xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZOperands.td (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Class definitions
11//===----------------------------------------------------------------------===//
12
13class ImmediateAsmOperand<string name>
14  : AsmOperandClass {
15  let Name = name;
16  let RenderMethod = "addImmOperands";
17}
18class ImmediateTLSAsmOperand<string name>
19  : AsmOperandClass {
20  let Name = name;
21  let RenderMethod = "addImmTLSOperands";
22}
23
24class ImmediateOp<ValueType vt, string asmop> : Operand<vt> {
25  let PrintMethod = "print"#asmop#"Operand";
26  let EncoderMethod = "getImmOpValue<SystemZ::FK_390_"#asmop#">";
27  let DecoderMethod = "decode"#asmop#"Operand";
28  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
29  let OperandType = "OPERAND_IMMEDIATE";
30}
31
32class ImmOpWithPattern<ValueType vt, string asmop, code pred, SDNodeXForm xform,
33      SDNode ImmNode = imm> :
34  ImmediateOp<vt, asmop>, PatLeaf<(vt ImmNode), pred, xform>;
35
36// class ImmediatePatLeaf<ValueType vt, code pred,
37//       SDNodeXForm xform, SDNode ImmNode>
38//   : PatLeaf<(vt ImmNode), pred, xform>;
39
40
41// Constructs both a DAG pattern and instruction operand for an immediate
42// of type VT.  PRED returns true if a node is acceptable and XFORM returns
43// the operand value associated with the node.  ASMOP is the name of the
44// associated asm operand, and also forms the basis of the asm print method.
45multiclass Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> {
46  // def "" : ImmediateOp<vt, asmop>,
47  //          PatLeaf<(vt imm), pred, xform>;
48  def "" : ImmOpWithPattern<vt, asmop, pred, xform>;
49
50//  def _timm : PatLeaf<(vt timm), pred, xform>;
51  def _timm : ImmOpWithPattern<vt, asmop, pred, xform, timm>;
52}
53
54// Constructs an asm operand for a PC-relative address.  SIZE says how
55// many bits there are.
56class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"#size> {
57  let PredicateMethod = "isImm";
58  let ParserMethod = "parsePCRel"#size;
59}
60class PCRelTLSAsmOperand<string size>
61  : ImmediateTLSAsmOperand<"PCRelTLS"#size> {
62  let PredicateMethod = "isImmTLS";
63  let ParserMethod = "parsePCRelTLS"#size;
64}
65
66// Constructs an operand for a PC-relative address with address type VT.
67// ASMOP is the associated asm operand.
68let OperandType = "OPERAND_PCREL" in {
69  class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
70    let PrintMethod = "printPCRelOperand";
71    let ParserMatchClass = asmop;
72  }
73  class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
74    let PrintMethod = "printPCRelTLSOperand";
75    let ParserMatchClass = asmop;
76  }
77}
78
79// Constructs both a DAG pattern and instruction operand for a PC-relative
80// address with address size VT.  SELF is the name of the operand and
81// ASMOP is the associated asm operand.
82class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
83  : ComplexPattern<vt, 1, "selectPCRelAddress",
84                   [z_pcrel_wrapper, z_pcrel_offset]>,
85    PCRelOperand<vt, asmop> {
86  let MIOperandInfo = (ops !cast<Operand>(self));
87}
88
89// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
90// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
91// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
92// is "".
93class AddressAsmOperand<string format, string bitsize, string dispsize,
94                        string length = "">
95  : AsmOperandClass {
96  let Name = format#bitsize#"Disp"#dispsize#length;
97  let ParserMethod = "parse"#format#bitsize;
98  let RenderMethod = "add"#format#"Operands";
99}
100
101// Constructs an instruction operand for an addressing mode.  FORMAT,
102// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
103// AddressAsmOperand.  OPERANDS is a list of individual operands
104// (base register, displacement, etc.).
105class AddressOperand<string bitsize, string dispsize, string length,
106                     string format, dag operands>
107  : Operand<!cast<ValueType>("i"#bitsize)> {
108  let PrintMethod = "print"#format#"Operand";
109  let OperandType = "OPERAND_MEMORY";
110  let MIOperandInfo = operands;
111  let ParserMatchClass =
112    !cast<AddressAsmOperand>(format#bitsize#"Disp"#dispsize#length);
113}
114
115// Constructs both a DAG pattern and instruction operand for an addressing mode.
116// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
117// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
118// (base register, displacement, etc.).  SELTYPE is the type of the memory
119// operand for selection purposes; sometimes we want different selection
120// choices for the same underlying addressing mode.  SUFFIX is similarly
121// a suffix appended to the displacement for selection purposes;
122// e.g. we want to reject small 20-bit displacements if a 12-bit form
123// also exists, but we want to accept them otherwise.
124class AddressingMode<string seltype, string bitsize, string dispsize,
125                     string suffix, string length, int numops, string format,
126                     dag operands>
127  : ComplexPattern<!cast<ValueType>("i"#bitsize), numops,
128                   "select"#seltype#dispsize#suffix#length,
129                   [add, sub, or, frameindex, z_adjdynalloc]>,
130    AddressOperand<bitsize, dispsize, length, format, operands>;
131
132// An addressing mode with a base and displacement but no index.
133class BDMode<string type, string bitsize, string dispsize, string suffix>
134  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
135                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
136                        !cast<Operand>("disp"#dispsize#"imm"#bitsize))>;
137
138// An addressing mode with a base, displacement and index.
139class BDXMode<string type, string bitsize, string dispsize, string suffix>
140  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
141                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
142                        !cast<Operand>("disp"#dispsize#"imm"#bitsize),
143                        !cast<RegisterOperand>("ADDR"#bitsize))>;
144
145// A BDMode paired with an immediate length operand of LENSIZE bits.
146class BDLMode<string type, string bitsize, string dispsize, string suffix,
147              string lensize>
148  : AddressingMode<type, bitsize, dispsize, suffix, "Len"#lensize, 3,
149                   "BDLAddr",
150                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
151                        !cast<Operand>("disp"#dispsize#"imm"#bitsize),
152                        !cast<Operand>("len"#lensize#"imm"#bitsize))>;
153
154// A BDMode paired with a register length operand.
155class BDRMode<string type, string bitsize, string dispsize, string suffix>
156  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
157                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
158                        !cast<Operand>("disp"#dispsize#"imm"#bitsize),
159                        !cast<RegisterOperand>("GR"#bitsize))>;
160
161// An addressing mode with a base, displacement and a vector index.
162class BDVMode<string bitsize, string dispsize>
163  : AddressOperand<bitsize, dispsize, "", "BDVAddr",
164                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
165                        !cast<Operand>("disp"#dispsize#"imm"#bitsize),
166                        !cast<RegisterOperand>("VR128"))>;
167
168//===----------------------------------------------------------------------===//
169// Extracting immediate operands from nodes
170// These all create MVT::i64 nodes to ensure the value is not sign-extended
171// when converted from an SDNode to a MachineOperand later on.
172//===----------------------------------------------------------------------===//
173
174// Bits 0-15 (counting from the lsb).
175def LL16 : SDNodeXForm<imm, [{
176  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
177  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
178}]>;
179
180// Bits 16-31 (counting from the lsb).
181def LH16 : SDNodeXForm<imm, [{
182  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
183  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
184}]>;
185
186// Bits 32-47 (counting from the lsb).
187def HL16 : SDNodeXForm<imm, [{
188  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
189  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
190}]>;
191
192// Bits 48-63 (counting from the lsb).
193def HH16 : SDNodeXForm<imm, [{
194  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
195  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
196}]>;
197
198// Low 32 bits.
199def LF32 : SDNodeXForm<imm, [{
200  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
201  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
202}]>;
203
204// High 32 bits.
205def HF32 : SDNodeXForm<imm, [{
206  uint64_t Value = N->getZExtValue() >> 32;
207  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
208}]>;
209
210// Negated variants.
211def NEGLH16 : SDNodeXForm<imm, [{
212  uint64_t Value = (-N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
213  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
214}]>;
215
216def NEGLF32 : SDNodeXForm<imm, [{
217  uint64_t Value = -N->getZExtValue() & 0x00000000FFFFFFFFULL;
218  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
219}]>;
220
221// Truncate an immediate to a 8-bit signed quantity.
222def SIMM8 : SDNodeXForm<imm, [{
223  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
224                                   MVT::i64);
225}]>;
226
227// Truncate an immediate to a 8-bit unsigned quantity.
228def UIMM8 : SDNodeXForm<imm, [{
229  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
230                                   MVT::i64);
231}]>;
232
233// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
234def UIMM8EVEN : SDNodeXForm<imm, [{
235  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
236                                   MVT::i64);
237}]>;
238
239// Truncate an immediate to a 12-bit unsigned quantity.
