xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1*0b57cec5SDimitry Andric //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2*0b57cec5SDimitry Andric //
3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0b57cec5SDimitry Andric //
7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
8*0b57cec5SDimitry Andric 
9*0b57cec5SDimitry Andric #include "SystemZTargetMachine.h"
10*0b57cec5SDimitry Andric #include "MCTargetDesc/SystemZMCTargetDesc.h"
11*0b57cec5SDimitry Andric #include "SystemZ.h"
12*0b57cec5SDimitry Andric #include "SystemZMachineScheduler.h"
13*0b57cec5SDimitry Andric #include "SystemZTargetTransformInfo.h"
14*0b57cec5SDimitry Andric #include "TargetInfo/SystemZTargetInfo.h"
15*0b57cec5SDimitry Andric #include "llvm/ADT/Optional.h"
16*0b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
17*0b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
18*0b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h"
19*0b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
20*0b57cec5SDimitry Andric #include "llvm/CodeGen/Passes.h"
21*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
23*0b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
24*0b57cec5SDimitry Andric #include "llvm/Support/CodeGen.h"
25*0b57cec5SDimitry Andric #include "llvm/Support/TargetRegistry.h"
26*0b57cec5SDimitry Andric #include "llvm/Target/TargetLoweringObjectFile.h"
27*0b57cec5SDimitry Andric #include "llvm/Transforms/Scalar.h"
28*0b57cec5SDimitry Andric #include <string>
29*0b57cec5SDimitry Andric 
30*0b57cec5SDimitry Andric using namespace llvm;
31*0b57cec5SDimitry Andric 
32*0b57cec5SDimitry Andric extern "C" void LLVMInitializeSystemZTarget() {
33*0b57cec5SDimitry Andric   // Register the target.
34*0b57cec5SDimitry Andric   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
35*0b57cec5SDimitry Andric }
36*0b57cec5SDimitry Andric 
37*0b57cec5SDimitry Andric // Determine whether we use the vector ABI.
38*0b57cec5SDimitry Andric static bool UsesVectorABI(StringRef CPU, StringRef FS) {
39*0b57cec5SDimitry Andric   // We use the vector ABI whenever the vector facility is avaiable.
40*0b57cec5SDimitry Andric   // This is the case by default if CPU is z13 or later, and can be
41*0b57cec5SDimitry Andric   // overridden via "[+-]vector" feature string elements.
42*0b57cec5SDimitry Andric   bool VectorABI = true;
43*0b57cec5SDimitry Andric   if (CPU.empty() || CPU == "generic" ||
44*0b57cec5SDimitry Andric       CPU == "z10" || CPU == "z196" || CPU == "zEC12")
45*0b57cec5SDimitry Andric     VectorABI = false;
46*0b57cec5SDimitry Andric 
47*0b57cec5SDimitry Andric   SmallVector<StringRef, 3> Features;
48*0b57cec5SDimitry Andric   FS.split(Features, ',', -1, false /* KeepEmpty */);
49*0b57cec5SDimitry Andric   for (auto &Feature : Features) {
50*0b57cec5SDimitry Andric     if (Feature == "vector" || Feature == "+vector")
51*0b57cec5SDimitry Andric       VectorABI = true;
52*0b57cec5SDimitry Andric     if (Feature == "-vector")
53*0b57cec5SDimitry Andric       VectorABI = false;
54*0b57cec5SDimitry Andric   }
55*0b57cec5SDimitry Andric 
56*0b57cec5SDimitry Andric   return VectorABI;
57*0b57cec5SDimitry Andric }
58*0b57cec5SDimitry Andric 
59*0b57cec5SDimitry Andric static std::string computeDataLayout(const Triple &TT, StringRef CPU,
60*0b57cec5SDimitry Andric                                      StringRef FS) {
61*0b57cec5SDimitry Andric   bool VectorABI = UsesVectorABI(CPU, FS);
62*0b57cec5SDimitry Andric   std::string Ret;
63*0b57cec5SDimitry Andric 
64*0b57cec5SDimitry Andric   // Big endian.
