xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.td (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Stack allocation
11//===----------------------------------------------------------------------===//
12
13// The callseq_start node requires the hasSideEffects flag, even though these
14// instructions are noops on SystemZ.
15let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
16  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17                                [(callseq_start timm:$amt1, timm:$amt2)]>;
18  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
19                                [(callseq_end timm:$amt1, timm:$amt2)]>;
20}
21
22// Takes as input the value of the stack pointer after a dynamic allocation
23// has been made.  Sets the output to the address of the dynamically-
24// allocated area itself, skipping the outgoing arguments.
25//
26// This expands to an LA or LAY instruction.  We restrict the offset
27// to the range of LA and keep the LAY range in reserve for when
28// the size of the outgoing arguments is added.
29def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
30                         [(set GR64:$dst, dynalloc12only:$src)]>;
31
32let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
33    usesCustomInserter = 1 in
34  def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
35                             (ins GR64:$oldSP, GR64:$space),
36           [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;
37
38let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
39    hasSideEffects = 1 in
40  def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;
41
42//===----------------------------------------------------------------------===//
43// Branch instructions
44//===----------------------------------------------------------------------===//
45
46// Conditional branches.
47let isBranch = 1, isTerminator = 1, Uses = [CC] in {
48  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
49  // with the condition-code mask being the first operand.  It seems friendlier
50  // to use mnemonic forms like JE and JLH when writing out the assembly though.
51  let isCodeGenOnly = 1 in {
52    // An assembler extended mnemonic for BRC.
53    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
54    // An assembler extended mnemonic for BRCL.  (The extension is "G"
55    // rather than "L" because "JL" is "Jump if Less".)
56    def BRCL : CondBranchRIL<"jg#", 0xC04>;
57    let isIndirectBranch = 1 in {
58      def BC  : CondBranchRX<"b#",  0x47>;
59      def BCR : CondBranchRR<"b#r", 0x07>;
60      def BIC : CondBranchRXY<"bi#", 0xe347>,
61                Requires<[FeatureMiscellaneousExtensions2]>;
62    }
63  }
64
65  // Allow using the raw forms directly from the assembler (and occasional
66  // special code generation needs) as well.
67  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
68  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
69  let isIndirectBranch = 1 in {
70    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
71    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
72    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
73                 Requires<[FeatureMiscellaneousExtensions2]>;
74  }
75
76  // Define AsmParser extended mnemonics for each general condition-code mask
77  // (integer or floating-point)
78  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
79                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
80    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
81    def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>;
82    let isIndirectBranch = 1 in {
83      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
84      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
85      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
86                    Requires<[FeatureMiscellaneousExtensions2]>;
87    }
88  }
89}
90
91// Unconditional branches.  These are in fact simply variants of the
92// conditional branches with the condition mask set to "always".
93let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
94  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
95  def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>;
96  let isIndirectBranch = 1 in {
97    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
98    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
99    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
100             Requires<[FeatureMiscellaneousExtensions2]>;
101  }
102}
103
104// NOPs.  These are again variants of the conditional branches, with the
105// condition mask set to "never".  NOP_bare can't be an InstAlias since it
106// would need R0D hard coded which is not part of ADDR64BitRegClass.
107def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
108let isAsmParserOnly = 1, hasNoSchedulingInfo = 1, M1 = 0, XBD2 = 0 in
109  def NOP_bare  : InstRXb<0x47,(outs), (ins), "nop", []>;
110def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;
111def NOPR_bare : InstAlias<"nopr", (BCRAsm 0, R0D), 0>;
112
113// An alias of BRC 0, label
114def JNOP : InstAlias<"jnop\t$RI2", (BRCAsm 0, brtarget16:$RI2), 0>;
115
116// An alias of BRCL 0, label
117def JGNOP : InstAlias<"jgnop\t$RI2", (BRCLAsm 0, brtarget32:$RI2), 0>;
118
119// Fused compare-and-branch instructions.
120//
121// These instructions do not use or clobber the condition codes.
122// We nevertheless pretend that the relative compare-and-branch
123// instructions clobber CC, so that we can lower them to separate
124// comparisons and BRCLs if the branch ends up being out of range.
125let isBranch = 1, isTerminator = 1 in {
126  // As for normal branches, we handle these instructions internally in
127  // their raw CRJ-like form, but use assembly macros like CRJE when writing
128  // them out.  Using the *Pair multiclasses, we also create the raw forms.
129  let Defs = [CC] in {
130    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
131    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
132    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
133    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
134    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
135    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
136    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
137    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
138  }
139  let isIndirectBranch = 1 in {
140    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
141    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
142    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
143    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
144    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
145    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
146    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
147    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
148  }
149
150  // Define AsmParser mnemonics for each integer condition-code mask.
151  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
152                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
153    let Defs = [CC] in {
154      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
155      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
156      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
157                                          imm32sx8>;
158      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
159                                          imm64sx8>;
160      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
161      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
162      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
163                                          imm32zx8>;
164      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
165                                          imm64zx8>;
166    }
167    let isIndirectBranch = 1 in {
168      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
169      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
170      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
171                                         imm32sx8>;
172      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
173                                         imm64sx8>;
174      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
175      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
176      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
177                                         imm32zx8>;
178      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
179                                         imm64zx8>;
180    }
181  }
182}
183
184// Decrement a register and branch if it is nonzero.  These don't clobber CC,
185// but we might need to split long relative branches into sequences that do.
186let isBranch = 1, isTerminator = 1 in {
187  let Defs = [CC] in {
188    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
189    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
190  }
191  // This doesn't need to clobber CC since we never need to split it.
192  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
193              Requires<[FeatureHighWord]>;
194
195  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
196  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
197  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
198  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
199}
200
201let isBranch = 1, isTerminator = 1 in {
202  let Defs = [CC] in {
203    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
204    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
205    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
206    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
207  }
208  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
209  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
210  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
211  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
212}
213
214//===----------------------------------------------------------------------===//
215// Trap instructions
216//===----------------------------------------------------------------------===//
217
218// Unconditional trap.
219let hasCtrlDep = 1, hasSideEffects = 1 in
220  def Trap : Alias<4, (outs), (ins), [(trap)]>;
221
222// Conditional trap.
223let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
224  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
225
226// Fused compare-and-trap instructions.
227let hasCtrlDep = 1, hasSideEffects = 1 in {
228  // These patterns work the same way as for compare-and-branch.
229  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
230  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
231  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
232  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
233  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
234  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
235  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
236  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
237  let Predicates = [FeatureMiscellaneousExtensions] in {
238    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
239    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
240  }
241
242  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
243                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
244    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
245    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
246    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
247    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
248    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
249                                         imm32sx16>;
250    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
251                                         imm64sx16>;
252    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
253                                         imm32zx16>;
254    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
255                                         imm64zx16>;
256    let Predicates = [FeatureMiscellaneousExtensions] in {
257      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
258      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
259    }
260  }
261}
262
263//===----------------------------------------------------------------------===//
264// Call and return instructions
265//===----------------------------------------------------------------------===//
266
267// Define the general form of the call instructions for the asm parser.
268// These instructions don't hard-code %r14 as the return address register.
269let isCall = 1, Defs = [CC] in {
270  def BRAS  : CallRI <"bras", 0xA75>;
271  def BRASL : CallRIL<"brasl", 0xC05>;
272  def BAS   : CallRX <"bas", 0x4D>;
273  def BASR  : CallRR <"basr", 0x0D>;
274}
275
276// Regular calls.
