break; 252 case Intrinsic::smul_with_overflow: 253 case Intrinsic::umul_with_overflow: 254 // These get expanded to include a normal multiplication. 255 if (Idx == 1 && Imm.getBitWidth() <= 64) { 256 if (isInt<32>(Imm.getSExtValue())) 257 return TTI::TCC_Free; 258 } 259 break; 260 case Intrinsic::experimental_stackmap: 261 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 262 return TTI::TCC_Free; 263 break; 264 case Intrinsic::experimental_patchpoint_void: 265 case Intrinsic::experimental_patchpoint_i64: 266 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 267 return TTI::TCC_Free; 268 break; 269 } 270 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 271 } 272 273 TargetTransformInfo::PopcntSupportKind 274 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 275 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 276 if (ST->hasPopulationCount() && TyWidth <= 64) 277 return TTI::PSK_FastHardware; 278 return TTI::PSK_Software; 279 } 280 281 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 282 TTI::UnrollingPreferences &UP, 283 OptimizationRemarkEmitter *ORE) { 284 // Find out if L contains a call, what the machine instruction count 285 // estimate is, and how many stores there are. 286 bool HasCall = false; 287 InstructionCost NumStores = 0; 288 for (auto &BB : L->blocks()) 289 for (auto &I : *BB) { 290 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 291 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 292 if (isLoweredToCall(F)) 293 HasCall = true; 294 if (F->getIntrinsicID() == Intrinsic::memcpy || 295 F->getIntrinsicID() == Intrinsic::memset) 296 NumStores++; 297 } else { // indirect call. 298 HasCall = true; 299 } 300 } 301 if (isa<StoreInst>(&I)) { 302 Type *MemAccessTy = I.getOperand(0)->getType(); 303 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 304 std::nullopt, 0, TTI::TCK_RecipThroughput); 305 } 306 } 307 308 // The z13 processor will run out of store tags if too many stores 309 // are fed into it too quickly. Therefore make sure there are not 310 // too many stores in the resulting unrolled loop. 311 unsigned const NumStoresVal = *NumStores.getValue(); 312 unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX); 313 314 if (HasCall) { 315 // Only allow full unrolling if loop has any calls. 316 UP.FullUnrollMaxCount = Max; 317 UP.MaxCount = 1; 318 return; 319 } 320 321 UP.MaxCount = Max; 322 if (UP.MaxCount <= 1) 323 return; 324 325 // Allow partial and runtime trip count unrolling. 326 UP.Partial = UP.Runtime = true; 327 328 UP.PartialThreshold = 75; 329 UP.DefaultUnrollRuntimeCount = 4; 330 331 // Allow expensive instructions in the pre-header of the loop. 332 UP.AllowExpensiveTripCount = true; 333 334 UP.Force = true; 335 } 336 337 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 338 TTI::PeelingPreferences &PP) { 339 BaseT::getPeelingPreferences(L, SE, PP); 340 } 341 342 bool SystemZTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, 343 const TargetTransformInfo::LSRCost &C2) { 344 // SystemZ specific: check instruction count (first), and don't care about 345 // ImmCost, since offsets are checked explicitly. 346 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 347 C1.NumIVMuls, C1.NumBaseAdds, 348 C1.ScaleCost, C1.SetupCost) < 349 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 350 C2.NumIVMuls, C2.NumBaseAdds, 351 C2.ScaleCost, C2.SetupCost); 352 } 353 354 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 355 bool Vector = (ClassID == 1); 356 if (!Vector) 357 // Discount the stack pointer. Also leave out %r0, since it can't 358 // be used in an address. 359 return 14; 360 if (ST->hasVector()) 361 return 32; 362 return 0; 363 } 364 365 TypeSize 366 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 367 switch (K) { 368 case TargetTransformInfo::RGK_Scalar: 369 return TypeSize::getFixed(64); 370 case TargetTransformInfo::RGK_FixedWidthVector: 371 return TypeSize::getFixed(ST->hasVector() ? 128 : 0); 372 case TargetTransformInfo::RGK_ScalableVector: 373 return TypeSize::getScalable(0); 374 } 375 376 llvm_unreachable("Unsupported register kind"); 377 } 378 379 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, 380 unsigned NumStridedMemAccesses, 381 unsigned NumPrefetches, 382 bool HasCall) const { 383 // Don't prefetch a loop with many far apart accesses. 