1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SystemZTargetMachine.h" 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "SystemZ.h" 12 #include "SystemZMachineScheduler.h" 13 #include "SystemZTargetTransformInfo.h" 14 #include "TargetInfo/SystemZTargetInfo.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/CodeGen/Passes.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/CodeGen/TargetPassConfig.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/Support/CodeGen.h" 25 #include "llvm/Support/TargetRegistry.h" 26 #include "llvm/Target/TargetLoweringObjectFile.h" 27 #include "llvm/Transforms/Scalar.h" 28 #include <string> 29 30 using namespace llvm; 31 32 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() { 33 // Register the target. 34 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget()); 35 } 36 37 // Determine whether we use the vector ABI. 38 static bool UsesVectorABI(StringRef CPU, StringRef FS) { 39 // We use the vector ABI whenever the vector facility is avaiable. 40 // This is the case by default if CPU is z13 or later, and can be 41 // overridden via "[+-]vector" feature string elements. 42 bool VectorABI = true; 43 bool SoftFloat = false; 44 if (CPU.empty() || CPU == "generic" || 45 CPU == "z10" || CPU == "z196" || CPU == "zEC12" || 46 CPU == "arch8" || CPU == "arch9" || CPU == "arch10") 47 VectorABI = false; 48 49 SmallVector<StringRef, 3> Features; 50 FS.split(Features, ',', -1, false /* KeepEmpty */); 51 for (auto &Feature : Features) { 52 if (Feature == "vector" || Feature == "+vector") 53 VectorABI = true; 54 if (Feature == "-vector") 55 VectorABI = false; 56 if (Feature == "soft-float" || Feature == "+soft-float") 57 SoftFloat = true; 58 if (Feature == "-soft-float") 59 SoftFloat = false; 60 } 61 62 return VectorABI && !SoftFloat; 63 } 64 65 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 66 StringRef FS) { 67 bool VectorABI = UsesVectorABI(CPU, FS); 68 std::string Ret; 69 70 // Big endian. 71 Ret += "E"; 72 73 // Data mangling. 74 Ret += DataLayout::getManglingComponent(TT); 75 76 // Make sure that global data has at least 16 bits of alignment by 77 // default, so that we can refer to it using LARL. We don't have any 78 // special requirements for stack variables though. 79 Ret += "-i1:8:16-i8:8:16"; 80 81 // 64-bit integers are naturally aligned. 82 Ret += "-i64:64"; 83 84 // 128-bit floats are aligned only to 64 bits. 85 Ret += "-f128:64"; 86 87 // When using the vector ABI, 128-bit vectors are also aligned to 64 bits. 88 if (VectorABI) 89 Ret += "-v128:64"; 90 91 // We prefer 16 bits of aligned for all globals; see above. 92 Ret += "-a:8:16"; 93 94 // Integer registers are 32 or 64 bits. 95 Ret += "-n32:64"; 96 97 return Ret; 98 } 99 100 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 101 // Static code is suitable for use in a dynamic executable; there is no 102 // separate DynamicNoPIC model. 103 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 104 return Reloc::Static; 105 return *RM; 106 } 107 108 // For SystemZ we define the models as follows: 109 // 110 // Small: BRASL can call any function and will use a stub if necessary. 111 // Locally-binding symbols will always be in range of LARL. 112 // 113 // Medium: BRASL can call any function and will use a stub if necessary. 114 // GOT slots and locally-defined text will always be in range 115 // of LARL, but other symbols might not be. 116 // 117 // Large: Equivalent to Medium for now. 118 // 119 // Kernel: Equivalent to Medium for now. 120 // 121 // This means that any PIC module smaller than 4GB meets the 122 // requirements of Small, so Small seems like the best default there. 123 // 124 // All symbols bind locally in a non-PIC module, so the choice is less 125 // obvious. There are two cases: 126 // 127 // - When creating an executable, PLTs and copy relocations allow 128 // us to treat external symbols as part of the executable. 129 // Any executable smaller than 4GB meets the requirements of Small, 130 // so that seems like the best default. 131 // 132 // - When creating JIT code, stubs will be in range of BRASL if the 133 // image is less than 4GB in size. GOT entries will likewise be 134 // in range of LARL. However, the JIT environment has no equivalent 135 // of copy relocs, so locally-binding data symbols might not be in 136 // the range of LARL. We need the Medium model in that case. 137 static CodeModel::Model 138 getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM, 139 bool JIT) { 140 if (CM) { 141 if (*CM == CodeModel::Tiny) 142 report_fatal_error("Target does not support the tiny CodeModel", false); 143 if (*CM == CodeModel::Kernel) 144 report_fatal_error("Target does not support the kernel CodeModel", false); 145 return *CM; 146 } 147 if (JIT) 148 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium; 149 return CodeModel::Small; 150 } 151 152 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT, 153 StringRef CPU, StringRef FS, 154 const TargetOptions &Options, 155 Optional<Reloc::Model> RM, 156 Optional<CodeModel::Model> CM, 157 CodeGenOpt::Level OL, bool JIT) 158 : LLVMTargetMachine( 159 T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options, 160 getEffectiveRelocModel(RM), 161 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT), 162 OL), 163 TLOF(std::make_unique<TargetLoweringObjectFileELF>()) { 164 initAsmInfo(); 165 } 166 167 SystemZTargetMachine::~SystemZTargetMachine() = default; 168 169 const SystemZSubtarget * 170 SystemZTargetMachine::getSubtargetImpl(const Function &F) const { 171 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 172 Attribute FSAttr = F.getFnAttribute("target-features"); 173 174 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 175 ? CPUAttr.getValueAsString().str() 176 : TargetCPU; 177 std::string FS = !FSAttr.hasAttribute(Attribute::None) 178 ? FSAttr.getValueAsString().str() 179 : TargetFS; 180 181 // FIXME: This is related to the code below to reset the target options, 182 // we need to know whether or not the soft float flag is set on the 183 // function, so we can enable it as a subtarget feature. 