1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SystemZTargetMachine.h" 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "SystemZ.h" 12 #include "SystemZMachineFunctionInfo.h" 13 #include "SystemZMachineScheduler.h" 14 #include "SystemZTargetObjectFile.h" 15 #include "SystemZTargetTransformInfo.h" 16 #include "TargetInfo/SystemZTargetInfo.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 21 #include "llvm/CodeGen/TargetPassConfig.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/MC/TargetRegistry.h" 24 #include "llvm/Support/CodeGen.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include <memory> 28 #include <optional> 29 #include <string> 30 31 using namespace llvm; 32 33 static cl::opt<bool> EnableMachineCombinerPass( 34 "systemz-machine-combiner", 35 cl::desc("Enable the machine combiner pass"), 36 cl::init(true), cl::Hidden); 37 38 // NOLINTNEXTLINE(readability-identifier-naming) 39 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() { 40 // Register the target. 41 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget()); 42 auto &PR = *PassRegistry::getPassRegistry(); 43 initializeSystemZElimComparePass(PR); 44 initializeSystemZShortenInstPass(PR); 45 initializeSystemZLongBranchPass(PR); 46 initializeSystemZLDCleanupPass(PR); 47 initializeSystemZShortenInstPass(PR); 48 initializeSystemZPostRewritePass(PR); 49 initializeSystemZTDCPassPass(PR); 50 initializeSystemZDAGToDAGISelLegacyPass(PR); 51 } 52 53 static std::string computeDataLayout(const Triple &TT) { 54 std::string Ret; 55 56 // Big endian. 57 Ret += "E"; 58 59 // Data mangling. 60 Ret += DataLayout::getManglingComponent(TT); 61 62 // Make sure that global data has at least 16 bits of alignment by 63 // default, so that we can refer to it using LARL. We don't have any 64 // special requirements for stack variables though. 65 Ret += "-i1:8:16-i8:8:16"; 66 67 // 64-bit integers are naturally aligned. 68 Ret += "-i64:64"; 69 70 // 128-bit floats are aligned only to 64 bits. 71 Ret += "-f128:64"; 72 73 // The DataLayout string always holds a vector alignment of 64 bits, see 74 // comment in clang/lib/Basic/Targets/SystemZ.h. 75 Ret += "-v128:64"; 76 77 // We prefer 16 bits of aligned for all globals; see above. 78 Ret += "-a:8:16"; 79 80 // Integer registers are 32 or 64 bits. 81 Ret += "-n32:64"; 82 83 return Ret; 84 } 85 86 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 87 if (TT.isOSzOS()) 88 return std::make_unique<TargetLoweringObjectFileGOFF>(); 89 90 // Note: Some times run with -triple s390x-unknown. 91 // In this case, default to ELF unless z/OS specifically provided. 92 return std::make_unique<SystemZELFTargetObjectFile>(); 93 } 94 95 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) { 96 // Static code is suitable for use in a dynamic executable; there is no 97 // separate DynamicNoPIC model. 98 if (!RM || *RM == Reloc::DynamicNoPIC) 99 return Reloc::Static; 100 return *RM; 101 } 102 103 // For SystemZ we define the models as follows: 104 // 105 // Small: BRASL can call any function and will use a stub if necessary. 106 // Locally-binding symbols will always be in range of LARL. 107 // 108 // Medium: BRASL can call any function and will use a stub if necessary. 109 // GOT slots and locally-defined text will always be in range 110 // of LARL, but other symbols might not be. 111 // 112 // Large: Equivalent to Medium for now. 113 // 114 // Kernel: Equivalent to Medium for now. 115 // 116 // This means that any PIC module smaller than 4GB meets the 117 // requirements of Small, so Small seems like the best default there. 118 // 119 // All symbols bind locally in a non-PIC module, so the choice is less 120 // obvious. There are two cases: 121 // 122 // - When creating an executable, PLTs and copy relocations allow 123 // us to treat external symbols as part of the executable. 124 // Any executable smaller than 4GB meets the requirements of Small, 125 // so that seems like the best default. 126 // 127 // - When creating JIT code, stubs will be in range of BRASL if the 128 // image is less than 4GB in size. GOT entries will likewise be 129 // in range of LARL. However, the JIT environment has no equivalent 130 // of copy relocs, so locally-binding data symbols might not be in 131 // the range of LARL. We need the Medium model in that case. 132 static CodeModel::Model 133 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM, 134 Reloc::Model RM, bool JIT) { 135 if (CM) { 136 if (*CM == CodeModel::Tiny) 137 report_fatal_error("Target does not support the tiny CodeModel", false); 138 if (*CM == CodeModel::Kernel) 139 report_fatal_error("Target does not support the kernel CodeModel", false); 140 return *CM; 141 } 142 if (JIT) 143 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium; 144 return CodeModel::Small; 145 } 146 147 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT, 148 StringRef CPU, StringRef FS, 149 const TargetOptions &Options, 150 std::optional<Reloc::Model> RM, 151 std::optional<CodeModel::Model> CM, 152 CodeGenOptLevel OL, bool JIT) 153 : LLVMTargetMachine( 154 T, computeDataLayout(TT), TT, CPU, FS, Options, 155 getEffectiveRelocModel(RM), 156 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT), 157 OL), 158 TLOF(createTLOF(getTargetTriple())) { 159 initAsmInfo(); 160 } 161 162 SystemZTargetMachine::~SystemZTargetMachine() = default; 163 164 const SystemZSubtarget * 165 SystemZTargetMachine::getSubtargetImpl(const Function &F) const { 166 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 167 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 168 Attribute FSAttr = F.getFnAttribute("target-features"); 169 170 std::string CPU = 171 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 172 std::string TuneCPU = 173 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; 174 std::string FS = 175 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 176 177 // FIXME: This is related to the code below to reset the target options, 178 // we need to know whether the soft float and backchain flags are set on the 179 // function, so we can enable them as subtarget features. 