1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8 9//===----------------------------------------------------------------------===// 10// Stack allocation 11//===----------------------------------------------------------------------===// 12 13// The callseq_start node requires the hasSideEffects flag, even though these 14// instructions are noops on SystemZ. 15let hasNoSchedulingInfo = 1, hasSideEffects = 1 in { 16 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), 17 [(callseq_start timm:$amt1, timm:$amt2)]>; 18 def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), 19 [(callseq_end timm:$amt1, timm:$amt2)]>; 20} 21 22// Takes as input the value of the stack pointer after a dynamic allocation 23// has been made. Sets the output to the address of the dynamically- 24// allocated area itself, skipping the outgoing arguments. 25// 26// This expands to an LA or LAY instruction. We restrict the offset 27// to the range of LA and keep the LAY range in reserve for when 28// the size of the outgoing arguments is added. 29def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src), 30 [(set GR64:$dst, dynalloc12only:$src)]>; 31 32 33//===----------------------------------------------------------------------===// 34// Branch instructions 35//===----------------------------------------------------------------------===// 36 37// Conditional branches. 38let isBranch = 1, isTerminator = 1, Uses = [CC] in { 39 // It's easier for LLVM to handle these branches in their raw BRC/BRCL form 40 // with the condition-code mask being the first operand. It seems friendlier 41 // to use mnemonic forms like JE and JLH when writing out the assembly though. 42 let isCodeGenOnly = 1 in { 43 // An assembler extended mnemonic for BRC. 44 def BRC : CondBranchRI <"j#", 0xA74, z_br_ccmask>; 45 // An assembler extended mnemonic for BRCL. (The extension is "G" 46 // rather than "L" because "JL" is "Jump if Less".) 47 def BRCL : CondBranchRIL<"jg#", 0xC04>; 48 let isIndirectBranch = 1 in { 49 def BC : CondBranchRX<"b#", 0x47>; 50 def BCR : CondBranchRR<"b#r", 0x07>; 51 def BIC : CondBranchRXY<"bi#", 0xe347>, 52 Requires<[FeatureMiscellaneousExtensions2]>; 53 } 54 } 55 56 // Allow using the raw forms directly from the assembler (and occasional 57 // special code generation needs) as well. 58 def BRCAsm : AsmCondBranchRI <"brc", 0xA74>; 59 def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>; 60 let isIndirectBranch = 1 in { 61 def BCAsm : AsmCondBranchRX<"bc", 0x47>; 62 def BCRAsm : AsmCondBranchRR<"bcr", 0x07>; 63 def BICAsm : AsmCondBranchRXY<"bic", 0xe347>, 64 Requires<[FeatureMiscellaneousExtensions2]>; 65 } 66 67 // Define AsmParser extended mnemonics for each general condition-code mask 68 // (integer or floating-point) 69 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", 70 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { 71 def JAsm#V : FixedCondBranchRI <CV<V>, "j#", 0xA74>; 72 def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>; 73 let isIndirectBranch = 1 in { 74 def BAsm#V : FixedCondBranchRX <CV<V>, "b#", 0x47>; 75 def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>; 76 def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>, 77 Requires<[FeatureMiscellaneousExtensions2]>; 78 } 79 } 80} 81 82// Unconditional branches. These are in fact simply variants of the 83// conditional branches with the condition mask set to "always". 84let isBranch = 1, isTerminator = 1, isBarrier = 1 in { 85 def J : FixedCondBranchRI <CondAlways, "j", 0xA74, br>; 86 def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>; 87 let isIndirectBranch = 1 in { 88 def B : FixedCondBranchRX<CondAlways, "b", 0x47>; 89 def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>; 90 def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>, 91 Requires<[FeatureMiscellaneousExtensions2]>; 92 } 93} 94 95// NOPs. These are again variants of the conditional branches, 96// with the condition mask set to "never". 97def NOP : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>; 98def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>; 99 100// Fused compare-and-branch instructions. 101// 102// These instructions do not use or clobber the condition codes. 103// We nevertheless pretend that the relative compare-and-branch 104// instructions clobber CC, so that we can lower them to separate 105// comparisons and BRCLs if the branch ends up being out of range. 106let isBranch = 1, isTerminator = 1 in { 107 // As for normal branches, we handle these instructions internally in 108 // their raw CRJ-like form, but use assembly macros like CRJE when writing 109 // them out. Using the *Pair multiclasses, we also create the raw forms. 110 let Defs = [CC] in { 111 defm CRJ : CmpBranchRIEbPair<"crj", 0xEC76, GR32>; 112 defm CGRJ : CmpBranchRIEbPair<"cgrj", 0xEC64, GR64>; 113 defm CIJ : CmpBranchRIEcPair<"cij", 0xEC7E, GR32, imm32sx8>; 114 defm CGIJ : CmpBranchRIEcPair<"cgij", 0xEC7C, GR64, imm64sx8>; 115 defm CLRJ : CmpBranchRIEbPair<"clrj", 0xEC77, GR32>; 116 defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>; 117 defm CLIJ : CmpBranchRIEcPair<"clij", 0xEC7F, GR32, imm32zx8>; 118 defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>; 119 } 120 let isIndirectBranch = 1 in { 121 defm CRB : CmpBranchRRSPair<"crb", 0xECF6, GR32>; 122 defm CGRB : CmpBranchRRSPair<"cgrb", 0xECE4, GR64>; 123 defm CIB : CmpBranchRISPair<"cib", 0xECFE, GR32, imm32sx8>; 124 defm CGIB : CmpBranchRISPair<"cgib", 0xECFC, GR64, imm64sx8>; 125 defm CLRB : CmpBranchRRSPair<"clrb", 0xECF7, GR32>; 126 defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>; 127 defm CLIB : CmpBranchRISPair<"clib", 0xECFF, GR32, imm32zx8>; 128 defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>; 129 } 130 131 // Define AsmParser mnemonics for each integer condition-code mask. 132 foreach V = [ "E", "H", "L", "HE", "LE", "LH", 133 "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in { 134 let Defs = [CC] in { 135 def CRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "crj", 0xEC76, GR32>; 136 def CGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "cgrj", 0xEC64, GR64>; 137 def CIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "cij", 0xEC7E, GR32, 138 imm32sx8>; 139 def CGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "cgij", 0xEC7C, GR64, 140 imm64sx8>; 141 def CLRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clrj", 0xEC77, GR32>; 142 def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>; 143 def CLIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clij", 0xEC7F, GR32, 144 imm32zx8>; 145 def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64, 146 imm64zx8>; 147 } 148 let isIndirectBranch = 1 in { 149 def CRBAsm#V : FixedCmpBranchRRS<ICV<V>, "crb", 0xECF6, GR32>; 150 def CGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "cgrb", 0xECE4, GR64>; 151 def CIBAsm#V : FixedCmpBranchRIS<ICV<V>, "cib", 0xECFE, GR32, 152 imm32sx8>; 153 def CGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "cgib", 0xECFC, GR64, 154 imm64sx8>; 155 def CLRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clrb", 0xECF7, GR32>; 156 def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>; 157 def CLIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clib", 0xECFF, GR32, 158 imm32zx8>; 159 def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64, 160 imm64zx8>; 161 } 162 } 163} 164 165// Decrement a register and branch if it is nonzero. These don't clobber CC, 166// but we might need to split long relative branches into sequences that do. 167let isBranch = 1, isTerminator = 1 in { 168 let Defs = [CC] in { 169 def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>; 170 def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>; 171 } 172 // This doesn't need to clobber CC since we never need to split it. 173 def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>, 174 Requires<[FeatureHighWord]>; 175 176 def BCT : BranchUnaryRX<"bct", 0x46,GR32>; 177 def BCTR : BranchUnaryRR<"bctr", 0x06, GR32>; 178 def BCTG : BranchUnaryRXY<"bctg", 0xE346, GR64>; 179 def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>; 180} 181 182let isBranch = 1, isTerminator = 1 in { 183 let Defs = [CC] in { 184 def BRXH : BranchBinaryRSI<"brxh", 0x84, GR32>; 185 def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>; 186 def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>; 187 def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>; 188 } 189 def BXH : BranchBinaryRS<"bxh", 0x86, GR32>; 190 def BXLE : BranchBinaryRS<"bxle", 0x87, GR32>; 191 def BXHG : BranchBinaryRSY<"bxhg", 0xEB44, GR64>; 192 def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>; 193} 194 195//===----------------------------------------------------------------------===// 196// Trap instructions 197//===----------------------------------------------------------------------===// 198 199// Unconditional trap. 200let hasCtrlDep = 1, hasSideEffects = 1 in 201 def Trap : Alias<4, (outs), (ins), [(trap)]>; 202 203// Conditional trap. 204let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in 205 def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>; 206 207// Fused compare-and-trap instructions. 208let hasCtrlDep = 1, hasSideEffects = 1 in { 209 // These patterns work the same way as for compare-and-branch. 210 defm CRT : CmpBranchRRFcPair<"crt", 0xB972, GR32>; 211 defm CGRT : CmpBranchRRFcPair<"cgrt", 0xB960, GR64>; 212 defm CLRT : CmpBranchRRFcPair<"clrt", 0xB973, GR32>; 213 defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>; 214 defm CIT : CmpBranchRIEaPair<"cit", 0xEC72, GR32, imm32sx16>; 215 defm CGIT : CmpBranchRIEaPair<"cgit", 0xEC70, GR64, imm64sx16>; 216 defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>; 217 defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>; 218 let Predicates = [FeatureMiscellaneousExtensions] in { 219 defm CLT : CmpBranchRSYbPair<"clt", 0xEB23, GR32>; 220 defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>; 221 } 222 223 foreach V = [ "E", "H", "L", "HE", "LE", "LH", 224 "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in { 225 def CRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "crt", 0xB972, GR32>; 226 def CGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "cgrt", 0xB960, GR64>; 227 def CLRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clrt", 0xB973, GR32>; 228 def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>; 229 def CITAsm#V : FixedCmpBranchRIEa<ICV<V>, "cit", 0xEC72, GR32, 230 imm32sx16>; 231 def CGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "cgit", 0xEC70, GR64, 232 imm64sx16>; 233 def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32, 234 imm32zx16>; 235 def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64, 236 imm64zx16>; 237 let Predicates = [FeatureMiscellaneousExtensions] in { 238 def CLTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clt", 0xEB23, GR32>; 239 def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>; 240 } 241 } 242} 243 244//===----------------------------------------------------------------------===// 245// Call and return instructions 246//===----------------------------------------------------------------------===// 247 248// Define the general form of the call instructions for the asm parser. 249// These instructions don't hard-code %r14 as the return address register. 250let isCall = 1, Defs = [CC] in { 251 def BRAS : CallRI <"bras", 0xA75>; 252 def BRASL : CallRIL<"brasl", 0xC05>; 253 def BAS : CallRX <"bas", 0x4D>; 254 def BASR : CallRR <"basr", 0x0D>; 255} 256 257// Regular calls. 258let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in { 259 def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops), 260 [(z_call pcrel32:$I2)]>; 261 def CallBASR : Alias<2, (outs), (ins ADDR64:$R2, variable_ops), 262 [(z_call ADDR64:$R2)]>; 263} 264 265// TLS calls. These will be lowered into a call to __tls_get_offset, 266// with an extra relocation specifying the TLS symbol. 267let isCall = 1, Defs = [R14D, CC] in { 268 def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops), 269 [(z_tls_gdcall tglobaltlsaddr:$I2)]>; 270 def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops), 271 [(z_tls_ldcall tglobaltlsaddr:$I2)]>; 272} 273 274// Sibling calls. Indirect sibling calls must be via R1, since R2 upwards 275// are argument registers and since branching to R0 is a no-op. 276let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { 277 def CallJG : Alias<6, (outs), (ins pcrel32:$I2), 278 [(z_sibcall pcrel32:$I2)]>; 279 let Uses = [R1D] in 280 def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>; 281} 282 283// Conditional sibling calls. 