384 if (NumPrefetches > 16) 385 return UINT_MAX; 386 387 // Emit prefetch instructions for smaller strides in cases where we think 388 // the hardware prefetcher might not be able to keep up. 389 if (NumStridedMemAccesses > 32 && !HasCall && 390 (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses) 391 return 1; 392 393 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; 394 } 395 396 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 397 EVT VT = TLI->getValueType(DL, DataType); 398 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 399 } 400 401 // Return the bit size for the scalar type or vector element 402 // type. getScalarSizeInBits() returns 0 for a pointer type. 403 static unsigned getScalarSizeInBits(Type *Ty) { 404 unsigned Size = 405 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 406 assert(Size > 0 && "Element must have non-zero size."); 407 return Size; 408 } 409 410 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 411 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 412 // 3. 413 static unsigned getNumVectorRegs(Type *Ty) { 414 auto *VTy = cast<FixedVectorType>(Ty); 415 unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements(); 416 assert(WideBits > 0 && "Could not compute size of vector"); 417 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 418 } 419 420 InstructionCost SystemZTTIImpl::getArithmeticInstrCost( 421 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 422 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 423 ArrayRef<const Value *> Args, 424 const Instruction *CxtI) { 425 426 // TODO: Handle more cost kinds. 427 if (CostKind != TTI::TCK_RecipThroughput) 428 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 429 Op2Info, Args, CxtI); 430 431 // TODO: return a good value for BB-VECTORIZER that includes the 432 // immediate loads, which we do not want to count for the loop 433 // vectorizer, since they are hopefully hoisted out of the loop. This 434 // would require a new parameter 'InLoop', but not sure if constant 435 // args are common enough to motivate this. 436 437 unsigned ScalarBits = Ty->getScalarSizeInBits(); 438 439 // There are thre cases of division and remainder: Dividing with a register 440 // needs a divide instruction. A divisor which is a power of two constant 441 // can be implemented with a sequence of shifts. Any other constant needs a 442 // multiply and shifts. 443 const unsigned DivInstrCost = 20; 444 const unsigned DivMulSeqCost = 10; 445 const unsigned SDivPow2Cost = 4; 446 447 bool SignedDivRem = 448 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 449 bool UnsignedDivRem = 450 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 451 452 // Check for a constant divisor. 453 bool DivRemConst = false; 454 bool DivRemConstPow2 = false; 455 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 456 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 457 const ConstantInt *CVal = 458 (C->getType()->isVectorTy() 459 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 460 : dyn_cast<const ConstantInt>(C)); 461 if (CVal && (CVal->getValue().isPowerOf2() || 462 CVal->getValue().isNegatedPowerOf2())) 463 DivRemConstPow2 = true; 464 else 465 DivRemConst = true; 466 } 467 } 468 469 if (!Ty->isVectorTy()) { 470 // These FP operations are supported with a dedicated instruction for 471 // float, double and fp128 (base implementation assumes float generally 472 // costs 2). 473 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 474 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 475 return 1; 476 477 // There is no native support for FRem. 478 if (Opcode == Instruction::FRem) 479 return LIBCALL_COST; 480 481 // Give discount for some combined logical operations if supported. 482 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 483 if (Opcode == Instruction::Xor) { 484 for (const Value *A : Args) { 485 if (const Instruction *I = dyn_cast<Instruction>(A)) 486 if (I->hasOneUse() && 487 (I->getOpcode() == Instruction::And || 488 I->getOpcode() == Instruction::Or || 489 I->getOpcode() == Instruction::Xor)) 490 return 0; 491 } 492 } 493 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 494 for (const Value *A : Args) { 495 if (const Instruction *I = dyn_cast<Instruction>(A)) 496 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 497 return 0; 498 } 499 } 500 } 501 502 // Or requires one instruction, although it has custom handling for i64. 