xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.td (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Stack allocation
11//===----------------------------------------------------------------------===//
12
13// The callseq_start node requires the hasSideEffects flag, even though these
14// instructions are noops on SystemZ.
15let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
16  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17                                [(callseq_start timm:$amt1, timm:$amt2)]>;
18  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
19                                [(callseq_end timm:$amt1, timm:$amt2)]>;
20}
21
22// Takes as input the value of the stack pointer after a dynamic allocation
23// has been made.  Sets the output to the address of the dynamically-
24// allocated area itself, skipping the outgoing arguments.
25//
26// This expands to an LA or LAY instruction.  We restrict the offset
27// to the range of LA and keep the LAY range in reserve for when
28// the size of the outgoing arguments is added.
29def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
30                         [(set GR64:$dst, dynalloc12only:$src)]>;
31
32let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
33    usesCustomInserter = 1 in
34  def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
35                             (ins GR64:$oldSP, GR64:$space),
36           [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;
37
38let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
39    hasSideEffects = 1 in
40  def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;
41
42//===----------------------------------------------------------------------===//
43// Branch instructions
44//===----------------------------------------------------------------------===//
45
46// Conditional branches.
47let isBranch = 1, isTerminator = 1, Uses = [CC] in {
48  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
49  // with the condition-code mask being the first operand.  It seems friendlier
50  // to use mnemonic forms like JE and JLH when writing out the assembly though.
51  let isCodeGenOnly = 1 in {
52    // An assembler extended mnemonic for BRC.
53    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
54    // An assembler extended mnemonic for BRCL.  (The extension is "G"
55    // rather than "L" because "JL" is "Jump if Less".)
56    def BRCL : CondBranchRIL<"jg#", 0xC04>;
57    let isIndirectBranch = 1 in {
58      def BC  : CondBranchRX<"b#",  0x47>;
59      def BCR : CondBranchRR<"b#r", 0x07>;
60      def BIC : CondBranchRXY<"bi#", 0xe347>,
61                Requires<[FeatureMiscellaneousExtensions2]>;
62    }
63  }
64
65  // Allow using the raw forms directly from the assembler (and occasional
66  // special code generation needs) as well.
67  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
68  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
69  let isIndirectBranch = 1 in {
70    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
71    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
72    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
73                 Requires<[FeatureMiscellaneousExtensions2]>;
74  }
75
76  // Define AsmParser extended mnemonics for each general condition-code mask
77  // (integer or floating-point)
78  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
79                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
80    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
81    def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>;
82    let isIndirectBranch = 1 in {
83      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
84      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
85      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
86                    Requires<[FeatureMiscellaneousExtensions2]>;
87    }
88  }
89}
90
91// Unconditional branches.  These are in fact simply variants of the
92// conditional branches with the condition mask set to "always".
93let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
94  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
95  def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>;
96  let isIndirectBranch = 1 in {
97    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
98    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
99    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
100             Requires<[FeatureMiscellaneousExtensions2]>;
101  }
102}
103
104// NOPs.  These are again variants of the conditional branches,
105// with the condition mask set to "never".
106def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
107def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;
108
109// Fused compare-and-branch instructions.
110//
111// These instructions do not use or clobber the condition codes.
112// We nevertheless pretend that the relative compare-and-branch
113// instructions clobber CC, so that we can lower them to separate
114// comparisons and BRCLs if the branch ends up being out of range.
115let isBranch = 1, isTerminator = 1 in {
116  // As for normal branches, we handle these instructions internally in
117  // their raw CRJ-like form, but use assembly macros like CRJE when writing
118  // them out.  Using the *Pair multiclasses, we also create the raw forms.
119  let Defs = [CC] in {
120    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
121    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
122    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
123    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
124    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
125    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
126    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
127    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
128  }
129  let isIndirectBranch = 1 in {
130    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
131    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
132    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
133    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
134    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
135    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
136    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
137    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
138  }
139
140  // Define AsmParser mnemonics for each integer condition-code mask.
141  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
142                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
143    let Defs = [CC] in {
144      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
145      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
146      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
147                                          imm32sx8>;
148      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
149                                          imm64sx8>;
150      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
151      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
152      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
153                                          imm32zx8>;
154      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
155                                          imm64zx8>;
156    }
157    let isIndirectBranch = 1 in {
158      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
159      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
160      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
161                                         imm32sx8>;
162      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
163                                         imm64sx8>;
164      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
165      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
166      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
167                                         imm32zx8>;
168      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
169                                         imm64zx8>;
170    }
171  }
172}
173
174// Decrement a register and branch if it is nonzero.  These don't clobber CC,
175// but we might need to split long relative branches into sequences that do.
176let isBranch = 1, isTerminator = 1 in {
177  let Defs = [CC] in {
178    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
179    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
180  }
181  // This doesn't need to clobber CC since we never need to split it.
182  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
183              Requires<[FeatureHighWord]>;
184
185  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
186  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
187  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
188  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
189}
190
191let isBranch = 1, isTerminator = 1 in {
192  let Defs = [CC] in {
193    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
194    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
195    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
196    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
197  }
198  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
199  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
200  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
201  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
202}
203
204//===----------------------------------------------------------------------===//
205// Trap instructions
206//===----------------------------------------------------------------------===//
207
208// Unconditional trap.
209let hasCtrlDep = 1, hasSideEffects = 1 in
210  def Trap : Alias<4, (outs), (ins), [(trap)]>;
211
212// Conditional trap.
213let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
214  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
215
216// Fused compare-and-trap instructions.
217let hasCtrlDep = 1, hasSideEffects = 1 in {
218  // These patterns work the same way as for compare-and-branch.
219  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
220  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
221  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
222  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
223  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
224  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
225  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
226  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
227  let Predicates = [FeatureMiscellaneousExtensions] in {
228    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
229    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
230  }
231
232  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
233                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
234    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
235    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
236    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
237    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
238    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
239                                         imm32sx16>;
240    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
241                                         imm64sx16>;
242    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
243                                         imm32zx16>;
244    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
245                                         imm64zx16>;
246    let Predicates = [FeatureMiscellaneousExtensions] in {
247      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
248      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
249    }
250  }
251}
252
253//===----------------------------------------------------------------------===//
254// Call and return instructions
255//===----------------------------------------------------------------------===//
256
257// Define the general form of the call instructions for the asm parser.
258// These instructions don't hard-code %r14 as the return address register.
259let isCall = 1, Defs = [CC] in {
260  def BRAS  : CallRI <"bras", 0xA75>;
261  def BRASL : CallRIL<"brasl", 0xC05>;
262  def BAS   : CallRX <"bas", 0x4D>;
263  def BASR  : CallRR <"basr", 0x0D>;
264}
265
266// Regular calls.
267let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
268  def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
269                        [(z_call pcrel32:$I2)]>;
270  def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
271                        [(z_call ADDR64:$R2)]>;
272}
273
274// TLS calls.  These will be lowered into a call to __tls_get_offset,
275// with an extra relocation specifying the TLS symbol.