277let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
278  def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
279                        [(z_call pcrel32:$I2)]>;
280  def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
281                        [(z_call ADDR64:$R2)]>;
282}
283
284// TLS calls.  These will be lowered into a call to __tls_get_offset,
285// with an extra relocation specifying the TLS symbol.
286let isCall = 1, Defs = [R14D, CC] in {
287  def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
288                         [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
289  def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
290                         [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
291}
292
293// Sibling calls.
294let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
295  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
296                     [(z_sibcall pcrel32:$I2)]>;
297  def CallBR : Alias<2, (outs), (ins ADDR64:$R2),
298                     [(z_sibcall ADDR64:$R2)]>;
299}
300
301// Conditional sibling calls.
302let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
303  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
304                                   pcrel32:$I2), []>;
305  def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1,
306                                  ADDR64:$R2), []>;
307}
308
309// Fused compare and conditional sibling calls.
310let isCall = 1, isTerminator = 1, isReturn = 1 in {
311  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
312  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
313  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
314  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
315  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
316  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
317  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
318  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
319}
320
321// A return instruction (br %r14).
322let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
323  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
324
325// A conditional return instruction (bcr <cond>, %r14).
326let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
327  def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
328
329// Fused compare and conditional returns.
330let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
331  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
332  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
333  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
334  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
335  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
336  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
337  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
338  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
339}
340
341//===----------------------------------------------------------------------===//
342// Select instructions
343//===----------------------------------------------------------------------===//
344
345def Select32    : SelectWrapper<i32, GR32>,
346                  Requires<[FeatureNoLoadStoreOnCond]>;
347def Select64    : SelectWrapper<i64, GR64>,
348                  Requires<[FeatureNoLoadStoreOnCond]>;
349
350// We don't define 32-bit Mux stores if we don't have STOCFH, because the
351// low-only STOC should then always be used if possible.
352defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
353                                 nonvolatile_anyextloadi8, bdxaddr20only>,
354                      Requires<[FeatureHighWord]>;
355defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
356                                 nonvolatile_anyextloadi16, bdxaddr20only>,
357                      Requires<[FeatureHighWord]>;
358defm CondStore32Mux : CondStores<GRX32, simple_store,
359                                 simple_load, bdxaddr20only>,
360                      Requires<[FeatureLoadStoreOnCond2]>;
361defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
362                                 nonvolatile_anyextloadi8, bdxaddr20only>;
363defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
364                                 nonvolatile_anyextloadi16, bdxaddr20only>;
365defm CondStore32    : CondStores<GR32, simple_store,
366                                 simple_load, bdxaddr20only>;
367
368defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
369                    nonvolatile_anyextloadi8, bdxaddr20only>;
370defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
371                    nonvolatile_anyextloadi16, bdxaddr20only>;
372defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
373                    nonvolatile_anyextloadi32, bdxaddr20only>;
374defm CondStore64 : CondStores<GR64, simple_store,
375                              simple_load, bdxaddr20only>;
376
377//===----------------------------------------------------------------------===//
378// Move instructions
379//===----------------------------------------------------------------------===//
380
381// Register moves.
382def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
383def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
384
385let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
386  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
387  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
388}
389
390let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
391  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
392
393// Immediate moves.
394let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
395  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
396  // deopending on the choice of register.
397  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
398               Requires<[FeatureHighWord]>;
399  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
400  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
401
402  // Other 16-bit immediates.
403  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
404  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
405  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
406  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
407
408  // 32-bit immediates.
409  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
410  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
411  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
412}
413
414// Register loads.
415let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
416  // Expands to L, LY or LFH, depending on the choice of register.
417  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
418             Requires<[FeatureHighWord]>;
419  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
420  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
421            Requires<[FeatureHighWord]>;
422  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
423
424  // These instructions are split after register allocation, so we don't
425  // want a custom inserter.
426  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
427    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
428                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
429  }
430}
431let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
432  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
433  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
434}
435
436let canFoldAsLoad = 1 in {
437  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
438  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
439}
440
441// Load and zero rightmost byte.
442let Predicates = [FeatureLoadAndZeroRightmostByte] in {
443  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
444  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
445  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
446            (LZRF bdxaddr20only:$src)>;
447  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
448            (LZRG bdxaddr20only:$src)>;
449}
450
451// Load and trap.
452let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
453  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
454  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
455  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
456}
457
458// Register stores.
459let SimpleBDXStore = 1, mayStore = 1 in {
460  // Expands to ST, STY or STFH, depending on the choice of register.
461  def STMux : StoreRXYPseudo<store, GRX32, 4>,
462              Requires<[FeatureHighWord]>;
463  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
464  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
465             Requires<[FeatureHighWord]>;
466  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
467
468  // These instructions are split after register allocation, so we don't
469  // want a custom inserter.
470  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
471    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
472                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
473  }
474}
475def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
476def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
477
478// 8-bit immediate stores to 8-bit fields.
479defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
480
481// 16-bit immediate stores to 16-, 32- or 64-bit fields.
482def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
483def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
484def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
485
486// Memory-to-memory moves.
487let mayLoad = 1, mayStore = 1 in
488  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
489let mayLoad = 1, mayStore = 1, Defs = [CC] in {
490  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
491  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
492  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
493}
494
495// Move right.
496let Predicates = [FeatureMiscellaneousExtensions3],
497    mayLoad = 1, mayStore = 1, Uses = [R0L] in
498  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
499
500// String moves.
501let mayLoad = 1, mayStore = 1, Defs = [CC] in
502  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
503
504//===----------------------------------------------------------------------===//
505// Conditional move instructions
506//===----------------------------------------------------------------------===//
507
508let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
509  // Select.
510  let isCommutable = 1 in {
511    // Expands to SELR or SELFHR or a branch-and-move sequence,
512    // depending on the choice of registers.
513    def  SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
514    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
515    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
516    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
517  }
518
519  // Define AsmParser extended mnemonics for each general condition-code mask.
520  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
521                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
522    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
523                                          GR32, GR32, GR32>;
524    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
525                                          GRH32, GRH32, GRH32>;
526    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
527                                          GR64, GR64, GR64>;
528  }
529}
530
531let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
532  // Load immediate on condition.  Matched via DAG pattern and created
533  // by the PeepholeOptimizer via FoldImmediate.
534
535  // Expands to LOCHI or LOCHHI, depending on the choice of register.
536  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
537  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
538  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
539  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
540
541  // Move register on condition.  Matched via DAG pattern and
542  // created by early if-conversion.
543  let isCommutable = 1 in {
544    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
545    // depending on the choice of registers.
546    def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
547    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
548  }
549
550  // Load on condition.  Matched via DAG pattern.
551  // Expands to LOC or LOCFH, depending on the choice of register.
552  defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
553  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;
554
555  // Store on condition.  Expanded from CondStore* pseudos.
556  // Expands to STOC or STOCFH, depending on the choice of register.
557  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
558  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
559
560  // Define AsmParser extended mnemonics for each general condition-code mask.
561  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
562                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
563    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
564                                         imm32sx16>;
565    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
566                                         imm64sx16>;
567    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
568                                         imm32sx16>;
569    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
570    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
571    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
572  }
573}
574
575let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
576  // Move register on condition.  Matched via DAG pattern and
577  // created by early if-conversion.
578  let isCommutable = 1 in {
579    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
580    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
581  }
582
583  // Load on condition.  Matched via DAG pattern.
584  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
585  defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;
586
587  // Store on condition.  Expanded from CondStore* pseudos.
588  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
589  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
590
591  // Define AsmParser extended mnemonics for each general condition-code mask.