65*0b57cec5SDimitry Andric   Ret += "E";
66*0b57cec5SDimitry Andric 
67*0b57cec5SDimitry Andric   // Data mangling.
68*0b57cec5SDimitry Andric   Ret += DataLayout::getManglingComponent(TT);
69*0b57cec5SDimitry Andric 
70*0b57cec5SDimitry Andric   // Make sure that global data has at least 16 bits of alignment by
71*0b57cec5SDimitry Andric   // default, so that we can refer to it using LARL.  We don't have any
72*0b57cec5SDimitry Andric   // special requirements for stack variables though.
73*0b57cec5SDimitry Andric   Ret += "-i1:8:16-i8:8:16";
74*0b57cec5SDimitry Andric 
75*0b57cec5SDimitry Andric   // 64-bit integers are naturally aligned.
76*0b57cec5SDimitry Andric   Ret += "-i64:64";
77*0b57cec5SDimitry Andric 
78*0b57cec5SDimitry Andric   // 128-bit floats are aligned only to 64 bits.
79*0b57cec5SDimitry Andric   Ret += "-f128:64";
80*0b57cec5SDimitry Andric 
81*0b57cec5SDimitry Andric   // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
82*0b57cec5SDimitry Andric   if (VectorABI)
83*0b57cec5SDimitry Andric     Ret += "-v128:64";
84*0b57cec5SDimitry Andric 
85*0b57cec5SDimitry Andric   // We prefer 16 bits of aligned for all globals; see above.
86*0b57cec5SDimitry Andric   Ret += "-a:8:16";
87*0b57cec5SDimitry Andric 
88*0b57cec5SDimitry Andric   // Integer registers are 32 or 64 bits.
89*0b57cec5SDimitry Andric   Ret += "-n32:64";
90*0b57cec5SDimitry Andric 
91*0b57cec5SDimitry Andric   return Ret;
92*0b57cec5SDimitry Andric }
93*0b57cec5SDimitry Andric 
94*0b57cec5SDimitry Andric static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
95*0b57cec5SDimitry Andric   // Static code is suitable for use in a dynamic executable; there is no
96*0b57cec5SDimitry Andric   // separate DynamicNoPIC model.
97*0b57cec5SDimitry Andric   if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
98*0b57cec5SDimitry Andric     return Reloc::Static;
99*0b57cec5SDimitry Andric   return *RM;
100*0b57cec5SDimitry Andric }
101*0b57cec5SDimitry Andric 
102*0b57cec5SDimitry Andric // For SystemZ we define the models as follows:
103*0b57cec5SDimitry Andric //
104*0b57cec5SDimitry Andric // Small:  BRASL can call any function and will use a stub if necessary.
105*0b57cec5SDimitry Andric //         Locally-binding symbols will always be in range of LARL.
106*0b57cec5SDimitry Andric //
107*0b57cec5SDimitry Andric // Medium: BRASL can call any function and will use a stub if necessary.
108*0b57cec5SDimitry Andric //         GOT slots and locally-defined text will always be in range
109*0b57cec5SDimitry Andric //         of LARL, but other symbols might not be.
110*0b57cec5SDimitry Andric //
111*0b57cec5SDimitry Andric // Large:  Equivalent to Medium for now.
112*0b57cec5SDimitry Andric //
113*0b57cec5SDimitry Andric // Kernel: Equivalent to Medium for now.
114*0b57cec5SDimitry Andric //
115*0b57cec5SDimitry Andric // This means that any PIC module smaller than 4GB meets the
116*0b57cec5SDimitry Andric // requirements of Small, so Small seems like the best default there.