503 if (Opcode == Instruction::Or) 504 return 1; 505 506 if (Opcode == Instruction::Xor && ScalarBits == 1) { 507 if (ST->hasLoadStoreOnCond2()) 508 return 5; // 2 * (li 0; loc 1); xor 509 return 7; // 2 * ipm sequences ; xor ; shift ; compare 510 } 511 512 if (DivRemConstPow2) 513 return (SignedDivRem ? SDivPow2Cost : 1); 514 if (DivRemConst) 515 return DivMulSeqCost; 516 if (SignedDivRem || UnsignedDivRem) 517 return DivInstrCost; 518 } 519 else if (ST->hasVector()) { 520 auto *VTy = cast<FixedVectorType>(Ty); 521 unsigned VF = VTy->getNumElements(); 522 unsigned NumVectors = getNumVectorRegs(Ty); 523 524 // These vector operations are custom handled, but are still supported 525 // with one instruction per vector, regardless of element size. 526 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 527 Opcode == Instruction::AShr) { 528 return NumVectors; 529 } 530 531 if (DivRemConstPow2) 532 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 533 if (DivRemConst) { 534 SmallVector<Type *> Tys(Args.size(), Ty); 535 return VF * DivMulSeqCost + 536 getScalarizationOverhead(VTy, Args, Tys, CostKind); 537 } 538 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 539 // Temporary hack: disable high vectorization factors with integer 540 // division/remainder, which will get scalarized and handled with 541 // GR128 registers. The mischeduler is not clever enough to avoid 542 // spilling yet. 543 return 1000; 544 545 // These FP operations are supported with a single vector instruction for 546 // double (base implementation assumes float generally costs 2). For 547 // FP128, the scalar cost is 1, and there is no overhead since the values 548 // are already in scalar registers. 549 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 550 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 551 switch (ScalarBits) { 552 case 32: { 553 // The vector enhancements facility 1 provides v4f32 instructions. 554 if (ST->hasVectorEnhancements1()) 555 return NumVectors; 556 // Return the cost of multiple scalar invocation plus the cost of 557 // inserting and extracting the values. 558 InstructionCost ScalarCost = 559 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 560 SmallVector<Type *> Tys(Args.size(), Ty); 561 InstructionCost Cost = 562 (VF * ScalarCost) + 563 getScalarizationOverhead(VTy, Args, Tys, CostKind); 564 // FIXME: VF 2 for these FP operations are currently just as 565 // expensive as for VF 4. 566 if (VF == 2) 567 Cost *= 2; 568 return Cost; 569 } 570 case 64: 571 case 128: 572 return NumVectors; 573 default: 574 break; 575 } 576 } 577 578 // There is no native support for FRem. 579 if (Opcode == Instruction::FRem) { 580 SmallVector<Type *> Tys(Args.size(), Ty); 581 InstructionCost Cost = (VF * LIBCALL_COST) + 582 getScalarizationOverhead(VTy, Args, Tys, CostKind); 583 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 584 if (VF == 2 && ScalarBits == 32) 585 Cost *= 2; 586 return Cost; 587 } 588 } 589 590 // Fallback to the default implementation. 591 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, 592 Args, CxtI); 593 } 594 595 InstructionCost SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 596 VectorType *Tp, 597 ArrayRef<int> Mask, 598 TTI::TargetCostKind CostKind, 599 int Index, VectorType *SubTp, 600 ArrayRef<const Value *> Args) { 601 Kind = improveShuffleKindFromMask(Kind, Mask); 602 if (ST->hasVector()) { 603 unsigned NumVectors = getNumVectorRegs(Tp); 604 605 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 606 607 // FP128 values are always in scalar registers, so there is no work 608 // involved with a shuffle, except for broadcast. In that case register 609 // moves are done with a single instruction per element. 610 if (Tp->getScalarType()->isFP128Ty()) 611 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 612 613 switch (Kind) { 614 case TargetTransformInfo::SK_ExtractSubvector: 615 // ExtractSubvector Index indicates start offset. 616 617 // Extracting a subvector from first index is a noop. 618 return (Index == 0 ? 0 : NumVectors); 619 620 case TargetTransformInfo::SK_Broadcast: 621 // Loop vectorizer calls here to figure out the extra cost of 622 // broadcasting a loaded value to all elements of a vector. Since vlrep 623 // loads and replicates with a single instruction, adjust the returned 624 // value. 625 return NumVectors - 1; 626 627 default: 628 629 // SystemZ supports single instruction permutation / replication. 630 return NumVectors; 631 } 632 } 633 634 return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp); 635 } 636 637 // Return the log2 difference of the element sizes of the two vector types. 