276let isCall = 1, Defs = [R14D, CC] in {
277  def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
278                         [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
279  def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
280                         [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
281}
282
283// Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
284// are argument registers and since branching to R0 is a no-op.
285let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
286  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
287                     [(z_sibcall pcrel32:$I2)]>;
288  let Uses = [R1D] in
289    def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
290}
291
292// Conditional sibling calls.
293let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
294  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
295                                   pcrel32:$I2), []>;
296  let Uses = [R1D] in
297    def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
298}
299
300// Fused compare and conditional sibling calls.
301let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in {
302  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
303  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
304  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
305  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
306  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
307  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
308  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
309  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
310}
311
312// A return instruction (br %r14).
313let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
314  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
315
316// A conditional return instruction (bcr <cond>, %r14).
317let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
318  def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
319
320// Fused compare and conditional returns.
321let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
322  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
323  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
324  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
325  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
326  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
327  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
328  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
329  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
330}
331
332//===----------------------------------------------------------------------===//
333// Select instructions
334//===----------------------------------------------------------------------===//
335
336def Select32    : SelectWrapper<i32, GR32>,
337                  Requires<[FeatureNoLoadStoreOnCond]>;
338def Select64    : SelectWrapper<i64, GR64>,
339                  Requires<[FeatureNoLoadStoreOnCond]>;
340
341// We don't define 32-bit Mux stores if we don't have STOCFH, because the
342// low-only STOC should then always be used if possible.
343defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
344                                 nonvolatile_anyextloadi8, bdxaddr20only>,
345                      Requires<[FeatureHighWord]>;
346defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
347                                 nonvolatile_anyextloadi16, bdxaddr20only>,
348                      Requires<[FeatureHighWord]>;
349defm CondStore32Mux : CondStores<GRX32, simple_store,
350                                 simple_load, bdxaddr20only>,
351                      Requires<[FeatureLoadStoreOnCond2]>;
352defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
353                                 nonvolatile_anyextloadi8, bdxaddr20only>;
354defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
355                                 nonvolatile_anyextloadi16, bdxaddr20only>;
356defm CondStore32    : CondStores<GR32, simple_store,
357                                 simple_load, bdxaddr20only>;
358
359defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
360                    nonvolatile_anyextloadi8, bdxaddr20only>;
361defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
362                    nonvolatile_anyextloadi16, bdxaddr20only>;
363defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
364                    nonvolatile_anyextloadi32, bdxaddr20only>;
365defm CondStore64 : CondStores<GR64, simple_store,
366                              simple_load, bdxaddr20only>;
367
368//===----------------------------------------------------------------------===//
369// Move instructions
370//===----------------------------------------------------------------------===//
371
372// Register moves.
373def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
374def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
375
376let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
377  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
378  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
379}
380
381let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
382  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
383
384// Immediate moves.
385let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
386  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
387  // deopending on the choice of register.
388  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
389               Requires<[FeatureHighWord]>;
390  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
391  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
392
393  // Other 16-bit immediates.
394  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
395  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
396  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
397  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
398
399  // 32-bit immediates.
400  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
401  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
402  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
403}
404
405// Register loads.
406let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
407  // Expands to L, LY or LFH, depending on the choice of register.
408  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
409             Requires<[FeatureHighWord]>;
410  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
411  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
412            Requires<[FeatureHighWord]>;
413  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
414
415  // These instructions are split after register allocation, so we don't
416  // want a custom inserter.
417  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
418    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
419                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
420  }
421}
422let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
423  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
424  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
425}
426
427let canFoldAsLoad = 1 in {
428  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
429  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
430}
431
432// Load and zero rightmost byte.
433let Predicates = [FeatureLoadAndZeroRightmostByte] in {
434  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
435  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
436  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
437            (LZRF bdxaddr20only:$src)>;
438  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
439            (LZRG bdxaddr20only:$src)>;
440}
441
442// Load and trap.
443let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
444  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
445  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
446  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
447}
448
449// Register stores.
450let SimpleBDXStore = 1, mayStore = 1 in {
451  // Expands to ST, STY or STFH, depending on the choice of register.
452  def STMux : StoreRXYPseudo<store, GRX32, 4>,
453              Requires<[FeatureHighWord]>;
454  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
455  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
456             Requires<[FeatureHighWord]>;
457  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
458
459  // These instructions are split after register allocation, so we don't
460  // want a custom inserter.
461  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
462    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
463                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
464  }
465}
466def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
467def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
468
469// 8-bit immediate stores to 8-bit fields.
470defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
471
472// 16-bit immediate stores to 16-, 32- or 64-bit fields.
473def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
474def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
475def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
476
477// Memory-to-memory moves.
478let mayLoad = 1, mayStore = 1 in
479  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
480let mayLoad = 1, mayStore = 1, Defs = [CC] in {
481  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
482  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
483  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
484}
485
486// Move right.
487let Predicates = [FeatureMiscellaneousExtensions3],
488    mayLoad = 1, mayStore = 1, Uses = [R0L] in
489  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
490
491// String moves.
492let mayLoad = 1, mayStore = 1, Defs = [CC] in
493  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
494
495//===----------------------------------------------------------------------===//
496// Conditional move instructions
497//===----------------------------------------------------------------------===//
498
499let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
500  // Select.
501  let isCommutable = 1 in {
502    // Expands to SELR or SELFHR or a branch-and-move sequence,
503    // depending on the choice of registers.
504    def  SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
505    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
506    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
507    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
508  }
509
510  // Define AsmParser extended mnemonics for each general condition-code mask.
511  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
512                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
513    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
514                                          GR32, GR32, GR32>;
515    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
516                                          GRH32, GRH32, GRH32>;
517    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
518                                          GR64, GR64, GR64>;
519  }
520}
521
522let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
523  // Load immediate on condition.  Matched via DAG pattern and created
524  // by the PeepholeOptimizer via FoldImmediate.
525
526  // Expands to LOCHI or LOCHHI, depending on the choice of register.
527  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
528  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
529  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
530  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
531
532  // Move register on condition.  Matched via DAG pattern and
533  // created by early if-conversion.
534  let isCommutable = 1 in {
535    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
536    // depending on the choice of registers.
537    def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
538    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
539  }
540
541  // Load on condition.  Matched via DAG pattern.
542  // Expands to LOC or LOCFH, depending on the choice of register.
543  defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
544  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;
545
546  // Store on condition.  Expanded from CondStore* pseudos.
547  // Expands to STOC or STOCFH, depending on the choice of register.
548  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
549  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
550
551  // Define AsmParser extended mnemonics for each general condition-code mask.
552  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
553                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
554    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
555                                         imm32sx16>;
556    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
557                                         imm64sx16>;
558    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
559                                         imm32sx16>;
560    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
561    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
562    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
563  }
564}
565
566let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
567  // Move register on condition.  Matched via DAG pattern and
568  // created by early if-conversion.
569  let isCommutable = 1 in {
570    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
571    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
572  }
573
574  // Load on condition.  Matched via DAG pattern.
575  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
576  defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;
577
578  // Store on condition.  Expanded from CondStore* pseudos.
579  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
580  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
581
582  // Define AsmParser extended mnemonics for each general condition-code mask.