117*0b57cec5SDimitry Andric //
118*0b57cec5SDimitry Andric // All symbols bind locally in a non-PIC module, so the choice is less
119*0b57cec5SDimitry Andric // obvious.  There are two cases:
120*0b57cec5SDimitry Andric //
121*0b57cec5SDimitry Andric // - When creating an executable, PLTs and copy relocations allow
122*0b57cec5SDimitry Andric //   us to treat external symbols as part of the executable.
123*0b57cec5SDimitry Andric //   Any executable smaller than 4GB meets the requirements of Small,
124*0b57cec5SDimitry Andric //   so that seems like the best default.
125*0b57cec5SDimitry Andric //
126*0b57cec5SDimitry Andric // - When creating JIT code, stubs will be in range of BRASL if the
127*0b57cec5SDimitry Andric //   image is less than 4GB in size.  GOT entries will likewise be
128*0b57cec5SDimitry Andric //   in range of LARL.  However, the JIT environment has no equivalent
129*0b57cec5SDimitry Andric //   of copy relocs, so locally-binding data symbols might not be in
130*0b57cec5SDimitry Andric //   the range of LARL.  We need the Medium model in that case.
131*0b57cec5SDimitry Andric static CodeModel::Model
132*0b57cec5SDimitry Andric getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
133*0b57cec5SDimitry Andric                              bool JIT) {
134*0b57cec5SDimitry Andric   if (CM) {
135*0b57cec5SDimitry Andric     if (*CM == CodeModel::Tiny)
136*0b57cec5SDimitry Andric       report_fatal_error("Target does not support the tiny CodeModel", false);
137*0b57cec5SDimitry Andric     if (*CM == CodeModel::Kernel)
138*0b57cec5SDimitry Andric       report_fatal_error("Target does not support the kernel CodeModel", false);
139*0b57cec5SDimitry Andric     return *CM;
140*0b57cec5SDimitry Andric   }
141*0b57cec5SDimitry Andric   if (JIT)
142*0b57cec5SDimitry Andric     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
143*0b57cec5SDimitry Andric   return CodeModel::Small;
144*0b57cec5SDimitry Andric }
145*0b57cec5SDimitry Andric 
146*0b57cec5SDimitry Andric SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
147*0b57cec5SDimitry Andric                                            StringRef CPU, StringRef FS,
148*0b57cec5SDimitry Andric                                            const TargetOptions &Options,
149*0b57cec5SDimitry Andric                                            Optional<Reloc::Model> RM,
150*0b57cec5SDimitry Andric                                            Optional<CodeModel::Model> CM,
151*0b57cec5SDimitry Andric                                            CodeGenOpt::Level OL, bool JIT)
152*0b57cec5SDimitry Andric     : LLVMTargetMachine(
153*0b57cec5SDimitry Andric           T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
154*0b57cec5SDimitry Andric           getEffectiveRelocModel(RM),
155*0b57cec5SDimitry Andric           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
156*0b57cec5SDimitry Andric           OL),
157*0b57cec5SDimitry Andric       TLOF(llvm::make_unique<TargetLoweringObjectFileELF>()),
158*0b57cec5SDimitry Andric       Subtarget(TT, CPU, FS, *this) {
159*0b57cec5SDimitry Andric   initAsmInfo();
160*0b57cec5SDimitry Andric }
161*0b57cec5SDimitry Andric 
162*0b57cec5SDimitry Andric SystemZTargetMachine::~SystemZTargetMachine() = default;
163*0b57cec5SDimitry Andric 
164*0b57cec5SDimitry Andric namespace {
165*0b57cec5SDimitry Andric 
166*0b57cec5SDimitry Andric /// SystemZ Code Generator Pass Configuration Options.
