xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "TargetInfo/SystemZTargetInfo.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/TargetRegistry.h"
25 #include "llvm/Support/CodeGen.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include <string>
29 
30 using namespace llvm;
31 
32 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
33   // Register the target.
34   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
35 }
36 
37 // Determine whether we use the vector ABI.
38 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
39   // We use the vector ABI whenever the vector facility is avaiable.
40   // This is the case by default if CPU is z13 or later, and can be
41   // overridden via "[+-]vector" feature string elements.
42   bool VectorABI = true;
43   bool SoftFloat = false;
44   if (CPU.empty() || CPU == "generic" ||
45       CPU == "z10" || CPU == "z196" || CPU == "zEC12" ||
46       CPU == "arch8" || CPU == "arch9" || CPU == "arch10")
47     VectorABI = false;
48 
49   SmallVector<StringRef, 3> Features;
50   FS.split(Features, ',', -1, false /* KeepEmpty */);
51   for (auto &Feature : Features) {
52     if (Feature == "vector" || Feature == "+vector")
53       VectorABI = true;
54     if (Feature == "-vector")
55       VectorABI = false;
56     if (Feature == "soft-float" || Feature == "+soft-float")
57       SoftFloat = true;
58     if (Feature == "-soft-float")
59       SoftFloat = false;
60   }
61 
62   return VectorABI && !SoftFloat;
63 }
64 
65 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
66                                      StringRef FS) {
67   bool VectorABI = UsesVectorABI(CPU, FS);
68   std::string Ret;
69 
70   // Big endian.
71   Ret += "E";
72 
73   // Data mangling.
74   Ret += DataLayout::getManglingComponent(TT);
75 
76   // Make sure that global data has at least 16 bits of alignment by
77   // default, so that we can refer to it using LARL.  We don't have any
78   // special requirements for stack variables though.
79   Ret += "-i1:8:16-i8:8:16";
80 
81   // 64-bit integers are naturally aligned.
82   Ret += "-i64:64";
83 
84   // 128-bit floats are aligned only to 64 bits.
85   Ret += "-f128:64";
86 
87   // When using the vector ABI on Linux, 128-bit vectors are also aligned to 64
88   // bits. On z/OS, vector types are always aligned to 64 bits.
89   if (VectorABI || TT.isOSzOS())
90     Ret += "-v128:64";
91 
92   // We prefer 16 bits of aligned for all globals; see above.
93   Ret += "-a:8:16";
94 
95   // Integer registers are 32 or 64 bits.
96   Ret += "-n32:64";
97 
98   return Ret;
99 }
100 
101 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
102   if (TT.isOSzOS())
103     return std::make_unique<TargetLoweringObjectFileGOFF>();
104 
105   // Note: Some times run with -triple s390x-unknown.
106   // In this case, default to ELF unless z/OS specifically provided.
107   return std::make_unique<TargetLoweringObjectFileELF>();
108 }
109 
110 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
111   // Static code is suitable for use in a dynamic executable; there is no
112   // separate DynamicNoPIC model.
113   if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
114     return Reloc::Static;
115   return *RM;
116 }
117 
118 // For SystemZ we define the models as follows:
119 //
120 // Small:  BRASL can call any function and will use a stub if necessary.
121 //         Locally-binding symbols will always be in range of LARL.
122 //
123 // Medium: BRASL can call any function and will use a stub if necessary.
124 //         GOT slots and locally-defined text will always be in range
125 //         of LARL, but other symbols might not be.
126 //
127 // Large:  Equivalent to Medium for now.
128 //
129 // Kernel: Equivalent to Medium for now.
130 //
131 // This means that any PIC module smaller than 4GB meets the
132 // requirements of Small, so Small seems like the best default there.
133 //
134 // All symbols bind locally in a non-PIC module, so the choice is less
135 // obvious.  There are two cases:
136 //
137 // - When creating an executable, PLTs and copy relocations allow
138 //   us to treat external symbols as part of the executable.
139 //   Any executable smaller than 4GB meets the requirements of Small,
140 //   so that seems like the best default.
141 //
142 // - When creating JIT code, stubs will be in range of BRASL if the
143 //   image is less than 4GB in size.  GOT entries will likewise be
144 //   in range of LARL.  However, the JIT environment has no equivalent
145 //   of copy relocs, so locally-binding data symbols might not be in
146 //   the range of LARL.  We need the Medium model in that case.
147 static CodeModel::Model
148 getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
149                              bool JIT) {
150   if (CM) {
151     if (*CM == CodeModel::Tiny)
152       report_fatal_error("Target does not support the tiny CodeModel", false);
153     if (*CM == CodeModel::Kernel)
154       report_fatal_error("Target does not support the kernel CodeModel", false);
155     return *CM;
156   }
157   if (JIT)
158     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
159   return CodeModel::Small;
160 }
161 
162 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
163                                            StringRef CPU, StringRef FS,
164                                            const TargetOptions &Options,
165                                            Optional<Reloc::Model> RM,
166                                            Optional<CodeModel::Model> CM,
167                                            CodeGenOpt::Level OL, bool JIT)
168     : LLVMTargetMachine(
169           T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
170           getEffectiveRelocModel(RM),
171           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
172           OL),
173       TLOF(createTLOF(getTargetTriple())) {
174   initAsmInfo();
175 }
176 
177 SystemZTargetMachine::~SystemZTargetMachine() = default;
178 
179 const SystemZSubtarget *
180 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
181   Attribute CPUAttr = F.getFnAttribute("target-cpu");
182   Attribute FSAttr = F.getFnAttribute("target-features");
183 
184   std::string CPU =
185       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
186   std::string FS =
187       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
188 
189   // FIXME: This is related to the code below to reset the target options,
190   // we need to know whether or not the soft float flag is set on the
191   // function, so we can enable it as a subtarget feature.
