xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZOperands.td (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Class definitions
11//===----------------------------------------------------------------------===//
12
13class ImmediateAsmOperand<string name>
14  : AsmOperandClass {
15  let Name = name;
16  let RenderMethod = "addImmOperands";
17}
18class ImmediateTLSAsmOperand<string name>
19  : AsmOperandClass {
20  let Name = name;
21  let RenderMethod = "addImmTLSOperands";
22}
23
24class ImmediateOp<ValueType vt, string asmop> : Operand<vt> {
25  let PrintMethod = "print"#asmop#"Operand";
26  let EncoderMethod = "getImmOpValue<SystemZ::FK_390_"#asmop#">";
27  let DecoderMethod = "decode"#asmop#"Operand";
28  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
29  let OperandType = "OPERAND_IMMEDIATE";
30}
31
32class ImmOpWithPattern<ValueType vt, string asmop, code pred, SDNodeXForm xform,
33      SDNode ImmNode = imm> :
34  ImmediateOp<vt, asmop>, PatLeaf<(vt ImmNode), pred, xform>;
35
36// class ImmediatePatLeaf<ValueType vt, code pred,
37//       SDNodeXForm xform, SDNode ImmNode>
38//   : PatLeaf<(vt ImmNode), pred, xform>;
39
40
41// Constructs both a DAG pattern and instruction operand for an immediate
42// of type VT.  PRED returns true if a node is acceptable and XFORM returns
43// the operand value associated with the node.  ASMOP is the name of the
44// associated asm operand, and also forms the basis of the asm print method.
45multiclass Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> {
46  // def "" : ImmediateOp<vt, asmop>,
47  //          PatLeaf<(vt imm), pred, xform>;
48  def "" : ImmOpWithPattern<vt, asmop, pred, xform>;
49
50//  def _timm : PatLeaf<(vt timm), pred, xform>;
51  def _timm : ImmOpWithPattern<vt, asmop, pred, xform, timm>;
52}
53
54// Constructs an asm operand for a PC-relative address.  SIZE says how
55// many bits there are.
56class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"#size> {
57  let PredicateMethod = "isImm";
58  let ParserMethod = "parsePCRel"#size;
59}
60class PCRelTLSAsmOperand<string size>
61  : ImmediateTLSAsmOperand<"PCRelTLS"#size> {
62  let PredicateMethod = "isImmTLS";
63  let ParserMethod = "parsePCRelTLS"#size;
64}
65
66// Constructs an operand for a PC-relative address with address type VT.
67// ASMOP is the associated asm operand.
68let OperandType = "OPERAND_PCREL" in {
69  class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
70    let PrintMethod = "printPCRelOperand";
71    let ParserMatchClass = asmop;
72  }
73  class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
74    let PrintMethod = "printPCRelTLSOperand";
75    let ParserMatchClass = asmop;
76  }
77}
78
79// Constructs both a DAG pattern and instruction operand for a PC-relative
80// address with address size VT.  SELF is the name of the operand and
81// ASMOP is the associated asm operand.
82class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
83  : ComplexPattern<vt, 1, "selectPCRelAddress",
84                   [z_pcrel_wrapper, z_pcrel_offset]>,
85    PCRelOperand<vt, asmop> {
86  let MIOperandInfo = (ops !cast<Operand>(self));
87}
88
89// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
90// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
91// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
92// is "".
93class AddressAsmOperand<string format, string bitsize, string dispsize,
94                        string length = "">
95  : AsmOperandClass {
96  let Name = format#bitsize#"Disp"#dispsize#length;
97  let ParserMethod = "parse"#format#bitsize;
98  let RenderMethod = "add"#format#"Operands";
99}
100
101// Constructs an instruction operand for an addressing mode.  FORMAT,
102// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
103// AddressAsmOperand.  OPERANDS is a list of individual operands
104// (base register, displacement, etc.).
105class AddressOperand<string bitsize, string dispsize, string length,
106                     string format, dag operands>
107  : Operand<!cast<ValueType>("i"#bitsize)> {
108  let PrintMethod = "print"#format#"Operand";
109  let OperandType = "OPERAND_MEMORY";
110  let MIOperandInfo = operands;
111  let ParserMatchClass =
112    !cast<AddressAsmOperand>(format#bitsize#"Disp"#dispsize#length);
113}
114
115// Constructs both a DAG pattern and instruction operand for an addressing mode.
116// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
117// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
118// (base register, displacement, etc.).  SELTYPE is the type of the memory
119// operand for selection purposes; sometimes we want different selection
120// choices for the same underlying addressing mode.  SUFFIX is similarly
121// a suffix appended to the displacement for selection purposes;
122// e.g. we want to reject small 20-bit displacements if a 12-bit form
123// also exists, but we want to accept them otherwise.
124class AddressingMode<string seltype, string bitsize, string dispsize,
125                     string suffix, string length, int numops, string format,
126                     dag operands>
127  : ComplexPattern<!cast<ValueType>("i"#bitsize), numops,
128                   "select"#seltype#dispsize#suffix#length,
129                   [add, sub, or, frameindex, z_adjdynalloc]>,
130    AddressOperand<bitsize, dispsize, length, format, operands>;
131
132// An addressing mode with a base and displacement but no index.
133class BDMode<string type, string bitsize, string dispsize, string suffix>
134  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
135                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
136                        !cast<Operand>("disp"#dispsize#"imm"#bitsize))>;
137
138// An addressing mode with a base, displacement and index.
139class BDXMode<string type, string bitsize, string dispsize, string suffix>
140  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
141                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
142                        !cast<Operand>("disp"#dispsize#"imm"#bitsize),
143                        !cast<RegisterOperand>("ADDR"#bitsize))>;
144
145// A BDMode paired with an immediate length operand of LENSIZE bits.
146class BDLMode<string type, string bitsize, string dispsize, string suffix,
147              string lensize>
148  : AddressingMode<type, bitsize, dispsize, suffix, "Len"#lensize, 3,
149                   "BDLAddr",
150                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
151                        !cast<Operand>("disp"#dispsize#"imm"#bitsize),
152                        !cast<Operand>("len"#lensize#"imm"#bitsize))>;
153
154// A BDMode paired with a register length operand.
155class BDRMode<string type, string bitsize, string dispsize, string suffix>
156  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
157                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
158                        !cast<Operand>("disp"#dispsize#"imm"#bitsize),
159                        !cast<RegisterOperand>("GR"#bitsize))>;
160
161// An addressing mode with a base, displacement and a vector index.
162class BDVMode<string bitsize, string dispsize>
163  : AddressOperand<bitsize, dispsize, "", "BDVAddr",
164                   (ops !cast<RegisterOperand>("ADDR"#bitsize),
165                        !cast<Operand>("disp"#dispsize#"imm"#bitsize),
166                        !cast<RegisterOperand>("VR128"))>;
167
168//===----------------------------------------------------------------------===//
169// Extracting immediate operands from nodes
170// These all create MVT::i64 nodes to ensure the value is not sign-extended
171// when converted from an SDNode to a MachineOperand later on.
172//===----------------------------------------------------------------------===//
173
174// Bits 0-15 (counting from the lsb).
175def LL16 : SDNodeXForm<imm, [{
176  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
177  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
178}]>;
179
180// Bits 16-31 (counting from the lsb).
181def LH16 : SDNodeXForm<imm, [{
182  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
183  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
184}]>;
185
186// Bits 32-47 (counting from the lsb).
187def HL16 : SDNodeXForm<imm, [{
188  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
189  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
190}]>;
191
192// Bits 48-63 (counting from the lsb).
193def HH16 : SDNodeXForm<imm, [{
194  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
195  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
196}]>;
197
198// Low 32 bits.
199def LF32 : SDNodeXForm<imm, [{
200  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
201  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
202}]>;
203
204// High 32 bits.
205def HF32 : SDNodeXForm<imm, [{
206  uint64_t Value = N->getZExtValue() >> 32;
207  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
208}]>;
209
210// Negated variants.
211def NEGLH16 : SDNodeXForm<imm, [{
212  uint64_t Value = (-N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
213  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
214}]>;
215
216def NEGLF32 : SDNodeXForm<imm, [{
217  uint64_t Value = -N->getZExtValue() & 0x00000000FFFFFFFFULL;
218  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
219}]>;
220
221// Truncate an immediate to a 8-bit signed quantity.