284let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in { 285 def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1, 286 pcrel32:$I2), []>; 287 let Uses = [R1D] in 288 def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>; 289} 290 291// Fused compare and conditional sibling calls. 292let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in { 293 def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; 294 def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; 295 def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>; 296 def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>; 297 def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; 298 def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; 299 def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>; 300 def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>; 301} 302 303// A return instruction (br %r14). 304let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in 305 def Return : Alias<2, (outs), (ins), [(z_retflag)]>; 306 307// A conditional return instruction (bcr <cond>, %r14). 308let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in 309 def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>; 310 311// Fused compare and conditional returns. 312let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in { 313 def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; 314 def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; 315 def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>; 316 def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>; 317 def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; 318 def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; 319 def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>; 320 def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>; 321} 322 323//===----------------------------------------------------------------------===// 324// Select instructions 325//===----------------------------------------------------------------------===// 326 327def Select32 : SelectWrapper<i32, GR32>, 328 Requires<[FeatureNoLoadStoreOnCond]>; 329def Select64 : SelectWrapper<i64, GR64>, 330 Requires<[FeatureNoLoadStoreOnCond]>; 331 332// We don't define 32-bit Mux stores if we don't have STOCFH, because the 333// low-only STOC should then always be used if possible. 334defm CondStore8Mux : CondStores<GRX32, nonvolatile_truncstorei8, 335 nonvolatile_anyextloadi8, bdxaddr20only>, 336 Requires<[FeatureHighWord]>; 337defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16, 338 nonvolatile_anyextloadi16, bdxaddr20only>, 339 Requires<[FeatureHighWord]>; 340defm CondStore32Mux : CondStores<GRX32, simple_store, 341 simple_load, bdxaddr20only>, 342 Requires<[FeatureLoadStoreOnCond2]>; 343defm CondStore8 : CondStores<GR32, nonvolatile_truncstorei8, 344 nonvolatile_anyextloadi8, bdxaddr20only>; 345defm CondStore16 : CondStores<GR32, nonvolatile_truncstorei16, 346 nonvolatile_anyextloadi16, bdxaddr20only>; 347defm CondStore32 : CondStores<GR32, simple_store, 348 simple_load, bdxaddr20only>; 349 350defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8, 351 nonvolatile_anyextloadi8, bdxaddr20only>; 352defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16, 353 nonvolatile_anyextloadi16, bdxaddr20only>; 354defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32, 355 nonvolatile_anyextloadi32, bdxaddr20only>; 356defm CondStore64 : CondStores<GR64, simple_store, 357 simple_load, bdxaddr20only>; 358 359//===----------------------------------------------------------------------===// 360// Move instructions 361//===----------------------------------------------------------------------===// 362 363// Register moves. 364def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>; 365def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>; 366 367let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { 368 def LTR : UnaryRR <"ltr", 0x12, null_frag, GR32, GR32>; 369 def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>; 370} 371 372let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in 373 def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>; 374 375// Immediate moves. 376let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { 377 // 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF, 378 // deopending on the choice of register. 379 def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>, 380 Requires<[FeatureHighWord]>; 381 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>; 382 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>; 383 384 // Other 16-bit immediates. 385 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>; 386 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>; 387 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>; 388 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>; 389 390 // 32-bit immediates. 391 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>; 392 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>; 393 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>; 394} 395 396// Register loads. 397let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in { 398 // Expands to L, LY or LFH, depending on the choice of register. 399 def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>, 400 Requires<[FeatureHighWord]>; 401 defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>; 402 def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>, 403 Requires<[FeatureHighWord]>; 404 def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>; 405 406 // These instructions are split after register allocation, so we don't 407 // want a custom inserter. 408 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { 409 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src), 410 [(set GR128:$dst, (load bdxaddr20only128:$src))]>; 411 } 412} 413let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { 414 def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>; 415 def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>; 416} 417 418let canFoldAsLoad = 1 in { 419 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>; 420 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>; 421} 422 423// Load and zero rightmost byte. 424let Predicates = [FeatureLoadAndZeroRightmostByte] in { 425 def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>; 426 def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>; 427 def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00), 428 (LZRF bdxaddr20only:$src)>; 429 def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00), 430 (LZRG bdxaddr20only:$src)>; 431} 432 433// Load and trap. 434let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in { 435 def LAT : UnaryRXY<"lat", 0xE39F, null_frag, GR32, 4>; 436 def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>; 437 def LGAT : UnaryRXY<"lgat", 0xE385, null_frag, GR64, 8>; 438} 439 440// Register stores. 441let SimpleBDXStore = 1, mayStore = 1 in { 442 // Expands to ST, STY or STFH, depending on the choice of register. 443 def STMux : StoreRXYPseudo<store, GRX32, 4>, 444 Requires<[FeatureHighWord]>; 445 defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>; 446 def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>, 447 Requires<[FeatureHighWord]>; 448 def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>; 449 450 // These instructions are split after register allocation, so we don't 451 // want a custom inserter. 452 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { 453 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst), 454 [(store GR128:$src, bdxaddr20only128:$dst)]>; 455 } 456} 457def STRL : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>; 458def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>; 459 460// 8-bit immediate stores to 8-bit fields. 461defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>; 462 463// 16-bit immediate stores to 16-, 32- or 64-bit fields. 464def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>; 465def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>; 466def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>; 467 468// Memory-to-memory moves. 469let mayLoad = 1, mayStore = 1 in 470 defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>; 471let mayLoad = 1, mayStore = 1, Defs = [CC] in { 472 def MVCL : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>; 473 def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>; 474 def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>; 475} 476 477// Move right. 478let Predicates = [FeatureMiscellaneousExtensions3], 479 mayLoad = 1, mayStore = 1, Uses = [R0L] in 480 def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>; 481 482// String moves. 483let mayLoad = 1, mayStore = 1, Defs = [CC] in 484 defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>; 485 486//===----------------------------------------------------------------------===// 487// Conditional move instructions 488//===----------------------------------------------------------------------===// 489 490let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in { 491 // Select. 492 let isCommutable = 1 in { 493 // Expands to SELR or SELFHR or a branch-and-move sequence, 494 // depending on the choice of registers. 495 def SELRMux : CondBinaryRRFaPseudo<"selrmux", GRX32, GRX32, GRX32>; 496 defm SELFHR : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>; 497 defm SELR : CondBinaryRRFaPair<"selr", 0xB9F0, GR32, GR32, GR32>; 498 defm SELGR : CondBinaryRRFaPair<"selgr", 0xB9E3, GR64, GR64, GR64>; 499 } 500 501 // Define AsmParser extended mnemonics for each general condition-code mask. 502 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", 503 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { 504 def SELRAsm#V : FixedCondBinaryRRFa<CV<V>, "selr", 0xB9F0, 505 GR32, GR32, GR32>; 506 def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0, 507 GRH32, GRH32, GRH32>; 508 def SELGRAsm#V : FixedCondBinaryRRFa<CV<V>, "selgr", 0xB9E3, 509 GR64, GR64, GR64>; 510 } 511} 512 513let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in { 514 // Load immediate on condition. Matched via DAG pattern and created 515 // by the PeepholeOptimizer via FoldImmediate. 516 517 // Expands to LOCHI or LOCHHI, depending on the choice of register. 518 def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>; 519 defm LOCHHI : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>; 520 defm LOCHI : CondBinaryRIEPair<"lochi", 0xEC42, GR32, imm32sx16>; 521 defm LOCGHI : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>; 522 523 // Move register on condition. Matched via DAG pattern and 524 // created by early if-conversion. 525 let isCommutable = 1 in { 526 // Expands to LOCR or LOCFHR or a branch-and-move sequence, 527 // depending on the choice of registers. 528 def LOCRMux : CondBinaryRRFPseudo<"locrmux", GRX32, GRX32>; 529 defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>; 530 } 531 532 // Load on condition. Matched via DAG pattern. 533 // Expands to LOC or LOCFH, depending on the choice of register. 534 def LOCMux : CondUnaryRSYPseudo<simple_load, GRX32, 4>; 535 defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>; 536 537 // Store on condition. Expanded from CondStore* pseudos. 538 // Expands to STOC or STOCFH, depending on the choice of register. 539 def STOCMux : CondStoreRSYPseudo<GRX32, 4>; 540 defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>; 541 542 // Define AsmParser extended mnemonics for each general condition-code mask. 543 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", 544 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { 545 def LOCHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochi", 0xEC42, GR32, 546 imm32sx16>; 547 def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64, 548 imm64sx16>; 549 def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32, 550 imm32sx16>; 551 def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>; 552 def LOCFHAsm#V : FixedCondUnaryRSY<CV<V>, "locfh", 0xEBE0, GRH32, 4>; 553 def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>; 554 } 555} 556 557let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in { 558 // Move register on condition. Matched via DAG pattern and 559 // created by early if-conversion. 560 let isCommutable = 1 in { 561 defm LOCR : CondBinaryRRFPair<"locr", 0xB9F2, GR32, GR32>; 562 defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>; 563 } 564 565 // Load on condition. Matched via DAG pattern. 566 defm LOC : CondUnaryRSYPair<"loc", 0xEBF2, simple_load, GR32, 4>; 567 defm LOCG : CondUnaryRSYPair<"locg", 0xEBE2, simple_load, GR64, 8>; 568 569 // Store on condition. Expanded from CondStore* pseudos. 