xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp (revision d11f81afd5a4a71d5f725950b0592ca212084780)
1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "TargetInfo/SystemZTargetInfo.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include <string>
29 
30 using namespace llvm;
31 
32 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
33   // Register the target.
34   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
35 }
36 
37 // Determine whether we use the vector ABI.
38 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
39   // We use the vector ABI whenever the vector facility is avaiable.
40   // This is the case by default if CPU is z13 or later, and can be
41   // overridden via "[+-]vector" feature string elements.
42   bool VectorABI = true;
43   bool SoftFloat = false;
44   if (CPU.empty() || CPU == "generic" ||
45       CPU == "z10" || CPU == "z196" || CPU == "zEC12" ||
46       CPU == "arch8" || CPU == "arch9" || CPU == "arch10")
47     VectorABI = false;
48 
49   SmallVector<StringRef, 3> Features;
50   FS.split(Features, ',', -1, false /* KeepEmpty */);
51   for (auto &Feature : Features) {
52     if (Feature == "vector" || Feature == "+vector")
53       VectorABI = true;
54     if (Feature == "-vector")
55       VectorABI = false;
56     if (Feature == "soft-float" || Feature == "+soft-float")
57       SoftFloat = true;
58     if (Feature == "-soft-float")
59       SoftFloat = false;
60   }
61 
62   return VectorABI && !SoftFloat;
63 }
64 
65 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
66                                      StringRef FS) {
67   bool VectorABI = UsesVectorABI(CPU, FS);
68   std::string Ret;
69 
70   // Big endian.
71   Ret += "E";
72 
73   // Data mangling.
74   Ret += DataLayout::getManglingComponent(TT);
75 
76   // Make sure that global data has at least 16 bits of alignment by
77   // default, so that we can refer to it using LARL.  We don't have any
78   // special requirements for stack variables though.
79   Ret += "-i1:8:16-i8:8:16";
80 
81   // 64-bit integers are naturally aligned.
82   Ret += "-i64:64";
83 
84   // 128-bit floats are aligned only to 64 bits.
85   Ret += "-f128:64";
86 
87   // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
88   if (VectorABI)
89     Ret += "-v128:64";
90 
91   // We prefer 16 bits of aligned for all globals; see above.
92   Ret += "-a:8:16";
93 
94   // Integer registers are 32 or 64 bits.
95   Ret += "-n32:64";
96 
97   return Ret;
98 }
99 
100 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
101   if (TT.isOSzOS())
102     return std::make_unique<TargetLoweringObjectFileGOFF>();
103 
104   // Note: Some times run with -triple s390x-unknown.
105   // In this case, default to ELF unless z/OS specifically provided.
106   return std::make_unique<TargetLoweringObjectFileELF>();
107 }
108 
109 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
110   // Static code is suitable for use in a dynamic executable; there is no
111   // separate DynamicNoPIC model.
112   if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
113     return Reloc::Static;
114   return *RM;
115 }
116 
117 // For SystemZ we define the models as follows:
118 //
119 // Small:  BRASL can call any function and will use a stub if necessary.
120 //         Locally-binding symbols will always be in range of LARL.
121 //
122 // Medium: BRASL can call any function and will use a stub if necessary.
123 //         GOT slots and locally-defined text will always be in range
124 //         of LARL, but other symbols might not be.
125 //
126 // Large:  Equivalent to Medium for now.
127 //
128 // Kernel: Equivalent to Medium for now.
129 //
130 // This means that any PIC module smaller than 4GB meets the
131 // requirements of Small, so Small seems like the best default there.
132 //
133 // All symbols bind locally in a non-PIC module, so the choice is less
134 // obvious.  There are two cases:
135 //
136 // - When creating an executable, PLTs and copy relocations allow
137 //   us to treat external symbols as part of the executable.
138 //   Any executable smaller than 4GB meets the requirements of Small,
139 //   so that seems like the best default.
140 //
141 // - When creating JIT code, stubs will be in range of BRASL if the
142 //   image is less than 4GB in size.  GOT entries will likewise be
143 //   in range of LARL.  However, the JIT environment has no equivalent
144 //   of copy relocs, so locally-binding data symbols might not be in
145 //   the range of LARL.  We need the Medium model in that case.
146 static CodeModel::Model
147 getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
148                              bool JIT) {
149   if (CM) {
150     if (*CM == CodeModel::Tiny)
151       report_fatal_error("Target does not support the tiny CodeModel", false);
152     if (*CM == CodeModel::Kernel)
153       report_fatal_error("Target does not support the kernel CodeModel", false);
154     return *CM;
155   }
156   if (JIT)
157     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
158   return CodeModel::Small;
159 }
160 
161 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
162                                            StringRef CPU, StringRef FS,
163                                            const TargetOptions &Options,
164                                            Optional<Reloc::Model> RM,
165                                            Optional<CodeModel::Model> CM,
166                                            CodeGenOpt::Level OL, bool JIT)
167     : LLVMTargetMachine(
168           T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
169           getEffectiveRelocModel(RM),
170           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
171           OL),
172       TLOF(createTLOF(getTargetTriple())) {
173   initAsmInfo();
174 }
175 
176 SystemZTargetMachine::~SystemZTargetMachine() = default;
177 
178 const SystemZSubtarget *
179 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
180   Attribute CPUAttr = F.getFnAttribute("target-cpu");
181   Attribute FSAttr = F.getFnAttribute("target-features");
182 
183   std::string CPU =
184       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
185   std::string FS =
186       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
187 
188   // FIXME: This is related to the code below to reset the target options,
189   // we need to know whether or not the soft float flag is set on the
190   // function, so we can enable it as a subtarget feature.