240def UIMM12 : SDNodeXForm<imm, [{
241  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
242                                   MVT::i64);
243}]>;
244
245// Truncate an immediate to a 16-bit signed quantity.
246def SIMM16 : SDNodeXForm<imm, [{
247  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
248                                   MVT::i64);
249}]>;
250
251// Negate and then truncate an immediate to a 16-bit signed quantity.
252def NEGSIMM16 : SDNodeXForm<imm, [{
253  return CurDAG->getTargetConstant(int16_t(-N->getZExtValue()), SDLoc(N),
254                                   MVT::i64);
255}]>;
256
257// Truncate an immediate to a 16-bit unsigned quantity.
258def UIMM16 : SDNodeXForm<imm, [{
259  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
260                                   MVT::i64);
261}]>;
262
263// Truncate an immediate to a 32-bit signed quantity.
264def SIMM32 : SDNodeXForm<imm, [{
265  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
266                                   MVT::i64);
267}]>;
268
269// Negate and then truncate an immediate to a 32-bit unsigned quantity.
270def NEGSIMM32 : SDNodeXForm<imm, [{
271  return CurDAG->getTargetConstant(int32_t(-N->getZExtValue()), SDLoc(N),
272                                   MVT::i64);
273}]>;
274
275// Truncate an immediate to a 32-bit unsigned quantity.
276def UIMM32 : SDNodeXForm<imm, [{
277  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
278                                   MVT::i64);
279}]>;
280
281// Negate and then truncate an immediate to a 32-bit unsigned quantity.
282def NEGUIMM32 : SDNodeXForm<imm, [{
283  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
284                                   MVT::i64);
285}]>;
286
287// Truncate an immediate to a 48-bit unsigned quantity.
288def UIMM48 : SDNodeXForm<imm, [{
289  return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
290                                   SDLoc(N), MVT::i64);
291}]>;
292
293//===----------------------------------------------------------------------===//
294// Immediate asm operands.
295//===----------------------------------------------------------------------===//
296
297def U1Imm  : ImmediateAsmOperand<"U1Imm">;
298def U2Imm  : ImmediateAsmOperand<"U2Imm">;
299def U3Imm  : ImmediateAsmOperand<"U3Imm">;
300def U4Imm  : ImmediateAsmOperand<"U4Imm">;
301def S8Imm  : ImmediateAsmOperand<"S8Imm">;
302def U8Imm  : ImmediateAsmOperand<"U8Imm">;
303def U12Imm : ImmediateAsmOperand<"U12Imm">;
304def S16Imm : ImmediateAsmOperand<"S16Imm">;
305def U16Imm : ImmediateAsmOperand<"U16Imm">;
306def S32Imm : ImmediateAsmOperand<"S32Imm">;
307def U32Imm : ImmediateAsmOperand<"U32Imm">;
308def U48Imm : ImmediateAsmOperand<"U48Imm">;
309
310//===----------------------------------------------------------------------===//
311// i32 immediates
312//===----------------------------------------------------------------------===//
313
314// Immediates for the lower and upper 16 bits of an i32, with the other
315// bits of the i32 being zero.
316defm imm32ll16 : Immediate<i32, [{
317  return N->getAPIntValue().isIntN(32) && SystemZ::isImmLL(N->getZExtValue());
318}], LL16, "U16Imm">;
319
320defm imm32lh16 : Immediate<i32, [{
321  return N->getAPIntValue().isIntN(32) && SystemZ::isImmLH(N->getZExtValue());
322}], LH16, "U16Imm">;
323
324// Immediates for the lower and upper 16 bits of an i32, with the other
325// bits of the i32 being one.
326defm imm32ll16c : Immediate<i32, [{
327  return N->getAPIntValue().isIntN(32) &&
328         SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
329}], LL16, "U16Imm">;
330
331defm imm32lh16c : Immediate<i32, [{
332  return N->getAPIntValue().isIntN(32) &&
333         SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
334}], LH16, "U16Imm">;
335
336// Short immediates
337defm imm32zx1 : Immediate<i32, [{
338  return N->getAPIntValue().isIntN(1);
339}], NOOP_SDNodeXForm, "U1Imm">;
340
341defm imm32zx2 : Immediate<i32, [{
342  return N->getAPIntValue().isIntN(2);
343}], NOOP_SDNodeXForm, "U2Imm">;
344
345defm imm32zx3 : Immediate<i32, [{
346  return N->getAPIntValue().isIntN(3);
347}], NOOP_SDNodeXForm, "U3Imm">;
348
349defm imm32zx4 : Immediate<i32, [{
350  return N->getAPIntValue().isIntN(4);
351}], NOOP_SDNodeXForm, "U4Imm">;
352
353// Note: this enforces an even value during code generation only.