592  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
593                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
594    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
595    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
596    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
597    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
598    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
599    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
600  }
601}
602//===----------------------------------------------------------------------===//
603// Sign extensions
604//===----------------------------------------------------------------------===//
605//
606// Note that putting these before zero extensions mean that we will prefer
607// them for anyextload*.  There's not really much to choose between the two
608// either way, but signed-extending loads have a short LH and a long LHY,
609// while zero-extending loads have only the long LLH.
610//
611//===----------------------------------------------------------------------===//
612
613// 32-bit extensions from registers.
614def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
615def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
616
617// 64-bit extensions from registers.
618def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
619def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
620def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
621
622let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
623  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
624
625// Match 32-to-64-bit sign extensions in which the source is already
626// in a 64-bit register.
627def : Pat<(sext_inreg GR64:$src, i32),
628          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
629
630// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
631// depending on the choice of register.
632def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
633            Requires<[FeatureHighWord]>;
634def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
635def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
636          Requires<[FeatureHighWord]>;
637
638// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
639// depending on the choice of register.
640def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
641            Requires<[FeatureHighWord]>;
642defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
643def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
644            Requires<[FeatureHighWord]>;
645def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
646
647// 64-bit extensions from memory.
648def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
649def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
650def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
651def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
652def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
653let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
654  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
655
656//===----------------------------------------------------------------------===//
657// Zero extensions
658//===----------------------------------------------------------------------===//
659
660// 32-bit extensions from registers.
661
662// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
663def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
664              Requires<[FeatureHighWord]>;
665def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
666// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
667def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
668              Requires<[FeatureHighWord]>;
669def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
670
671// 64-bit extensions from registers.
672def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
673def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
674def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
675
676// Match 32-to-64-bit zero extensions in which the source is already
677// in a 64-bit register.
678def : Pat<(and GR64:$src, 0xffffffff),
679          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
680
681// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
682// depending on the choice of register.
683def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
684             Requires<[FeatureHighWord]>;
685def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
686def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
687           Requires<[FeatureHighWord]>;
688
689// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
690// depending on the choice of register.
691def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
692             Requires<[FeatureHighWord]>;
693def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
694def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
695            Requires<[FeatureHighWord]>;
696def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
697
698// 64-bit extensions from memory.
699def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
700def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
701def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
702def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
703def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
704
705// 31-to-64-bit zero extensions.
706def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
707def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
708def : Pat<(and GR64:$src, 0x7fffffff),
709          (LLGTR GR64:$src)>;
710def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
711          (LLGT bdxaddr20only:$src)>;
712
713// Load and zero rightmost byte.
714let Predicates = [FeatureLoadAndZeroRightmostByte] in {
715  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
716  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
717            (LLZRGF bdxaddr20only:$src)>;
718}
719
720// Load and trap.
721let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
722  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
723  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
724}
725
726// Extend GR64s to GR128s.
727let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
728  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
729
730//===----------------------------------------------------------------------===//
731// "Any" extensions
732//===----------------------------------------------------------------------===//
733
734// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
735def : Pat<(i64 (anyext GR32:$src)),
736          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
737
738// Extend GR64s to GR128s.
739let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
740  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
741
742//===----------------------------------------------------------------------===//
743// Truncations
744//===----------------------------------------------------------------------===//
745
746// Truncations of 64-bit registers to 32-bit registers.
747def : Pat<(i32 (trunc GR64:$src)),
748          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
749
750// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
751// STC, STCY or STCH, depending on the choice of register.
752def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
753             Requires<[FeatureHighWord]>;
754defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
755def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
756           Requires<[FeatureHighWord]>;
757
758// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
759// STH, STHY or STHH, depending on the choice of register.
760def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
761             Requires<[FeatureHighWord]>;
762defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
763def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
764           Requires<[FeatureHighWord]>;
765def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
766
767// Truncations of 64-bit registers to memory.
768defm : StoreGR64Pair<STC, STCY, truncstorei8>;
769defm : StoreGR64Pair<STH, STHY, truncstorei16>;
770def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
771defm : StoreGR64Pair<ST, STY, truncstorei32>;
772def  : StoreGR64PC<STRL, aligned_truncstorei32>;
773
774// Store characters under mask -- not (yet) used for codegen.
775defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
776def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
777
778//===----------------------------------------------------------------------===//
779// Multi-register moves
780//===----------------------------------------------------------------------===//
781
782// Multi-register loads.
783defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
784def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
785def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
786def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
787
788// Multi-register stores.
789defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
790def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
791def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
792
793//===----------------------------------------------------------------------===//
794// Byte swaps
795//===----------------------------------------------------------------------===//
796
797// Byte-swapping register moves.
798def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
799def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
800
801// Byte-swapping loads.
802def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
803def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
804def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
805
806// Byte-swapping stores.
807def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
808def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
809def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
810
811// Byte-swapping memory-to-memory moves.
812let mayLoad = 1, mayStore = 1 in
813  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
814
815//===----------------------------------------------------------------------===//
816// Load address instructions
817//===----------------------------------------------------------------------===//
818
819// Load BDX-style addresses.
820let isAsCheapAsAMove = 1, isReMaterializable = 1 in
821  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
822
823// Load a PC-relative address.  There's no version of this instruction
824// with a 16-bit offset, so there's no relaxation.
825let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
826  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
827
828// Load the Global Offset Table address.  This will be lowered into a
829//     larl $R1, _GLOBAL_OFFSET_TABLE_
830// instruction.
831def GOT : Alias<6, (outs GR64:$R1), (ins),
832                [(set GR64:$R1, (global_offset_table))]>;
833
834//===----------------------------------------------------------------------===//
835// Absolute and Negation
836//===----------------------------------------------------------------------===//
837
838let Defs = [CC] in {
839  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
840    def LPR  : UnaryRR <"lpr",  0x10,   abs, GR32, GR32>;
841    def LPGR : UnaryRRE<"lpgr", 0xB900, abs, GR64, GR64>;
842  }
843  let CCValues = 0xE, CompareZeroCCMask = 0xE in
844    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
845}
846defm : SXU<abs, LPGFR>;
847
848let Defs = [CC] in {
849  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
850    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
851    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
852  }
853  let CCValues = 0xE, CompareZeroCCMask = 0xE in
854    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
855}
856defm : SXU<z_inegabs, LNGFR>;
857
858let Defs = [CC] in {
859  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
860    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
861    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
862  }
863  let CCValues = 0xE, CompareZeroCCMask = 0xE in
864    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
865}
866defm : SXU<ineg, LCGFR>;
867
868//===----------------------------------------------------------------------===//
869// Insertion
870//===----------------------------------------------------------------------===//
871
872let isCodeGenOnly = 1 in
873  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
874defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
875
876defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
877defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
878
879defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
880defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
881
882// Insert characters under mask -- not (yet) used for codegen.
883let Defs = [CC] in {
884  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
885  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
886}
887
888// Insertions of a 16-bit immediate, leaving other bits unaffected.
889// We don't have or_as_insert equivalents of these operations because
890// OI is available instead.
891//
892// IIxMux expands to II[LH]x, depending on the choice of register.
893def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
894             Requires<[FeatureHighWord]>;
895def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
896             Requires<[FeatureHighWord]>;
897def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
898def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
899def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
900def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
901def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
902def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
903def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
904def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
905
906// ...likewise for 32-bit immediates.  For GR32s this is a general
907// full-width move.  (We use IILF rather than something like LLILF
908// for 32-bit moves because IILF leaves the upper 32 bits of the
909// GR64 unchanged.)