638 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 639 unsigned Bits0 = Ty0->getScalarSizeInBits(); 640 unsigned Bits1 = Ty1->getScalarSizeInBits(); 641 642 if (Bits1 > Bits0) 643 return (Log2_32(Bits1) - Log2_32(Bits0)); 644 645 return (Log2_32(Bits0) - Log2_32(Bits1)); 646 } 647 648 // Return the number of instructions needed to truncate SrcTy to DstTy. 649 unsigned SystemZTTIImpl:: 650 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 651 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 652 assert(SrcTy->getPrimitiveSizeInBits().getFixedValue() > 653 DstTy->getPrimitiveSizeInBits().getFixedValue() && 654 "Packing must reduce size of vector type."); 655 assert(cast<FixedVectorType>(SrcTy)->getNumElements() == 656 cast<FixedVectorType>(DstTy)->getNumElements() && 657 "Packing should not change number of elements."); 658 659 // TODO: Since fp32 is expanded, the extract cost should always be 0. 660 661 unsigned NumParts = getNumVectorRegs(SrcTy); 662 if (NumParts <= 2) 663 // Up to 2 vector registers can be truncated efficiently with pack or 664 // permute. The latter requires an immediate mask to be loaded, which 665 // typically gets hoisted out of a loop. TODO: return a good value for 666 // BB-VECTORIZER that includes the immediate loads, which we do not want 667 // to count for the loop vectorizer. 668 return 1; 669 670 unsigned Cost = 0; 671 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 672 unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements(); 673 for (unsigned P = 0; P < Log2Diff; ++P) { 674 if (NumParts > 1) 675 NumParts /= 2; 676 Cost += NumParts; 677 } 678 679 // Currently, a general mix of permutes and pack instructions is output by 680 // isel, which follow the cost computation above except for this case which 681 // is one instruction less: 682 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 683 DstTy->getScalarSizeInBits() == 8) 684 Cost--; 685 686 return Cost; 687 } 688 689 // Return the cost of converting a vector bitmask produced by a compare 690 // (SrcTy), to the type of the select or extend instruction (DstTy). 691 unsigned SystemZTTIImpl:: 692 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 693 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 694 "Should only be called with vector types."); 695 696 unsigned PackCost = 0; 697 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 698 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 699 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 700 if (SrcScalarBits > DstScalarBits) 701 // The bitmask will be truncated. 702 PackCost = getVectorTruncCost(SrcTy, DstTy); 703 else if (SrcScalarBits < DstScalarBits) { 704 unsigned DstNumParts = getNumVectorRegs(DstTy); 705 // Each vector select needs its part of the bitmask unpacked. 706 PackCost = Log2Diff * DstNumParts; 707 // Extra cost for moving part of mask before unpacking. 708 PackCost += DstNumParts - 1; 709 } 710 711 return PackCost; 712 } 713 714 // Return the type of the compared operands. This is needed to compute the 715 // cost for a Select / ZExt or SExt instruction. 716 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 717 Type *OpTy = nullptr; 718 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 719 OpTy = CI->getOperand(0)->getType(); 720 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 721 if (LogicI->getNumOperands() == 2) 722 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 723 if (isa<CmpInst>(LogicI->getOperand(1))) 724 OpTy = CI0->getOperand(0)->getType(); 725 726 if (OpTy != nullptr) { 727 if (VF == 1) { 728 assert (!OpTy->isVectorTy() && "Expected scalar type"); 729 return OpTy; 730 } 731 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 732 // be either scalar or already vectorized with a same or lesser VF. 733 Type *ElTy = OpTy->getScalarType(); 734 return FixedVectorType::get(ElTy, VF); 735 } 736 737 return nullptr; 738 } 739 740 // Get the cost of converting a boolean vector to a vector with same width 741 // and element size as Dst, plus the cost of zero extending if needed. 742 unsigned SystemZTTIImpl:: 743 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 744 const Instruction *I) { 745 auto *DstVTy = cast<FixedVectorType>(Dst); 746 unsigned VF = DstVTy->getNumElements(); 747 unsigned Cost = 0; 748 // If we know what the widths of the compared operands, get any cost of 749 // converting it to match Dst. Otherwise assume same widths. 