180 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 181 if (SoftFloat) 182 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 183 bool BackChain = F.hasFnAttribute("backchain"); 184 if (BackChain) 185 FS += FS.empty() ? "+backchain" : ",+backchain"; 186 187 auto &I = SubtargetMap[CPU + TuneCPU + FS]; 188 if (!I) { 189 // This needs to be done before we create a new subtarget since any 190 // creation will depend on the TM and the code generation flags on the 191 // function that reside in TargetOptions. 192 resetTargetOptions(F); 193 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS, 194 *this); 195 } 196 197 return I.get(); 198 } 199 200 namespace { 201 202 /// SystemZ Code Generator Pass Configuration Options. 203 class SystemZPassConfig : public TargetPassConfig { 204 public: 205 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM) 206 : TargetPassConfig(TM, PM) {} 207 208 SystemZTargetMachine &getSystemZTargetMachine() const { 209 return getTM<SystemZTargetMachine>(); 210 } 211 212 ScheduleDAGInstrs * 213 createPostMachineScheduler(MachineSchedContext *C) const override { 214 return new ScheduleDAGMI(C, 215 std::make_unique<SystemZPostRASchedStrategy>(C), 216 /*RemoveKillFlags=*/true); 217 } 218 219 void addIRPasses() override; 220 bool addInstSelector() override; 221 bool addILPOpts() override; 222 void addPreRegAlloc() override; 223 void addPostRewrite() override; 224 void addPostRegAlloc() override; 225 void addPreSched2() override; 226 void addPreEmitPass() override; 227 }; 228 229 } // end anonymous namespace 230 231 void SystemZPassConfig::addIRPasses() { 232 if (getOptLevel() != CodeGenOptLevel::None) { 233 addPass(createSystemZTDCPass()); 234 addPass(createLoopDataPrefetchPass()); 235 } 236 237 addPass(createAtomicExpandLegacyPass()); 238 239 TargetPassConfig::addIRPasses(); 240 } 241 242 bool SystemZPassConfig::addInstSelector() { 243 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel())); 244 245 if (getOptLevel() != CodeGenOptLevel::None) 246 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine())); 247 248 return false; 249 } 250 251 bool SystemZPassConfig::addILPOpts() { 252 addPass(&EarlyIfConverterID); 253 254 if (EnableMachineCombinerPass) 255 addPass(&MachineCombinerID); 256 257 return true; 258 } 259 260 void SystemZPassConfig::addPreRegAlloc() { 261 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine())); 262 } 263 264 void SystemZPassConfig::addPostRewrite() { 265 addPass(createSystemZPostRewritePass(getSystemZTargetMachine())); 266 } 267 268 void SystemZPassConfig::addPostRegAlloc() { 269 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite() 270 // is not called). 271 if (getOptLevel() == CodeGenOptLevel::None) 272 addPass(createSystemZPostRewritePass(getSystemZTargetMachine())); 273 } 274 275 void SystemZPassConfig::addPreSched2() { 276 if (getOptLevel() != CodeGenOptLevel::None) 277 addPass(&IfConverterID); 278 } 279 280 void SystemZPassConfig::addPreEmitPass() { 281 // Do instruction shortening before compare elimination because some 282 // vector instructions will be shortened into opcodes that compare 283 // elimination recognizes. 284 if (getOptLevel() != CodeGenOptLevel::None) 285 addPass(createSystemZShortenInstPass(getSystemZTargetMachine())); 286 287 // We eliminate comparisons here rather than earlier because some 288 // transformations can change the set of available CC values and we 289 // generally want those transformations to have priority. This is 290 // especially true in the commonest case where the result of the comparison 291 // is used by a single in-range branch instruction, since we will then 292 // be able to fuse the compare and the branch instead. 293 // 294 // For example, two-address NILF can sometimes be converted into 295 // three-address RISBLG. NILF produces a CC value that indicates whether 296 // the low word is zero, but RISBLG does not modify CC at all. On the 297 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG. 298 // The CC value produced by NILL isn't useful for our purposes, but the 299 // value produced by RISBG can be used for any comparison with zero 300 // (not just equality). So there are some transformations that lose 301 // CC values (while still being worthwhile) and others that happen to make 302 // the CC result more useful than it was originally. 303 // 304 // Another reason is that we only want to use BRANCH ON COUNT in cases 305 // where we know that the count register is not going to be spilled. 306 // 307 // Doing it so late makes it more likely that a register will be reused 308 // between the comparison and the branch, but it isn't clear whether 309 // preventing that would be a win or not. 310 if (getOptLevel() != CodeGenOptLevel::None) 311 addPass(createSystemZElimComparePass(getSystemZTargetMachine())); 312 addPass(createSystemZLongBranchPass(getSystemZTargetMachine())); 313 314 // Do final scheduling after all other optimizations, to get an 315 // optimal input for the decoder (branch relaxation must happen 316 // after block placement). 317 if (getOptLevel() != CodeGenOptLevel::None) 318 addPass(&PostMachineSchedulerID); 319 } 320 321 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) { 322 return new SystemZPassConfig(*this, PM); 323 } 324 325 TargetTransformInfo 326 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const { 327 return TargetTransformInfo(SystemZTTIImpl(this, F)); 328 } 329 330 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo( 331 BumpPtrAllocator &Allocator, const Function &F, 332 const TargetSubtargetInfo *STI) const { 333 return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>( 334 Allocator, F, STI); 335 } 336