910let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
911  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
912               Requires<[FeatureHighWord]>;
913  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
914  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
915}
916def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
917def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
918
919// An alternative model of inserthf, with the first operand being
920// a zero-extended value.
921def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
922          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
923                  imm64hf32:$imm)>;
924
925//===----------------------------------------------------------------------===//
926// Addition
927//===----------------------------------------------------------------------===//
928
929// Addition producing a signed overflow flag.
930let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
931  // Addition of a register.
932  let isCommutable = 1 in {
933    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
934    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
935  }
936  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
937
938  // Addition to a high register.
939  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
940              Requires<[FeatureHighWord]>;
941  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
942              Requires<[FeatureHighWord]>;
943
944  // Addition of signed 16-bit immediates.
945  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
946  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
947  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
948
949  // Addition of signed 32-bit immediates.
950  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
951               Requires<[FeatureHighWord]>;
952  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
953  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
954             Requires<[FeatureHighWord]>;
955  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
956
957  // Addition of memory.
958  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
959  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>;
960  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
961             Requires<[FeatureMiscellaneousExtensions2]>;
962  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
963  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, load, 8>;
964
965  // Addition to memory.
966  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
967  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
968}
969defm : SXB<z_sadd, GR64, AGFR>;
970
971// Addition producing a carry.
972let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
973  // Addition of a register.
974  let isCommutable = 1 in {
975    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
976    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
977  }
978  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
979
980  // Addition to a high register.
981  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
982               Requires<[FeatureHighWord]>;
983  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
984               Requires<[FeatureHighWord]>;
985
986  // Addition of signed 16-bit immediates.
987  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
988                Requires<[FeatureDistinctOps]>;
989  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
990                Requires<[FeatureDistinctOps]>;
991
992  // Addition of unsigned 32-bit immediates.
993  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
994  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
995
996  // Addition of signed 32-bit immediates.
997  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
998              Requires<[FeatureHighWord]>;
999
1000  // Addition of memory.
1001  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
1002  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
1003  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, load, 8>;
1004
1005  // Addition to memory.
1006  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
1007  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
1008}
1009defm : ZXB<z_uadd, GR64, ALGFR>;
1010
1011// Addition producing and using a carry.
1012let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1013  // Addition of a register.
1014  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
1015  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1016
1017  // Addition of memory.
1018  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>;
1019  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
1020}
1021
1022// Addition that does not modify the condition code.
1023def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1024             Requires<[FeatureHighWord]>;
1025
1026
1027//===----------------------------------------------------------------------===//
1028// Subtraction
1029//===----------------------------------------------------------------------===//
1030
1031// Subtraction producing a signed overflow flag.
1032let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
1033    CCIfNoSignedWrap = 1 in {
1034  // Subtraction of a register.
1035  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1036  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1037  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1038
1039  // Subtraction from a high register.
1040  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1041              Requires<[FeatureHighWord]>;
1042  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1043              Requires<[FeatureHighWord]>;
1044
1045  // Subtraction of memory.
1046  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
1047  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
1048  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
1049             Requires<[FeatureMiscellaneousExtensions2]>;
1050  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
1051  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, load, 8>;
1052}
1053defm : SXB<z_ssub, GR64, SGFR>;
1054
1055// Subtracting an immediate is the same as adding the negated immediate.
1056let AddedComplexity = 1 in {
1057  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1058            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1059        Requires<[FeatureHighWord]>;
1060  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1061            (AFIMux GR32:$src1, simm32n:$src2)>,
1062        Requires<[FeatureHighWord]>;
1063  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1064            (AHI GR32:$src1, imm32sx16n:$src2)>;
1065  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1066            (AFI GR32:$src1, simm32n:$src2)>;
1067  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1068            (AGHI GR64:$src1, imm64sx16n:$src2)>;
1069  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1070            (AGFI GR64:$src1, imm64sx32n:$src2)>;
1071}
1072
1073// And vice versa in one special case, where we need to load a
1074// constant into a register in any case, but the negated constant
1075// requires fewer instructions to load.
1076def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1077          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1078def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1079          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1080
1081// Subtraction producing a carry.
1082let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
1083  // Subtraction of a register.
1084  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1085  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1086  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1087
1088  // Subtraction from a high register.
1089  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1090               Requires<[FeatureHighWord]>;
1091  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1092               Requires<[FeatureHighWord]>;
1093
1094  // Subtraction of unsigned 32-bit immediates.
1095  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
1096  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1097
1098  // Subtraction of memory.
1099  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
1100  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
1101  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, load, 8>;
1102}
1103defm : ZXB<z_usub, GR64, SLGFR>;
1104
1105// Subtracting an immediate is the same as adding the negated immediate.
1106let AddedComplexity = 1 in {
1107  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1108            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1109        Requires<[FeatureDistinctOps]>;
1110  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1111            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1112        Requires<[FeatureDistinctOps]>;
1113}
1114
1115// And vice versa in one special case (but we prefer addition).
1116def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1117          (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1118
1119// Subtraction producing and using a carry.
1120let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1121  // Subtraction of a register.
1122  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
1123  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1124
1125  // Subtraction of memory.
1126  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>;
1127  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
1128}
1129
1130
1131//===----------------------------------------------------------------------===//
1132// AND
1133//===----------------------------------------------------------------------===//
1134
1135let Defs = [CC] in {
1136  // ANDs of a register.
1137  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1138    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1139    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1140  }
1141
1142  let isConvertibleToThreeAddress = 1 in {
1143    // ANDs of a 16-bit immediate, leaving other bits unaffected.
1144    // The CC result only reflects the 16-bit field, not the full register.
1145    //
1146    // NIxMux expands to NI[LH]x, depending on the choice of register.
1147    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1148                 Requires<[FeatureHighWord]>;
1149    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1150                 Requires<[FeatureHighWord]>;
1151    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1152    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1153    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1154    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1155    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1156    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1157    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1158    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1159
1160    // ANDs of a 32-bit immediate, leaving other bits unaffected.
1161    // The CC result only reflects the 32-bit field, which means we can
1162    // use it as a zero indicator for i32 operations but not otherwise.
1163    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1164      // Expands to NILF or NIHF, depending on the choice of register.
1165      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1166                   Requires<[FeatureHighWord]>;
1167      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1168      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1169    }
1170    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1171    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1172  }
1173
1174  // ANDs of memory.
1175  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1176    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>;
1177    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>;
1178  }
1179
1180  // AND to memory
1181  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1182
1183  // Block AND.
1184  let mayLoad = 1, mayStore = 1 in
1185    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
1186}
1187defm : RMWIByte<and, bdaddr12pair, NI>;
1188defm : RMWIByte<and, bdaddr20pair, NIY>;
1189
1190//===----------------------------------------------------------------------===//
1191// OR
1192//===----------------------------------------------------------------------===//
1193
1194let Defs = [CC] in {
1195  // ORs of a register.
1196  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1197    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1198    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1199  }
1200
1201  // ORs of a 16-bit immediate, leaving other bits unaffected.
1202  // The CC result only reflects the 16-bit field, not the full register.
1203  //
1204  // OIxMux expands to OI[LH]x, depending on the choice of register.
1205  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1206               Requires<[FeatureHighWord]>;
1207  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1208               Requires<[FeatureHighWord]>;
1209  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1210  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1211  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1212  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1213  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1214  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1215  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1216  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1217
1218  // ORs of a 32-bit immediate, leaving other bits unaffected.