570 defm STOC : CondStoreRSYPair<"stoc", 0xEBF3, GR32, 4>; 571 defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>; 572 573 // Define AsmParser extended mnemonics for each general condition-code mask. 574 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", 575 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { 576 def LOCRAsm#V : FixedCondBinaryRRF<CV<V>, "locr", 0xB9F2, GR32, GR32>; 577 def LOCGRAsm#V : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>; 578 def LOCAsm#V : FixedCondUnaryRSY<CV<V>, "loc", 0xEBF2, GR32, 4>; 579 def LOCGAsm#V : FixedCondUnaryRSY<CV<V>, "locg", 0xEBE2, GR64, 8>; 580 def STOCAsm#V : FixedCondStoreRSY<CV<V>, "stoc", 0xEBF3, GR32, 4>; 581 def STOCGAsm#V : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>; 582 } 583} 584//===----------------------------------------------------------------------===// 585// Sign extensions 586//===----------------------------------------------------------------------===// 587// 588// Note that putting these before zero extensions mean that we will prefer 589// them for anyextload*. There's not really much to choose between the two 590// either way, but signed-extending loads have a short LH and a long LHY, 591// while zero-extending loads have only the long LLH. 592// 593//===----------------------------------------------------------------------===// 594 595// 32-bit extensions from registers. 596def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>; 597def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>; 598 599// 64-bit extensions from registers. 600def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>; 601def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>; 602def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>; 603 604let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in 605 def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>; 606 607// Match 32-to-64-bit sign extensions in which the source is already 608// in a 64-bit register. 609def : Pat<(sext_inreg GR64:$src, i32), 610 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; 611 612// 32-bit extensions from 8-bit memory. LBMux expands to LB or LBH, 613// depending on the choice of register. 614def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>, 615 Requires<[FeatureHighWord]>; 616def LB : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>; 617def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>, 618 Requires<[FeatureHighWord]>; 619 620// 32-bit extensions from 16-bit memory. LHMux expands to LH or LHH, 621// depending on the choice of register. 622def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>, 623 Requires<[FeatureHighWord]>; 624defm LH : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>; 625def LHH : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>, 626 Requires<[FeatureHighWord]>; 627def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>; 628 629// 64-bit extensions from memory. 630def LGB : UnaryRXY<"lgb", 0xE377, asextloadi8, GR64, 1>; 631def LGH : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>; 632def LGF : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>; 633def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>; 634def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>; 635let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in 636 def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>; 637 638//===----------------------------------------------------------------------===// 639// Zero extensions 640//===----------------------------------------------------------------------===// 641 642// 32-bit extensions from registers. 643 644// Expands to LLCR or RISB[LH]G, depending on the choice of registers. 645def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>, 646 Requires<[FeatureHighWord]>; 647def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>; 648// Expands to LLHR or RISB[LH]G, depending on the choice of registers. 649def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>, 650 Requires<[FeatureHighWord]>; 651def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>; 652 653// 64-bit extensions from registers. 654def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>; 655def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>; 656def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>; 657 658// Match 32-to-64-bit zero extensions in which the source is already 659// in a 64-bit register. 660def : Pat<(and GR64:$src, 0xffffffff), 661 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; 662 663// 32-bit extensions from 8-bit memory. LLCMux expands to LLC or LLCH, 664// depending on the choice of register. 665def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>, 666 Requires<[FeatureHighWord]>; 667def LLC : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>; 668def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>, 669 Requires<[FeatureHighWord]>; 670 671// 32-bit extensions from 16-bit memory. LLHMux expands to LLH or LLHH, 672// depending on the choice of register. 673def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>, 674 Requires<[FeatureHighWord]>; 675def LLH : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>; 676def LLHH : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>, 677 Requires<[FeatureHighWord]>; 678def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>; 679 680// 64-bit extensions from memory. 681def LLGC : UnaryRXY<"llgc", 0xE390, azextloadi8, GR64, 1>; 682def LLGH : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>; 683def LLGF : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>; 684def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>; 685def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>; 686 687// 31-to-64-bit zero extensions. 688def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>; 689def LLGT : UnaryRXY<"llgt", 0xE317, null_frag, GR64, 4>; 690def : Pat<(and GR64:$src, 0x7fffffff), 691 (LLGTR GR64:$src)>; 692def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff), 693 (LLGT bdxaddr20only:$src)>; 694 695// Load and zero rightmost byte. 696let Predicates = [FeatureLoadAndZeroRightmostByte] in { 697 def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>; 698 def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00), 699 (LLZRGF bdxaddr20only:$src)>; 700} 701 702// Load and trap. 703let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in { 704 def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>; 705 def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>; 706} 707 708// Extend GR64s to GR128s. 709let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in 710 def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; 711 712//===----------------------------------------------------------------------===// 713// "Any" extensions 714//===----------------------------------------------------------------------===// 715 716// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext. 717def : Pat<(i64 (anyext GR32:$src)), 718 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>; 719 720// Extend GR64s to GR128s. 721let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in 722 def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; 723 724//===----------------------------------------------------------------------===// 725// Truncations 726//===----------------------------------------------------------------------===// 727 728// Truncations of 64-bit registers to 32-bit registers. 729def : Pat<(i32 (trunc GR64:$src)), 730 (EXTRACT_SUBREG GR64:$src, subreg_l32)>; 731 732// Truncations of 32-bit registers to 8-bit memory. STCMux expands to 733// STC, STCY or STCH, depending on the choice of register. 734def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>, 735 Requires<[FeatureHighWord]>; 736defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>; 737def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>, 738 Requires<[FeatureHighWord]>; 739 740// Truncations of 32-bit registers to 16-bit memory. STHMux expands to 741// STH, STHY or STHH, depending on the choice of register. 742def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>, 743 Requires<[FeatureHighWord]>; 744defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>; 745def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>, 746 Requires<[FeatureHighWord]>; 747def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>; 748 749// Truncations of 64-bit registers to memory. 750defm : StoreGR64Pair<STC, STCY, truncstorei8>; 751defm : StoreGR64Pair<STH, STHY, truncstorei16>; 752def : StoreGR64PC<STHRL, aligned_truncstorei16>; 753defm : StoreGR64Pair<ST, STY, truncstorei32>; 754def : StoreGR64PC<STRL, aligned_truncstorei32>; 755 756// Store characters under mask -- not (yet) used for codegen. 757defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>; 758def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>; 759 760//===----------------------------------------------------------------------===// 761// Multi-register moves 762//===----------------------------------------------------------------------===// 763 764// Multi-register loads. 765defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>; 766def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>; 767def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>; 768def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>; 769 770// Multi-register stores. 771defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>; 772def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>; 773def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>; 774 775//===----------------------------------------------------------------------===// 776// Byte swaps 777//===----------------------------------------------------------------------===// 778 779// Byte-swapping register moves. 780def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>; 781def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>; 782 783// Byte-swapping loads. 784def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>; 785def LRV : UnaryRXY<"lrv", 0xE31E, z_loadbswap32, GR32, 4>; 786def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>; 787 788// Byte-swapping stores. 789def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>; 790def STRV : StoreRXY<"strv", 0xE33E, z_storebswap32, GR32, 4>; 791def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>; 792 793// Byte-swapping memory-to-memory moves. 794let mayLoad = 1, mayStore = 1 in 795 def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>; 796 797//===----------------------------------------------------------------------===// 798// Load address instructions 799//===----------------------------------------------------------------------===// 800 801// Load BDX-style addresses. 802let isAsCheapAsAMove = 1, isReMaterializable = 1 in 803 defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>; 804 805// Load a PC-relative address. There's no version of this instruction 806// with a 16-bit offset, so there's no relaxation. 807let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in 808 def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>; 809 810// Load the Global Offset Table address. This will be lowered into a 811// larl $R1, _GLOBAL_OFFSET_TABLE_ 812// instruction. 813def GOT : Alias<6, (outs GR64:$R1), (ins), 814 [(set GR64:$R1, (global_offset_table))]>; 815 816//===----------------------------------------------------------------------===// 817// Absolute and Negation 818//===----------------------------------------------------------------------===// 819 820let Defs = [CC] in { 821 let CCValues = 0xF, CompareZeroCCMask = 0x8 in { 822 def LPR : UnaryRR <"lpr", 0x10, z_iabs, GR32, GR32>; 823 def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>; 824 } 825 let CCValues = 0xE, CompareZeroCCMask = 0xE in 826 def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>; 827} 828def : Pat<(z_iabs32 GR32:$src), (LPR GR32:$src)>; 829def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>; 830defm : SXU<z_iabs, LPGFR>; 831defm : SXU<z_iabs64, LPGFR>; 832 833let Defs = [CC] in { 834 let CCValues = 0xF, CompareZeroCCMask = 0x8 in { 835 def LNR : UnaryRR <"lnr", 0x11, z_inegabs, GR32, GR32>; 836 def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>; 837 } 838 let CCValues = 0xE, CompareZeroCCMask = 0xE in 839 def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>; 840} 841def : Pat<(z_inegabs32 GR32:$src), (LNR GR32:$src)>; 842def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>; 843defm : SXU<z_inegabs, LNGFR>; 844defm : SXU<z_inegabs64, LNGFR>; 845 846let Defs = [CC] in { 847 let CCValues = 0xF, CompareZeroCCMask = 0x8 in { 848 def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>; 849 def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>; 850 } 851 let CCValues = 0xE, CompareZeroCCMask = 0xE in 852 def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>; 853} 854defm : SXU<ineg, LCGFR>; 855 856//===----------------------------------------------------------------------===// 857// Insertion 858//===----------------------------------------------------------------------===// 859 860let isCodeGenOnly = 1 in 861 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>; 862defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>; 863 864defm : InsertMem<"inserti8", IC32, GR32, azextloadi8, bdxaddr12pair>; 865defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>; 866 867defm : InsertMem<"inserti8", IC, GR64, azextloadi8, bdxaddr12pair>; 868defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>; 869 870// Insert characters under mask -- not (yet) used for codegen. 