167*0b57cec5SDimitry Andric class SystemZPassConfig : public TargetPassConfig {
168*0b57cec5SDimitry Andric public:
169*0b57cec5SDimitry Andric   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
170*0b57cec5SDimitry Andric     : TargetPassConfig(TM, PM) {}
171*0b57cec5SDimitry Andric 
172*0b57cec5SDimitry Andric   SystemZTargetMachine &getSystemZTargetMachine() const {
173*0b57cec5SDimitry Andric     return getTM<SystemZTargetMachine>();
174*0b57cec5SDimitry Andric   }
175*0b57cec5SDimitry Andric 
176*0b57cec5SDimitry Andric   ScheduleDAGInstrs *
177*0b57cec5SDimitry Andric   createPostMachineScheduler(MachineSchedContext *C) const override {
178*0b57cec5SDimitry Andric     return new ScheduleDAGMI(C,
179*0b57cec5SDimitry Andric                              llvm::make_unique<SystemZPostRASchedStrategy>(C),
180*0b57cec5SDimitry Andric                              /*RemoveKillFlags=*/true);
181*0b57cec5SDimitry Andric   }
182*0b57cec5SDimitry Andric 
183*0b57cec5SDimitry Andric   void addIRPasses() override;
184*0b57cec5SDimitry Andric   bool addInstSelector() override;
185*0b57cec5SDimitry Andric   bool addILPOpts() override;
186*0b57cec5SDimitry Andric   void addPostRewrite() override;
187*0b57cec5SDimitry Andric   void addPreSched2() override;
188*0b57cec5SDimitry Andric   void addPreEmitPass() override;
189*0b57cec5SDimitry Andric };
190*0b57cec5SDimitry Andric 
191*0b57cec5SDimitry Andric } // end anonymous namespace
192*0b57cec5SDimitry Andric 
193*0b57cec5SDimitry Andric void SystemZPassConfig::addIRPasses() {
194*0b57cec5SDimitry Andric   if (getOptLevel() != CodeGenOpt::None) {
195*0b57cec5SDimitry Andric     addPass(createSystemZTDCPass());
196*0b57cec5SDimitry Andric     addPass(createLoopDataPrefetchPass());
197*0b57cec5SDimitry Andric   }
198*0b57cec5SDimitry Andric 
199*0b57cec5SDimitry Andric   TargetPassConfig::addIRPasses();
200*0b57cec5SDimitry Andric }
201*0b57cec5SDimitry Andric 
202*0b57cec5SDimitry Andric bool SystemZPassConfig::addInstSelector() {
203*0b57cec5SDimitry Andric   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
204*0b57cec5SDimitry Andric 
205*0b57cec5SDimitry Andric  if (getOptLevel() != CodeGenOpt::None)
206*0b57cec5SDimitry Andric     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
207*0b57cec5SDimitry Andric 
208*0b57cec5SDimitry Andric   return false;
209*0b57cec5SDimitry Andric }
210*0b57cec5SDimitry Andric 
211*0b57cec5SDimitry Andric bool SystemZPassConfig::addILPOpts() {
212*0b57cec5SDimitry Andric   addPass(&EarlyIfConverterID);
213*0b57cec5SDimitry Andric   return true;
214*0b57cec5SDimitry Andric }
215*0b57cec5SDimitry Andric 
216*0b57cec5SDimitry Andric void SystemZPassConfig::addPostRewrite() {
217*0b57cec5SDimitry Andric   addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
218*0b57cec5SDimitry Andric }
219*0b57cec5SDimitry Andric 
220*0b57cec5SDimitry Andric void SystemZPassConfig::addPreSched2() {
221*0b57cec5SDimitry Andric   // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
222*0b57cec5SDimitry Andric   // is not called).
223*0b57cec5SDimitry Andric   if (getOptLevel() == CodeGenOpt::None)
224*0b57cec5SDimitry Andric     addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
225*0b57cec5SDimitry Andric 
226*0b57cec5SDimitry Andric   addPass(createSystemZExpandPseudoPass(getSystemZTargetMachine()));
227*0b57cec5SDimitry Andric 
228*0b57cec5SDimitry Andric   if (getOptLevel() != CodeGenOpt::None)
229*0b57cec5SDimitry Andric     addPass(&IfConverterID);
230*0b57cec5SDimitry Andric }
231*0b57cec5SDimitry Andric 
232*0b57cec5SDimitry Andric void SystemZPassConfig::addPreEmitPass() {
233*0b57cec5SDimitry Andric   // Do instruction shortening before compare elimination because some
234*0b57cec5SDimitry Andric   // vector instructions will be shortened into opcodes that compare
235*0b57cec5SDimitry Andric   // elimination recognizes.