222def SIMM8 : SDNodeXForm<imm, [{
223  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
224                                   MVT::i64);
225}]>;
226
227// Truncate an immediate to a 8-bit unsigned quantity.
228def UIMM8 : SDNodeXForm<imm, [{
229  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
230                                   MVT::i64);
231}]>;
232
233// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
234def UIMM8EVEN : SDNodeXForm<imm, [{
235  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
236                                   MVT::i64);
237}]>;
238
239// Truncate an immediate to a 12-bit unsigned quantity.
240def UIMM12 : SDNodeXForm<imm, [{
241  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
242                                   MVT::i64);
243}]>;
244
245// Truncate an immediate to a 16-bit signed quantity.
246def SIMM16 : SDNodeXForm<imm, [{
247  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
248                                   MVT::i64);
249}]>;
250
251// Negate and then truncate an immediate to a 16-bit signed quantity.
252def NEGSIMM16 : SDNodeXForm<imm, [{
253  return CurDAG->getTargetConstant(int16_t(-N->getZExtValue()), SDLoc(N),
254                                   MVT::i64);
255}]>;
256
257// Truncate an immediate to a 16-bit unsigned quantity.
258def UIMM16 : SDNodeXForm<imm, [{
259  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
260                                   MVT::i64);
261}]>;
262
263// Truncate an immediate to a 32-bit signed quantity.
264def SIMM32 : SDNodeXForm<imm, [{
265  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
266                                   MVT::i64);
267}]>;
268
269// Negate and then truncate an immediate to a 32-bit unsigned quantity.
270def NEGSIMM32 : SDNodeXForm<imm, [{
271  return CurDAG->getTargetConstant(int32_t(-N->getZExtValue()), SDLoc(N),
272                                   MVT::i64);
273}]>;
274
275// Truncate an immediate to a 32-bit unsigned quantity.
276def UIMM32 : SDNodeXForm<imm, [{
277  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
278                                   MVT::i64);
279}]>;
280
281// Negate and then truncate an immediate to a 32-bit unsigned quantity.
282def NEGUIMM32 : SDNodeXForm<imm, [{
283  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
284                                   MVT::i64);
285}]>;
286
287// Truncate an immediate to a 48-bit unsigned quantity.
288def UIMM48 : SDNodeXForm<imm, [{
289  return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
290                                   SDLoc(N), MVT::i64);
291}]>;
292
293//===----------------------------------------------------------------------===//
294// Immediate asm operands.
295//===----------------------------------------------------------------------===//
296
297def U1Imm  : ImmediateAsmOperand<"U1Imm">;
298def U2Imm  : ImmediateAsmOperand<"U2Imm">;
299def U3Imm  : ImmediateAsmOperand<"U3Imm">;
300def U4Imm  : ImmediateAsmOperand<"U4Imm">;
301def S8Imm  : ImmediateAsmOperand<"S8Imm">;
302def U8Imm  : ImmediateAsmOperand<"U8Imm">;
303def U12Imm : ImmediateAsmOperand<"U12Imm">;
304def S16Imm : ImmediateAsmOperand<"S16Imm">;
305def U16Imm : ImmediateAsmOperand<"U16Imm">;
306def S32Imm : ImmediateAsmOperand<"S32Imm">;
307def U32Imm : ImmediateAsmOperand<"U32Imm">;
308def U48Imm : ImmediateAsmOperand<"U48Imm">;
309
310//===----------------------------------------------------------------------===//
311// i32 immediates
312//===----------------------------------------------------------------------===//
313
314// Immediates for the lower and upper 16 bits of an i32, with the other
315// bits of the i32 being zero.
316defm imm32ll16 : Immediate<i32, [{
317  return SystemZ::isImmLL(N->getZExtValue());
318}], LL16, "U16Imm">;
319
320defm imm32lh16 : Immediate<i32, [{
321  return SystemZ::isImmLH(N->getZExtValue());
322}], LH16, "U16Imm">;
323
324// Immediates for the lower and upper 16 bits of an i32, with the other
325// bits of the i32 being one.