1219  // The CC result only reflects the 32-bit field, which means we can
1220  // use it as a zero indicator for i32 operations but not otherwise.
1221  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1222    // Expands to OILF or OIHF, depending on the choice of register.
1223    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1224                 Requires<[FeatureHighWord]>;
1225    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1226    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1227  }
1228  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1229  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1230
1231  // ORs of memory.
1232  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1233    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>;
1234    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>;
1235  }
1236
1237  // OR to memory
1238  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1239
1240  // Block OR.
1241  let mayLoad = 1, mayStore = 1 in
1242    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
1243}
1244defm : RMWIByte<or, bdaddr12pair, OI>;
1245defm : RMWIByte<or, bdaddr20pair, OIY>;
1246
1247//===----------------------------------------------------------------------===//
1248// XOR
1249//===----------------------------------------------------------------------===//
1250
1251let Defs = [CC] in {
1252  // XORs of a register.
1253  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1254    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1255    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1256  }
1257
1258  // XORs of a 32-bit immediate, leaving other bits unaffected.
1259  // The CC result only reflects the 32-bit field, which means we can
1260  // use it as a zero indicator for i32 operations but not otherwise.
1261  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1262    // Expands to XILF or XIHF, depending on the choice of register.
1263    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1264                 Requires<[FeatureHighWord]>;
1265    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1266    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1267  }
1268  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1269  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1270
1271  // XORs of memory.
1272  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1273    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>;
1274    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>;
1275  }
1276
1277  // XOR to memory
1278  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1279
1280  // Block XOR.
1281  let mayLoad = 1, mayStore = 1 in
1282    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
1283}
1284defm : RMWIByte<xor, bdaddr12pair, XI>;
1285defm : RMWIByte<xor, bdaddr20pair, XIY>;
1286
1287//===----------------------------------------------------------------------===//
1288// Combined logical operations
1289//===----------------------------------------------------------------------===//
1290
1291let Predicates = [FeatureMiscellaneousExtensions3],
1292    Defs = [CC] in {
1293  // AND with complement.
1294  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1295    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1296    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1297  }
1298
1299  // OR with complement.
1300  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1301    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1302    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1303  }
1304
1305  // NAND.
1306  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1307    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1308    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1309  }
1310
1311  // NOR.
1312  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1313    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1314    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1315  }
1316
1317  // NXOR.
1318  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1319    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1320    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1321  }
1322}
1323
1324//===----------------------------------------------------------------------===//
1325// Multiplication
1326//===----------------------------------------------------------------------===//
1327
1328// Multiplication of a register, setting the condition code.  We prefer these
1329// over MS(G)R if available, even though we cannot use the condition code,
1330// since they are three-operand instructions.
1331let Predicates = [FeatureMiscellaneousExtensions2],
1332    Defs = [CC], isCommutable = 1 in {
1333  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
1334  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1335}
1336
1337// Multiplication of a register.
1338let isCommutable = 1 in {
1339  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
1340  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1341}
1342def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1343defm : SXB<mul, GR64, MSGFR>;
1344
1345// Multiplication of a signed 16-bit immediate.
1346def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
1347def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1348
1349// Multiplication of a signed 32-bit immediate.
1350def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
1351def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1352
1353// Multiplication of memory.
1354defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
1355defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
1356def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
1357            Requires<[FeatureMiscellaneousExtensions2]>;
1358def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
1359def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
1360
1361// Multiplication of memory, setting the condition code.
1362let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1363  defm MSC  : BinaryRXYAndPseudo<"msc",  0xE353, null_frag, GR32, load, 4>;
1364  defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, load, 8>;
1365}
1366
1367// Multiplication of a register, producing two results.
1368def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
1369def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1370           Requires<[FeatureMiscellaneousExtensions2]>;
1371def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
1372def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1373
1374def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1375          (MGRK GR64:$src1, GR64:$src2)>;
1376def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1377          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1378
1379// Multiplication of memory, producing two results.
1380def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
1381def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
1382def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>,
1383          Requires<[FeatureMiscellaneousExtensions2]>;
1384def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
1385def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;
1386
1387def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1388          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1389def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1390          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1391
1392//===----------------------------------------------------------------------===//
1393// Division and remainder
1394//===----------------------------------------------------------------------===//
1395
1396let hasSideEffects = 1 in {  // Do not speculatively execute.
1397  // Division and remainder, from registers.
1398  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
1399  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1400  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
1401  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
1402  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;
1403
1404  // Division and remainder, from memory.
1405  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
1406  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
1407  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
1408  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
1409  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
1410}
1411def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1412          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1413def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
1414          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1415def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1416          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1417def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1418          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1419
1420def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1421          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1422                                       subreg_l32)), GR32:$src2)>;
1423def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
1424          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1425                                      subreg_l32)), bdxaddr20only:$src2)>;
1426def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1427          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1428def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1429          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1430
1431//===----------------------------------------------------------------------===//
1432// Shifts
1433//===----------------------------------------------------------------------===//
1434
1435// Logical shift left.
1436defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1437def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1438def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1439
1440// Arithmetic shift left.
1441let Defs = [CC] in {
1442  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1443  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1444  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1445}
1446
1447// Logical shift right.
1448defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1449def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1450def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1451
1452// Arithmetic shift right.
1453let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1454  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1455  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1456  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1457}
1458
1459// Rotate left.
1460def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
1461def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1462
1463// Rotate second operand left and inserted selected bits into first operand.
1464// These can act like 32-bit operands provided that the constant start and
1465// end bits (operands 2 and 3) are in the range [32, 64).
1466let Defs = [CC] in {
1467  let isCodeGenOnly = 1 in
1468    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1469  let CCValues = 0xE, CompareZeroCCMask = 0xE in
1470    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1471}
1472
1473// On zEC12 we have a variant of RISBG that does not set CC.
1474let Predicates = [FeatureMiscellaneousExtensions] in
1475  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1476
1477// Forms of RISBG that only affect one word of the destination register.
1478// They do not set CC.
1479let Predicates = [FeatureHighWord] in {
1480  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1481  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
1482  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
1483  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
1484  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
1485  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1486  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1487}
1488
1489// Rotate second operand left and perform a logical operation with selected
1490// bits of the first operand.  The CC result only describes the selected bits,
1491// so isn't useful for a full comparison against zero.
1492let Defs = [CC] in {
1493  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1494  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1495  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1496}
1497
1498//===----------------------------------------------------------------------===//
1499// Comparison
1500//===----------------------------------------------------------------------===//
1501
1502// Signed comparisons.  We put these before the unsigned comparisons because
1503// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1504// of the unsigned forms do.
1505let Defs = [CC], CCValues = 0xE in {
1506  // Comparison with a register.
1507  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
1508  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1509  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;
1510
1511  // Comparison with a high register.
1512  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1513             Requires<[FeatureHighWord]>;
1514  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1515             Requires<[FeatureHighWord]>;
1516
1517  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
1518  // depending on the choice of register.
1519  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1520               Requires<[FeatureHighWord]>;
1521  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1522  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1523
1524  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1525  // depending on the choice of register.
1526  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1527               Requires<[FeatureHighWord]>;
1528  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1529  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1530             Requires<[FeatureHighWord]>;
1531  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1532
1533  // Comparison with memory.
1534  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
1535  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
1536               Requires<[FeatureHighWord]>;
1537  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
1538  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
1539               Requires<[FeatureHighWord]>;
1540  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
1541  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
1542  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
1543  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
1544  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
1545  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
1546  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
1547  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
1548
1549  // Comparison between memory and a signed 16-bit immediate.