354// When used from the assembler, any 4-bit value is allowed.
355defm imm32zx4even : Immediate<i32, [{
356  return N->getAPIntValue().isIntN(4);
357}], UIMM8EVEN, "U4Imm">;
358
359defm imm32sx8 : Immediate<i32, [{
360  return N->getAPIntValue().isSignedIntN(8);
361}], SIMM8, "S8Imm">;
362
363defm imm32zx8 : Immediate<i32, [{
364  return N->getAPIntValue().isIntN(8);
365}], UIMM8, "U8Imm">;
366
367defm imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
368
369defm imm32zx12 : Immediate<i32, [{
370  return N->getAPIntValue().isIntN(12);
371}], UIMM12, "U12Imm">;
372
373defm imm32sx16 : Immediate<i32, [{
374  return N->getAPIntValue().isSignedIntN(16);
375}], SIMM16, "S16Imm">;
376
377defm imm32sx16n : Immediate<i32, [{
378  return (-N->getAPIntValue()).isSignedIntN(16);
379}], NEGSIMM16, "S16Imm">;
380
381defm imm32zx16 : Immediate<i32, [{
382  return N->getAPIntValue().isIntN(16);
383}], UIMM16, "U16Imm">;
384
385defm imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
386defm imm32zx16trunc : Immediate<i32, [{}], UIMM16, "U16Imm">;
387
388// Full 32-bit immediates.  we need both signed and unsigned versions
389// because the assembler is picky.  E.g. AFI requires signed operands
390// while NILF requires unsigned ones.
391defm simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
392defm uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
393
394defm simm32n : Immediate<i32, [{
395  auto SImm = N->getAPIntValue().trySExtValue();
396  return SImm.has_value() && isInt<32>(-*SImm);
397}], NEGSIMM32, "S32Imm">;
398
399def imm32 : ImmLeaf<i32, [{}]>;
400
401//===----------------------------------------------------------------------===//
402// 64-bit immediates
403//===----------------------------------------------------------------------===//
404
405// Immediates for 16-bit chunks of an i64, with the other bits of the
406// i32 being zero.
407defm imm64ll16 : Immediate<i64, [{
408  return N->getAPIntValue().isIntN(64) && SystemZ::isImmLL(N->getZExtValue());
409}], LL16, "U16Imm">;
410
411defm imm64lh16 : Immediate<i64, [{
412  return N->getAPIntValue().isIntN(64) && SystemZ::isImmLH(N->getZExtValue());
413}], LH16, "U16Imm">;
414
415defm imm64hl16 : Immediate<i64, [{
416  return N->getAPIntValue().isIntN(64) && SystemZ::isImmHL(N->getZExtValue());
417}], HL16, "U16Imm">;
418
419defm imm64hh16 : Immediate<i64, [{
420  return N->getAPIntValue().isIntN(64) && SystemZ::isImmHH(N->getZExtValue());
421}], HH16, "U16Imm">;
422
423// Immediates for 16-bit chunks of an i64, with the other bits of the
424// i32 being one.
425defm imm64ll16c : Immediate<i64, [{
426  return N->getAPIntValue().isIntN(64) &&
427         SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
428}], LL16, "U16Imm">;
429
430defm imm64lh16c : Immediate<i64, [{
431  return N->getAPIntValue().isIntN(64) &&
432         SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
433}], LH16, "U16Imm">;
434
435defm imm64hl16c : Immediate<i64, [{
436  return N->getAPIntValue().isIntN(64) &&
437         SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
438}], HL16, "U16Imm">;
439
440defm imm64hh16c : Immediate<i64, [{
441  return N->getAPIntValue().isIntN(64) &&
442         SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
443}], HH16, "U16Imm">;
444
445// Immediates for the lower and upper 32 bits of an i64, with the other
446// bits of the i32 being zero.