583  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
584                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
585    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
586    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
587    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
588    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
589    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
590    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
591  }
592}
593//===----------------------------------------------------------------------===//
594// Sign extensions
595//===----------------------------------------------------------------------===//
596//
597// Note that putting these before zero extensions mean that we will prefer
598// them for anyextload*.  There's not really much to choose between the two
599// either way, but signed-extending loads have a short LH and a long LHY,
600// while zero-extending loads have only the long LLH.
601//
602//===----------------------------------------------------------------------===//
603
604// 32-bit extensions from registers.
605def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
606def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
607
608// 64-bit extensions from registers.
609def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
610def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
611def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
612
613let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
614  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
615
616// Match 32-to-64-bit sign extensions in which the source is already
617// in a 64-bit register.
618def : Pat<(sext_inreg GR64:$src, i32),
619          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
620
621// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
622// depending on the choice of register.
623def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
624            Requires<[FeatureHighWord]>;
625def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
626def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
627          Requires<[FeatureHighWord]>;
628
629// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
630// depending on the choice of register.
631def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
632            Requires<[FeatureHighWord]>;
633defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
634def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
635            Requires<[FeatureHighWord]>;
636def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
637
638// 64-bit extensions from memory.
639def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
640def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
641def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
642def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
643def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
644let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
645  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
646
647//===----------------------------------------------------------------------===//
648// Zero extensions
649//===----------------------------------------------------------------------===//
650
651// 32-bit extensions from registers.
652
653// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
654def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
655              Requires<[FeatureHighWord]>;
656def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
657// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
658def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
659              Requires<[FeatureHighWord]>;
660def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
661
662// 64-bit extensions from registers.
663def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
664def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
665def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
666
667// Match 32-to-64-bit zero extensions in which the source is already
668// in a 64-bit register.
669def : Pat<(and GR64:$src, 0xffffffff),
670          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
671
672// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
673// depending on the choice of register.
674def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
675             Requires<[FeatureHighWord]>;
676def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
677def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
678           Requires<[FeatureHighWord]>;
679
680// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
681// depending on the choice of register.
682def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
683             Requires<[FeatureHighWord]>;
684def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
685def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
686            Requires<[FeatureHighWord]>;
687def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
688
689// 64-bit extensions from memory.
690def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
691def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
692def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
693def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
694def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
695
696// 31-to-64-bit zero extensions.
697def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
698def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
699def : Pat<(and GR64:$src, 0x7fffffff),
700          (LLGTR GR64:$src)>;
701def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
702          (LLGT bdxaddr20only:$src)>;
703
704// Load and zero rightmost byte.
705let Predicates = [FeatureLoadAndZeroRightmostByte] in {
706  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
707  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
708            (LLZRGF bdxaddr20only:$src)>;
709}
710
711// Load and trap.
712let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
713  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
714  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
715}
716
717// Extend GR64s to GR128s.
718let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
719  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
720
721//===----------------------------------------------------------------------===//
722// "Any" extensions
723//===----------------------------------------------------------------------===//
724
725// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
726def : Pat<(i64 (anyext GR32:$src)),
727          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
728
729// Extend GR64s to GR128s.
730let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
731  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
732
733//===----------------------------------------------------------------------===//
734// Truncations
735//===----------------------------------------------------------------------===//
736
737// Truncations of 64-bit registers to 32-bit registers.
738def : Pat<(i32 (trunc GR64:$src)),
739          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
740
741// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
742// STC, STCY or STCH, depending on the choice of register.
743def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
744             Requires<[FeatureHighWord]>;
745defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
746def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
747           Requires<[FeatureHighWord]>;
748
749// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
750// STH, STHY or STHH, depending on the choice of register.
751def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
752             Requires<[FeatureHighWord]>;
753defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
754def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
755           Requires<[FeatureHighWord]>;
756def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
757
758// Truncations of 64-bit registers to memory.
759defm : StoreGR64Pair<STC, STCY, truncstorei8>;
760defm : StoreGR64Pair<STH, STHY, truncstorei16>;
761def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
762defm : StoreGR64Pair<ST, STY, truncstorei32>;
763def  : StoreGR64PC<STRL, aligned_truncstorei32>;
764
765// Store characters under mask -- not (yet) used for codegen.
766defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
767def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
768
769//===----------------------------------------------------------------------===//
770// Multi-register moves
771//===----------------------------------------------------------------------===//
772
773// Multi-register loads.
774defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
775def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
776def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
777def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
778
779// Multi-register stores.
780defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
781def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
782def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
783
784//===----------------------------------------------------------------------===//
785// Byte swaps
786//===----------------------------------------------------------------------===//
787
788// Byte-swapping register moves.
789def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
790def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
791
792// Byte-swapping loads.
793def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
794def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
795def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
796
797// Byte-swapping stores.
798def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
799def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
800def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
801
802// Byte-swapping memory-to-memory moves.
803let mayLoad = 1, mayStore = 1 in
804  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
805
806//===----------------------------------------------------------------------===//
807// Load address instructions
808//===----------------------------------------------------------------------===//
809
810// Load BDX-style addresses.
811let isAsCheapAsAMove = 1, isReMaterializable = 1 in
812  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
813
814// Load a PC-relative address.  There's no version of this instruction
815// with a 16-bit offset, so there's no relaxation.
816let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
817  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
818
819// Load the Global Offset Table address.  This will be lowered into a
820//     larl $R1, _GLOBAL_OFFSET_TABLE_
821// instruction.
822def GOT : Alias<6, (outs GR64:$R1), (ins),
823                [(set GR64:$R1, (global_offset_table))]>;
824
825//===----------------------------------------------------------------------===//
826// Absolute and Negation
827//===----------------------------------------------------------------------===//
828
829let Defs = [CC] in {
830  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
831    def LPR  : UnaryRR <"lpr",  0x10,   z_iabs, GR32, GR32>;
832    def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>;
833  }
834  let CCValues = 0xE, CompareZeroCCMask = 0xE in
835    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
836}
837def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
838def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
839defm : SXU<z_iabs,   LPGFR>;
840defm : SXU<z_iabs64, LPGFR>;
841
842let Defs = [CC] in {
843  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
844    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
845    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
846  }
847  let CCValues = 0xE, CompareZeroCCMask = 0xE in
848    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
849}
850def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
851def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
852defm : SXU<z_inegabs,   LNGFR>;
853defm : SXU<z_inegabs64, LNGFR>;
854
855let Defs = [CC] in {
856  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
857    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
858    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
859  }
860  let CCValues = 0xE, CompareZeroCCMask = 0xE in
861    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
862}
863defm : SXU<ineg, LCGFR>;
864
865//===----------------------------------------------------------------------===//
866// Insertion
867//===----------------------------------------------------------------------===//
868
869let isCodeGenOnly = 1 in
870  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
871defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
872
873defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
874defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
875
876defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
877defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
878
879// Insert characters under mask -- not (yet) used for codegen.
880let Defs = [CC] in {
881  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
882  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
883}
884
885// Insertions of a 16-bit immediate, leaving other bits unaffected.