1550  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
1551  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
1552  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
1553}
1554defm : SXB<z_scmp, GR64, CGFR>;
1555
1556// Unsigned comparisons.
1557let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1558  // Comparison with a register.
1559  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
1560  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1561  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
1562
1563  // Comparison with a high register.
1564  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1565              Requires<[FeatureHighWord]>;
1566  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1567              Requires<[FeatureHighWord]>;
1568
1569  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1570  // or CLIH, depending on the choice of register.
1571  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1572                Requires<[FeatureHighWord]>;
1573  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1574  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
1575              Requires<[FeatureHighWord]>;
1576  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1577
1578  // Comparison with memory.
1579  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
1580                Requires<[FeatureHighWord]>;
1581  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
1582  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
1583                Requires<[FeatureHighWord]>;
1584  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
1585  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
1586  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1587                             aligned_azextloadi16>;
1588  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1589                             aligned_load>;
1590  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1591                             aligned_azextloadi16>;
1592  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1593                             aligned_azextloadi32>;
1594  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1595                             aligned_load>;
1596
1597  // Comparison between memory and an unsigned 8-bit immediate.
1598  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
1599
1600  // Comparison between memory and an unsigned 16-bit immediate.
1601  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
1602  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
1603  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
1604}
1605defm : ZXB<z_ucmp, GR64, CLGFR>;
1606
1607// Memory-to-memory comparison.
1608let mayLoad = 1, Defs = [CC] in {
1609  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
1610  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1611  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1612  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1613}
1614
1615// String comparison.
1616let mayLoad = 1, Defs = [CC] in
1617  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1618
1619// Test under mask.
1620let Defs = [CC] in {
1621  // TMxMux expands to TM[LH]x, depending on the choice of register.
1622  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1623               Requires<[FeatureHighWord]>;
1624  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1625               Requires<[FeatureHighWord]>;
1626  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1627  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1628  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1629  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1630
1631  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1632  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1633  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1634  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1635
1636  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
1637}
1638
1639def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1640def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1641
1642// Compare logical characters under mask -- not (yet) used for codegen.
1643let Defs = [CC] in {
1644  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1645  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1646}
1647
1648//===----------------------------------------------------------------------===//
1649// Prefetch and execution hint
1650//===----------------------------------------------------------------------===//
1651
1652let mayLoad = 1, mayStore = 1 in {
1653  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1654  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1655}
1656
1657let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1658  // Branch Prediction Preload
1659  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1660  def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1661
1662  // Next Instruction Access Intent
1663  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1664}
1665
1666//===----------------------------------------------------------------------===//
1667// Atomic operations
1668//===----------------------------------------------------------------------===//
1669
1670// A serialization instruction that acts as a barrier for all memory
1671// accesses, which expands to "bcr 14, 0".
1672let hasSideEffects = 1 in
1673def Serialize : Alias<2, (outs), (ins), []>;
1674
1675// A pseudo instruction that serves as a compiler barrier.
1676let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
1677def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;
1678
1679let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1680  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
1681  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
1682  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
1683  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1684  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
1685  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
1686  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
1687  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
1688  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
1689  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
1690}
1691
1692def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
1693def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
1694def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
1695
1696def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1697def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1698let Predicates = [FeatureNoInterlockedAccess1] in {
1699  def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
1700  def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
1701  def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
1702  def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
1703  def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
1704  def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
1705}
1706
1707def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1708def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
1709def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
1710
1711def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1712def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1713let Predicates = [FeatureNoInterlockedAccess1] in {
1714  def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
1715  def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
1716                                                 imm32ll16c>;
1717  def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
1718                                                 imm32lh16c>;
1719  def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
1720  def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
1721  def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1722                                                 imm64ll16c>;
1723  def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1724                                                 imm64lh16c>;
1725  def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1726                                                 imm64hl16c>;
1727  def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1728                                                 imm64hh16c>;
1729  def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1730                                                 imm64lf32c>;
1731  def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1732                                                 imm64hf32c>;
1733}
1734
1735def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1736def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1737let Predicates = [FeatureNoInterlockedAccess1] in {
1738  def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
1739  def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
1740  def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
1741  def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
1742  def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
1743  def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
1744  def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
1745  def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
1746  def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
1747  def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
1748  def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
1749}
1750
1751def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1752def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1753let Predicates = [FeatureNoInterlockedAccess1] in {
1754  def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
1755  def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
1756  def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
1757  def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
1758  def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
1759}
1760
1761def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1762def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1763                                               imm32lh16c>;
1764def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
1765def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1766                                                imm32ll16c>;
1767def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1768                                                imm32lh16c>;
1769def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
1770def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
1771def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1772                                                imm64ll16c>;
1773def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1774                                                imm64lh16c>;
1775def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1776                                                imm64hl16c>;
1777def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1778                                                imm64hh16c>;
1779def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1780                                                imm64lf32c>;
1781def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1782                                                imm64hf32c>;
1783
1784def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1785def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
1786def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
1787
1788def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1789def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
1790def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
1791
1792def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1793def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
1794def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
1795
1796def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1797def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
1798def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
1799
1800def ATOMIC_CMP_SWAPW
1801  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1802                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1803                                  uimm32:$bitsize),
1804           [(set GR32:$dst,
1805                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1806                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1807                                     uimm32:$bitsize))]> {
1808  let Defs = [CC];
1809  let mayLoad = 1;
1810  let mayStore = 1;
1811  let usesCustomInserter = 1;
1812  let hasNoSchedulingInfo = 1;
1813}
1814
1815// Test and set.
1816let mayLoad = 1, Defs = [CC] in
1817  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1818
1819// Compare and swap.
1820let Defs = [CC] in {
1821  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1822  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1823}
1824
1825// Compare double and swap.
1826let Defs = [CC] in {
1827  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1828  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1829}
1830
1831// Compare and swap and store.
1832let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1833  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1834
1835// Perform locked operation.
1836let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1837  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1838
1839// Load/store pair from/to quadword.
1840def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1841def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1842
1843// Load pair disjoint.
1844let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1845  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
1846  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1847}
1848
1849//===----------------------------------------------------------------------===//
1850// Translate and convert
1851//===----------------------------------------------------------------------===//
1852
1853let mayLoad = 1, mayStore = 1 in
1854  def TR : SideEffectBinarySSa<"tr", 0xDC>;
1855
1856let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1857  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
1858  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1859}
1860
1861let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1862  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1863
1864let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1865  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
1866  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1867}
1868
1869let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1870  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1871  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1872  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1873  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1874}
1875
1876let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1877  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1878  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1879  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1880  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1881  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1882  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1883
1884  let isAsmParserOnly = 1 in {
1885    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1886    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1887  }
1888}
1889
1890//===----------------------------------------------------------------------===//
1891// Message-security assist
1892//===----------------------------------------------------------------------===//
1893
1894let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1895  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
1896  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1897
1898  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1899  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1900  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1901
1902  let Predicates = [FeatureMessageSecurityAssist4] in {
1903    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1904    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1905    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1906                                               GR128, GR128, GR128>;
1907    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
1908  }
1909
1910  let Predicates = [FeatureMessageSecurityAssist5] in
1911    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1912  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1913    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1914
1915  let Predicates = [FeatureMessageSecurityAssist8] in
1916    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1917                                              GR128, GR128, GR128>;
1918
1919  let Predicates = [FeatureMessageSecurityAssist9] in
1920    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1921}
1922
1923//===----------------------------------------------------------------------===//
1924// Guarded storage
1925//===----------------------------------------------------------------------===//
1926
1927// These instructions use and/or modify the guarded storage control
1928// registers, which we do not otherwise model, so they should have
1929// hasSideEffects.