871let Defs = [CC] in { 872 defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>; 873 def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>; 874} 875 876// Insertions of a 16-bit immediate, leaving other bits unaffected. 877// We don't have or_as_insert equivalents of these operations because 878// OI is available instead. 879// 880// IIxMux expands to II[LH]x, depending on the choice of register. 881def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>, 882 Requires<[FeatureHighWord]>; 883def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>, 884 Requires<[FeatureHighWord]>; 885def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>; 886def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>; 887def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>; 888def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>; 889def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>; 890def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>; 891def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>; 892def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>; 893 894// ...likewise for 32-bit immediates. For GR32s this is a general 895// full-width move. (We use IILF rather than something like LLILF 896// for 32-bit moves because IILF leaves the upper 32 bits of the 897// GR64 unchanged.) 898let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { 899 def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>, 900 Requires<[FeatureHighWord]>; 901 def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>; 902 def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>; 903} 904def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>; 905def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>; 906 907// An alternative model of inserthf, with the first operand being 908// a zero-extended value. 909def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm), 910 (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), 911 imm64hf32:$imm)>; 912 913//===----------------------------------------------------------------------===// 914// Addition 915//===----------------------------------------------------------------------===// 916 917// Addition producing a signed overflow flag. 918let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in { 919 // Addition of a register. 920 let isCommutable = 1 in { 921 defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>; 922 defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>; 923 } 924 def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>; 925 926 // Addition to a high register. 927 def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>, 928 Requires<[FeatureHighWord]>; 929 def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>, 930 Requires<[FeatureHighWord]>; 931 932 // Addition of signed 16-bit immediates. 933 defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>; 934 defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>; 935 defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>; 936 937 // Addition of signed 32-bit immediates. 938 def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>, 939 Requires<[FeatureHighWord]>; 940 def AFI : BinaryRIL<"afi", 0xC29, z_sadd, GR32, simm32>; 941 def AIH : BinaryRIL<"aih", 0xCC8, z_sadd, GRH32, simm32>, 942 Requires<[FeatureHighWord]>; 943 def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>; 944 945 // Addition of memory. 946 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>; 947 defm A : BinaryRXPairAndPseudo<"a", 0x5A, 0xE35A, z_sadd, GR32, load, 4>; 948 def AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>, 949 Requires<[FeatureMiscellaneousExtensions2]>; 950 def AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>; 951 defm AG : BinaryRXYAndPseudo<"ag", 0xE308, z_sadd, GR64, load, 8>; 952 953 // Addition to memory. 954 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>; 955 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>; 956} 957defm : SXB<z_sadd, GR64, AGFR>; 958 959// Addition producing a carry. 960let Defs = [CC], CCValues = 0xF, IsLogical = 1 in { 961 // Addition of a register. 962 let isCommutable = 1 in { 963 defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>; 964 defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>; 965 } 966 def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>; 967 968 // Addition to a high register. 969 def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>, 970 Requires<[FeatureHighWord]>; 971 def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>, 972 Requires<[FeatureHighWord]>; 973 974 // Addition of signed 16-bit immediates. 975 def ALHSIK : BinaryRIE<"alhsik", 0xECDA, z_uadd, GR32, imm32sx16>, 976 Requires<[FeatureDistinctOps]>; 977 def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>, 978 Requires<[FeatureDistinctOps]>; 979 980 // Addition of unsigned 32-bit immediates. 981 def ALFI : BinaryRIL<"alfi", 0xC2B, z_uadd, GR32, uimm32>; 982 def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>; 983 984 // Addition of signed 32-bit immediates. 985 def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>, 986 Requires<[FeatureHighWord]>; 987 988 // Addition of memory. 989 defm AL : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>; 990 def ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>; 991 defm ALG : BinaryRXYAndPseudo<"alg", 0xE30A, z_uadd, GR64, load, 8>; 992 993 // Addition to memory. 994 def ALSI : BinarySIY<"alsi", 0xEB6E, null_frag, imm32sx8>; 995 def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>; 996} 997defm : ZXB<z_uadd, GR64, ALGFR>; 998 999// Addition producing and using a carry. 1000let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in { 1001 // Addition of a register. 1002 def ALCR : BinaryRRE<"alcr", 0xB998, z_addcarry, GR32, GR32>; 1003 def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>; 1004 1005 // Addition of memory. 1006 def ALC : BinaryRXY<"alc", 0xE398, z_addcarry, GR32, load, 4>; 1007 def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>; 1008} 1009 1010// Addition that does not modify the condition code. 1011def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>, 1012 Requires<[FeatureHighWord]>; 1013 1014 1015//===----------------------------------------------------------------------===// 1016// Subtraction 1017//===----------------------------------------------------------------------===// 1018 1019// Subtraction producing a signed overflow flag. 1020let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8, 1021 CCIfNoSignedWrap = 1 in { 1022 // Subtraction of a register. 1023 defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>; 1024 def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>; 1025 defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>; 1026 1027 // Subtraction from a high register. 1028 def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>, 1029 Requires<[FeatureHighWord]>; 1030 def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>, 1031 Requires<[FeatureHighWord]>; 1032 1033 // Subtraction of memory. 1034 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>; 1035 defm S : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>; 1036 def SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>, 1037 Requires<[FeatureMiscellaneousExtensions2]>; 1038 def SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>; 1039 defm SG : BinaryRXYAndPseudo<"sg", 0xE309, z_ssub, GR64, load, 8>; 1040} 1041defm : SXB<z_ssub, GR64, SGFR>; 1042 1043// Subtracting an immediate is the same as adding the negated immediate. 1044let AddedComplexity = 1 in { 1045 def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2), 1046 (AHIMux GR32:$src1, imm32sx16n:$src2)>, 1047 Requires<[FeatureHighWord]>; 1048 def : Pat<(z_ssub GR32:$src1, simm32n:$src2), 1049 (AFIMux GR32:$src1, simm32n:$src2)>, 1050 Requires<[FeatureHighWord]>; 1051 def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2), 1052 (AHI GR32:$src1, imm32sx16n:$src2)>; 1053 def : Pat<(z_ssub GR32:$src1, simm32n:$src2), 1054 (AFI GR32:$src1, simm32n:$src2)>; 1055 def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2), 1056 (AGHI GR64:$src1, imm64sx16n:$src2)>; 1057 def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2), 1058 (AGFI GR64:$src1, imm64sx32n:$src2)>; 1059} 1060 1061// And vice versa in one special case, where we need to load a 1062// constant into a register in any case, but the negated constant 1063// requires fewer instructions to load. 1064def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2), 1065 (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>; 1066def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2), 1067 (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>; 1068 1069// Subtraction producing a carry. 1070let Defs = [CC], CCValues = 0x7, IsLogical = 1 in { 1071 // Subtraction of a register. 1072 defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>; 1073 def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>; 1074 defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>; 1075 1076 // Subtraction from a high register. 1077 def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>, 1078 Requires<[FeatureHighWord]>; 1079 def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>, 1080 Requires<[FeatureHighWord]>; 1081 1082 // Subtraction of unsigned 32-bit immediates. 1083 def SLFI : BinaryRIL<"slfi", 0xC25, z_usub, GR32, uimm32>; 1084 def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>; 1085 1086 // Subtraction of memory. 1087 defm SL : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>; 1088 def SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>; 1089 defm SLG : BinaryRXYAndPseudo<"slg", 0xE30B, z_usub, GR64, load, 8>; 1090} 1091defm : ZXB<z_usub, GR64, SLGFR>; 1092 1093// Subtracting an immediate is the same as adding the negated immediate. 1094let AddedComplexity = 1 in { 1095 def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2), 1096 (ALHSIK GR32:$src1, imm32sx16n:$src2)>, 1097 Requires<[FeatureDistinctOps]>; 1098 def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2), 1099 (ALGHSIK GR64:$src1, imm64sx16n:$src2)>, 1100 Requires<[FeatureDistinctOps]>; 1101} 1102 1103// And vice versa in one special case (but we prefer addition). 1104def : Pat<(add GR64:$src1, imm64zx32n:$src2), 1105 (SLGFI GR64:$src1, imm64zx32n:$src2)>; 1106 1107// Subtraction producing and using a carry. 1108let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in { 1109 // Subtraction of a register. 1110 def SLBR : BinaryRRE<"slbr", 0xB999, z_subcarry, GR32, GR32>; 1111 def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>; 1112 1113 // Subtraction of memory. 1114 def SLB : BinaryRXY<"slb", 0xE399, z_subcarry, GR32, load, 4>; 1115 def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>; 1116} 1117 1118 1119//===----------------------------------------------------------------------===// 1120// AND 1121//===----------------------------------------------------------------------===// 1122 1123let Defs = [CC] in { 1124 // ANDs of a register. 1125 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1126 defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>; 1127 defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>; 1128 } 1129 1130 let isConvertibleToThreeAddress = 1 in { 1131 // ANDs of a 16-bit immediate, leaving other bits unaffected. 1132 // The CC result only reflects the 16-bit field, not the full register. 1133 // 1134 // NIxMux expands to NI[LH]x, depending on the choice of register. 1135 def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>, 1136 Requires<[FeatureHighWord]>; 1137 def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>, 1138 Requires<[FeatureHighWord]>; 1139 def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>; 1140 def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>; 1141 def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>; 1142 def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>; 1143 def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>; 1144 def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>; 1145 def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>; 1146 def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>; 1147 1148 // ANDs of a 32-bit immediate, leaving other bits unaffected. 