750 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 751 if (CmpOpTy != nullptr) 752 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 753 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 754 // One 'vn' per dst vector with an immediate mask. 755 Cost += getNumVectorRegs(Dst); 756 return Cost; 757 } 758 759 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 760 Type *Src, 761 TTI::CastContextHint CCH, 762 TTI::TargetCostKind CostKind, 763 const Instruction *I) { 764 // FIXME: Can the logic below also be used for these cost kinds? 765 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) { 766 auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 767 return BaseCost == 0 ? BaseCost : 1; 768 } 769 770 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 771 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 772 773 if (!Src->isVectorTy()) { 774 assert (!Dst->isVectorTy()); 775 776 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 777 if (SrcScalarBits >= 32 || 778 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 779 return 1; 780 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 781 } 782 783 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 784 Src->isIntegerTy(1)) { 785 if (ST->hasLoadStoreOnCond2()) 786 return 2; // li 0; loc 1 787 788 // This should be extension of a compare i1 result, which is done with 789 // ipm and a varying sequence of instructions. 790 unsigned Cost = 0; 791 if (Opcode == Instruction::SExt) 792 Cost = (DstScalarBits < 64 ? 3 : 4); 793 if (Opcode == Instruction::ZExt) 794 Cost = 3; 795 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 796 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 797 // If operands of an fp-type was compared, this costs +1. 798 Cost++; 799 return Cost; 800 } 801 } 802 else if (ST->hasVector()) { 803 // Vector to scalar cast. 804 auto *SrcVecTy = cast<FixedVectorType>(Src); 805 auto *DstVecTy = dyn_cast<FixedVectorType>(Dst); 806 if (!DstVecTy) { 807 // TODO: tune vector-to-scalar cast. 808 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 809 } 810 unsigned VF = SrcVecTy->getNumElements(); 811 unsigned NumDstVectors = getNumVectorRegs(Dst); 812 unsigned NumSrcVectors = getNumVectorRegs(Src); 813 814 if (Opcode == Instruction::Trunc) { 815 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 816 return 0; // Check for NOOP conversions. 817 return getVectorTruncCost(Src, Dst); 818 } 819 820 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 821 if (SrcScalarBits >= 8) { 822 // ZExt will use either a single unpack or a vector permute. 823 if (Opcode == Instruction::ZExt) 824 return NumDstVectors; 825 826 // SExt will be handled with one unpack per doubling of width. 827 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 828 829 // For types that spans multiple vector registers, some additional 830 // instructions are used to setup the unpacking. 831 unsigned NumSrcVectorOps = 832 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 833 : (NumDstVectors / 2)); 834 835 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 836 } 837 else if (SrcScalarBits == 1) 838 return getBoolVecToIntConversionCost(Opcode, Dst, I); 839 } 840 841 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 842 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 843 // TODO: Fix base implementation which could simplify things a bit here 844 // (seems to miss on differentiating on scalar/vector types). 845 846 // Only 64 bit vector conversions are natively supported before z15. 847 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 848 if (SrcScalarBits == DstScalarBits) 849 return NumDstVectors; 850 851 if (SrcScalarBits == 1) 852 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 853 } 854 855 // Return the cost of multiple scalar invocation plus the cost of 856 // inserting and extracting the values. Base implementation does not 857 // realize float->int gets scalarized. 858 InstructionCost ScalarCost = getCastInstrCost( 859 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind); 860 InstructionCost TotCost = VF * ScalarCost; 861 bool NeedsInserts = true, NeedsExtracts = true; 862 // FP128 registers do not get inserted or extracted. 863 if (DstScalarBits == 128 && 864 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 865 NeedsInserts = false; 866 if (SrcScalarBits == 128 && 867 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 868 NeedsExtracts = false; 869 870 TotCost += getScalarizationOverhead(SrcVecTy, /*Insert*/ false, 871 NeedsExtracts, CostKind); 872 TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, 873 /*Extract*/ false, CostKind); 874 875 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 876 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 877 TotCost *= 2; 878 879 return TotCost; 880 } 881 882 if (Opcode == Instruction::FPTrunc) { 883 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 884 return VF /*ldxbr/lexbr*/ + 885 getScalarizationOverhead(DstVecTy, /*Insert*/ true, 886 /*Extract*/ false, CostKind); 887 else // double -> float 888 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 889 } 890 891 if (Opcode == Instruction::FPExt) { 892 if (SrcScalarBits == 32 && DstScalarBits == 64) { 893 // float -> double is very rare and currently unoptimized. Instead of 894 // using vldeb, which can do two at a time, all conversions are 895 // scalarized. 