1930let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1931  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1932  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1933
1934  let mayLoad = 1 in
1935    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1936  let mayStore = 1 in
1937    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1938}
1939
1940//===----------------------------------------------------------------------===//
1941// Decimal arithmetic
1942//===----------------------------------------------------------------------===//
1943
1944defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
1945def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;
1946
1947defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1948def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1949
1950let mayLoad = 1, mayStore = 1 in {
1951  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1952  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1953  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1954
1955  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
1956  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
1957  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
1958  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
1959  let Defs = [CC] in {
1960    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
1961    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
1962  }
1963}
1964
1965let mayLoad = 1, mayStore = 1 in {
1966  let Defs = [CC] in {
1967    def AP : SideEffectBinarySSb<"ap", 0xFA>;
1968    def SP : SideEffectBinarySSb<"sp", 0xFB>;
1969    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
1970    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
1971  }
1972  def MP : SideEffectBinarySSb<"mp", 0xFC>;
1973  def DP : SideEffectBinarySSb<"dp", 0xFD>;
1974  let Defs = [CC] in {
1975    def ED : SideEffectBinarySSa<"ed", 0xDE>;
1976    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
1977  }
1978}
1979
1980let Defs = [CC] in {
1981  def CP : CompareSSb<"cp", 0xF9>;
1982  def TP : TestRSL<"tp", 0xEBC0>;
1983}
1984
1985//===----------------------------------------------------------------------===//
1986// Access registers
1987//===----------------------------------------------------------------------===//
1988
1989// Read a 32-bit access register into a GR32.  As with all GR32 operations,
1990// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
1991// when a 64-bit address is stored in a pair of access registers.
1992def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
1993
1994// Set access register.
1995def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
1996
1997// Copy access register.
1998def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
1999
2000// Load address extended.
2001defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
2002
2003// Load access multiple.
2004defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
2005
2006// Store access multiple.
2007defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
2008
2009//===----------------------------------------------------------------------===//
2010// Program mask and addressing mode
2011//===----------------------------------------------------------------------===//
2012
2013// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
2014let Uses = [CC] in
2015  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
2016
2017// Set CC and program mask from a register.
2018let hasSideEffects = 1, Defs = [CC] in
2019  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
2020
2021// Branch and link - like BAS, but also extracts CC and program mask.
2022let isCall = 1, Uses = [CC], Defs = [CC] in {
2023  def BAL  : CallRX<"bal", 0x45>;
2024  def BALR : CallRR<"balr", 0x05>;
2025}
2026
2027// Test addressing mode.
2028let Defs = [CC] in
2029  def TAM : SideEffectInherentE<"tam", 0x010B>;
2030
2031// Set addressing mode.
2032let hasSideEffects = 1 in {
2033  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2034  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2035  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2036}
2037
2038// Branch and set mode.  Not really a call, but also sets an output register.
2039let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2040  def BSM : CallRR<"bsm", 0x0B>;
2041
2042// Branch and save and set mode.
2043let isCall = 1, Defs = [CC] in
2044  def BASSM : CallRR<"bassm", 0x0C>;
2045
2046//===----------------------------------------------------------------------===//
2047// Transactional execution
2048//===----------------------------------------------------------------------===//
2049
2050let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2051  // Transaction Begin
2052  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2053    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2054    let hasNoSchedulingInfo = 1 in
2055     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2056    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2057                                      int_s390_tbeginc, imm32zx16>;
2058  }
2059
2060  // Transaction End
2061  let Defs = [CC] in
2062    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2063
2064  // Transaction Abort
2065  let isTerminator = 1, isBarrier = 1, mayStore = 1,
2066      hasSideEffects = 1 in
2067    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2068
2069  // Nontransactional Store
2070  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2071
2072  // Extract Transaction Nesting Depth
2073  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2074}
2075
2076//===----------------------------------------------------------------------===//
2077// Processor assist
2078//===----------------------------------------------------------------------===//
2079
2080let Predicates = [FeatureProcessorAssist] in {
2081  let hasSideEffects = 1 in
2082    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2083  def : Pat<(int_s390_ppa_txassist GR32:$src),
2084            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2085                 zero_reg, 1)>;
2086}
2087
2088//===----------------------------------------------------------------------===//
2089// Miscellaneous Instructions.
2090//===----------------------------------------------------------------------===//
2091
2092// Find leftmost one, AKA count leading zeros.  The instruction actually
2093// returns a pair of GR64s, the first giving the number of leading zeros
2094// and the second giving a copy of the source with the leftmost one bit
2095// cleared.  We only use the first result here.
2096let Defs = [CC] in
2097  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2098def : Pat<(i64 (ctlz GR64:$src)),
2099          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2100
2101// Population count.  Counts bits set per byte or doubleword.
2102let Predicates = [FeatureMiscellaneousExtensions3] in {
2103  let Defs = [CC] in
2104    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2105  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2106}
2107let Predicates = [FeaturePopulationCount], Defs = [CC] in
2108  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2109
2110// Search a block of memory for a character.
2111let mayLoad = 1, Defs = [CC] in
2112  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2113let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2114  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2115
2116// Compare until substring equal.
2117let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2118  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2119
2120// Compare and form codeword.
2121let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2122  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2123
2124// Update tree.
2125let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2126    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2127  def UPT : SideEffectInherentE<"upt", 0x0102>;
2128
2129// Checksum.
2130let mayLoad = 1, Defs = [CC] in
2131  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2132
2133// Compression call.
2134let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2135  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2136
2137// Sort lists.
2138let Predicates = [FeatureEnhancedSort],
2139    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2140  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2141
2142// Deflate conversion call.
2143let Predicates = [FeatureDeflateConversion],
2144    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2145  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2146                                           GR128, GR128, GR64>;
2147
2148// Execute.