447defm imm64lf32 : Immediate<i64, [{
448  return N->getAPIntValue().isIntN(64) && SystemZ::isImmLF(N->getZExtValue());
449}], LF32, "U32Imm">;
450
451defm imm64hf32 : Immediate<i64, [{
452  return N->getAPIntValue().isIntN(64) && SystemZ::isImmHF(N->getZExtValue());
453}], HF32, "U32Imm">;
454
455// Immediates for the lower and upper 32 bits of an i64, with the other
456// bits of the i32 being one.
457defm imm64lf32c : Immediate<i64, [{
458  return N->getAPIntValue().isIntN(64) &&
459         SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
460}], LF32, "U32Imm">;
461
462defm imm64hf32c : Immediate<i64, [{
463  return N->getAPIntValue().isIntN(64) &&
464         SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
465}], HF32, "U32Imm">;
466
467// Negated immediates that fit LF32 or LH16.
468defm imm64lh16n : Immediate<i64, [{
469  return N->getAPIntValue().isIntN(64) &&
470         SystemZ::isImmLH(uint64_t(-N->getZExtValue()));
471}], NEGLH16, "U16Imm">;
472
473defm imm64lf32n : Immediate<i64, [{
474  return N->getAPIntValue().isIntN(64) &&
475         SystemZ::isImmLF(uint64_t(-N->getZExtValue()));
476}], NEGLF32, "U32Imm">;
477
478// Short immediates.
479defm imm64sx8 : Immediate<i64, [{
480  return N->getAPIntValue().isSignedIntN(8);
481}], SIMM8, "S8Imm">;
482
483defm imm64zx8 : Immediate<i64, [{
484  return N->getAPIntValue().isIntN(8);;
485}], UIMM8, "U8Imm">;
486
487defm imm64sx16 : Immediate<i64, [{
488  return N->getAPIntValue().isSignedIntN(16);
489}], SIMM16, "S16Imm">;
490
491defm imm64sx16n : Immediate<i64, [{
492  return (-N->getAPIntValue()).isSignedIntN(16);
493}], NEGSIMM16, "S16Imm">;
494
495defm imm64zx16 : Immediate<i64, [{
496  return N->getAPIntValue().isIntN(16);
497}], UIMM16, "U16Imm">;
498
499defm imm64sx32 : Immediate<i64, [{
500  return N->getAPIntValue().isSignedIntN(32);
501}], SIMM32, "S32Imm">;
502
503defm imm64sx32n : Immediate<i64, [{
504  return (-N->getAPIntValue()).isSignedIntN(32);
505}], NEGSIMM32, "S32Imm">;
506
507defm imm64zx32 : Immediate<i64, [{
508  return N->getAPIntValue().isIntN(32);
509}], UIMM32, "U32Imm">;
510
511defm imm64zx32n : Immediate<i64, [{
512  return (-N->getAPIntValue()).isIntN(32);
513}], NEGUIMM32, "U32Imm">;
514
515defm imm64zx48 : Immediate<i64, [{
516  return N->getAPIntValue().isIntN(64);
517}], UIMM48, "U48Imm">;
518
519class Imm64 : ImmLeaf<i64, [{}]>, Operand<i64> {
520  let OperandType = "OPERAND_IMMEDIATE";
521}
522def imm64 : Imm64;
523def len4imm64 : Imm64 {
524  let EncoderMethod = "getLenEncoding<SystemZ::FK_390_U4Imm>";
525  let DecoderMethod = "decodeLenOperand<4>";
526}
527def len8imm64 : Imm64 {
528  let EncoderMethod = "getLenEncoding<SystemZ::FK_390_U8Imm>";
529  let DecoderMethod = "decodeLenOperand<8>";
530}
531
532//===----------------------------------------------------------------------===//
533// Floating-point immediates
534//===----------------------------------------------------------------------===//
535
536// Floating-point zero.
537def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
538
539// Floating point negative zero.
540def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
541
542//===----------------------------------------------------------------------===//
543// Symbolic address operands
544//===----------------------------------------------------------------------===//
545
546// PC-relative asm operands.
547def PCRel12 : PCRelAsmOperand<"12">;
548def PCRel16 : PCRelAsmOperand<"16">;
549def PCRel24 : PCRelAsmOperand<"24">;
550def PCRel32 : PCRelAsmOperand<"32">;
551def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
552def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
553
554// PC-relative offsets of a basic block.  The offset is sign-extended
555// and multiplied by 2.