1149 // The CC result only reflects the 32-bit field, which means we can 1150 // use it as a zero indicator for i32 operations but not otherwise. 1151 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1152 // Expands to NILF or NIHF, depending on the choice of register. 1153 def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>, 1154 Requires<[FeatureHighWord]>; 1155 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>; 1156 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>; 1157 } 1158 def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>; 1159 def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>; 1160 } 1161 1162 // ANDs of memory. 1163 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1164 defm N : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>; 1165 defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>; 1166 } 1167 1168 // AND to memory 1169 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>; 1170 1171 // Block AND. 1172 let mayLoad = 1, mayStore = 1 in 1173 defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>; 1174} 1175defm : RMWIByte<and, bdaddr12pair, NI>; 1176defm : RMWIByte<and, bdaddr20pair, NIY>; 1177 1178//===----------------------------------------------------------------------===// 1179// OR 1180//===----------------------------------------------------------------------===// 1181 1182let Defs = [CC] in { 1183 // ORs of a register. 1184 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1185 defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>; 1186 defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>; 1187 } 1188 1189 // ORs of a 16-bit immediate, leaving other bits unaffected. 1190 // The CC result only reflects the 16-bit field, not the full register. 1191 // 1192 // OIxMux expands to OI[LH]x, depending on the choice of register. 1193 def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>, 1194 Requires<[FeatureHighWord]>; 1195 def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>, 1196 Requires<[FeatureHighWord]>; 1197 def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>; 1198 def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>; 1199 def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>; 1200 def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>; 1201 def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>; 1202 def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>; 1203 def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>; 1204 def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>; 1205 1206 // ORs of a 32-bit immediate, leaving other bits unaffected. 1207 // The CC result only reflects the 32-bit field, which means we can 1208 // use it as a zero indicator for i32 operations but not otherwise. 1209 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1210 // Expands to OILF or OIHF, depending on the choice of register. 1211 def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>, 1212 Requires<[FeatureHighWord]>; 1213 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>; 1214 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>; 1215 } 1216 def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>; 1217 def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>; 1218 1219 // ORs of memory. 1220 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1221 defm O : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>; 1222 defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>; 1223 } 1224 1225 // OR to memory 1226 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>; 1227 1228 // Block OR. 1229 let mayLoad = 1, mayStore = 1 in 1230 defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>; 1231} 1232defm : RMWIByte<or, bdaddr12pair, OI>; 1233defm : RMWIByte<or, bdaddr20pair, OIY>; 1234 1235//===----------------------------------------------------------------------===// 1236// XOR 1237//===----------------------------------------------------------------------===// 1238 1239let Defs = [CC] in { 1240 // XORs of a register. 1241 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1242 defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>; 1243 defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>; 1244 } 1245 1246 // XORs of a 32-bit immediate, leaving other bits unaffected. 1247 // The CC result only reflects the 32-bit field, which means we can 1248 // use it as a zero indicator for i32 operations but not otherwise. 1249 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1250 // Expands to XILF or XIHF, depending on the choice of register. 1251 def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>, 1252 Requires<[FeatureHighWord]>; 1253 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>; 1254 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>; 1255 } 1256 def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>; 1257 def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>; 1258 1259 // XORs of memory. 1260 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1261 defm X : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>; 1262 defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>; 1263 } 1264 1265 // XOR to memory 1266 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>; 1267 1268 // Block XOR. 1269 let mayLoad = 1, mayStore = 1 in 1270 defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>; 1271} 1272defm : RMWIByte<xor, bdaddr12pair, XI>; 1273defm : RMWIByte<xor, bdaddr20pair, XIY>; 1274 1275//===----------------------------------------------------------------------===// 1276// Combined logical operations 1277//===----------------------------------------------------------------------===// 1278 1279let Predicates = [FeatureMiscellaneousExtensions3], 1280 Defs = [CC] in { 1281 // AND with complement. 1282 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1283 def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>; 1284 def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>; 1285 } 1286 1287 // OR with complement. 1288 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1289 def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>; 1290 def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>; 1291 } 1292 1293 // NAND. 1294 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1295 def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>; 1296 def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>; 1297 } 1298 1299 // NOR. 1300 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1301 def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>; 1302 def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>; 1303 } 1304 1305 // NXOR. 1306 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 1307 def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>; 1308 def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>; 1309 } 1310} 1311 1312//===----------------------------------------------------------------------===// 1313// Multiplication 1314//===----------------------------------------------------------------------===// 1315 1316// Multiplication of a register, setting the condition code. We prefer these 1317// over MS(G)R if available, even though we cannot use the condition code, 1318// since they are three-operand instructions. 1319let Predicates = [FeatureMiscellaneousExtensions2], 1320 Defs = [CC], isCommutable = 1 in { 1321 def MSRKC : BinaryRRFa<"msrkc", 0xB9FD, mul, GR32, GR32, GR32>; 1322 def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>; 1323} 1324 1325// Multiplication of a register. 1326let isCommutable = 1 in { 1327 def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>; 1328 def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>; 1329} 1330def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>; 1331defm : SXB<mul, GR64, MSGFR>; 1332 1333// Multiplication of a signed 16-bit immediate. 1334def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>; 1335def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>; 1336 1337// Multiplication of a signed 32-bit immediate. 1338def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>; 1339def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>; 1340 1341// Multiplication of memory. 1342defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>; 1343defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>; 1344def MGH : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>, 1345 Requires<[FeatureMiscellaneousExtensions2]>; 1346def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>; 1347def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>; 1348 1349// Multiplication of memory, setting the condition code. 1350let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in { 1351 def MSC : BinaryRXY<"msc", 0xE353, null_frag, GR32, load, 4>; 1352 def MSGC : BinaryRXY<"msgc", 0xE383, null_frag, GR64, load, 8>; 1353} 1354 1355// Multiplication of a register, producing two results. 1356def MR : BinaryRR <"mr", 0x1C, null_frag, GR128, GR32>; 1357def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>, 1358 Requires<[FeatureMiscellaneousExtensions2]>; 1359def MLR : BinaryRRE<"mlr", 0xB996, null_frag, GR128, GR32>; 1360def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>; 1361 1362def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2), 1363 (MGRK GR64:$src1, GR64:$src2)>; 1364def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2), 1365 (MLGR (AEXT128 GR64:$src1), GR64:$src2)>; 1366 1367// Multiplication of memory, producing two results. 1368def M : BinaryRX <"m", 0x5C, null_frag, GR128, load, 4>; 1369def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>; 1370def MG : BinaryRXY<"mg", 0xE384, null_frag, GR128, load, 8>, 1371 Requires<[FeatureMiscellaneousExtensions2]>; 1372def ML : BinaryRXY<"ml", 0xE396, null_frag, GR128, load, 4>; 1373def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>; 1374 1375def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))), 1376 (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; 1377def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))), 1378 (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; 1379 1380//===----------------------------------------------------------------------===// 1381// Division and remainder 1382//===----------------------------------------------------------------------===// 1383 1384let hasSideEffects = 1 in { // Do not speculatively execute. 1385 // Division and remainder, from registers. 1386 def DR : BinaryRR <"dr", 0x1D, null_frag, GR128, GR32>; 1387 def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>; 1388 def DSGR : BinaryRRE<"dsgr", 0xB90D, null_frag, GR128, GR64>; 1389 def DLR : BinaryRRE<"dlr", 0xB997, null_frag, GR128, GR32>; 1390 def DLGR : BinaryRRE<"dlgr", 0xB987, null_frag, GR128, GR64>; 1391 1392 // Division and remainder, from memory. 1393 def D : BinaryRX <"d", 0x5D, null_frag, GR128, load, 4>; 1394 def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>; 1395 def DSG : BinaryRXY<"dsg", 0xE30D, null_frag, GR128, load, 8>; 1396 def DL : BinaryRXY<"dl", 0xE397, null_frag, GR128, load, 4>; 1397 def DLG : BinaryRXY<"dlg", 0xE387, null_frag, GR128, load, 8>; 1398} 1399def : Pat<(z_sdivrem GR64:$src1, GR32:$src2), 1400 (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>; 1401def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))), 1402 (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; 1403def : Pat<(z_sdivrem GR64:$src1, GR64:$src2), 1404 (DSGR (AEXT128 GR64:$src1), GR64:$src2)>; 1405def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))), 1406 (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; 1407 1408def : Pat<(z_udivrem GR32:$src1, GR32:$src2), 1409 (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1, 1410 subreg_l32)), GR32:$src2)>; 1411def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))), 1412 (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1, 1413 subreg_l32)), bdxaddr20only:$src2)>; 1414def : Pat<(z_udivrem GR64:$src1, GR64:$src2), 1415 (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>; 1416def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))), 1417 (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>; 1418 1419//===----------------------------------------------------------------------===// 1420// Shifts 1421//===----------------------------------------------------------------------===// 1422 1423// Logical shift left. 1424defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>; 1425def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>; 1426def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>; 1427 1428// Arithmetic shift left. 1429let Defs = [CC] in { 1430 defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>; 1431 def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>; 1432 def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>; 1433} 1434 1435// Logical shift right. 