886// We don't have or_as_insert equivalents of these operations because
887// OI is available instead.
888//
889// IIxMux expands to II[LH]x, depending on the choice of register.
890def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
891             Requires<[FeatureHighWord]>;
892def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
893             Requires<[FeatureHighWord]>;
894def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
895def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
896def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
897def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
898def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
899def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
900def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
901def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
902
903// ...likewise for 32-bit immediates.  For GR32s this is a general
904// full-width move.  (We use IILF rather than something like LLILF
905// for 32-bit moves because IILF leaves the upper 32 bits of the
906// GR64 unchanged.)
907let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
908  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
909               Requires<[FeatureHighWord]>;
910  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
911  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
912}
913def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
914def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
915
916// An alternative model of inserthf, with the first operand being
917// a zero-extended value.
918def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
919          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
920                  imm64hf32:$imm)>;
921
922//===----------------------------------------------------------------------===//
923// Addition
924//===----------------------------------------------------------------------===//
925
926// Addition producing a signed overflow flag.
927let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
928  // Addition of a register.
929  let isCommutable = 1 in {
930    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
931    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
932  }
933  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
934
935  // Addition to a high register.
936  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
937              Requires<[FeatureHighWord]>;
938  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
939              Requires<[FeatureHighWord]>;
940
941  // Addition of signed 16-bit immediates.
942  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
943  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
944  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
945
946  // Addition of signed 32-bit immediates.
947  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
948               Requires<[FeatureHighWord]>;
949  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
950  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
951             Requires<[FeatureHighWord]>;
952  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
953
954  // Addition of memory.
955  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
956  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>;
957  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
958             Requires<[FeatureMiscellaneousExtensions2]>;
959  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
960  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, load, 8>;
961
962  // Addition to memory.
963  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
964  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
965}
966defm : SXB<z_sadd, GR64, AGFR>;
967
968// Addition producing a carry.
969let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
970  // Addition of a register.
971  let isCommutable = 1 in {
972    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
973    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
974  }
975  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
976
977  // Addition to a high register.
978  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
979               Requires<[FeatureHighWord]>;
980  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
981               Requires<[FeatureHighWord]>;
982
983  // Addition of signed 16-bit immediates.
984  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
985                Requires<[FeatureDistinctOps]>;
986  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
987                Requires<[FeatureDistinctOps]>;
988
989  // Addition of unsigned 32-bit immediates.
990  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
991  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
992
993  // Addition of signed 32-bit immediates.
994  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
995              Requires<[FeatureHighWord]>;
996
997  // Addition of memory.
998  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
999  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
1000  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, load, 8>;
1001
1002  // Addition to memory.
1003  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
1004  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
1005}
1006defm : ZXB<z_uadd, GR64, ALGFR>;
1007
1008// Addition producing and using a carry.
1009let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1010  // Addition of a register.
1011  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
1012  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1013
1014  // Addition of memory.
1015  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>;
1016  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
1017}
1018
1019// Addition that does not modify the condition code.
1020def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1021             Requires<[FeatureHighWord]>;
1022
1023
1024//===----------------------------------------------------------------------===//
1025// Subtraction
1026//===----------------------------------------------------------------------===//
1027
1028// Subtraction producing a signed overflow flag.
1029let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
1030    CCIfNoSignedWrap = 1 in {
1031  // Subtraction of a register.
1032  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1033  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1034  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1035
1036  // Subtraction from a high register.
1037  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1038              Requires<[FeatureHighWord]>;
1039  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1040              Requires<[FeatureHighWord]>;
1041
1042  // Subtraction of memory.
1043  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
1044  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
1045  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
1046             Requires<[FeatureMiscellaneousExtensions2]>;
1047  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
1048  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, load, 8>;
1049}
1050defm : SXB<z_ssub, GR64, SGFR>;
1051
1052// Subtracting an immediate is the same as adding the negated immediate.
1053let AddedComplexity = 1 in {
1054  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1055            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1056        Requires<[FeatureHighWord]>;
1057  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1058            (AFIMux GR32:$src1, simm32n:$src2)>,
1059        Requires<[FeatureHighWord]>;
1060  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1061            (AHI GR32:$src1, imm32sx16n:$src2)>;
1062  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1063            (AFI GR32:$src1, simm32n:$src2)>;
1064  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1065            (AGHI GR64:$src1, imm64sx16n:$src2)>;
1066  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1067            (AGFI GR64:$src1, imm64sx32n:$src2)>;
1068}
1069
1070// And vice versa in one special case, where we need to load a
1071// constant into a register in any case, but the negated constant
1072// requires fewer instructions to load.
1073def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1074          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1075def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1076          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1077
1078// Subtraction producing a carry.
1079let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
1080  // Subtraction of a register.
1081  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1082  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1083  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1084
1085  // Subtraction from a high register.
1086  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1087               Requires<[FeatureHighWord]>;
1088  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1089               Requires<[FeatureHighWord]>;
1090
1091  // Subtraction of unsigned 32-bit immediates.
1092  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
1093  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1094
1095  // Subtraction of memory.
1096  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
1097  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
1098  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, load, 8>;
1099}
1100defm : ZXB<z_usub, GR64, SLGFR>;
1101
1102// Subtracting an immediate is the same as adding the negated immediate.
1103let AddedComplexity = 1 in {
1104  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1105            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1106        Requires<[FeatureDistinctOps]>;
1107  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1108            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1109        Requires<[FeatureDistinctOps]>;
1110}
1111
1112// And vice versa in one special case (but we prefer addition).
1113def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1114          (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1115
1116// Subtraction producing and using a carry.
1117let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1118  // Subtraction of a register.
1119  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
1120  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1121
1122  // Subtraction of memory.
1123  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>;
1124  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
1125}
1126
1127
1128//===----------------------------------------------------------------------===//
1129// AND
1130//===----------------------------------------------------------------------===//
1131
1132let Defs = [CC] in {
1133  // ANDs of a register.
1134  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1135    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1136    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1137  }
1138
1139  let isConvertibleToThreeAddress = 1 in {
1140    // ANDs of a 16-bit immediate, leaving other bits unaffected.
1141    // The CC result only reflects the 16-bit field, not the full register.
1142    //
1143    // NIxMux expands to NI[LH]x, depending on the choice of register.
1144    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1145                 Requires<[FeatureHighWord]>;
1146    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1147                 Requires<[FeatureHighWord]>;
1148    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1149    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1150    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1151    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1152    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1153    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1154    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1155    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1156
1157    // ANDs of a 32-bit immediate, leaving other bits unaffected.
1158    // The CC result only reflects the 32-bit field, which means we can
1159    // use it as a zero indicator for i32 operations but not otherwise.
1160    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1161      // Expands to NILF or NIHF, depending on the choice of register.
1162      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1163                   Requires<[FeatureHighWord]>;
1164      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1165      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1166    }
1167    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1168    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1169  }
1170
1171  // ANDs of memory.
1172  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1173    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>;
1174    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>;
1175  }
1176
1177  // AND to memory
1178  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1179
1180  // Block AND.