2149let hasSideEffects = 1 in {
2150  def EX   : SideEffectBinaryRX<"ex", 0x44, GR64>;
2151  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>;
2152}
2153
2154//===----------------------------------------------------------------------===//
2155// .insn directive instructions
2156//===----------------------------------------------------------------------===//
2157
2158let isCodeGenOnly = 1, hasSideEffects = 1 in {
2159  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2160  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2161                                             imm32sx16:$I2),
2162                                ".insn ri,$enc,$R1,$I2", []>;
2163  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2164                                              AnyReg:$R3, brtarget16:$I2),
2165                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
2166  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2167                                              brtarget32:$I2),
2168                                 ".insn ril,$enc,$R1,$I2", []>;
2169  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2170                                               uimm32:$I2),
2171                                  ".insn rilu,$enc,$R1,$I2", []>;
2172  def InsnRIS : DirectiveInsnRIS<(outs),
2173                                 (ins imm64zx48:$enc, AnyReg:$R1,
2174                                      imm32sx8:$I2, imm32zx4:$M3,
2175                                      bdaddr12only:$BD4),
2176                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2177  def InsnRR : DirectiveInsnRR<(outs),
2178                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2179                               ".insn rr,$enc,$R1,$R2", []>;
2180  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2181                                              AnyReg:$R1, AnyReg:$R2),
2182                                 ".insn rre,$enc,$R1,$R2", []>;
2183  def InsnRRF : DirectiveInsnRRF<(outs),
2184                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2185                                      AnyReg:$R3, imm32zx4:$M4),
2186                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2187  def InsnRRS : DirectiveInsnRRS<(outs),
2188                                 (ins imm64zx48:$enc, AnyReg:$R1,
2189                                      AnyReg:$R2, imm32zx4:$M3,
2190                                      bdaddr12only:$BD4),
2191                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2192  def InsnRS  : DirectiveInsnRS<(outs),
2193                                (ins imm64zx32:$enc, AnyReg:$R1,
2194                                     AnyReg:$R3, bdaddr12only:$BD2),
2195                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
2196  def InsnRSE : DirectiveInsnRSE<(outs),
2197                                 (ins imm64zx48:$enc, AnyReg:$R1,
2198                                      AnyReg:$R3, bdaddr12only:$BD2),
2199                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2200  def InsnRSI : DirectiveInsnRSI<(outs),
2201                                 (ins imm64zx48:$enc, AnyReg:$R1,
2202                                      AnyReg:$R3, brtarget16:$RI2),
2203                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2204  def InsnRSY : DirectiveInsnRSY<(outs),
2205                                 (ins imm64zx48:$enc, AnyReg:$R1,
2206                                      AnyReg:$R3, bdaddr20only:$BD2),
2207                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2208  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2209                                             bdxaddr12only:$XBD2),
2210                                ".insn rx,$enc,$R1,$XBD2", []>;
2211  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2212                                              bdxaddr12only:$XBD2),
2213                                 ".insn rxe,$enc,$R1,$XBD2", []>;
2214  def InsnRXF : DirectiveInsnRXF<(outs),
2215                                 (ins imm64zx48:$enc, AnyReg:$R1,
2216                                      AnyReg:$R3, bdxaddr12only:$XBD2),
2217                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2218  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2219                                              bdxaddr20only:$XBD2),
2220                                 ".insn rxy,$enc,$R1,$XBD2", []>;
2221  def InsnS : DirectiveInsnS<(outs),
2222                             (ins imm64zx32:$enc, bdaddr12only:$BD2),
2223                             ".insn s,$enc,$BD2", []>;
2224  def InsnSI : DirectiveInsnSI<(outs),
2225                               (ins imm64zx32:$enc, bdaddr12only:$BD1,
2226                                    imm32sx8:$I2),
2227                               ".insn si,$enc,$BD1,$I2", []>;
2228  def InsnSIY : DirectiveInsnSIY<(outs),
2229                                 (ins imm64zx48:$enc,
2230                                      bdaddr20only:$BD1, imm32zx8:$I2),
2231                                 ".insn siy,$enc,$BD1,$I2", []>;
2232  def InsnSIL : DirectiveInsnSIL<(outs),
2233                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2234                                      imm32zx16:$I2),
2235                                 ".insn sil,$enc,$BD1,$I2", []>;
2236  def InsnSS : DirectiveInsnSS<(outs),
2237                               (ins imm64zx48:$enc, bdraddr12only:$RBD1,
2238                                    bdaddr12only:$BD2, AnyReg:$R3),
2239                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2240  def InsnSSE : DirectiveInsnSSE<(outs),
2241                                 (ins imm64zx48:$enc,
2242                                      bdaddr12only:$BD1,bdaddr12only:$BD2),
2243                                 ".insn sse,$enc,$BD1,$BD2", []>;
2244  def InsnSSF : DirectiveInsnSSF<(outs),
2245                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2246                                      bdaddr12only:$BD2, AnyReg:$R3),
2247                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2248  def InsnVRI : DirectiveInsnVRI<(outs),
2249                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2250                                  imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
2251                                 ".insn vri,$enc,$V1,$V2,$I3,$M4,$M5", []>;
2252  def InsnVRR : DirectiveInsnVRR<(outs),
2253                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2254                                  VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
2255                                  imm32zx4:$M6),
2256                                  ".insn vrr,$enc,$V1,$V2,$V3,$M4,$M5,$M6", []>;
2257  def InsnVRS : DirectiveInsnVRS<(outs),
2258                                 (ins imm64zx48:$enc, AnyReg:$R1, VR128:$V3,
2259                                  bdaddr12only:$BD2, imm32zx4:$M4),
2260                                 ".insn vrs,$enc,$BD2,$M4", []>;
2261  def InsnVRV : DirectiveInsnVRV<(outs),
2262                                 (ins imm64zx48:$enc, VR128:$V1,
2263                                      bdvaddr12only:$VBD2, imm32zx4:$M3),
2264                                 ".insn vrv,$enc,$V1,$VBD2,$M3", []>;
2265  def InsnVRX : DirectiveInsnVRX<(outs),
2266                                 (ins imm64zx48:$enc, VR128:$V1,
2267                                  bdxaddr12only:$XBD2, imm32zx4:$M3),
2268                                 ".insn vrx,$enc,$V1,$XBD2,$M3", []>;
2269  def InsnVSI : DirectiveInsnVSI<(outs),
2270                                 (ins imm64zx48:$enc, VR128:$V1,
2271                                  bdaddr12only:$BD2, imm32zx8:$I3),
2272                                  ".insn vsi,$enc,$V1,$BD2,$I3", []>;
2273}
2274
2275//===----------------------------------------------------------------------===//
2276// Peepholes.
2277//===----------------------------------------------------------------------===//
2278
2279// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2280// equivalent to (and (xor x, -1), y)
2281def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2282                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2283
2284// Shift/rotate instructions only use the last 6 bits of the second operand
2285// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2286// last 16 bits.
2287// Complexity is added so that we match this before we match NILF on the AND
2288// operation alone.
2289let AddedComplexity = 4 in {
2290  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2291            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2292
2293  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2294            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2295
2296  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2297            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2298
2299  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2300            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2301
2302  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2303            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2304
2305  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2306            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2307
2308  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2309            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2310
2311  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2312            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2313}
2314
2315// Substitute (x*64-s) with (-s), since shift/rotate instructions only
2316// use the last 6 bits of the second operand register (making it modulo 64).
2317let AddedComplexity = 4 in {
2318  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2319            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2320
2321  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
2322            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2323
2324  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2325            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2326
2327  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2328            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2329}
2330
2331// Peepholes for turning scalar operations into block operations.
2332defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
2333                      XCSequence, 1>;
2334defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
2335                      XCSequence, 2>;
2336defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
2337                      XCSequence, 4>;
2338defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
2339                      OCSequence, XCSequence, 1>;
2340defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
2341                      XCSequence, 2>;
2342defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
2343                      XCSequence, 4>;
2344defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
2345                      XCSequence, 8>;
2346
2347//===----------------------------------------------------------------------===//
2348// Mnemonic Aliases
2349//===----------------------------------------------------------------------===//
2350
2351def JCT   : MnemonicAlias<"jct", "brct">;
2352def JCTG  : MnemonicAlias<"jctg", "brctg">;
2353def JAS   : MnemonicAlias<"jas", "bras">;
2354def JASL  : MnemonicAlias<"jasl", "brasl">;
2355def JXH   : MnemonicAlias<"jxh", "brxh">;
2356def JXLE  : MnemonicAlias<"jxle", "brxle">;
2357def JXHG  : MnemonicAlias<"jxhg", "brxhg">;
2358def JXLEG : MnemonicAlias<"jxleg", "brxlg">;
2359
2360def BRU   : MnemonicAlias<"bru", "j">;
2361def BRUL  : MnemonicAlias<"brul", "jg">;
2362
2363foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
2364              "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
2365  def BRUAsm#V : MnemonicCondBranchAlias <CV<V>, "br#", "j#">;
2366  def BRULAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jg#">;
2367}
2368