896 return VF * 2; 897 } 898 // -> fp128. VF * lxdb/lxeb + extraction of elements. 899 return VF + getScalarizationOverhead(SrcVecTy, /*Insert*/ false, 900 /*Extract*/ true, CostKind); 901 } 902 } 903 904 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 905 } 906 907 // Scalar i8 / i16 operations will typically be made after first extending 908 // the operands to i32. 909 static unsigned getOperandsExtensionCost(const Instruction *I) { 910 unsigned ExtCost = 0; 911 for (Value *Op : I->operands()) 912 // A load of i8 or i16 sign/zero extends to i32. 913 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 914 ExtCost++; 915 916 return ExtCost; 917 } 918 919 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 920 Type *CondTy, 921 CmpInst::Predicate VecPred, 922 TTI::TargetCostKind CostKind, 923 const Instruction *I) { 924 if (CostKind != TTI::TCK_RecipThroughput) 925 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); 926 927 if (!ValTy->isVectorTy()) { 928 switch (Opcode) { 929 case Instruction::ICmp: { 930 // A loaded value compared with 0 with multiple users becomes Load and 931 // Test. The load is then not foldable, so return 0 cost for the ICmp. 932 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 933 if (I != nullptr && ScalarBits >= 32) 934 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 935 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 936 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 937 C->isZero()) 938 return 0; 939 940 unsigned Cost = 1; 941 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 942 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 943 return Cost; 944 } 945 case Instruction::Select: 946 if (ValTy->isFloatingPointTy()) 947 return 4; // No load on condition for FP - costs a conditional jump. 948 return 1; // Load On Condition / Select Register. 949 } 950 } 951 else if (ST->hasVector()) { 952 unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements(); 953 954 // Called with a compare instruction. 955 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 956 unsigned PredicateExtraCost = 0; 957 if (I != nullptr) { 958 // Some predicates cost one or two extra instructions. 959 switch (cast<CmpInst>(I)->getPredicate()) { 960 case CmpInst::Predicate::ICMP_NE: 961 case CmpInst::Predicate::ICMP_UGE: 962 case CmpInst::Predicate::ICMP_ULE: 963 case CmpInst::Predicate::ICMP_SGE: 964 case CmpInst::Predicate::ICMP_SLE: 965 PredicateExtraCost = 1; 966 break; 967 case CmpInst::Predicate::FCMP_ONE: 968 case CmpInst::Predicate::FCMP_ORD: 969 case CmpInst::Predicate::FCMP_UEQ: 970 case CmpInst::Predicate::FCMP_UNO: 971 PredicateExtraCost = 2; 972 break; 973 default: 974 break; 975 } 976 } 977 978 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 979 // floats. FIXME: <2 x float> generates same code as <4 x float>. 980 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 981 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 982 983 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 984 return Cost; 985 } 986 else { // Called with a select instruction. 987 assert (Opcode == Instruction::Select); 988 989 // We can figure out the extra cost of packing / unpacking if the 990 // instruction was passed and the compare instruction is found. 991 unsigned PackCost = 0; 992 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 993 if (CmpOpTy != nullptr) 994 PackCost = 995 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 996 997 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 998 } 999 } 1000 1001 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); 1002 } 1003 1004 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 1005 TTI::TargetCostKind CostKind, 1006 unsigned Index, Value *Op0, 1007 Value *Op1) { 1008 // vlvgp will insert two grs into a vector register, so only count half the 1009 // number of instructions. 1010 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 1011 return ((Index % 2 == 0) ? 