xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetObjectFile.h"
15 #include "SystemZTargetTransformInfo.h"
16 #include "TargetInfo/SystemZTargetInfo.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/MC/TargetRegistry.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Target/TargetLoweringObjectFile.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include <memory>
28 #include <optional>
29 #include <string>
30 
31 using namespace llvm;
32 
33 static cl::opt<bool> EnableMachineCombinerPass(
34     "systemz-machine-combiner",
35     cl::desc("Enable the machine combiner pass"),
36     cl::init(true), cl::Hidden);
37 
38 // NOLINTNEXTLINE(readability-identifier-naming)
39 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
40   // Register the target.
41   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
42   auto &PR = *PassRegistry::getPassRegistry();
43   initializeSystemZElimComparePass(PR);
44   initializeSystemZShortenInstPass(PR);
45   initializeSystemZLongBranchPass(PR);
46   initializeSystemZLDCleanupPass(PR);
47   initializeSystemZShortenInstPass(PR);
48   initializeSystemZPostRewritePass(PR);
49   initializeSystemZTDCPassPass(PR);
50   initializeSystemZDAGToDAGISelLegacyPass(PR);
51 }
52 
53 static std::string computeDataLayout(const Triple &TT) {
54   std::string Ret;
55 
56   // Big endian.
57   Ret += "E";
58 
59   // Data mangling.
60   Ret += DataLayout::getManglingComponent(TT);
61 
62   // Make sure that global data has at least 16 bits of alignment by
63   // default, so that we can refer to it using LARL.  We don't have any
64   // special requirements for stack variables though.
65   Ret += "-i1:8:16-i8:8:16";
66 
67   // 64-bit integers are naturally aligned.
68   Ret += "-i64:64";
69 
70   // 128-bit floats are aligned only to 64 bits.
71   Ret += "-f128:64";
72 
73   // The DataLayout string always holds a vector alignment of 64 bits, see
74   // comment in clang/lib/Basic/Targets/SystemZ.h.
75   Ret += "-v128:64";
76 
77   // We prefer 16 bits of aligned for all globals; see above.
78   Ret += "-a:8:16";
79 
80   // Integer registers are 32 or 64 bits.
81   Ret += "-n32:64";
82 
83   return Ret;
84 }
85 
86 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
87   if (TT.isOSzOS())
88     return std::make_unique<TargetLoweringObjectFileGOFF>();
89 
90   // Note: Some times run with -triple s390x-unknown.
91   // In this case, default to ELF unless z/OS specifically provided.
92   return std::make_unique<SystemZELFTargetObjectFile>();
93 }
94 
95 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
96   // Static code is suitable for use in a dynamic executable; there is no
97   // separate DynamicNoPIC model.
98   if (!RM || *RM == Reloc::DynamicNoPIC)
99     return Reloc::Static;
100   return *RM;
101 }
102 
103 // For SystemZ we define the models as follows:
104 //
105 // Small:  BRASL can call any function and will use a stub if necessary.
106 //         Locally-binding symbols will always be in range of LARL.
107 //
108 // Medium: BRASL can call any function and will use a stub if necessary.
109 //         GOT slots and locally-defined text will always be in range
110 //         of LARL, but other symbols might not be.
111 //
112 // Large:  Equivalent to Medium for now.
113 //
114 // Kernel: Equivalent to Medium for now.
115 //
116 // This means that any PIC module smaller than 4GB meets the
117 // requirements of Small, so Small seems like the best default there.
118 //
119 // All symbols bind locally in a non-PIC module, so the choice is less
120 // obvious.  There are two cases:
121 //
122 // - When creating an executable, PLTs and copy relocations allow
123 //   us to treat external symbols as part of the executable.
124 //   Any executable smaller than 4GB meets the requirements of Small,
125 //   so that seems like the best default.
126 //
127 // - When creating JIT code, stubs will be in range of BRASL if the
128 //   image is less than 4GB in size.  GOT entries will likewise be
129 //   in range of LARL.  However, the JIT environment has no equivalent
130 //   of copy relocs, so locally-binding data symbols might not be in
131 //   the range of LARL.  We need the Medium model in that case.
132 static CodeModel::Model
133 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
134                              Reloc::Model RM, bool JIT) {
135   if (CM) {
136     if (*CM == CodeModel::Tiny)
137       report_fatal_error("Target does not support the tiny CodeModel", false);
138     if (*CM == CodeModel::Kernel)
139       report_fatal_error("Target does not support the kernel CodeModel", false);
140     return *CM;
141   }
142   if (JIT)
143     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
144   return CodeModel::Small;
145 }
146 
147 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
148                                            StringRef CPU, StringRef FS,
149                                            const TargetOptions &Options,
150                                            std::optional<Reloc::Model> RM,
151                                            std::optional<CodeModel::Model> CM,
152                                            CodeGenOptLevel OL, bool JIT)
153     : LLVMTargetMachine(
154           T, computeDataLayout(TT), TT, CPU, FS, Options,
155           getEffectiveRelocModel(RM),
156           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
157           OL),
158       TLOF(createTLOF(getTargetTriple())) {
159   initAsmInfo();
160 }
161 
162 SystemZTargetMachine::~SystemZTargetMachine() = default;
163 
164 const SystemZSubtarget *
165 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
166   Attribute CPUAttr = F.getFnAttribute("target-cpu");
167   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
168   Attribute FSAttr = F.getFnAttribute("target-features");
169 
170   std::string CPU =
171       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
172   std::string TuneCPU =
173       TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
174   std::string FS =
175       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
176 
177   // FIXME: This is related to the code below to reset the target options,
178   // we need to know whether the soft float and backchain flags are set on the
179   // function, so we can enable them as subtarget features.