326defm imm32ll16c : Immediate<i32, [{
327  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
328}], LL16, "U16Imm">;
329
330defm imm32lh16c : Immediate<i32, [{
331  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
332}], LH16, "U16Imm">;
333
334// Short immediates
335defm imm32zx1 : Immediate<i32, [{
336  return isUInt<1>(N->getZExtValue());
337}], NOOP_SDNodeXForm, "U1Imm">;
338
339defm imm32zx2 : Immediate<i32, [{
340  return isUInt<2>(N->getZExtValue());
341}], NOOP_SDNodeXForm, "U2Imm">;
342
343defm imm32zx3 : Immediate<i32, [{
344  return isUInt<3>(N->getZExtValue());
345}], NOOP_SDNodeXForm, "U3Imm">;
346
347defm imm32zx4 : Immediate<i32, [{
348  return isUInt<4>(N->getZExtValue());
349}], NOOP_SDNodeXForm, "U4Imm">;
350
351// Note: this enforces an even value during code generation only.
352// When used from the assembler, any 4-bit value is allowed.
353defm imm32zx4even : Immediate<i32, [{
354  return isUInt<4>(N->getZExtValue());
355}], UIMM8EVEN, "U4Imm">;
356
357defm imm32sx8 : Immediate<i32, [{
358  return isInt<8>(N->getSExtValue());
359}], SIMM8, "S8Imm">;
360
361defm imm32zx8 : Immediate<i32, [{
362  return isUInt<8>(N->getZExtValue());
363}], UIMM8, "U8Imm">;
364
365defm imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
366
367defm imm32zx12 : Immediate<i32, [{
368  return isUInt<12>(N->getZExtValue());
369}], UIMM12, "U12Imm">;
370
371defm imm32sx16 : Immediate<i32, [{
372  return isInt<16>(N->getSExtValue());
373}], SIMM16, "S16Imm">;
374
375defm imm32sx16n : Immediate<i32, [{
376  return isInt<16>(-N->getSExtValue());
377}], NEGSIMM16, "S16Imm">;
378
379defm imm32zx16 : Immediate<i32, [{
380  return isUInt<16>(N->getZExtValue());
381}], UIMM16, "U16Imm">;
382
383defm imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
384defm imm32zx16trunc : Immediate<i32, [{}], UIMM16, "U16Imm">;
385
386// Full 32-bit immediates.  we need both signed and unsigned versions
387// because the assembler is picky.  E.g. AFI requires signed operands
388// while NILF requires unsigned ones.
389defm simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
390defm uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
391
392defm simm32n : Immediate<i32, [{
393  return isInt<32>(-N->getSExtValue());
394}], NEGSIMM32, "S32Imm">;
395
396def imm32 : ImmLeaf<i32, [{}]>;
397
398//===----------------------------------------------------------------------===//
399// 64-bit immediates
400//===----------------------------------------------------------------------===//
401
402// Immediates for 16-bit chunks of an i64, with the other bits of the
403// i32 being zero.
404defm imm64ll16 : Immediate<i64, [{
405  return SystemZ::isImmLL(N->getZExtValue());
406}], LL16, "U16Imm">;
407
408defm imm64lh16 : Immediate<i64, [{
409  return SystemZ::isImmLH(N->getZExtValue());
410}], LH16, "U16Imm">;
411
412defm imm64hl16 : Immediate<i64, [{
413  return SystemZ::isImmHL(N->getZExtValue());
414}], HL16, "U16Imm">;
415
416defm imm64hh16 : Immediate<i64, [{
417  return SystemZ::isImmHH(N->getZExtValue());
418}], HH16, "U16Imm">;
419
420// Immediates for 16-bit chunks of an i64, with the other bits of the
421// i32 being one.
422defm imm64ll16c : Immediate<i64, [{
423  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
424}], LL16, "U16Imm">;
425
426defm imm64lh16c : Immediate<i64, [{
427  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
428}], LH16, "U16Imm">;
429
430defm imm64hl16c : Immediate<i64, [{
431  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
432}], HL16, "U16Imm">;
433
434defm imm64hh16c : Immediate<i64, [{
435  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
436}], HH16, "U16Imm">;
437
438// Immediates for the lower and upper 32 bits of an i64, with the other
439// bits of the i32 being zero.