556def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
557  let EncoderMethod = "getPC16DBLEncoding";
558  let DecoderMethod = "decodePC16DBLBranchOperand";
559}
560def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
561  let EncoderMethod = "getPC32DBLEncoding";
562  let DecoderMethod = "decodePC32DBLBranchOperand";
563}
564
565// Variants of brtarget for use with branch prediction preload.
566def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
567  let EncoderMethod = "getPC12DBLBPPEncoding";
568  let DecoderMethod = "decodePC12DBLBranchOperand";
569}
570def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
571  let EncoderMethod = "getPC16DBLBPPEncoding";
572  let DecoderMethod = "decodePC16DBLBranchOperand";
573}
574def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
575  let EncoderMethod = "getPC24DBLBPPEncoding";
576  let DecoderMethod = "decodePC24DBLBranchOperand";
577}
578
579// Variants of brtarget16/32 with an optional additional TLS symbol.
580// These are used to annotate calls to __tls_get_offset.
581def tlssym : Operand<i64> { }
582def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
583  let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
584  let EncoderMethod = "getPC16DBLTLSEncoding";
585  let DecoderMethod = "decodePC16DBLBranchOperand";
586}
587def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
588  let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
589  let EncoderMethod = "getPC32DBLTLSEncoding";
590  let DecoderMethod = "decodePC32DBLBranchOperand";
591}
592
593// A PC-relative offset of a global value.  The offset is sign-extended
594// and multiplied by 2.
595def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
596  let EncoderMethod = "getPC32DBLEncoding";
597  let DecoderMethod = "decodePC32DBLOperand";
598}
599
600//===----------------------------------------------------------------------===//
601// Addressing modes
602//===----------------------------------------------------------------------===//
603
604// 12-bit displacement operands.
605let EncoderMethod = "getImmOpValue<SystemZ::FK_390_U12Imm>",
606    DecoderMethod = "decodeU12ImmOperand" in {
607  def disp12imm32 : Operand<i32>;
608  def disp12imm64 : Operand<i64>;
609}
610
611// 20-bit displacement operands.
612let EncoderMethod = "getImmOpValue<SystemZ::FK_390_S20Imm>",
613    DecoderMethod = "decodeS20ImmOperand" in {
614  def disp20imm32 : Operand<i32>;
615  def disp20imm64 : Operand<i64>;
616}
617
618def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
619def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
620def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
621def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
622def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
623def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
624def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len4">;
625def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
626def BDRAddr64Disp12     : AddressAsmOperand<"BDRAddr",  "64", "12">;
627def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;
628
629// DAG patterns and operands for addressing modes.  Each mode has
630// the form <type><range><group>[<len>] where:
631//
632// <type> is one of:
633//   shift    : base + displacement (32-bit)
634//   bdaddr   : base + displacement
635//   mviaddr  : like bdaddr, but reject cases with a natural index
636//   bdxaddr  : base + displacement + index
637//   laaddr   : like bdxaddr, but used for Load Address operations
638//   dynalloc : base + displacement + index + ADJDYNALLOC
639//   bdladdr  : base + displacement with a length field
640//   bdvaddr  : base + displacement with a vector index
641//
642// <range> is one of:
643//   12       : the displacement is an unsigned 12-bit value
644//   20       : the displacement is a signed 20-bit value
645//
646// <group> is one of:
647//   pair     : used when there is an equivalent instruction with the opposite
648//              range value (12 or 20)
649//   only     : used when there is no equivalent instruction with the opposite
650//              range value
651//
652// <len> is one of:
653//
654//   <empty>  : there is no length field
655//   len8     : the length field is 8 bits, with a range of [1, 0x100].
656def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
657def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
658def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
659def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
660def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
661def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
662def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
663def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
664def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
665def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
666def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
667def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
668def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
669def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
670def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
671def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
672def bdladdr12onlylen4 : BDLMode<"BDLAddr",  "64", "12", "Only", "4">;
673def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
674def bdraddr12only     : BDRMode<"BDRAddr",  "64", "12", "Only">;
675def bdvaddr12only     : BDVMode<            "64", "12">;
676
677//===----------------------------------------------------------------------===//
678// Miscellaneous
679//===----------------------------------------------------------------------===//
680
681// A 4-bit condition-code mask.
682def cond4 : PatLeaf<(i32 timm), [{ return (N->getZExtValue() < 16); }]>,
683            Operand<i32> {
684  let PrintMethod = "printCond4Operand";
685  let OperandType = "OPERAND_IMMEDIATE";
686}
687