192   bool softFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
193 
194   if (softFloat)
195     FS += FS.empty() ? "+soft-float" : ",+soft-float";
196 
197   auto &I = SubtargetMap[CPU + FS];
198   if (!I) {
199     // This needs to be done before we create a new subtarget since any
200     // creation will depend on the TM and the code generation flags on the
201     // function that reside in TargetOptions.
202     resetTargetOptions(F);
203     I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, FS, *this);
204   }
205 
206   return I.get();
207 }
208 
209 namespace {
210 
211 /// SystemZ Code Generator Pass Configuration Options.
212 class SystemZPassConfig : public TargetPassConfig {
213 public:
214   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
215     : TargetPassConfig(TM, PM) {}
216 
217   SystemZTargetMachine &getSystemZTargetMachine() const {
218     return getTM<SystemZTargetMachine>();
219   }
220 
221   ScheduleDAGInstrs *
222   createPostMachineScheduler(MachineSchedContext *C) const override {
223     return new ScheduleDAGMI(C,
224                              std::make_unique<SystemZPostRASchedStrategy>(C),
225                              /*RemoveKillFlags=*/true);
226   }
227 
228   void addIRPasses() override;
229   bool addInstSelector() override;
230   bool addILPOpts() override;
231   void addPreRegAlloc() override;
232   void addPostRewrite() override;
233   void addPostRegAlloc() override;
234   void addPreSched2() override;
235   void addPreEmitPass() override;
236 };
237 
238 } // end anonymous namespace
239 
240 void SystemZPassConfig::addIRPasses() {
241   if (getOptLevel() != CodeGenOpt::None) {
242     addPass(createSystemZTDCPass());
243     addPass(createLoopDataPrefetchPass());
244   }
245 
246   TargetPassConfig::addIRPasses();
247 }
248 
249 bool SystemZPassConfig::addInstSelector() {
250   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
251 
252  if (getOptLevel() != CodeGenOpt::None)
253     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
254 
255   return false;
256 }
257 
258 bool SystemZPassConfig::addILPOpts() {
259   addPass(&EarlyIfConverterID);
260   return true;
261 }
262 
263 void SystemZPassConfig::addPreRegAlloc() {
264   addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
265 }
266 
267 void SystemZPassConfig::addPostRewrite() {
268   addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
269 }
270 
271 void SystemZPassConfig::addPostRegAlloc() {
272   // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
273   // is not called).
274   if (getOptLevel() == CodeGenOpt::None)
275     addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
276 }
277 
278 void SystemZPassConfig::addPreSched2() {
279   if (getOptLevel() != CodeGenOpt::None)
280     addPass(&IfConverterID);
281 }
282 
283 void SystemZPassConfig::addPreEmitPass() {
284   // Do instruction shortening before compare elimination because some
285   // vector instructions will be shortened into opcodes that compare
286   // elimination recognizes.
287   if (getOptLevel() != CodeGenOpt::None)
288     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
289 
290   // We eliminate comparisons here rather than earlier because some
291   // transformations can change the set of available CC values and we
292   // generally want those transformations to have priority.  This is
293   // especially true in the commonest case where the result of the comparison
294   // is used by a single in-range branch instruction, since we will then
295   // be able to fuse the compare and the branch instead.
296   //
297   // For example, two-address NILF can sometimes be converted into
298   // three-address RISBLG.  NILF produces a CC value that indicates whether
299   // the low word is zero, but RISBLG does not modify CC at all.  On the
300   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
301   // The CC value produced by NILL isn't useful for our purposes, but the
302   // value produced by RISBG can be used for any comparison with zero
303   // (not just equality).  So there are some transformations that lose
304   // CC values (while still being worthwhile) and others that happen to make
305   // the CC result more useful than it was originally.
306   //
307   // Another reason is that we only want to use BRANCH ON COUNT in cases
308   // where we know that the count register is not going to be spilled.
309   //
310   // Doing it so late makes it more likely that a register will be reused
311   // between the comparison and the branch, but it isn't clear whether
312   // preventing that would be a win or not.
313   if (getOptLevel() != CodeGenOpt::None)
314     addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
315   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
316 
317   // Do final scheduling after all other optimizations, to get an
318   // optimal input for the decoder (branch relaxation must happen
319   // after block placement).
320   if (getOptLevel() != CodeGenOpt::None)
321     addPass(&PostMachineSchedulerID);
322 }
323 
324 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
325   return new SystemZPassConfig(*this, PM);
326 }
327 
328 TargetTransformInfo
329 SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
330   return TargetTransformInfo(SystemZTTIImpl(this, F));
331 }
332