1436defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>; 1437def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>; 1438def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>; 1439 1440// Arithmetic shift right. 1441let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { 1442 defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>; 1443 def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>; 1444 def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>; 1445} 1446 1447// Rotate left. 1448def RLL : BinaryRSY<"rll", 0xEB1D, shiftop<rotl>, GR32>; 1449def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>; 1450 1451// Rotate second operand left and inserted selected bits into first operand. 1452// These can act like 32-bit operands provided that the constant start and 1453// end bits (operands 2 and 3) are in the range [32, 64). 1454let Defs = [CC] in { 1455 let isCodeGenOnly = 1 in 1456 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>; 1457 let CCValues = 0xE, CompareZeroCCMask = 0xE in 1458 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>; 1459} 1460 1461// On zEC12 we have a variant of RISBG that does not set CC. 1462let Predicates = [FeatureMiscellaneousExtensions] in 1463 def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>; 1464 1465// Forms of RISBG that only affect one word of the destination register. 1466// They do not set CC. 1467let Predicates = [FeatureHighWord] in { 1468 def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>; 1469 def RISBLL : RotateSelectAliasRIEf<GR32, GR32>; 1470 def RISBLH : RotateSelectAliasRIEf<GR32, GRH32>; 1471 def RISBHL : RotateSelectAliasRIEf<GRH32, GR32>; 1472 def RISBHH : RotateSelectAliasRIEf<GRH32, GRH32>; 1473 def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>; 1474 def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>; 1475} 1476 1477// Rotate second operand left and perform a logical operation with selected 1478// bits of the first operand. The CC result only describes the selected bits, 1479// so isn't useful for a full comparison against zero. 1480let Defs = [CC] in { 1481 def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>; 1482 def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>; 1483 def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>; 1484} 1485 1486//===----------------------------------------------------------------------===// 1487// Comparison 1488//===----------------------------------------------------------------------===// 1489 1490// Signed comparisons. We put these before the unsigned comparisons because 1491// some of the signed forms have COMPARE AND BRANCH equivalents whereas none 1492// of the unsigned forms do. 1493let Defs = [CC], CCValues = 0xE in { 1494 // Comparison with a register. 1495 def CR : CompareRR <"cr", 0x19, z_scmp, GR32, GR32>; 1496 def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>; 1497 def CGR : CompareRRE<"cgr", 0xB920, z_scmp, GR64, GR64>; 1498 1499 // Comparison with a high register. 1500 def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>, 1501 Requires<[FeatureHighWord]>; 1502 def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>, 1503 Requires<[FeatureHighWord]>; 1504 1505 // Comparison with a signed 16-bit immediate. CHIMux expands to CHI or CIH, 1506 // depending on the choice of register. 1507 def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>, 1508 Requires<[FeatureHighWord]>; 1509 def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>; 1510 def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>; 1511 1512 // Comparison with a signed 32-bit immediate. CFIMux expands to CFI or CIH, 1513 // depending on the choice of register. 1514 def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>, 1515 Requires<[FeatureHighWord]>; 1516 def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>; 1517 def CIH : CompareRIL<"cih", 0xCCD, z_scmp, GRH32, simm32>, 1518 Requires<[FeatureHighWord]>; 1519 def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>; 1520 1521 // Comparison with memory. 1522 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>; 1523 def CMux : CompareRXYPseudo<z_scmp, GRX32, load, 4>, 1524 Requires<[FeatureHighWord]>; 1525 defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, load, 4>; 1526 def CHF : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>, 1527 Requires<[FeatureHighWord]>; 1528 def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>; 1529 def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>; 1530 def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, load, 8>; 1531 def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_asextloadi16>; 1532 def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_load>; 1533 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>; 1534 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>; 1535 def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_load>; 1536 1537 // Comparison between memory and a signed 16-bit immediate. 1538 def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>; 1539 def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, load, imm32sx16>; 1540 def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>; 1541} 1542defm : SXB<z_scmp, GR64, CGFR>; 1543 1544// Unsigned comparisons. 1545let Defs = [CC], CCValues = 0xE, IsLogical = 1 in { 1546 // Comparison with a register. 1547 def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>; 1548 def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>; 1549 def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>; 1550 1551 // Comparison with a high register. 1552 def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>, 1553 Requires<[FeatureHighWord]>; 1554 def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>, 1555 Requires<[FeatureHighWord]>; 1556 1557 // Comparison with an unsigned 32-bit immediate. CLFIMux expands to CLFI 1558 // or CLIH, depending on the choice of register. 1559 def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>, 1560 Requires<[FeatureHighWord]>; 1561 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>; 1562 def CLIH : CompareRIL<"clih", 0xCCF, z_ucmp, GRH32, uimm32>, 1563 Requires<[FeatureHighWord]>; 1564 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>; 1565 1566 // Comparison with memory. 1567 def CLMux : CompareRXYPseudo<z_ucmp, GRX32, load, 4>, 1568 Requires<[FeatureHighWord]>; 1569 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>; 1570 def CLHF : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>, 1571 Requires<[FeatureHighWord]>; 1572 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>; 1573 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>; 1574 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32, 1575 aligned_azextloadi16>; 1576 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32, 1577 aligned_load>; 1578 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64, 1579 aligned_azextloadi16>; 1580 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64, 1581 aligned_azextloadi32>; 1582 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64, 1583 aligned_load>; 1584 1585 // Comparison between memory and an unsigned 8-bit immediate. 1586 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>; 1587 1588 // Comparison between memory and an unsigned 16-bit immediate. 1589 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>; 1590 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>; 1591 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>; 1592} 1593defm : ZXB<z_ucmp, GR64, CLGFR>; 1594 1595// Memory-to-memory comparison. 1596let mayLoad = 1, Defs = [CC] in { 1597 defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>; 1598 def CLCL : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>; 1599 def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>; 1600 def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>; 1601} 1602 1603// String comparison. 1604let mayLoad = 1, Defs = [CC] in 1605 defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>; 1606 1607// Test under mask. 1608let Defs = [CC] in { 1609 // TMxMux expands to TM[LH]x, depending on the choice of register. 1610 def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>, 1611 Requires<[FeatureHighWord]>; 1612 def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>, 1613 Requires<[FeatureHighWord]>; 1614 def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>; 1615 def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>; 1616 def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>; 1617 def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>; 1618 1619 def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>; 1620 def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>; 1621 def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>; 1622 def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>; 1623 1624 defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>; 1625} 1626 1627def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>; 1628def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>; 1629 1630// Compare logical characters under mask -- not (yet) used for codegen. 1631let Defs = [CC] in { 1632 defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>; 1633 def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>; 1634} 1635 1636//===----------------------------------------------------------------------===// 1637// Prefetch and execution hint 1638//===----------------------------------------------------------------------===// 1639 1640let mayLoad = 1, mayStore = 1 in { 1641 def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>; 1642 def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>; 1643} 1644 1645let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in { 1646 // Branch Prediction Preload 1647 def BPP : BranchPreloadSMI<"bpp", 0xC7>; 1648 def BPRP : BranchPreloadMII<"bprp", 0xC5>; 1649 1650 // Next Instruction Access Intent 1651 def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>; 1652} 1653 1654//===----------------------------------------------------------------------===// 1655// Atomic operations 1656//===----------------------------------------------------------------------===// 1657 1658// A serialization instruction that acts as a barrier for all memory 1659// accesses, which expands to "bcr 14, 0". 1660let hasSideEffects = 1 in 1661def Serialize : Alias<2, (outs), (ins), []>; 1662 1663// A pseudo instruction that serves as a compiler barrier. 