1181  let mayLoad = 1, mayStore = 1 in
1182    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
1183}
1184defm : RMWIByte<and, bdaddr12pair, NI>;
1185defm : RMWIByte<and, bdaddr20pair, NIY>;
1186
1187//===----------------------------------------------------------------------===//
1188// OR
1189//===----------------------------------------------------------------------===//
1190
1191let Defs = [CC] in {
1192  // ORs of a register.
1193  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1194    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1195    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1196  }
1197
1198  // ORs of a 16-bit immediate, leaving other bits unaffected.
1199  // The CC result only reflects the 16-bit field, not the full register.
1200  //
1201  // OIxMux expands to OI[LH]x, depending on the choice of register.
1202  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1203               Requires<[FeatureHighWord]>;
1204  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1205               Requires<[FeatureHighWord]>;
1206  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1207  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1208  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1209  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1210  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1211  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1212  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1213  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1214
1215  // ORs of a 32-bit immediate, leaving other bits unaffected.
1216  // The CC result only reflects the 32-bit field, which means we can
1217  // use it as a zero indicator for i32 operations but not otherwise.
1218  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1219    // Expands to OILF or OIHF, depending on the choice of register.
1220    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1221                 Requires<[FeatureHighWord]>;
1222    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1223    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1224  }
1225  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1226  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1227
1228  // ORs of memory.
1229  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1230    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>;
1231    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>;
1232  }
1233
1234  // OR to memory
1235  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1236
1237  // Block OR.
1238  let mayLoad = 1, mayStore = 1 in
1239    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
1240}
1241defm : RMWIByte<or, bdaddr12pair, OI>;
1242defm : RMWIByte<or, bdaddr20pair, OIY>;
1243
1244//===----------------------------------------------------------------------===//
1245// XOR
1246//===----------------------------------------------------------------------===//
1247
1248let Defs = [CC] in {
1249  // XORs of a register.
1250  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1251    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1252    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1253  }
1254
1255  // XORs of a 32-bit immediate, leaving other bits unaffected.
1256  // The CC result only reflects the 32-bit field, which means we can
1257  // use it as a zero indicator for i32 operations but not otherwise.
1258  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1259    // Expands to XILF or XIHF, depending on the choice of register.
1260    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1261                 Requires<[FeatureHighWord]>;
1262    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1263    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1264  }
1265  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1266  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1267
1268  // XORs of memory.
1269  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1270    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>;
1271    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>;
1272  }
1273
1274  // XOR to memory
1275  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1276
1277  // Block XOR.
1278  let mayLoad = 1, mayStore = 1 in
1279    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
1280}
1281defm : RMWIByte<xor, bdaddr12pair, XI>;
1282defm : RMWIByte<xor, bdaddr20pair, XIY>;
1283
1284//===----------------------------------------------------------------------===//
1285// Combined logical operations
1286//===----------------------------------------------------------------------===//
1287
1288let Predicates = [FeatureMiscellaneousExtensions3],
1289    Defs = [CC] in {
1290  // AND with complement.
1291  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1292    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1293    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1294  }
1295
1296  // OR with complement.
1297  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1298    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1299    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1300  }
1301
1302  // NAND.
1303  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1304    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1305    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1306  }
1307
1308  // NOR.
1309  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1310    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1311    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1312  }
1313
1314  // NXOR.
1315  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1316    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1317    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1318  }
1319}
1320
1321//===----------------------------------------------------------------------===//
1322// Multiplication
1323//===----------------------------------------------------------------------===//
1324
1325// Multiplication of a register, setting the condition code.  We prefer these
1326// over MS(G)R if available, even though we cannot use the condition code,
1327// since they are three-operand instructions.
1328let Predicates = [FeatureMiscellaneousExtensions2],
1329    Defs = [CC], isCommutable = 1 in {
1330  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
1331  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1332}
1333
1334// Multiplication of a register.
1335let isCommutable = 1 in {
1336  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
1337  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1338}
1339def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1340defm : SXB<mul, GR64, MSGFR>;
1341
1342// Multiplication of a signed 16-bit immediate.
1343def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
1344def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1345
1346// Multiplication of a signed 32-bit immediate.
1347def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
1348def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1349
1350// Multiplication of memory.
1351defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
1352defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
1353def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
1354            Requires<[FeatureMiscellaneousExtensions2]>;
1355def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
1356def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
1357
1358// Multiplication of memory, setting the condition code.
1359let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1360  defm MSC  : BinaryRXYAndPseudo<"msc",  0xE353, null_frag, GR32, load, 4>;
1361  defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, load, 8>;
1362}
1363
1364// Multiplication of a register, producing two results.
1365def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
1366def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1367           Requires<[FeatureMiscellaneousExtensions2]>;
1368def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
1369def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1370
1371def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1372          (MGRK GR64:$src1, GR64:$src2)>;
1373def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1374          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1375
1376// Multiplication of memory, producing two results.
1377def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
1378def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
1379def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>,
1380          Requires<[FeatureMiscellaneousExtensions2]>;
1381def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
1382def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;
1383
1384def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1385          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1386def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1387          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1388
1389//===----------------------------------------------------------------------===//
1390// Division and remainder
1391//===----------------------------------------------------------------------===//
1392
1393let hasSideEffects = 1 in {  // Do not speculatively execute.
1394  // Division and remainder, from registers.
1395  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
1396  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1397  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
1398  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
1399  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;
1400
1401  // Division and remainder, from memory.
1402  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
1403  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
1404  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
1405  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
1406  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
1407}
1408def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1409          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1410def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
1411          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1412def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1413          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1414def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1415          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1416
1417def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1418          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1419                                       subreg_l32)), GR32:$src2)>;
1420def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
1421          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1422                                      subreg_l32)), bdxaddr20only:$src2)>;
1423def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1424          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1425def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1426          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1427
1428//===----------------------------------------------------------------------===//
1429// Shifts
1430//===----------------------------------------------------------------------===//
1431
1432// Logical shift left.
1433defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1434def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1435def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1436
1437// Arithmetic shift left.
1438let Defs = [CC] in {
1439  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1440  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1441  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1442}
1443
1444// Logical shift right.
1445defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1446def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1447def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1448
1449// Arithmetic shift right.
1450let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1451  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1452  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1453  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1454}
1455
1456// Rotate left.
1457def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
1458def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1459
1460// Rotate second operand left and inserted selected bits into first operand.
1461// These can act like 32-bit operands provided that the constant start and
1462// end bits (operands 2 and 3) are in the range [32, 64).
1463let Defs = [CC] in {
1464  let isCodeGenOnly = 1 in
1465    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1466  let CCValues = 0xE, CompareZeroCCMask = 0xE in
1467    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1468}
1469
1470// On zEC12 we have a variant of RISBG that does not set CC.
1471let Predicates = [FeatureMiscellaneousExtensions] in
1472  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1473
1474// Forms of RISBG that only affect one word of the destination register.
1475// They do not set CC.
1476let Predicates = [FeatureHighWord] in {
1477  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1478  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
1479  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
1480  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
1481  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
1482  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1483  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1484}
1485
1486// Rotate second operand left and perform a logical operation with selected
1487// bits of the first operand.  The CC result only describes the selected bits,
1488// so isn't useful for a full comparison against zero.