236*0b57cec5SDimitry Andric   if (getOptLevel() != CodeGenOpt::None)
237*0b57cec5SDimitry Andric     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
238*0b57cec5SDimitry Andric 
239*0b57cec5SDimitry Andric   // We eliminate comparisons here rather than earlier because some
240*0b57cec5SDimitry Andric   // transformations can change the set of available CC values and we
241*0b57cec5SDimitry Andric   // generally want those transformations to have priority.  This is
242*0b57cec5SDimitry Andric   // especially true in the commonest case where the result of the comparison
243*0b57cec5SDimitry Andric   // is used by a single in-range branch instruction, since we will then
244*0b57cec5SDimitry Andric   // be able to fuse the compare and the branch instead.
245*0b57cec5SDimitry Andric   //
246*0b57cec5SDimitry Andric   // For example, two-address NILF can sometimes be converted into
247*0b57cec5SDimitry Andric   // three-address RISBLG.  NILF produces a CC value that indicates whether
248*0b57cec5SDimitry Andric   // the low word is zero, but RISBLG does not modify CC at all.  On the
249*0b57cec5SDimitry Andric   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
250*0b57cec5SDimitry Andric   // The CC value produced by NILL isn't useful for our purposes, but the
251*0b57cec5SDimitry Andric   // value produced by RISBG can be used for any comparison with zero
252*0b57cec5SDimitry Andric   // (not just equality).  So there are some transformations that lose
253*0b57cec5SDimitry Andric   // CC values (while still being worthwhile) and others that happen to make
254*0b57cec5SDimitry Andric   // the CC result more useful than it was originally.
255*0b57cec5SDimitry Andric   //
256*0b57cec5SDimitry Andric   // Another reason is that we only want to use BRANCH ON COUNT in cases
257*0b57cec5SDimitry Andric   // where we know that the count register is not going to be spilled.
258*0b57cec5SDimitry Andric   //
259*0b57cec5SDimitry Andric   // Doing it so late makes it more likely that a register will be reused
260*0b57cec5SDimitry Andric   // between the comparison and the branch, but it isn't clear whether
261*0b57cec5SDimitry Andric   // preventing that would be a win or not.
262*0b57cec5SDimitry Andric   if (getOptLevel() != CodeGenOpt::None)
263*0b57cec5SDimitry Andric     addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
264*0b57cec5SDimitry Andric   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
265*0b57cec5SDimitry Andric 
266*0b57cec5SDimitry Andric   // Do final scheduling after all other optimizations, to get an
267*0b57cec5SDimitry Andric   // optimal input for the decoder (branch relaxation must happen
268*0b57cec5SDimitry Andric   // after block placement).
269*0b57cec5SDimitry Andric   if (getOptLevel() != CodeGenOpt::None)
270*0b57cec5SDimitry Andric     addPass(&PostMachineSchedulerID);
271*0b57cec5SDimitry Andric }
272*0b57cec5SDimitry Andric 
273*0b57cec5SDimitry Andric TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
274*0b57cec5SDimitry Andric   return new SystemZPassConfig(*this, PM);
275*0b57cec5SDimitry Andric }
276*0b57cec5SDimitry Andric 
277*0b57cec5SDimitry Andric TargetTransformInfo
278*0b57cec5SDimitry Andric SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
279*0b57cec5SDimitry Andric   return TargetTransformInfo(SystemZTTIImpl(this, F));
280*0b57cec5SDimitry Andric }
281