1664let hasSideEffects = 1, hasNoSchedulingInfo = 1 in 1665def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>; 1666 1667let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { 1668 def LAA : LoadAndOpRSY<"laa", 0xEBF8, atomic_load_add_32, GR32>; 1669 def LAAG : LoadAndOpRSY<"laag", 0xEBE8, atomic_load_add_64, GR64>; 1670 def LAAL : LoadAndOpRSY<"laal", 0xEBFA, null_frag, GR32>; 1671 def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>; 1672 def LAN : LoadAndOpRSY<"lan", 0xEBF4, atomic_load_and_32, GR32>; 1673 def LANG : LoadAndOpRSY<"lang", 0xEBE4, atomic_load_and_64, GR64>; 1674 def LAO : LoadAndOpRSY<"lao", 0xEBF6, atomic_load_or_32, GR32>; 1675 def LAOG : LoadAndOpRSY<"laog", 0xEBE6, atomic_load_or_64, GR64>; 1676 def LAX : LoadAndOpRSY<"lax", 0xEBF7, atomic_load_xor_32, GR32>; 1677 def LAXG : LoadAndOpRSY<"laxg", 0xEBE7, atomic_load_xor_64, GR64>; 1678} 1679 1680def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>; 1681def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>; 1682def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>; 1683 1684def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>; 1685def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>; 1686let Predicates = [FeatureNoInterlockedAccess1] in { 1687 def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>; 1688 def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>; 1689 def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>; 1690 def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>; 1691 def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>; 1692 def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>; 1693} 1694 1695def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>; 1696def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>; 1697def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>; 1698 1699def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>; 1700def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>; 1701let Predicates = [FeatureNoInterlockedAccess1] in { 1702 def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>; 1703 def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm32<atomic_load_and_32, 1704 imm32ll16c>; 1705 def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm32<atomic_load_and_32, 1706 imm32lh16c>; 1707 def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>; 1708 def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>; 1709 def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1710 imm64ll16c>; 1711 def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1712 imm64lh16c>; 1713 def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1714 imm64hl16c>; 1715 def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1716 imm64hh16c>; 1717 def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1718 imm64lf32c>; 1719 def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1720 imm64hf32c>; 1721} 1722 1723def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>; 1724def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>; 1725let Predicates = [FeatureNoInterlockedAccess1] in { 1726 def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>; 1727 def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>; 1728 def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>; 1729 def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>; 1730 def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>; 1731 def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>; 1732 def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>; 1733 def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>; 1734 def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>; 1735 def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>; 1736 def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>; 1737} 1738 1739def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>; 1740def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>; 1741let Predicates = [FeatureNoInterlockedAccess1] in { 1742 def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>; 1743 def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>; 1744 def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>; 1745 def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>; 1746 def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>; 1747} 1748 1749def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>; 1750def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand, 1751 imm32lh16c>; 1752def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>; 1753def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm32<atomic_load_nand_32, 1754 imm32ll16c>; 1755def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm32<atomic_load_nand_32, 1756 imm32lh16c>; 1757def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>; 1758def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>; 1759def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1760 imm64ll16c>; 1761def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1762 imm64lh16c>; 1763def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1764 imm64hl16c>; 1765def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1766 imm64hh16c>; 1767def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1768 imm64lf32c>; 1769def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1770 imm64hf32c>; 1771 1772def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>; 1773def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>; 1774def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>; 1775 1776def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>; 1777def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>; 1778def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>; 1779 1780def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>; 1781def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>; 1782def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>; 1783 1784def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>; 1785def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>; 1786def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>; 1787 1788def ATOMIC_CMP_SWAPW 1789 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap, 1790 ADDR32:$bitshift, ADDR32:$negbitshift, 1791 uimm32:$bitsize), 1792 [(set GR32:$dst, 1793 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap, 1794 ADDR32:$bitshift, ADDR32:$negbitshift, 1795 uimm32:$bitsize))]> { 1796 let Defs = [CC]; 1797 let mayLoad = 1; 1798 let mayStore = 1; 1799 let usesCustomInserter = 1; 1800 let hasNoSchedulingInfo = 1; 1801} 1802 1803// Test and set. 1804let mayLoad = 1, Defs = [CC] in 1805 def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>; 1806 1807// Compare and swap. 1808let Defs = [CC] in { 1809 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>; 1810 def CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>; 1811} 1812 1813// Compare double and swap. 1814let Defs = [CC] in { 1815 defm CDS : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>; 1816 def CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>; 1817} 1818 1819// Compare and swap and store. 1820let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in 1821 def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>; 1822 1823// Perform locked operation. 1824let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in 1825 def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>; 1826 1827// Load/store pair from/to quadword. 1828def LPQ : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>; 1829def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>; 1830 1831// Load pair disjoint. 1832let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { 1833 def LPD : BinarySSF<"lpd", 0xC84, GR128>; 1834 def LPDG : BinarySSF<"lpdg", 0xC85, GR128>; 1835} 1836 1837//===----------------------------------------------------------------------===// 1838// Translate and convert 1839//===----------------------------------------------------------------------===// 1840 1841let mayLoad = 1, mayStore = 1 in 1842 def TR : SideEffectBinarySSa<"tr", 0xDC>; 1843 1844let mayLoad = 1, Defs = [CC, R0L, R1D] in { 1845 def TRT : SideEffectBinarySSa<"trt", 0xDD>; 1846 def TRTR : SideEffectBinarySSa<"trtr", 0xD0>; 1847} 1848 1849let mayLoad = 1, mayStore = 1, Uses = [R0L] in 1850 def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>; 1851 1852let mayLoad = 1, Uses = [R1D], Defs = [CC] in { 1853 defm TRTE : BinaryMemRRFcOpt<"trte", 0xB9BF, GR128, GR64>; 1854 defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>; 1855} 1856 1857let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in { 1858 defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>; 1859 defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>; 1860 defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>; 1861 defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>; 1862} 1863 1864let mayLoad = 1, mayStore = 1, Defs = [CC] in { 1865 defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>; 1866 defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>; 1867 defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>; 1868 defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>; 1869 def CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>; 1870 def CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>; 1871 1872 let isAsmParserOnly = 1 in { 1873 defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>; 1874 defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>; 1875 } 1876} 1877 1878//===----------------------------------------------------------------------===// 1879// Message-security assist 1880//===----------------------------------------------------------------------===// 1881 1882let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in { 1883 def KM : SideEffectBinaryMemMemRRE<"km", 0xB92E, GR128, GR128>; 1884 def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>; 1885 1886 def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>; 1887 def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>; 1888 def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>; 1889 1890 let Predicates = [FeatureMessageSecurityAssist4] in { 1891 def KMF : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>; 1892 def KMO : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>; 1893 def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D, 1894 GR128, GR128, GR128>; 1895 def PCC : SideEffectInherentRRE<"pcc", 0xB92C>; 1896 } 1897 1898 let Predicates = [FeatureMessageSecurityAssist5] in 1899 def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>; 1900 let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in 1901 def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>; 1902 1903 let Predicates = [FeatureMessageSecurityAssist8] in 1904 def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929, 1905 GR128, GR128, GR128>; 1906 1907 let Predicates = [FeatureMessageSecurityAssist9] in 1908 def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>; 1909} 1910 1911//===----------------------------------------------------------------------===// 1912// Guarded storage 1913//===----------------------------------------------------------------------===// 1914 1915// These instructions use and/or modify the guarded storage control 1916// registers, which we do not otherwise model, so they should have 1917// hasSideEffects. 1918let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in { 1919 def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>; 1920 def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>; 1921 1922 let mayLoad = 1 in 1923 def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>; 1924 let mayStore = 1 in 1925 def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>; 1926} 1927 1928//===----------------------------------------------------------------------===// 1929// Decimal arithmetic 1930//===----------------------------------------------------------------------===// 1931 1932defm CVB : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>; 1933def CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>; 1934 1935defm CVD : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>; 1936def CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>; 1937 1938let mayLoad = 1, mayStore = 1 in { 1939 def MVN : SideEffectBinarySSa<"mvn", 0xD1>; 1940 def MVZ : SideEffectBinarySSa<"mvz", 0xD3>; 1941 def MVO : SideEffectBinarySSb<"mvo", 0xF1>; 1942 1943 def PACK : SideEffectBinarySSb<"pack", 0xF2>; 1944 def PKA : SideEffectBinarySSf<"pka", 0xE9>; 1945 def PKU : SideEffectBinarySSf<"pku", 0xE1>; 1946 def UNPK : SideEffectBinarySSb<"unpk", 0xF3>; 1947 let Defs = [CC] in { 1948 def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>; 1949 def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>; 1950 } 1951} 1952 1953let mayLoad = 1, mayStore = 1 in { 1954 let Defs = [CC] in { 1955 def AP : SideEffectBinarySSb<"ap", 0xFA>; 1956 def SP : SideEffectBinarySSb<"sp", 0xFB>; 1957 def ZAP : SideEffectBinarySSb<"zap", 0xF8>; 1958 def SRP : SideEffectTernarySSc<"srp", 0xF0>; 1959 } 1960 def MP : SideEffectBinarySSb<"mp", 0xFC>; 1961 def DP : SideEffectBinarySSb<"dp", 0xFD>; 1962 let Defs = [CC] in { 1963 def ED : SideEffectBinarySSa<"ed", 0xDE>; 1964 def EDMK : SideEffectBinarySSa<"edmk", 0xDF>; 1965 } 1966} 1967 1968let Defs = [CC] in { 1969 def CP : CompareSSb<"cp", 0xF9>; 1970 def TP : TestRSL<"tp", 0xEBC0>; 1971} 1972 1973//===----------------------------------------------------------------------===// 1974// Access registers 1975//===----------------------------------------------------------------------===// 1976 1977// Read a 32-bit access register into a GR32. As with all GR32 operations, 1978// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful 1979// when a 64-bit address is stored in a pair of access registers. 1980def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>; 1981 1982// Set access register. 1983def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>; 1984 1985// Copy access register. 1986def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>; 1987 1988// Load address extended. 1989defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>; 1990 1991// Load access multiple. 1992defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>; 1993 1994// Store access multiple. 1995defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>; 1996 1997//===----------------------------------------------------------------------===// 1998// Program mask and addressing mode 1999//===----------------------------------------------------------------------===// 2000 2001// Extract CC and program mask into a register. CC ends up in bits 29 and 28. 