xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZMachineScheduler.cpp (revision f05948d4e98d3abd0965a2994e9e42add6908ff3)
1 //-- SystemZMachineScheduler.cpp - SystemZ Scheduler Interface -*- C++ -*---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // -------------------------- Post RA scheduling ---------------------------- //
10 // SystemZPostRASchedStrategy is a scheduling strategy which is plugged into
11 // the MachineScheduler. It has a sorted Available set of SUs and a pickNode()
12 // implementation that looks to optimize decoder grouping and balance the
13 // usage of processor resources. Scheduler states are saved for the end
14 // region of each MBB, so that a successor block can learn from it.
15 //===----------------------------------------------------------------------===//
16 
17 #include "SystemZMachineScheduler.h"
18 #include "llvm/CodeGen/MachineLoopInfo.h"
19 
20 using namespace llvm;
21 
22 #define DEBUG_TYPE "machine-scheduler"
23 
24 #ifndef NDEBUG
25 // Print the set of SUs
26 void SystemZPostRASchedStrategy::SUSet::
27 dump(SystemZHazardRecognizer &HazardRec) const {
28   dbgs() << "{";
29   for (auto &SU : *this) {
30     HazardRec.dumpSU(SU, dbgs());
31     if (SU != *rbegin())
32       dbgs() << ",  ";
33   }
34   dbgs() << "}\n";
35 }
36 #endif
37 
38 // Try to find a single predecessor that would be interesting for the
39 // scheduler in the top-most region of MBB.
40 static MachineBasicBlock *getSingleSchedPred(MachineBasicBlock *MBB,
41                                              const MachineLoop *Loop) {
42   MachineBasicBlock *PredMBB = nullptr;
43   if (MBB->pred_size() == 1)
44     PredMBB = *MBB->pred_begin();
45 
46   // The loop header has two predecessors, return the latch, but not for a
47   // single block loop.
48   if (MBB->pred_size() == 2 && Loop != nullptr && Loop->getHeader() == MBB) {
49     for (MachineBasicBlock *Pred : MBB->predecessors())
50       if (Loop->contains(Pred))
51         PredMBB = (Pred == MBB ? nullptr : Pred);
52   }
53 
54   assert ((PredMBB == nullptr || !Loop || Loop->contains(PredMBB))
55           && "Loop MBB should not consider predecessor outside of loop.");
56 
57   return PredMBB;
58 }
59 
60 void SystemZPostRASchedStrategy::
61 advanceTo(MachineBasicBlock::iterator NextBegin) {
62   MachineBasicBlock::iterator LastEmittedMI = HazardRec->getLastEmittedMI();
63   MachineBasicBlock::iterator I =
64     ((LastEmittedMI != nullptr && LastEmittedMI->getParent() == MBB) ?
65      std::next(LastEmittedMI) : MBB->begin());
66 
67   for (; I != NextBegin; ++I) {
68     if (I->isPosition() || I->isDebugInstr())
69       continue;
70     HazardRec->emitInstruction(&*I);
71   }
72 }
73 
74 void SystemZPostRASchedStrategy::initialize(ScheduleDAGMI *dag) {
75   Available.clear();  // -misched-cutoff.
76   LLVM_DEBUG(HazardRec->dumpState(););
77 }
78 
79 void SystemZPostRASchedStrategy::enterMBB(MachineBasicBlock *NextMBB) {
80   assert ((SchedStates.find(NextMBB) == SchedStates.end()) &&
81           "Entering MBB twice?");
82   LLVM_DEBUG(dbgs() << "** Entering " << printMBBReference(*NextMBB));
83 
84   MBB = NextMBB;
85 
86   /// Create a HazardRec for MBB, save it in SchedStates and set HazardRec to
87   /// point to it.
88   HazardRec = SchedStates[MBB] = new SystemZHazardRecognizer(TII, &SchedModel);
89   LLVM_DEBUG(const MachineLoop *Loop = MLI->getLoopFor(MBB);
90              if (Loop && Loop->getHeader() == MBB) dbgs() << " (Loop header)";
91              dbgs() << ":\n";);
92 
93   // Try to take over the state from a single predecessor, if it has been
94   // scheduled. If this is not possible, we are done.
95   MachineBasicBlock *SinglePredMBB =
96     getSingleSchedPred(MBB, MLI->getLoopFor(MBB));
97   if (SinglePredMBB == nullptr ||
98       SchedStates.find(SinglePredMBB) == SchedStates.end())
99     return;
100 
101   LLVM_DEBUG(dbgs() << "** Continued scheduling from "
102                     << printMBBReference(*SinglePredMBB) << "\n";);
103 
104   HazardRec->copyState(SchedStates[SinglePredMBB]);
105   LLVM_DEBUG(HazardRec->dumpState(););
106 
107   // Emit incoming terminator(s). Be optimistic and assume that branch
108   // prediction will generally do "the right thing".
109   for (MachineInstr &MI : SinglePredMBB->terminators()) {
110     LLVM_DEBUG(dbgs() << "** Emitting incoming branch: "; MI.dump(););
111     bool TakenBranch = (MI.isBranch() &&
112                         (TII->getBranchInfo(MI).isIndirect() ||
113                          TII->getBranchInfo(MI).getMBBTarget() == MBB));
114     HazardRec->emitInstruction(&MI, TakenBranch);
115     if (TakenBranch)
116       break;
117   }
118 }
119 
120 void SystemZPostRASchedStrategy::leaveMBB() {
121   LLVM_DEBUG(dbgs() << "** Leaving " << printMBBReference(*MBB) << "\n";);
122 
123   // Advance to first terminator. The successor block will handle terminators
124   // dependent on CFG layout (T/NT branch etc).