191   bool softFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
192 
193   if (softFloat)
194     FS += FS.empty() ? "+soft-float" : ",+soft-float";
195 
196   auto &I = SubtargetMap[CPU + FS];
197   if (!I) {
198     // This needs to be done before we create a new subtarget since any
199     // creation will depend on the TM and the code generation flags on the
200     // function that reside in TargetOptions.
201     resetTargetOptions(F);
202     I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, FS, *this);
203   }
204 
205   return I.get();
206 }
207 
208 namespace {
209 
210 /// SystemZ Code Generator Pass Configuration Options.
211 class SystemZPassConfig : public TargetPassConfig {
212 public:
213   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
214     : TargetPassConfig(TM, PM) {}
215 
216   SystemZTargetMachine &getSystemZTargetMachine() const {
217     return getTM<SystemZTargetMachine>();
218   }
219 
220   ScheduleDAGInstrs *
221   createPostMachineScheduler(MachineSchedContext *C) const override {
222     return new ScheduleDAGMI(C,
223                              std::make_unique<SystemZPostRASchedStrategy>(C),
224                              /*RemoveKillFlags=*/true);
225   }
226 
227   void addIRPasses() override;
228   bool addInstSelector() override;
229   bool addILPOpts() override;
230   void addPreRegAlloc() override;
231   void addPostRewrite() override;
232   void addPostRegAlloc() override;
233   void addPreSched2() override;
234   void addPreEmitPass() override;
235 };
236 
237 } // end anonymous namespace
238 
239 void SystemZPassConfig::addIRPasses() {
240   if (getOptLevel() != CodeGenOpt::None) {
241     addPass(createSystemZTDCPass());
242     addPass(createLoopDataPrefetchPass());
243   }
244 
245   TargetPassConfig::addIRPasses();
246 }
247 
248 bool SystemZPassConfig::addInstSelector() {
249   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
250 
251  if (getOptLevel() != CodeGenOpt::None)
252     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
253 
254   return false;
255 }
256 
257 bool SystemZPassConfig::addILPOpts() {
258   addPass(&EarlyIfConverterID);
259   return true;
260 }
261 
262 void SystemZPassConfig::addPreRegAlloc() {
263   addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
264 }
265 
266 void SystemZPassConfig::addPostRewrite() {
267   addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
268 }
269 
270 void SystemZPassConfig::addPostRegAlloc() {
271   // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
272   // is not called).
273   if (getOptLevel() == CodeGenOpt::None)
274     addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
275 }
276 
277 void SystemZPassConfig::addPreSched2() {
278   if (getOptLevel() != CodeGenOpt::None)
279     addPass(&IfConverterID);
280 }
281 
282 void SystemZPassConfig::addPreEmitPass() {
283   // Do instruction shortening before compare elimination because some
284   // vector instructions will be shortened into opcodes that compare
285   // elimination recognizes.
286   if (getOptLevel() != CodeGenOpt::None)
287     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
288 
289   // We eliminate comparisons here rather than earlier because some
290   // transformations can change the set of available CC values and we
291   // generally want those transformations to have priority.  This is
292   // especially true in the commonest case where the result of the comparison
293   // is used by a single in-range branch instruction, since we will then
294   // be able to fuse the compare and the branch instead.
295   //
296   // For example, two-address NILF can sometimes be converted into
297   // three-address RISBLG.  NILF produces a CC value that indicates whether
298   // the low word is zero, but RISBLG does not modify CC at all.  On the
299   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
300   // The CC value produced by NILL isn't useful for our purposes, but the
301   // value produced by RISBG can be used for any comparison with zero
302   // (not just equality).  So there are some transformations that lose
303   // CC values (while still being worthwhile) and others that happen to make
304   // the CC result more useful than it was originally.
305   //
306   // Another reason is that we only want to use BRANCH ON COUNT in cases
307   // where we know that the count register is not going to be spilled.
308   //
309   // Doing it so late makes it more likely that a register will be reused
310   // between the comparison and the branch, but it isn't clear whether
311   // preventing that would be a win or not.
312   if (getOptLevel() != CodeGenOpt::None)
313     addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
314   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
315 
316   // Do final scheduling after all other optimizations, to get an
317   // optimal input for the decoder (branch relaxation must happen
318   // after block placement).
319   if (getOptLevel() != CodeGenOpt::None)
320     addPass(&PostMachineSchedulerID);
321 }
322 
323 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
324   return new SystemZPassConfig(*this, PM);
325 }
326 
327 TargetTransformInfo
328 SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
329   return TargetTransformInfo(SystemZTTIImpl(this, F));
330 }
331