1489let Defs = [CC] in {
1490  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1491  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1492  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1493}
1494
1495//===----------------------------------------------------------------------===//
1496// Comparison
1497//===----------------------------------------------------------------------===//
1498
1499// Signed comparisons.  We put these before the unsigned comparisons because
1500// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1501// of the unsigned forms do.
1502let Defs = [CC], CCValues = 0xE in {
1503  // Comparison with a register.
1504  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
1505  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1506  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;
1507
1508  // Comparison with a high register.
1509  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1510             Requires<[FeatureHighWord]>;
1511  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1512             Requires<[FeatureHighWord]>;
1513
1514  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
1515  // depending on the choice of register.
1516  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1517               Requires<[FeatureHighWord]>;
1518  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1519  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1520
1521  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1522  // depending on the choice of register.
1523  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1524               Requires<[FeatureHighWord]>;
1525  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1526  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1527             Requires<[FeatureHighWord]>;
1528  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1529
1530  // Comparison with memory.
1531  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
1532  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
1533               Requires<[FeatureHighWord]>;
1534  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
1535  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
1536               Requires<[FeatureHighWord]>;
1537  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
1538  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
1539  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
1540  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
1541  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
1542  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
1543  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
1544  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
1545
1546  // Comparison between memory and a signed 16-bit immediate.
1547  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
1548  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
1549  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
1550}
1551defm : SXB<z_scmp, GR64, CGFR>;
1552
1553// Unsigned comparisons.
1554let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1555  // Comparison with a register.
1556  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
1557  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1558  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
1559
1560  // Comparison with a high register.
1561  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1562              Requires<[FeatureHighWord]>;
1563  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1564              Requires<[FeatureHighWord]>;
1565
1566  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1567  // or CLIH, depending on the choice of register.
1568  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1569                Requires<[FeatureHighWord]>;
1570  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1571  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
1572              Requires<[FeatureHighWord]>;
1573  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1574
1575  // Comparison with memory.
1576  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
1577                Requires<[FeatureHighWord]>;
1578  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
1579  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
1580                Requires<[FeatureHighWord]>;
1581  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
1582  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
1583  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1584                             aligned_azextloadi16>;
1585  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1586                             aligned_load>;
1587  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1588                             aligned_azextloadi16>;
1589  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1590                             aligned_azextloadi32>;
1591  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1592                             aligned_load>;
1593
1594  // Comparison between memory and an unsigned 8-bit immediate.
1595  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
1596
1597  // Comparison between memory and an unsigned 16-bit immediate.
1598  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
1599  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
1600  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
1601}
1602defm : ZXB<z_ucmp, GR64, CLGFR>;
1603
1604// Memory-to-memory comparison.
1605let mayLoad = 1, Defs = [CC] in {
1606  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
1607  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1608  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1609  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1610}
1611
1612// String comparison.
1613let mayLoad = 1, Defs = [CC] in
1614  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1615
1616// Test under mask.
1617let Defs = [CC] in {
1618  // TMxMux expands to TM[LH]x, depending on the choice of register.
1619  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1620               Requires<[FeatureHighWord]>;
1621  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1622               Requires<[FeatureHighWord]>;
1623  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1624  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1625  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1626  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1627
1628  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1629  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1630  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1631  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1632
1633  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
1634}
1635
1636def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1637def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1638
1639// Compare logical characters under mask -- not (yet) used for codegen.
1640let Defs = [CC] in {
1641  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1642  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1643}
1644
1645//===----------------------------------------------------------------------===//
1646// Prefetch and execution hint
1647//===----------------------------------------------------------------------===//
1648
1649let mayLoad = 1, mayStore = 1 in {
1650  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1651  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1652}
1653
1654let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1655  // Branch Prediction Preload
1656  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1657  def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1658
1659  // Next Instruction Access Intent
1660  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1661}
1662
1663//===----------------------------------------------------------------------===//
1664// Atomic operations
1665//===----------------------------------------------------------------------===//
1666
1667// A serialization instruction that acts as a barrier for all memory
1668// accesses, which expands to "bcr 14, 0".
1669let hasSideEffects = 1 in
1670def Serialize : Alias<2, (outs), (ins), []>;
1671
1672// A pseudo instruction that serves as a compiler barrier.
1673let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
1674def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;
1675
1676let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1677  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
1678  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
1679  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
1680  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1681  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
1682  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
1683  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
1684  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
1685  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
1686  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
1687}
1688
1689def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
1690def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
1691def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
1692
1693def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1694def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1695let Predicates = [FeatureNoInterlockedAccess1] in {
1696  def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
1697  def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
1698  def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
1699  def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
1700  def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
1701  def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
1702}
1703
1704def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1705def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
1706def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
1707
1708def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1709def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1710let Predicates = [FeatureNoInterlockedAccess1] in {
1711  def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
1712  def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
1713                                                 imm32ll16c>;
1714  def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
1715                                                 imm32lh16c>;
1716  def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
1717  def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
1718  def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1719                                                 imm64ll16c>;
1720  def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1721                                                 imm64lh16c>;
1722  def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1723                                                 imm64hl16c>;
1724  def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1725                                                 imm64hh16c>;
1726  def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1727                                                 imm64lf32c>;
1728  def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1729                                                 imm64hf32c>;
1730}
1731
1732def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1733def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1734let Predicates = [FeatureNoInterlockedAccess1] in {
1735  def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
1736  def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
1737  def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
1738  def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
1739  def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
1740  def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
1741  def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
1742  def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
1743  def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
1744  def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
1745  def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
1746}
1747
1748def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1749def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1750let Predicates = [FeatureNoInterlockedAccess1] in {
1751  def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
1752  def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
1753  def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
1754  def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
1755  def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
1756}
1757
1758def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1759def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1760                                               imm32lh16c>;
1761def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
1762def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1763                                                imm32ll16c>;
1764def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1765                                                imm32lh16c>;
1766def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
1767def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
1768def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1769                                                imm64ll16c>;
1770def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1771                                                imm64lh16c>;
1772def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1773                                                imm64hl16c>;
1774def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1775                                                imm64hh16c>;
1776def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1777                                                imm64lf32c>;
1778def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1779                                                imm64hf32c>;
1780
1781def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1782def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
1783def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
1784
1785def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1786def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
1787def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
1788
1789def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1790def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
1791def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
1792
1793def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1794def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
1795def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
1796
1797def ATOMIC_CMP_SWAPW
1798  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1799                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1800                                  uimm32:$bitsize),
1801           [(set GR32:$dst,
1802                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1803                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1804                                     uimm32:$bitsize))]> {
1805  let Defs = [CC];
1806  let mayLoad = 1;
1807  let mayStore = 1;
1808  let usesCustomInserter = 1;
1809  let hasNoSchedulingInfo = 1;
1810}
1811
1812// Test and set.
1813let mayLoad = 1, Defs = [CC] in
1814  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1815
1816// Compare and swap.