184 bool softFloat = 185 F.hasFnAttribute("use-soft-float") && 186 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 187 188 if (softFloat) 189 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 190 191 auto &I = SubtargetMap[CPU + FS]; 192 if (!I) { 193 // This needs to be done before we create a new subtarget since any 194 // creation will depend on the TM and the code generation flags on the 195 // function that reside in TargetOptions. 196 resetTargetOptions(F); 197 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, FS, *this); 198 } 199 200 return I.get(); 201 } 202 203 namespace { 204 205 /// SystemZ Code Generator Pass Configuration Options. 206 class SystemZPassConfig : public TargetPassConfig { 207 public: 208 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM) 209 : TargetPassConfig(TM, PM) {} 210 211 SystemZTargetMachine &getSystemZTargetMachine() const { 212 return getTM<SystemZTargetMachine>(); 213 } 214 215 ScheduleDAGInstrs * 216 createPostMachineScheduler(MachineSchedContext *C) const override { 217 return new ScheduleDAGMI(C, 218 std::make_unique<SystemZPostRASchedStrategy>(C), 219 /*RemoveKillFlags=*/true); 220 } 221 222 void addIRPasses() override; 223 bool addInstSelector() override; 224 bool addILPOpts() override; 225 void addPreRegAlloc() override; 226 void addPostRewrite() override; 227 void addPostRegAlloc() override; 228 void addPreSched2() override; 229 void addPreEmitPass() override; 230 }; 231 232 } // end anonymous namespace 233 234 void SystemZPassConfig::addIRPasses() { 235 if (getOptLevel() != CodeGenOpt::None) { 236 addPass(createSystemZTDCPass()); 237 addPass(createLoopDataPrefetchPass()); 238 } 239 240 TargetPassConfig::addIRPasses(); 241 } 242 243 bool SystemZPassConfig::addInstSelector() { 244 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel())); 245 246 if (getOptLevel() != CodeGenOpt::None) 247 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine())); 248 249 return false; 250 } 251 252 bool SystemZPassConfig::addILPOpts() { 253 addPass(&EarlyIfConverterID); 254 return true; 255 } 256 257 void SystemZPassConfig::addPreRegAlloc() { 258 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine())); 259 } 260 261 void SystemZPassConfig::addPostRewrite() { 262 addPass(createSystemZPostRewritePass(getSystemZTargetMachine())); 263 } 264 265 void SystemZPassConfig::addPostRegAlloc() { 266 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite() 267 // is not called). 268 if (getOptLevel() == CodeGenOpt::None) 269 addPass(createSystemZPostRewritePass(getSystemZTargetMachine())); 270 } 271 272 void SystemZPassConfig::addPreSched2() { 273 if (getOptLevel() != CodeGenOpt::None) 274 addPass(&IfConverterID); 275 } 276 277 void SystemZPassConfig::addPreEmitPass() { 278 // Do instruction shortening before compare elimination because some 279 // vector instructions will be shortened into opcodes that compare 280 // elimination recognizes. 281 if (getOptLevel() != CodeGenOpt::None) 282 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false); 283 284 // We eliminate comparisons here rather than earlier because some 285 // transformations can change the set of available CC values and we 286 // generally want those transformations to have priority. This is 287 // especially true in the commonest case where the result of the comparison 288 // is used by a single in-range branch instruction, since we will then 289 // be able to fuse the compare and the branch instead. 290 // 291 // For example, two-address NILF can sometimes be converted into 292 // three-address RISBLG. NILF produces a CC value that indicates whether 293 // the low word is zero, but RISBLG does not modify CC at all. On the 294 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG. 295 // The CC value produced by NILL isn't useful for our purposes, but the 296 // value produced by RISBG can be used for any comparison with zero 297 // (not just equality). So there are some transformations that lose 298 // CC values (while still being worthwhile) and others that happen to make 299 // the CC result more useful than it was originally. 300 // 301 // Another reason is that we only want to use BRANCH ON COUNT in cases 302 // where we know that the count register is not going to be spilled. 303 // 304 // Doing it so late makes it more likely that a register will be reused 305 // between the comparison and the branch, but it isn't clear whether 306 // preventing that would be a win or not. 307 if (getOptLevel() != CodeGenOpt::None) 308 addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false); 309 addPass(createSystemZLongBranchPass(getSystemZTargetMachine())); 310 311 // Do final scheduling after all other optimizations, to get an 312 // optimal input for the decoder (branch relaxation must happen 313 // after block placement). 314 if (getOptLevel() != CodeGenOpt::None) 315 addPass(&PostMachineSchedulerID); 316 } 317 318 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) { 319 return new SystemZPassConfig(*this, PM); 320 } 321 322 TargetTransformInfo 323 SystemZTargetMachine::getTargetTransformInfo(const Function &F) { 324 return TargetTransformInfo(SystemZTTIImpl(this, F)); 325 } 326