440defm imm64lf32 : Immediate<i64, [{
441  return SystemZ::isImmLF(N->getZExtValue());
442}], LF32, "U32Imm">;
443
444defm imm64hf32 : Immediate<i64, [{
445  return SystemZ::isImmHF(N->getZExtValue());
446}], HF32, "U32Imm">;
447
448// Immediates for the lower and upper 32 bits of an i64, with the other
449// bits of the i32 being one.
450defm imm64lf32c : Immediate<i64, [{
451  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
452}], LF32, "U32Imm">;
453
454defm imm64hf32c : Immediate<i64, [{
455  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
456}], HF32, "U32Imm">;
457
458// Negated immediates that fit LF32 or LH16.
459defm imm64lh16n : Immediate<i64, [{
460  return SystemZ::isImmLH(uint64_t(-N->getZExtValue()));
461}], NEGLH16, "U16Imm">;
462
463defm imm64lf32n : Immediate<i64, [{
464  return SystemZ::isImmLF(uint64_t(-N->getZExtValue()));
465}], NEGLF32, "U32Imm">;
466
467// Short immediates.
468defm imm64sx8 : Immediate<i64, [{
469  return isInt<8>(N->getSExtValue());
470}], SIMM8, "S8Imm">;
471
472defm imm64zx8 : Immediate<i64, [{
473  return isUInt<8>(N->getSExtValue());
474}], UIMM8, "U8Imm">;
475
476defm imm64sx16 : Immediate<i64, [{
477  return isInt<16>(N->getSExtValue());
478}], SIMM16, "S16Imm">;
479
480defm imm64sx16n : Immediate<i64, [{
481  return isInt<16>(-N->getSExtValue());
482}], NEGSIMM16, "S16Imm">;
483
484defm imm64zx16 : Immediate<i64, [{
485  return isUInt<16>(N->getZExtValue());
486}], UIMM16, "U16Imm">;
487
488defm imm64sx32 : Immediate<i64, [{
489  return isInt<32>(N->getSExtValue());
490}], SIMM32, "S32Imm">;
491
492defm imm64sx32n : Immediate<i64, [{
493  return isInt<32>(-N->getSExtValue());
494}], NEGSIMM32, "S32Imm">;
495
496defm imm64zx32 : Immediate<i64, [{
497  return isUInt<32>(N->getZExtValue());
498}], UIMM32, "U32Imm">;
499
500defm imm64zx32n : Immediate<i64, [{
501  return isUInt<32>(-N->getSExtValue());
502}], NEGUIMM32, "U32Imm">;
503
504defm imm64zx48 : Immediate<i64, [{
505  return isUInt<64>(N->getZExtValue());
506}], UIMM48, "U48Imm">;
507
508class Imm64 : ImmLeaf<i64, [{}]>, Operand<i64> {
509  let OperandType = "OPERAND_IMMEDIATE";
510}
511def imm64 : Imm64;
512def len4imm64 : Imm64 {
513  let EncoderMethod = "getLenEncoding<SystemZ::FK_390_U4Imm>";
514  let DecoderMethod = "decodeLenOperand<4>";
515}
516def len8imm64 : Imm64 {
517  let EncoderMethod = "getLenEncoding<SystemZ::FK_390_U8Imm>";
518  let DecoderMethod = "decodeLenOperand<8>";
519}
520
521//===----------------------------------------------------------------------===//
522// Floating-point immediates
523//===----------------------------------------------------------------------===//
524
525// Floating-point zero.
526def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
527
528// Floating point negative zero.
529def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
530
531//===----------------------------------------------------------------------===//
532// Symbolic address operands
533//===----------------------------------------------------------------------===//
534
535// PC-relative asm operands.
536def PCRel12 : PCRelAsmOperand<"12">;
537def PCRel16 : PCRelAsmOperand<"16">;
538def PCRel24 : PCRelAsmOperand<"24">;
539def PCRel32 : PCRelAsmOperand<"32">;
540def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
541def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
542
543// PC-relative offsets of a basic block.  The offset is sign-extended
544// and multiplied by 2.
545def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
546  let EncoderMethod = "getPC16DBLEncoding";
547  let DecoderMethod = "decodePC16DBLBranchOperand";
548}
549def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
550  let EncoderMethod = "getPC32DBLEncoding";
551  let DecoderMethod = "decodePC32DBLBranchOperand";
552}
553
554// Variants of brtarget for use with branch prediction preload.