180   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
181   if (SoftFloat)
182     FS += FS.empty() ? "+soft-float" : ",+soft-float";
183   bool BackChain = F.hasFnAttribute("backchain");
184   if (BackChain)
185     FS += FS.empty() ? "+backchain" : ",+backchain";
186 
187   auto &I = SubtargetMap[CPU + TuneCPU + FS];
188   if (!I) {
189     // This needs to be done before we create a new subtarget since any
190     // creation will depend on the TM and the code generation flags on the
191     // function that reside in TargetOptions.
192     resetTargetOptions(F);
193     I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
194                                            *this);
195   }
196 
197   return I.get();
198 }
199 
200 namespace {
201 
202 /// SystemZ Code Generator Pass Configuration Options.
203 class SystemZPassConfig : public TargetPassConfig {
204 public:
205   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
206     : TargetPassConfig(TM, PM) {}
207 
208   SystemZTargetMachine &getSystemZTargetMachine() const {
209     return getTM<SystemZTargetMachine>();
210   }
211 
212   ScheduleDAGInstrs *
213   createPostMachineScheduler(MachineSchedContext *C) const override {
214     return new ScheduleDAGMI(C,
215                              std::make_unique<SystemZPostRASchedStrategy>(C),
216                              /*RemoveKillFlags=*/true);
217   }
218 
219   void addIRPasses() override;
220   bool addInstSelector() override;
221   bool addILPOpts() override;
222   void addPreRegAlloc() override;
223   void addPostRewrite() override;
224   void addPostRegAlloc() override;
225   void addPreSched2() override;
226   void addPreEmitPass() override;
227 };
228 
229 } // end anonymous namespace
230 
231 void SystemZPassConfig::addIRPasses() {
232   if (getOptLevel() != CodeGenOptLevel::None) {
233     addPass(createSystemZTDCPass());
234     addPass(createLoopDataPrefetchPass());
235   }
236 
237   addPass(createAtomicExpandLegacyPass());
238 
239   TargetPassConfig::addIRPasses();
240 }
241 
242 bool SystemZPassConfig::addInstSelector() {
243   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
244 
245   if (getOptLevel() != CodeGenOptLevel::None)
246     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
247 
248   return false;
249 }
250 
251 bool SystemZPassConfig::addILPOpts() {
252   addPass(&EarlyIfConverterID);
253 
254   if (EnableMachineCombinerPass)
255     addPass(&MachineCombinerID);
256 
257   return true;
258 }
259 
260 void SystemZPassConfig::addPreRegAlloc() {
261   addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
262 }
263 
264 void SystemZPassConfig::addPostRewrite() {
265   addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
266 }
267 
268 void SystemZPassConfig::addPostRegAlloc() {
269   // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
270   // is not called).
271   if (getOptLevel() == CodeGenOptLevel::None)
272     addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
273 }
274 
275 void SystemZPassConfig::addPreSched2() {
276   if (getOptLevel() != CodeGenOptLevel::None)
277     addPass(&IfConverterID);
278 }
279 
280 void SystemZPassConfig::addPreEmitPass() {
281   // Do instruction shortening before compare elimination because some
282   // vector instructions will be shortened into opcodes that compare
283   // elimination recognizes.
284   if (getOptLevel() != CodeGenOptLevel::None)
285     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
286 
287   // We eliminate comparisons here rather than earlier because some
288   // transformations can change the set of available CC values and we
289   // generally want those transformations to have priority.  This is
290   // especially true in the commonest case where the result of the comparison
291   // is used by a single in-range branch instruction, since we will then
292   // be able to fuse the compare and the branch instead.
293   //
294   // For example, two-address NILF can sometimes be converted into
295   // three-address RISBLG.  NILF produces a CC value that indicates whether
296   // the low word is zero, but RISBLG does not modify CC at all.  On the
297   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
298   // The CC value produced by NILL isn't useful for our purposes, but the
299   // value produced by RISBG can be used for any comparison with zero
300   // (not just equality).  So there are some transformations that lose
301   // CC values (while still being worthwhile) and others that happen to make
302   // the CC result more useful than it was originally.
303   //
304   // Another reason is that we only want to use BRANCH ON COUNT in cases
305   // where we know that the count register is not going to be spilled.
306   //
307   // Doing it so late makes it more likely that a register will be reused
308   // between the comparison and the branch, but it isn't clear whether
309   // preventing that would be a win or not.
310   if (getOptLevel() != CodeGenOptLevel::None)
311     addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
312   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
313 
314   // Do final scheduling after all other optimizations, to get an
315   // optimal input for the decoder (branch relaxation must happen
316   // after block placement).
317   if (getOptLevel() != CodeGenOptLevel::None)
318     addPass(&PostMachineSchedulerID);
319 }
320 
321 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
322   return new SystemZPassConfig(*this, PM);
323 }
324 
325 TargetTransformInfo
326 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
327   return TargetTransformInfo(SystemZTTIImpl(this, F));
328 }
329 
330 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
331     BumpPtrAllocator &Allocator, const Function &F,
332     const TargetSubtargetInfo *STI) const {
333   return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
334       Allocator, F, STI);
335 }
336