125   advanceTo(MBB->getFirstTerminator());
126 }
127 
128 SystemZPostRASchedStrategy::
129 SystemZPostRASchedStrategy(const MachineSchedContext *C)
130   : MLI(C->MLI),
131     TII(static_cast<const SystemZInstrInfo *>
132         (C->MF->getSubtarget().getInstrInfo())),
133     MBB(nullptr), HazardRec(nullptr) {
134   const TargetSubtargetInfo *ST = &C->MF->getSubtarget();
135   SchedModel.init(ST);
136 }
137 
138 SystemZPostRASchedStrategy::~SystemZPostRASchedStrategy() {
139   // Delete hazard recognizers kept around for each MBB.
140   for (auto I : SchedStates) {
141     SystemZHazardRecognizer *hazrec = I.second;
142     delete hazrec;
143   }
144 }
145 
146 void SystemZPostRASchedStrategy::initPolicy(MachineBasicBlock::iterator Begin,
147                                             MachineBasicBlock::iterator End,
148                                             unsigned NumRegionInstrs) {
149   // Don't emit the terminators.
150   if (Begin->isTerminator())
151     return;
152 
153   // Emit any instructions before start of region.
154   advanceTo(Begin);
155 }
156 
157 // Pick the next node to schedule.
158 SUnit *SystemZPostRASchedStrategy::pickNode(bool &IsTopNode) {
159   // Only scheduling top-down.
160   IsTopNode = true;
161 
162   if (Available.empty())
163     return nullptr;
164 
165   // If only one choice, return it.
166   if (Available.size() == 1) {
167     LLVM_DEBUG(dbgs() << "** Only one: ";
168                HazardRec->dumpSU(*Available.begin(), dbgs()); dbgs() << "\n";);
169     return *Available.begin();
170   }
171 
172   // All nodes that are possible to schedule are stored in the Available set.
173   LLVM_DEBUG(dbgs() << "** Available: "; Available.dump(*HazardRec););
174 
175   Candidate Best;
176   for (auto *SU : Available) {
177 
178     // SU is the next candidate to be compared against current Best.
179     Candidate c(SU, *HazardRec);
180 
181     // Remeber which SU is the best candidate.
182     if (Best.SU == nullptr || c < Best) {
183       Best = c;
184       LLVM_DEBUG(dbgs() << "** Best so far: ";);
185     } else
186       LLVM_DEBUG(dbgs() << "** Tried      : ";);
187     LLVM_DEBUG(HazardRec->dumpSU(c.SU, dbgs()); c.dumpCosts();
188                dbgs() << " Height:" << c.SU->getHeight(); dbgs() << "\n";);
189 
190     // Once we know we have seen all SUs that affect grouping or use unbuffered
191     // resources, we can stop iterating if Best looks good.
192     if (!SU->isScheduleHigh && Best.noCost())
193       break;
194   }
195 
196   assert (Best.SU != nullptr);
197   return Best.SU;
198 }
199 
200 SystemZPostRASchedStrategy::Candidate::
201 Candidate(SUnit *SU_, SystemZHazardRecognizer &HazardRec) : Candidate() {
202   SU = SU_;
203 
204   // Check the grouping cost. For a node that must begin / end a
205   // group, it is positive if it would do so prematurely, or negative
206   // if it would fit naturally into the schedule.
207   GroupingCost = HazardRec.groupingCost(SU);
208 
209   // Check the resources cost for this SU.
210   ResourcesCost = HazardRec.resourcesCost(SU);
211 }
212 
213 bool SystemZPostRASchedStrategy::Candidate::
214 operator<(const Candidate &other) {
215 
216   // Check decoder grouping.
217   if (GroupingCost < other.GroupingCost)
218     return true;
219   if (GroupingCost > other.GroupingCost)
220     return false;
221 
222   // Compare the use of resources.
223   if (ResourcesCost < other.ResourcesCost)
224     return true;
225   if (ResourcesCost > other.ResourcesCost)
226     return false;
227 
228   // Higher SU is otherwise generally better.
229   if (SU->getHeight() > other.SU->getHeight())
230     return true;
231   if (SU->getHeight() < other.SU->getHeight())
232     return false;
233 
234   // If all same, fall back to original order.
235   if (SU->NodeNum < other.SU->NodeNum)
236     return true;
237 
238   return false;
239 }
240 
241 void SystemZPostRASchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
242   LLVM_DEBUG(dbgs() << "** Scheduling SU(" << SU->NodeNum << ") ";
243              if (Available.size() == 1) dbgs() << "(only one) ";
244              Candidate c(SU, *HazardRec); c.dumpCosts(); dbgs() << "\n";);
245 
246   // Remove SU from Available set and update HazardRec.
247   Available.erase(SU);
248   HazardRec->EmitInstruction(SU);
249 }
250 
251 void SystemZPostRASchedStrategy::releaseTopNode(SUnit *SU) {
252   // Set isScheduleHigh flag on all SUs that we want to consider first in
253   // pickNode().
254   const MCSchedClassDesc *SC = HazardRec->getSchedClass(SU);
255   bool AffectsGrouping = (SC->isValid() && (SC->BeginGroup || SC->EndGroup));
256   SU->isScheduleHigh = (AffectsGrouping || SU->isUnbuffered);
257 
258   // Put all released SUs in the Available set.
259   Available.insert(SU);
260 }
261