1 : 0); 1012 1013 if (Opcode == Instruction::ExtractElement) { 1014 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 1015 1016 // Give a slight penalty for moving out of vector pipeline to FXU unit. 1017 if (Index == 0 && Val->isIntOrIntVectorTy()) 1018 Cost += 1; 1019 1020 return Cost; 1021 } 1022 1023 return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); 1024 } 1025 1026 // Check if a load may be folded as a memory operand in its user. 1027 bool SystemZTTIImpl:: 1028 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 1029 if (!Ld->hasOneUse()) 1030 return false; 1031 FoldedValue = Ld; 1032 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 1033 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 1034 unsigned TruncBits = 0; 1035 unsigned SExtBits = 0; 1036 unsigned ZExtBits = 0; 1037 if (UserI->hasOneUse()) { 1038 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 1039 if (isa<TruncInst>(UserI)) 1040 TruncBits = UserBits; 1041 else if (isa<SExtInst>(UserI)) 1042 SExtBits = UserBits; 1043 else if (isa<ZExtInst>(UserI)) 1044 ZExtBits = UserBits; 1045 } 1046 if (TruncBits || SExtBits || ZExtBits) { 1047 FoldedValue = UserI; 1048 UserI = cast<Instruction>(*UserI->user_begin()); 1049 // Load (single use) -> trunc/extend (single use) -> UserI 1050 } 1051 if ((UserI->getOpcode() == Instruction::Sub || 1052 UserI->getOpcode() == Instruction::SDiv || 1053 UserI->getOpcode() == Instruction::UDiv) && 1054 UserI->getOperand(1) != FoldedValue) 1055 return false; // Not commutative, only RHS foldable. 1056 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 1057 // extension was made of the load. 1058 unsigned LoadOrTruncBits = 1059 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 1060 switch (UserI->getOpcode()) { 1061 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 1062 case Instruction::Sub: 1063 case Instruction::ICmp: 1064 if (LoadedBits == 32 && ZExtBits == 64) 1065 return true; 1066 [[fallthrough]]; 1067 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 1068 if (UserI->getOpcode() != Instruction::ICmp) { 1069 if (LoadedBits == 16 && 1070 (SExtBits == 32 || 1071 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 1072 return true; 1073 if (LoadOrTruncBits == 16) 1074 return true; 1075 } 1076 [[fallthrough]]; 1077 case Instruction::SDiv:// SE: 32->64 1078 if (LoadedBits == 32 && SExtBits == 64) 1079 return true; 1080 [[fallthrough]]; 1081 case Instruction::UDiv: 1082 case Instruction::And: 1083 case Instruction::Or: 1084 case Instruction::Xor: 1085 // This also makes sense for float operations, but disabled for now due 1086 // to regressions. 1087 // case Instruction::FCmp: 1088 // case Instruction::FAdd: 1089 // case Instruction::FSub: 1090 // case Instruction::FMul: 1091 // case Instruction::FDiv: 1092 1093 // All possible extensions of memory checked above. 1094 1095 // Comparison between memory and immediate. 1096 if (UserI->getOpcode() == Instruction::ICmp) 1097 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 1098 if (CI->getValue().isIntN(16)) 1099 return true; 1100 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 1101 break; 1102 } 1103 return false; 1104 } 1105 1106 static bool isBswapIntrinsicCall(const Value *V) { 1107 if (const Instruction *I = dyn_cast<Instruction>(V)) 1108 if (auto *CI = dyn_cast<CallInst>(I)) 1109 if (auto *F = CI->getCalledFunction()) 1110 if (F->getIntrinsicID() == Intrinsic::bswap) 1111 return true; 1112 return false; 1113 } 1114 1115 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1116 MaybeAlign Alignment, 1117 unsigned AddressSpace, 1118 TTI::TargetCostKind CostKind, 1119 TTI::OperandValueInfo OpInfo, 1120 const Instruction *I) { 1121 assert(!Src->isVoidTy() && "Invalid type"); 1122 1123 // TODO: Handle other cost kinds. 1124 if (CostKind != TTI::TCK_RecipThroughput) 1125 return 1; 1126 1127 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1128 // Store the load or its truncated or extended value in FoldedValue. 1129 const Instruction *FoldedValue = nullptr; 1130 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1131 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1132 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1133 1134 // UserI can't fold two loads, so in that case return 0 cost only 1135 // half of the time. 1136 for (unsigned i = 0; i < 2; ++i) { 1137 if (UserI->getOperand(i) == FoldedValue) 1138 continue; 1139 1140 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1141 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1142 if (!OtherLoad && 1143 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1144 isa<ZExtInst>(OtherOp))) 1145 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1146 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1147 return i == 0; // Both operands foldable. 