2002let Uses = [CC] in 2003 def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>; 2004 2005// Set CC and program mask from a register. 2006let hasSideEffects = 1, Defs = [CC] in 2007 def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>; 2008 2009// Branch and link - like BAS, but also extracts CC and program mask. 2010let isCall = 1, Uses = [CC], Defs = [CC] in { 2011 def BAL : CallRX<"bal", 0x45>; 2012 def BALR : CallRR<"balr", 0x05>; 2013} 2014 2015// Test addressing mode. 2016let Defs = [CC] in 2017 def TAM : SideEffectInherentE<"tam", 0x010B>; 2018 2019// Set addressing mode. 2020let hasSideEffects = 1 in { 2021 def SAM24 : SideEffectInherentE<"sam24", 0x010C>; 2022 def SAM31 : SideEffectInherentE<"sam31", 0x010D>; 2023 def SAM64 : SideEffectInherentE<"sam64", 0x010E>; 2024} 2025 2026// Branch and set mode. Not really a call, but also sets an output register. 2027let isBranch = 1, isTerminator = 1, isBarrier = 1 in 2028 def BSM : CallRR<"bsm", 0x0B>; 2029 2030// Branch and save and set mode. 2031let isCall = 1, Defs = [CC] in 2032 def BASSM : CallRR<"bassm", 0x0C>; 2033 2034//===----------------------------------------------------------------------===// 2035// Transactional execution 2036//===----------------------------------------------------------------------===// 2037 2038let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in { 2039 // Transaction Begin 2040 let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in { 2041 def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>; 2042 let hasNoSchedulingInfo = 1 in 2043 def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>; 2044 def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561, 2045 int_s390_tbeginc, imm32zx16>; 2046 } 2047 2048 // Transaction End 2049 let Defs = [CC] in 2050 def TEND : TestInherentS<"tend", 0xB2F8, z_tend>; 2051 2052 // Transaction Abort 2053 let isTerminator = 1, isBarrier = 1, mayStore = 1, 2054 hasSideEffects = 1 in 2055 def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>; 2056 2057 // Nontransactional Store 2058 def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>; 2059 2060 // Extract Transaction Nesting Depth 2061 def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>; 2062} 2063 2064//===----------------------------------------------------------------------===// 2065// Processor assist 2066//===----------------------------------------------------------------------===// 2067 2068let Predicates = [FeatureProcessorAssist] in { 2069 let hasSideEffects = 1 in 2070 def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>; 2071 def : Pat<(int_s390_ppa_txassist GR32:$src), 2072 (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), 2073 zero_reg, 1)>; 2074} 2075 2076//===----------------------------------------------------------------------===// 2077// Miscellaneous Instructions. 2078//===----------------------------------------------------------------------===// 2079 2080// Find leftmost one, AKA count leading zeros. The instruction actually 2081// returns a pair of GR64s, the first giving the number of leading zeros 2082// and the second giving a copy of the source with the leftmost one bit 2083// cleared. We only use the first result here. 2084let Defs = [CC] in 2085 def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>; 2086def : Pat<(i64 (ctlz GR64:$src)), 2087 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>; 2088 2089// Population count. Counts bits set per byte or doubleword. 2090let Predicates = [FeatureMiscellaneousExtensions3] in { 2091 let Defs = [CC] in 2092 def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>; 2093 def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>; 2094} 2095let Predicates = [FeaturePopulationCount], Defs = [CC] in 2096 def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>; 2097 2098// Search a block of memory for a character. 2099let mayLoad = 1, Defs = [CC] in 2100 defm SRST : StringRRE<"srst", 0xB25E, z_search_string>; 2101let mayLoad = 1, Defs = [CC], Uses = [R0L] in 2102 def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>; 2103 2104// Compare until substring equal. 2105let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in 2106 def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>; 2107 2108// Compare and form codeword. 2109let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in 2110 def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>; 2111 2112// Update tree. 2113let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D], 2114 Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in 2115 def UPT : SideEffectInherentE<"upt", 0x0102>; 2116 2117// Checksum. 2118let mayLoad = 1, Defs = [CC] in 2119 def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>; 2120 2121// Compression call. 2122let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in 2123 def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>; 2124 2125// Sort lists. 2126let Predicates = [FeatureEnhancedSort], 2127 mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in 2128 def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>; 2129 2130// Deflate conversion call. 2131let Predicates = [FeatureDeflateConversion], 2132 mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in 2133 def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939, 2134 GR128, GR128, GR64>; 2135 2136// Execute. 2137let hasSideEffects = 1 in { 2138 def EX : SideEffectBinaryRX<"ex", 0x44, GR64>; 2139 def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>; 2140} 2141 2142//===----------------------------------------------------------------------===// 2143// .insn directive instructions 2144//===----------------------------------------------------------------------===// 2145 2146let isCodeGenOnly = 1, hasSideEffects = 1 in { 2147 def InsnE : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>; 2148 def InsnRI : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1, 2149 imm32sx16:$I2), 2150 ".insn ri,$enc,$R1,$I2", []>; 2151 def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, 2152 AnyReg:$R3, brtarget16:$I2), 2153 ".insn rie,$enc,$R1,$R3,$I2", []>; 2154 def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1, 2155 brtarget32:$I2), 2156 ".insn ril,$enc,$R1,$I2", []>; 2157 def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1, 2158 uimm32:$I2), 2159 ".insn rilu,$enc,$R1,$I2", []>; 2160 def InsnRIS : DirectiveInsnRIS<(outs), 2161 (ins imm64zx48:$enc, AnyReg:$R1, 2162 imm32sx8:$I2, imm32zx4:$M3, 2163 bdaddr12only:$BD4), 2164 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>; 2165 def InsnRR : DirectiveInsnRR<(outs), 2166 (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2), 2167 ".insn rr,$enc,$R1,$R2", []>; 2168 def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc, 2169 AnyReg:$R1, AnyReg:$R2), 2170 ".insn rre,$enc,$R1,$R2", []>; 2171 def InsnRRF : DirectiveInsnRRF<(outs), 2172 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2, 2173 AnyReg:$R3, imm32zx4:$M4), 2174 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>; 2175 def InsnRRS : DirectiveInsnRRS<(outs), 2176 (ins imm64zx48:$enc, AnyReg:$R1, 2177 AnyReg:$R2, imm32zx4:$M3, 2178 bdaddr12only:$BD4), 2179 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>; 2180 def InsnRS : DirectiveInsnRS<(outs), 2181 (ins imm64zx32:$enc, AnyReg:$R1, 2182 AnyReg:$R3, bdaddr12only:$BD2), 2183 ".insn rs,$enc,$R1,$R3,$BD2", []>; 2184 def InsnRSE : DirectiveInsnRSE<(outs), 2185 (ins imm64zx48:$enc, AnyReg:$R1, 2186 AnyReg:$R3, bdaddr12only:$BD2), 2187 ".insn rse,$enc,$R1,$R3,$BD2", []>; 2188 def InsnRSI : DirectiveInsnRSI<(outs), 2189 (ins imm64zx48:$enc, AnyReg:$R1, 2190 AnyReg:$R3, brtarget16:$RI2), 2191 ".insn rsi,$enc,$R1,$R3,$RI2", []>; 2192 def InsnRSY : DirectiveInsnRSY<(outs), 2193 (ins imm64zx48:$enc, AnyReg:$R1, 2194 AnyReg:$R3, bdaddr20only:$BD2), 2195 ".insn rsy,$enc,$R1,$R3,$BD2", []>; 2196 def InsnRX : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1, 2197 bdxaddr12only:$XBD2), 2198 ".insn rx,$enc,$R1,$XBD2", []>; 2199 def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, 2200 bdxaddr12only:$XBD2), 2201 ".insn rxe,$enc,$R1,$XBD2", []>; 2202 def InsnRXF : DirectiveInsnRXF<(outs), 2203 (ins imm64zx48:$enc, AnyReg:$R1, 2204 AnyReg:$R3, bdxaddr12only:$XBD2), 2205 ".insn rxf,$enc,$R1,$R3,$XBD2", []>; 2206 def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1, 2207 bdxaddr20only:$XBD2), 2208 ".insn rxy,$enc,$R1,$XBD2", []>; 2209 def InsnS : DirectiveInsnS<(outs), 2210 (ins imm64zx32:$enc, bdaddr12only:$BD2), 2211 ".insn s,$enc,$BD2", []>; 2212 def InsnSI : DirectiveInsnSI<(outs), 2213 (ins imm64zx32:$enc, bdaddr12only:$BD1, 2214 imm32sx8:$I2), 2215 ".insn si,$enc,$BD1,$I2", []>; 2216 def InsnSIY : DirectiveInsnSIY<(outs), 2217 (ins imm64zx48:$enc, 2218 bdaddr20only:$BD1, imm32zx8:$I2), 2219 ".insn siy,$enc,$BD1,$I2", []>; 2220 def InsnSIL : DirectiveInsnSIL<(outs), 2221 (ins imm64zx48:$enc, bdaddr12only:$BD1, 2222 imm32zx16:$I2), 2223 ".insn sil,$enc,$BD1,$I2", []>; 2224 def InsnSS : DirectiveInsnSS<(outs), 2225 (ins imm64zx48:$enc, bdraddr12only:$RBD1, 2226 bdaddr12only:$BD2, AnyReg:$R3), 2227 ".insn ss,$enc,$RBD1,$BD2,$R3", []>; 2228 def InsnSSE : DirectiveInsnSSE<(outs), 2229 (ins imm64zx48:$enc, 2230 bdaddr12only:$BD1,bdaddr12only:$BD2), 2231 ".insn sse,$enc,$BD1,$BD2", []>; 2232 def InsnSSF : DirectiveInsnSSF<(outs), 2233 (ins imm64zx48:$enc, bdaddr12only:$BD1, 2234 bdaddr12only:$BD2, AnyReg:$R3), 2235 ".insn ssf,$enc,$BD1,$BD2,$R3", []>; 2236} 2237 2238//===----------------------------------------------------------------------===// 2239// Peepholes. 2240//===----------------------------------------------------------------------===// 2241 2242// Avoid generating 2 XOR instructions. (xor (and x, y), y) is 2243// equivalent to (and (xor x, -1), y) 2244def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y), 2245 (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>; 2246 2247// Shift/rotate instructions only use the last 6 bits of the second operand 2248// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the 2249// last 16 bits. 2250// Complexity is added so that we match this before we match NILF on the AND 2251// operation alone. 2252let AddedComplexity = 4 in { 2253 def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), 2254 (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; 2255 2256 def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), 2257 (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; 2258 2259 def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), 2260 (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; 2261 2262 def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), 2263 (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; 2264 2265 def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), 2266 (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; 2267 2268 def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), 2269 (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; 2270 2271 def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), 2272 (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; 2273 2274 def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), 2275 (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; 2276} 2277 2278// Substitute (x*64-s) with (-s), since shift/rotate instructions only 2279// use the last 6 bits of the second operand register (making it modulo 64). 2280let AddedComplexity = 4 in { 2281 def : Pat<(shl GR64:$val, (sub imm32mod64, GR32:$shift)), 2282 (SLLG GR64:$val, (LCR GR32:$shift), 0)>; 2283 2284 def : Pat<(sra GR64:$val, (sub imm32mod64, GR32:$shift)), 2285 (SRAG GR64:$val, (LCR GR32:$shift), 0)>; 2286 2287 def : Pat<(srl GR64:$val, (sub imm32mod64, GR32:$shift)), 2288 (SRLG GR64:$val, (LCR GR32:$shift), 0)>; 2289 2290 def : Pat<(rotl GR64:$val, (sub imm32mod64, GR32:$shift)), 2291 (RLLG GR64:$val, (LCR GR32:$shift), 0)>; 2292} 2293 2294// Peepholes for turning scalar operations into block operations. 2295defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence, 2296 XCSequence, 1>; 2297defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence, 2298 XCSequence, 2>; 2299defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence, 2300 XCSequence, 4>; 2301defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence, 2302 OCSequence, XCSequence, 1>; 2303defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence, 2304 XCSequence, 2>; 2305defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence, 2306 XCSequence, 4>; 2307defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence, 2308 XCSequence, 8>; 2309