555def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
556  let EncoderMethod = "getPC12DBLBPPEncoding";
557  let DecoderMethod = "decodePC12DBLBranchOperand";
558}
559def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
560  let EncoderMethod = "getPC16DBLBPPEncoding";
561  let DecoderMethod = "decodePC16DBLBranchOperand";
562}
563def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
564  let EncoderMethod = "getPC24DBLBPPEncoding";
565  let DecoderMethod = "decodePC24DBLBranchOperand";
566}
567
568// Variants of brtarget16/32 with an optional additional TLS symbol.
569// These are used to annotate calls to __tls_get_offset.
570def tlssym : Operand<i64> { }
571def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
572  let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
573  let EncoderMethod = "getPC16DBLTLSEncoding";
574  let DecoderMethod = "decodePC16DBLBranchOperand";
575}
576def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
577  let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
578  let EncoderMethod = "getPC32DBLTLSEncoding";
579  let DecoderMethod = "decodePC32DBLBranchOperand";
580}
581
582// A PC-relative offset of a global value.  The offset is sign-extended
583// and multiplied by 2.
584def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
585  let EncoderMethod = "getPC32DBLEncoding";
586  let DecoderMethod = "decodePC32DBLOperand";
587}
588
589//===----------------------------------------------------------------------===//
590// Addressing modes
591//===----------------------------------------------------------------------===//
592
593// 12-bit displacement operands.
594let EncoderMethod = "getImmOpValue<SystemZ::FK_390_U12Imm>",
595    DecoderMethod = "decodeU12ImmOperand" in {
596  def disp12imm32 : Operand<i32>;
597  def disp12imm64 : Operand<i64>;
598}
599
600// 20-bit displacement operands.
601let EncoderMethod = "getImmOpValue<SystemZ::FK_390_S20Imm>",
602    DecoderMethod = "decodeS20ImmOperand" in {
603  def disp20imm32 : Operand<i32>;
604  def disp20imm64 : Operand<i64>;
605}
606
607def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
608def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
609def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
610def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
611def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
612def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
613def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len4">;
614def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
615def BDRAddr64Disp12     : AddressAsmOperand<"BDRAddr",  "64", "12">;
616def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;
617
618// DAG patterns and operands for addressing modes.  Each mode has
619// the form <type><range><group>[<len>] where:
620//
621// <type> is one of:
622//   shift    : base + displacement (32-bit)
623//   bdaddr   : base + displacement
624//   mviaddr  : like bdaddr, but reject cases with a natural index
625//   bdxaddr  : base + displacement + index
626//   laaddr   : like bdxaddr, but used for Load Address operations
627//   dynalloc : base + displacement + index + ADJDYNALLOC
628//   bdladdr  : base + displacement with a length field
629//   bdvaddr  : base + displacement with a vector index
630//
631// <range> is one of:
632//   12       : the displacement is an unsigned 12-bit value
633//   20       : the displacement is a signed 20-bit value
634//
635// <group> is one of:
636//   pair     : used when there is an equivalent instruction with the opposite
637//              range value (12 or 20)
638//   only     : used when there is no equivalent instruction with the opposite
639//              range value
640//
641// <len> is one of:
642//
643//   <empty>  : there is no length field
644//   len8     : the length field is 8 bits, with a range of [1, 0x100].
645def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
646def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
647def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
648def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
649def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
650def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
651def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
652def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
653def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
654def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
655def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
656def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
657def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
658def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
659def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
660def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
661def bdladdr12onlylen4 : BDLMode<"BDLAddr",  "64", "12", "Only", "4">;
662def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
663def bdraddr12only     : BDRMode<"BDRAddr",  "64", "12", "Only">;
664def bdvaddr12only     : BDVMode<            "64", "12">;
665
666//===----------------------------------------------------------------------===//
667// Miscellaneous
668//===----------------------------------------------------------------------===//
669
670// A 4-bit condition-code mask.
671def cond4 : PatLeaf<(i32 timm), [{ return (N->getZExtValue() < 16); }]>,
672            Operand<i32> {
673  let PrintMethod = "printCond4Operand";
674  let OperandType = "OPERAND_IMMEDIATE";
675}
676