1148 } 1149 } 1150 1151 return 0; // Only I is foldable in user. 1152 } 1153 } 1154 1155 unsigned NumOps = 1156 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1157 1158 // Store/Load reversed saves one instruction. 1159 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1160 I != nullptr) { 1161 if (Opcode == Instruction::Load && I->hasOneUse()) { 1162 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1163 // In case of load -> bswap -> store, return normal cost for the load. 1164 if (isBswapIntrinsicCall(LdUser) && 1165 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1166 return 0; 1167 } 1168 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1169 const Value *StoredVal = SI->getValueOperand(); 1170 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1171 return 0; 1172 } 1173 } 1174 1175 if (Src->getScalarSizeInBits() == 128) 1176 // 128 bit scalars are held in a pair of two 64 bit registers. 1177 NumOps *= 2; 1178 1179 return NumOps; 1180 } 1181 1182 // The generic implementation of getInterleavedMemoryOpCost() is based on 1183 // adding costs of the memory operations plus all the extracts and inserts 1184 // needed for using / defining the vector operands. The SystemZ version does 1185 // roughly the same but bases the computations on vector permutations 1186 // instead. 1187 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost( 1188 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1189 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1190 bool UseMaskForCond, bool UseMaskForGaps) { 1191 if (UseMaskForCond || UseMaskForGaps) 1192 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1193 Alignment, AddressSpace, CostKind, 1194 UseMaskForCond, UseMaskForGaps); 1195 assert(isa<VectorType>(VecTy) && 1196 "Expect a vector type for interleaved memory op"); 1197 1198 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1199 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1200 unsigned VF = NumElts / Factor; 1201 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1202 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1203 unsigned NumPermutes = 0; 1204 1205 if (Opcode == Instruction::Load) { 1206 // Loading interleave groups may have gaps, which may mean fewer 1207 // loads. Find out how many vectors will be loaded in total, and in how 1208 // many of them each value will be in. 1209 BitVector UsedInsts(NumVectorMemOps, false); 1210 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1211 for (unsigned Index : Indices) 1212 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1213 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1214 UsedInsts.set(Vec); 1215 ValueVecs[Index].set(Vec); 1216 } 1217 NumVectorMemOps = UsedInsts.count(); 1218 1219 for (unsigned Index : Indices) { 1220 // Estimate that each loaded source vector containing this Index 1221 // requires one operation, except that vperm can handle two input 1222 // registers first time for each dst vector. 1223 unsigned NumSrcVecs = ValueVecs[Index].count(); 1224 unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U); 1225 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1226 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1227 } 1228 } else { 1229 // Estimate the permutes for each stored vector as the smaller of the 1230 // number of elements and the number of source vectors. Subtract one per 1231 // dst vector for vperm (S.A.). 1232 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1233 unsigned NumDstVecs = NumVectorMemOps; 1234 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1235 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1236 } 1237 1238 // Cost of load/store operations and the permutations needed. 1239 return NumVectorMemOps + NumPermutes; 1240 } 1241 1242 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1243 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1244 return getNumVectorRegs(RetTy); // VPERM 1245 return -1; 1246 } 1247 1248 InstructionCost 1249 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1250 TTI::TargetCostKind CostKind) { 1251 InstructionCost Cost = 1252 getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType()); 1253 if (Cost != -1) 1254 return Cost; 1255 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1256 } 1257