1817let Defs = [CC] in {
1818  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1819  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1820}
1821
1822// Compare double and swap.
1823let Defs = [CC] in {
1824  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1825  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1826}
1827
1828// Compare and swap and store.
1829let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1830  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1831
1832// Perform locked operation.
1833let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1834  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1835
1836// Load/store pair from/to quadword.
1837def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1838def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1839
1840// Load pair disjoint.
1841let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1842  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
1843  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1844}
1845
1846//===----------------------------------------------------------------------===//
1847// Translate and convert
1848//===----------------------------------------------------------------------===//
1849
1850let mayLoad = 1, mayStore = 1 in
1851  def TR : SideEffectBinarySSa<"tr", 0xDC>;
1852
1853let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1854  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
1855  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1856}
1857
1858let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1859  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1860
1861let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1862  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
1863  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1864}
1865
1866let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1867  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1868  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1869  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1870  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1871}
1872
1873let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1874  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1875  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1876  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1877  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1878  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1879  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1880
1881  let isAsmParserOnly = 1 in {
1882    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1883    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1884  }
1885}
1886
1887//===----------------------------------------------------------------------===//
1888// Message-security assist
1889//===----------------------------------------------------------------------===//
1890
1891let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1892  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
1893  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1894
1895  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1896  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1897  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1898
1899  let Predicates = [FeatureMessageSecurityAssist4] in {
1900    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1901    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1902    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1903                                               GR128, GR128, GR128>;
1904    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
1905  }
1906
1907  let Predicates = [FeatureMessageSecurityAssist5] in
1908    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1909  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1910    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1911
1912  let Predicates = [FeatureMessageSecurityAssist8] in
1913    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1914                                              GR128, GR128, GR128>;
1915
1916  let Predicates = [FeatureMessageSecurityAssist9] in
1917    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1918}
1919
1920//===----------------------------------------------------------------------===//
1921// Guarded storage
1922//===----------------------------------------------------------------------===//
1923
1924// These instructions use and/or modify the guarded storage control
1925// registers, which we do not otherwise model, so they should have
1926// hasSideEffects.
1927let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1928  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1929  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1930
1931  let mayLoad = 1 in
1932    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1933  let mayStore = 1 in
1934    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1935}
1936
1937//===----------------------------------------------------------------------===//
1938// Decimal arithmetic
1939//===----------------------------------------------------------------------===//
1940
1941defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
1942def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;
1943
1944defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1945def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1946
1947let mayLoad = 1, mayStore = 1 in {
1948  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1949  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1950  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1951
1952  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
1953  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
1954  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
1955  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
1956  let Defs = [CC] in {
1957    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
1958    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
1959  }
1960}
1961
1962let mayLoad = 1, mayStore = 1 in {
1963  let Defs = [CC] in {
1964    def AP : SideEffectBinarySSb<"ap", 0xFA>;
1965    def SP : SideEffectBinarySSb<"sp", 0xFB>;
1966    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
1967    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
1968  }
1969  def MP : SideEffectBinarySSb<"mp", 0xFC>;
1970  def DP : SideEffectBinarySSb<"dp", 0xFD>;
1971  let Defs = [CC] in {
1972    def ED : SideEffectBinarySSa<"ed", 0xDE>;
1973    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
1974  }
1975}
1976
1977let Defs = [CC] in {
1978  def CP : CompareSSb<"cp", 0xF9>;
1979  def TP : TestRSL<"tp", 0xEBC0>;
1980}
1981
1982//===----------------------------------------------------------------------===//
1983// Access registers
1984//===----------------------------------------------------------------------===//
1985
1986// Read a 32-bit access register into a GR32.  As with all GR32 operations,
1987// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
1988// when a 64-bit address is stored in a pair of access registers.
1989def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
1990
1991// Set access register.
1992def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
1993
1994// Copy access register.
1995def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
1996
1997// Load address extended.
1998defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
1999
2000// Load access multiple.
2001defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
2002
2003// Store access multiple.
2004defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
2005
2006//===----------------------------------------------------------------------===//
2007// Program mask and addressing mode
2008//===----------------------------------------------------------------------===//
2009
2010// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
2011let Uses = [CC] in
2012  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
2013
2014// Set CC and program mask from a register.
2015let hasSideEffects = 1, Defs = [CC] in
2016  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
2017
2018// Branch and link - like BAS, but also extracts CC and program mask.
2019let isCall = 1, Uses = [CC], Defs = [CC] in {
2020  def BAL  : CallRX<"bal", 0x45>;
2021  def BALR : CallRR<"balr", 0x05>;
2022}
2023
2024// Test addressing mode.
2025let Defs = [CC] in
2026  def TAM : SideEffectInherentE<"tam", 0x010B>;
2027
2028// Set addressing mode.
2029let hasSideEffects = 1 in {
2030  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2031  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2032  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2033}
2034
2035// Branch and set mode.  Not really a call, but also sets an output register.
2036let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2037  def BSM : CallRR<"bsm", 0x0B>;
2038
2039// Branch and save and set mode.
2040let isCall = 1, Defs = [CC] in
2041  def BASSM : CallRR<"bassm", 0x0C>;
2042
2043//===----------------------------------------------------------------------===//
2044// Transactional execution
2045//===----------------------------------------------------------------------===//
2046
2047let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2048  // Transaction Begin
2049  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2050    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2051    let hasNoSchedulingInfo = 1 in
2052     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2053    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2054                                      int_s390_tbeginc, imm32zx16>;
2055  }
2056
2057  // Transaction End
2058  let Defs = [CC] in
2059    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2060
2061  // Transaction Abort
2062  let isTerminator = 1, isBarrier = 1, mayStore = 1,
2063      hasSideEffects = 1 in
2064    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2065
2066  // Nontransactional Store
2067  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2068
2069  // Extract Transaction Nesting Depth
2070  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2071}
2072
2073//===----------------------------------------------------------------------===//
2074// Processor assist
2075//===----------------------------------------------------------------------===//
2076
2077let Predicates = [FeatureProcessorAssist] in {
2078  let hasSideEffects = 1 in
2079    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2080  def : Pat<(int_s390_ppa_txassist GR32:$src),
2081            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2082                 zero_reg, 1)>;
2083}
2084
2085//===----------------------------------------------------------------------===//
2086// Miscellaneous Instructions.
2087//===----------------------------------------------------------------------===//
2088
2089// Find leftmost one, AKA count leading zeros.  The instruction actually
2090// returns a pair of GR64s, the first giving the number of leading zeros
2091// and the second giving a copy of the source with the leftmost one bit
2092// cleared.  We only use the first result here.
2093let Defs = [CC] in
2094  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2095def : Pat<(i64 (ctlz GR64:$src)),
2096          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2097
2098// Population count.  Counts bits set per byte or doubleword.
2099let Predicates = [FeatureMiscellaneousExtensions3] in {
2100  let Defs = [CC] in
2101    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2102  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2103}
2104let Predicates = [FeaturePopulationCount], Defs = [CC] in
2105  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2106
2107// Search a block of memory for a character.
2108let mayLoad = 1, Defs = [CC] in
2109  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2110let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2111  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2112
2113// Compare until substring equal.
2114let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2115  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2116
2117// Compare and form codeword.
2118let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2119  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2120
2121// Update tree.
2122let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2123    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2124  def UPT : SideEffectInherentE<"upt", 0x0102>;
2125
2126// Checksum.
2127let mayLoad = 1, Defs = [CC] in
2128  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2129
2130// Compression call.
2131let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2132  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2133
2134// Sort lists.
2135let Predicates = [FeatureEnhancedSort],
2136    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2137  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2138
2139// Deflate conversion call.
2140let Predicates = [FeatureDeflateConversion],
2141    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2142  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2143                                           GR128, GR128, GR64>;
2144
2145// Execute.
2146let hasSideEffects = 1 in {
2147  def EX   : SideEffectBinaryRX<"ex", 0x44, GR64>;
2148  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>;
2149}
2150
2151//===----------------------------------------------------------------------===//
2152// .insn directive instructions
2153//===----------------------------------------------------------------------===//
2154
2155let isCodeGenOnly = 1, hasSideEffects = 1 in {
2156  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2157  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2158                                             imm32sx16:$I2),
2159                                ".insn ri,$enc,$R1,$I2", []>;
2160  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2161                                              AnyReg:$R3, brtarget16:$I2),
2162                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
2163  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2164                                              brtarget32:$I2),
2165                                 ".insn ril,$enc,$R1,$I2", []>;
2166  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2167                                               uimm32:$I2),
2168                                  ".insn rilu,$enc,$R1,$I2", []>;
2169  def InsnRIS : DirectiveInsnRIS<(outs),
2170                                 (ins imm64zx48:$enc, AnyReg:$R1,
2171                                      imm32sx8:$I2, imm32zx4:$M3,
2172                                      bdaddr12only:$BD4),
2173                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2174  def InsnRR : DirectiveInsnRR<(outs),
2175                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2176                               ".insn rr,$enc,$R1,$R2", []>;
2177  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2178                                              AnyReg:$R1, AnyReg:$R2),
2179                                 ".insn rre,$enc,$R1,$R2", []>;
2180  def InsnRRF : DirectiveInsnRRF<(outs),
2181                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2182                                      AnyReg:$R3, imm32zx4:$M4),
2183                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2184  def InsnRRS : DirectiveInsnRRS<(outs),
2185                                 (ins imm64zx48:$enc, AnyReg:$R1,
2186                                      AnyReg:$R2, imm32zx4:$M3,
2187                                      bdaddr12only:$BD4),
2188                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2189  def InsnRS  : DirectiveInsnRS<(outs),
2190                                (ins imm64zx32:$enc, AnyReg:$R1,
2191                                     AnyReg:$R3, bdaddr12only:$BD2),
2192                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
2193  def InsnRSE : DirectiveInsnRSE<(outs),
2194                                 (ins imm64zx48:$enc, AnyReg:$R1,
2195                                      AnyReg:$R3, bdaddr12only:$BD2),
2196                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2197  def InsnRSI : DirectiveInsnRSI<(outs),
2198                                 (ins imm64zx48:$enc, AnyReg:$R1,
2199                                      AnyReg:$R3, brtarget16:$RI2),
2200                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2201  def InsnRSY : DirectiveInsnRSY<(outs),
2202                                 (ins imm64zx48:$enc, AnyReg:$R1,
2203                                      AnyReg:$R3, bdaddr20only:$BD2),
2204                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2205  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2206                                             bdxaddr12only:$XBD2),
2207                                ".insn rx,$enc,$R1,$XBD2", []>;
2208  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2209                                              bdxaddr12only:$XBD2),
2210                                 ".insn rxe,$enc,$R1,$XBD2", []>;
2211  def InsnRXF : DirectiveInsnRXF<(outs),
2212                                 (ins imm64zx48:$enc, AnyReg:$R1,
2213                                      AnyReg:$R3, bdxaddr12only:$XBD2),
2214                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2215  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2216                                              bdxaddr20only:$XBD2),
2217                                 ".insn rxy,$enc,$R1,$XBD2", []>;
2218  def InsnS : DirectiveInsnS<(outs),
2219                             (ins imm64zx32:$enc, bdaddr12only:$BD2),
2220                             ".insn s,$enc,$BD2", []>;
2221  def InsnSI : DirectiveInsnSI<(outs),
2222                               (ins imm64zx32:$enc, bdaddr12only:$BD1,
2223                                    imm32sx8:$I2),
2224                               ".insn si,$enc,$BD1,$I2", []>;
2225  def InsnSIY : DirectiveInsnSIY<(outs),
2226                                 (ins imm64zx48:$enc,
2227                                      bdaddr20only:$BD1, imm32zx8:$I2),
2228                                 ".insn siy,$enc,$BD1,$I2", []>;
2229  def InsnSIL : DirectiveInsnSIL<(outs),
2230                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2231                                      imm32zx16:$I2),
2232                                 ".insn sil,$enc,$BD1,$I2", []>;
2233  def InsnSS : DirectiveInsnSS<(outs),
2234                               (ins imm64zx48:$enc, bdraddr12only:$RBD1,
2235                                    bdaddr12only:$BD2, AnyReg:$R3),
2236                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2237  def InsnSSE : DirectiveInsnSSE<(outs),
2238                                 (ins imm64zx48:$enc,
2239                                      bdaddr12only:$BD1,bdaddr12only:$BD2),
2240                                 ".insn sse,$enc,$BD1,$BD2", []>;
2241  def InsnSSF : DirectiveInsnSSF<(outs),
2242                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2243                                      bdaddr12only:$BD2, AnyReg:$R3),
2244                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2245}
2246
2247//===----------------------------------------------------------------------===//
2248// Peepholes.
2249//===----------------------------------------------------------------------===//
2250
2251// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2252// equivalent to (and (xor x, -1), y)
2253def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2254                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2255
2256// Shift/rotate instructions only use the last 6 bits of the second operand
2257// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2258// last 16 bits.
2259// Complexity is added so that we match this before we match NILF on the AND
2260// operation alone.
2261let AddedComplexity = 4 in {
2262  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2263            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2264
2265  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2266            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2267
2268  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2269            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2270
2271  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2272            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2273
2274  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2275            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2276
2277  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2278            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2279
2280  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2281            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2282
2283  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2284            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2285}
2286
2287// Substitute (x*64-s) with (-s), since shift/rotate instructions only
2288// use the last 6 bits of the second operand register (making it modulo 64).
2289let AddedComplexity = 4 in {
2290  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2291            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2292
2293  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
2294            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2295
2296  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2297            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2298
2299  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2300            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2301}
2302
2303// Peepholes for turning scalar operations into block operations.
2304defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
2305                      XCSequence, 1>;
2306defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
2307                      XCSequence, 2>;
2308defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
2309                      XCSequence, 4>;
2310defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
2311                      OCSequence, XCSequence, 1>;
2312defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
2313                      XCSequence, 2>;
2314defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
2315                      XCSequence, 4>;
2316defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
2317                      XCSequence, 8>;
2318